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A program is said to be well-bracketed if every called function must return before its caller can resume execution. This is often the case. Well-bracketedness has been captured semantically as a condition on strategies in fully abstract games models and multiple prior works have studied well-bracketedness by showing correctness/security properties of programs where such properties depend on the well-bracketed nature of control flow. The latter category of prior works have all used involved relational models with explicit state-transition systems capturing the relevant parts of the control flow of the program. In this paper we present the first Hoare-style program logic based on separation logic for reasoning about well-bracketedness and use it to show correctness of well-bracketed programs both directly and also through defining unary and binary logical relations models based on this program logic. All results presented in this paper are formalized on top of the Iris framework and mechanized in the Coq proof assistant.

INTRODUCTION

The control flow of a program is said to be well-bracketed if in every function call the caller can only resume execution after the callee has returned. In other words, function calls take place in a stack-like fashion which is the reason why they are usually implemented using a call stack at the hardware level. Note that in a programming language with continuations and/or concurrency, programs are not guaranteed to be well-bracketed.

Well-bracketedness has been captured semantically as a condition on strategies in fully abstract games models, e.g., [START_REF] Hyland | On Full Abstraction for PCF: I, II, and III[END_REF], and multiple prior works have studied wellbracketedness by showing correctness, e.g., [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF], [START_REF] Hur | The Marriage of Bisimulations and Kripke Logical Relations[END_REF], [START_REF] Jaber | Compositional relational reasoning via operational game semantics[END_REF], and security properties, e.g., [START_REF] Skorstengaard | StkTokens: Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using Linear Capabilities[END_REF], [START_REF] Aïna | Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities[END_REF], of programs where such properties depend on the well-bracketed nature of control flow.

Prior work on reasoning about well-bracketed control flow [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF]] has epitomized the following very awkward example (VAE) as the key example of a program, written in an ML-like programming language, whose correctness depends on well-bracketedness of control flow:

let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 (Very Awkward)
The VAE program above first allocates a reference 𝑟 with value 0, and then returns a closure which takes a function argument 𝑓 . The returned closure first resets the value of 𝑟 to 0 and subsequently calls 𝑓 ; here () is the unit value, i.e., the only value in the unit type. After 𝑓 returns, the program continues by setting 𝑟 to 1, followed by another call to 𝑓 . Finally, the program returns the value stored in 𝑟 . VAE must always return 1 because the reference 𝑟 is a local reference, only accessible in the returned closure, which only reads 𝑟 after it has set it to 1. However, the argument for why this is the case is quite subtle, because the operation of reading 𝑟 and setting 𝑟 to 1 are separated by a call to 𝑓 . One might hastily dismiss this call to 𝑓 since, after all, the reference 𝑟 is a local reference only accessible by the returned closure. Hence, one might fallaciously argue that the call to 𝑓 should in no way affect 𝑟 . However, the function 𝑓 might itself include calls to the closure, and thus it can affect 𝑟 ! Nonetheless, as long as the execution is well-bracketed, VAE always returns 1. This is because, in a well-bracketed setting, any calls to the closure within 𝑓 must all end before 𝑓 returns, and hence the part of the code setting 𝑟 to 0 cannot take place after 𝑓 returns. This is in contrast to settings where control flow is not well-bracketed, e.g., in the presence of continuations (see [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] for an example where continuations break well-bracketedness of VAE) or concurrency (see Section 5 for an example of concurrency breaking well-bracketedness of VAE).

Note: the existing literature sometimes refers to VAE also as the awkward example.

A Historical Note. VAE was first mentioned by [START_REF] Ahmed | State-Dependent Representation Independence[END_REF] as a variant, attributed to Jacob Thamsborg, of an example by [START_REF] Pitts | Operational Reasoning for Functions with Local State[END_REF]. The original example was called the "awkward" example by [START_REF] Pitts | Operational Reasoning for Functions with Local State[END_REF] because they could not handle it. The Awkward example is as follows:

let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 1; 𝑓 (); ! 𝑟 (Awkward)
The approach proposed by [START_REF] Ahmed | State-Dependent Representation Independence[END_REF] can reason about the Awkward example but not the VAE variant. The core difficulty of the Awkward example is that the value of the reference undergoes an irreversible change. The value is 0 prior to the assignment only if this is the first time the closure is being called. To quote [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF]: "One of the key contributions of the ADR [START_REF] Ahmed | State-Dependent Representation Independence[END_REF]] model was to combine the machinery of step-indexed logical relations with that of Kripke logical relations in order to model higher-order state." and "The other key contribution of the ADR [START_REF] Ahmed | State-Dependent Representation Independence[END_REF]] model was to provide an enhanced notion of possible world, which has the potential to express properties of local state that evolve over time. [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] state that they "recast the ADR [START_REF] Ahmed | State-Dependent Representation Independence[END_REF]] model in the more familiar terms of state transition systems" which enables them to include so-called private transitions (see below) which are necessary in their approach to reason about well-bracketedness. Using these private transitions, [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] presented the first formal proof establishing that VAE always returns 1. The use of private transitions is the key insight that subsequent works on reasoning about well-bracketedness prior to our work have directly built upon, and in a way, as we will allude to below, it is also what inspired us in developing our approach.

The logical relations model of [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] was a so-called Kripke logical relations model, where the worlds consist of state transition systems, which describe how local state may evolve over time, and the key observation of [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] is that a function can take private transitions as long as it is not observable by its callers. That is, it must restore the state to a publicly reachable state before it returns. The state transition system for VAE is as follows: Here the solid arrow is a public transition and the dashed arrow is the private transition. Hence, the program can set the 𝑟 to 0 even if it is already 1 but it must restore it to 1 before returning, which is precisely the essence of the behavior of VAE.

𝑟 = 0 𝑟 = 1 (VAE-
Using Separation Logic to Build Logical Relation Models. Modern separation logics such as Iris make it possible to build logical relations models at a higher-level of abstraction [START_REF] Krebbers | Interactive proofs in higher-order concurrent separation logic[END_REF][START_REF] Timany | A Logical Approach to Type Soundness[END_REF]. In particular, the combination of Iris invariants and ghost state provides a more abstract alternative to explicit worlds and state transition systems. The Awkward example can be verified in Iris using this approach: the proof does not involve explicit worlds or even building a logical relations model, as we show in Section 2. However, using Iris's invariants and ghost state has so far only been used to match the reasoning power of state-transition-system-based Kripke logical relations with public transitions, which do not allow reasoning about well-bracketedness.

A most relevant line of work is the study by [START_REF] Skorstengaard | StkTokens: Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using Linear Capabilities[END_REF] and Georges et al. [2021] of security properties for programs at the assembly level. These works both consider well-bracketedness as a correctness aspect of the calling convention they present. To argue wellbracketedness, both works verify that (their assembly version of) VAE returns 1 under their respective calling convention. [START_REF] Aïna | Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities[END_REF] define their logical relations model using the Iris program logic, building on the earlier model of [START_REF] Skorstengaard | StkTokens: Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using Linear Capabilities[END_REF], defined as a "traditional" step-indexed Kripke logical relation indexed over worlds consisting of state transition systems with private transitions, much in the style of [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF]. [START_REF] Aïna | Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities[END_REF] are able to reap some of the benefits of working in Iris, such as abstracting over less-relevant details of the model like step-indexing, and reasoning more abstractly about state. However, in order to reason about well-bracketedness, the model of Georges et al. [2021] is still indexed over an explicit world consisting of state transition systems. This makes their model more "invasive" in the sense that one has to consider public/private state transitions when reasoning about any program, not only when reasoning about examples relying on well-bracketedness.

The Central Question. This raises a question. Can we reason about well-bracketed control flow without an explicit state transition system, or some such mechanism? In other words, can we develop a program logic that allows us to reason about well-bracketed control flow whenever necessary without complicating the reasoning about other programs whose correctness does not hinge on well-bracketedness of control flow? In this paper we answer this question in the affirmative. We present a program logic that satisfies the following desiderata:

Conservative Extension It is a Hoare-style program logic based on separation logic which validates verbatim all the usual reasoning principles of separation logic.1 Bespoke Facilities It at the same time offers additional reasoning principles for reasoning about well-bracketedness. Minimal Extension It uses existing reasoning facilities, e.g., Iris's ghost state and invariants, instead of encoding well-bracketedness as a state transition system with public/private transitions. Versatility It can be used to used to construct unary and binary logical relations models in the standard way, i.e., as presented in [START_REF] Krebbers | Interactive proofs in higher-order concurrent separation logic[END_REF], to obtain a model which enables reasoning about well-bracketedness like in Georges et al. [2021] while hiding the details of the underlying mechanism. To make the central question more concrete, we now sketch how the Awkward example can be proved in the Iris separation logic.

The Essence of the Proof of the Awkward Example in Iris. To reason about non-trivial programs in separation logic one often uses ghost resources (aka auxiliary or logical state), and invariants, which are used to tie the ghost state to the physical program state. Ghost resources are strategically picked so as to ensure that they may only evolve in certain ways. For instance, a ghost resource could be defined so that it could only be increased and never decreased. In case of the Awkward example (see Section 2) ghost resources are used to define a ghost theory called the one-shot ghost theory. The one-shot ghost theory features a pair of predicates: pending(𝛾) and shot(𝛾) -𝛾 is the name of the resource instance. 2 The theory only allows the state to start in pending(𝛾) and evolve to shot(𝛾) but never the other way around. It is then required that the state of the reference is either 0 in which case we must have pending(𝛾) or it is 1 in which case we must have shot(𝛾). In Iris, this requirement can be enforced using an Iris invariant. This approach essentially reflects a state transition system in the ghost theory that is similar to VAE-sts but without the private transition. (This is precisely the state transition system [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] used to prove correctness of the Awkward example.)

In summary, the combination of Iris's notion of invariants and ghost resources naturally supports reasoning about monotonic evolution of state. This makes Iris perfectly adapted to the kind of reasoning supported by public transitions in state-transition-systems-based Kripke logical relation models.

The Well-Bracketed Program Logic. Now, given this perspective on Iris's methodology for proving correctness of examples like the Awkward example, we can recast our central question as follows:

If Iris's ghost state and invariants capture the public transitions, then which additional mechanism does a program logic need to capture the kind of reasoning supported by private transitions in Kripke logical relations models?

The answer that we give to this question is (at least to us) surprisingly simple and elegant. We introduce a new program logic, called the well-bracketed program logic, which is a new Hoare logic of so-called well-bracketed Hoare triples. The additional key ingredient provided by our well-bracketed program logic is a novel logical mechanism of so-called ghost stacks. (Ghost stacks are themselves encoded using Iris's ghost resources; see Section 9 and the accompanying technical appendix for further details.) In combination with Iris's existing ghost state and invariants, ghost stacks make it possible to reason about well-bracketed evolution of state and resources, thus achieving the same reasoning power as enabled by private transitions.

Our well-bracketed program logic is built on top of the existing Hoare logic of Iris. Hence, just like the existing Hoare logic of Iris, the well-bracketed program logic can be instantiated with different programming languages. The main instantiation of the well-bracketed program logic presented in this paper is Iris's default concurrent higher-order imperative programming language known as HeapLang. The other two instantiations of the well-bracketed program logic presented in this paper are: (1) a variant of HeapLang that enables referring to execution traces based on Birkedal et al.'s approach [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF]] (see Section 6), and (2) a variant of System F featuring higher-order references and recursive types for which we develop logical relations models (Section 7).

The HeapLang instantiation of the well-bracketed Hoare triples satisfy verbatim all the same reasoning principles as Iris's Hoare triples except for the rule for forking of threads (naturally so, since concurrency breaks well-bracketedness). Additionally, the well-bracketed program logic includes proof rules to allocate new ghost stacks (stacks of ghost names), and to access them when necessary. This is similar to how the standard Iris program logic allows the user to allocate new invariants, and to access them when necessary. The core idea of using ghost stacks to reason about well-bracketedness is then as follows. When using an invariant to tie the physical state of the program to a ghost resource, instead of using a fixed instance of a ghost resource, one ties the physical state to the ghost resource instance whose name is on top of the ghost stack. This shift, from a fixed instance of ghost state to a stack of ghost states enables encoding private transitions as follows. To make a private transition from state 𝑠 to state 𝑠 ′ we just leave the ghost state associated to state 𝑠 untouched. Instead, we allocate a fresh instance of ghost state in state 𝑠 ′ . We then pushes the name of this newly allocated ghost state on top of the stack. In order to roll back a private transition, we simply pop the stack.

As we will demonstrate in Section 3.2, ghost stacks allow us to prove correctness of VAE using a stack of (names of) one-shot resources, i.e., precisely the resource that we use in Section 2 for the proof of the Awkward example. We note that the point of the well-bracketed program logic is to increase the expressivity of the logic. It allows us to prove more expressive specifications for programs by using ghost stacks to reason about programs whose specifications relies on wellbracketedness. When proving specifications for programs that do not rely on well-bracketedness, we do not need ghost stacks. Hence, such proofs can be exactly as in the standard Iris program logic. This means that one should think of the ghost stacks of the well-bracketed program logic as playing a role similar to the role invariants play for reasoning about concurrent programs -the stacks are a logical mechanism that allow us to easily prove specifications for a wider class of programs.

Contributions.

• We present a well-bracketed Hoare logic on top of Iris's Hoare logic, satisfying the desiderata described above [Conservative Extension, Bespoke Facilities, Minimal Extension, and Versatility]. The key idea is a novel reasoning mechanism of so-called ghost stacks. • We give a proof of VAE demonstrating that the well-bracketed Hoare logic can indeed be used to reason about well-bracketed control flow [Bespoke Facilities]. • We use the well-bracketed Hoare logic (instead of the ordinary Hoare logic of Iris) to construct unary and binary logical relations models for a variant of System F featuring higher-order references and recursive types [Versatility]; essentially a typed variant of the sequential subset of HeapLang. We use both logical relations models to reason about VAE. These logical relations models are the first such defined in Iris that support reasoning about well-bracketedness without explicit indexing over worlds. • We use the technique of [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF] to demonstrate that the proof of VAE in our well-bracketed program logic implies that, in the trace generated by any program that uses VAE, the calls to the VAE closure are indeed well-bracketed. • We prove that any state transition system with public and private transitions, in the sense of [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF], can be encoded using ghost stacks. • We have mechanized all results in the Coq proof assistant on top of the Iris framework.

The structure of the rest of the paper. Section 2 presents a proof of the Awkward example in Iris. We also use this example to introduce basic concepts of the Iris program logic. We present our well-bracketed program logic in Section 3. In Section 3.2 we show how the well-bracketed program logic can be used to prove correctness, and well-bracketedness of VAE. Section 4 gives the definition of the well-bracketed program logic in terms of the underlying program logic of Iris. This definition is given in terms of what we will call a theory of stack collections. We discuss, in Section 4.2, how we derive the rules of the well-bracketed program logic. Then, in Section 5 we discuss how the well-bracketed program logic can be used, in conjunction with the underlying program logic of Iris, to reason about well-bracketedness of programs even in the presence of what we call innocuous concurrency. In Section 6 we show that well-bracketed Hoare triples enforce well-bracketedness of calls and returns, stated as an intensional trace property. In Section 7 we use our well-bracketed program logic to construct logical relations models capable of reasoning about well-bracketedness similar to prior works [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF][START_REF] Aïna | Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities[END_REF][START_REF] Skorstengaard | StkTokens: Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using Linear Capabilities[END_REF]. We demonstrate generality of ghost stacks in Section 8 by showing that we can use them to encode any state transition system with private and public transitions. Section 9 presents the construction of the theory of stack collections and in Section 10 we discuss related and future work. Finally, our concluding remarks are in Section 11.

THE PROOF OF THE AWKWARD EXAMPLE IN IRIS

In this section we briefly discuss the Iris program logic proof of the fact that the Awkward example always returns 1. The programming language we use to write examples in throughout this paper is the HeapLang language which Iris comes equipped with. HeapLang is an ML-like call-by-value language with general references and shared-memory concurrency -for this paper it suffices to have an intuitive understanding of its operational semantics. We recall the necessary parts of the Iris program logic along the way, and refer to the accompanying Coq development for the full details.

Formally, we wish to prove the following Hoare triple for Awkward:

{True} let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 1; 𝑓 (); ! 𝑟 { 𝑔. ∀𝑓 . { {True} 𝑓 () {𝑥. 𝑥 = ()} } 𝑔 𝑓 {𝑥. 𝑥 = 1} } (awkward-spec)
Here, awkward-spec states that Awkward returns a closure 𝑔 that, when applied to any function 𝑓 satisfying a simple Hoare triple, returns 1. Note how in Hoare triples the return value is bound to a variable (𝑔 and 𝑥 in the rule above) so that the postcondition can refer to it. We will also sometimes use a predicate as a postcondition and write {𝑃} 𝑒 {𝛷} as a shorthand for {𝑃} 𝑒 {𝑥. 𝛷 (𝑥)}.

In Iris, we use a combination of invariants and ghost state to reason about the Awkward example. First, to capture the only-the-first-time evolution of the state in Awkward, we use the one-shot ghost state mentioned earlier. We introduce two Iris propositions pending(𝛾) and shot(𝛾), where pending(𝛾) may be turned into shot(𝛾) via a ghost state update, but not the other way around. The name 𝛾 is used to identify a specific instance of these two predicates. Second, we use an invariant to hold these ghost resources and tie them to the physical state of the program (the reference allocated at the start).

To prove awkward-spec, we first allocate a fresh instance named 𝛾 of the one-shot resource using rule make-one-shot: make-one-shot

⊢ | ⇛∃𝛾 . pending(𝛾)
This rule states that we can always update ghost resources (| ⇛ is Iris's so-called update modality) so as to make a new instance of the one-shot resource. Here, ⊢ stands for logical entailment between Iris propositions.

After the reference has been allocated by the program (which results in a memory location ℓ), we use the freshly allocated pending(𝛾) resource to establish the following invariant: Looking inside our invariant, the proposition ℓ ↦ → 𝑣 asserts exclusive ownership over memory location ℓ, and, in addition states that this location stores the value 𝑣. The connective * is called the separating conjunction. It incorporates a notion of separation or disjointness. Intuitively, 𝑃 * 𝑄 holds if we can split resources into two disjoint parts, one satisfying 𝑃 and the other 𝑄.

AwkwardInv ≜ (ℓ ↦ → 0 * pending(𝛾)) ∨ (ℓ ↦ → 1 * shot(𝛾)) N awk (awkward-inv)
The program logic of Iris (Iris's Hoare logic) enforces that an invariant, once established, is always preserved. This is effectively achieved by the rule inv-open enforcing that invariants can only be accessed for the duration of atomic operations, i.e., an operation like loading from, or storing into a reference. 3 Interestingly, it might appear that this rule is consuming the invariant while opening it, but this is in fact not a problem as invariants are always persistent and hence can be duplicated as necessary.

inv-open

{𝐼 * 𝑃 } 𝑒 {𝑥. 𝐼 * 𝑄 } 𝑒 is atomic { 𝐼 N * 𝑃 } 𝑒 {𝑥. 𝑄 }
Opening an invariant allows us to access the resource it contains, as long as the invariant can be re-established afterwards. Furthermore, Iris's Hoare logic is designed to allow us to update resources (formally, to eliminate the update modality) at any point throughout the proof.

The one-shot ghost theory, in addition to the rule make-one-shot earlier, enjoys the following rules:

shoot pending(𝛾) ⊢ | ⇛shot(𝛾) pending-not-shot pending(𝛾) * shot(𝛾) ⊢ False shot-persistent ⊢ persistent(shot(𝛾))
Using the shoot rule, any pending resource can be shot by updating ghost resources. Note that shot(𝛾) is persistent (and hence duplicable) as it merely asserts the knowledge that the resource is not pending anymore. On the other hand, pending(𝛾) asserts exclusive ownership indicating that the instance 𝛾 of the one-shot resource is not shot yet. This is to ensure that each instance of the one-shot resource can only be shot once; hence the name. Note, in particular, that persistence of shot(𝛾) and exclusivity of pending(𝛾) mean that we have shot(𝛾) ⊣⊢ shot(𝛾) * shot(𝛾), for shot(𝛾), but not the analogous for pending(𝛾). Here, ⊣⊢ is the bi-entailment relation (logical entailment in both directions). Finally, the rule pending-not-shot states that it is not possible for an instance of the one-shot resource to be both shot and pending at the same time. Notice how the behavior of the one-shot resource closely resembles the manner in which the state of the reference in the Awkward example evolves -the reference stores 0 (the writing of 1 is pending) until the store operation takes place (is shot), a change which persists. (The accompanying technical appendix details how this ghost theory is defined using Iris's resource algebras.)

To finish the proof, we only need to show the following Hoare triple for the rest of the program:

{ AwkwardInv * {True} 𝑓 () {𝑥. 𝑥 = ()} } ℓ ← 1; 𝑓 (); ! ℓ {𝑥. 𝑥 = 1} (1)
Since, the operation ℓ ← 1 is an atomic operation we get to assume the invariant AwkwardInv before it, and need to reestablish it afterwards. The essence of the argument here is that we can prove the following Hoare triple:

{(ℓ ↦ → 0 * pending(𝛾)) ∨ (ℓ ↦ → 1 * shot(𝛾))} ℓ ← 1 {𝑥. 𝑥 = () * ℓ ↦ → 1 * shot(𝛾)} (2)
Note how the postcondition above allows us to reestablish the invariant, and at the same time, since shot(𝛾) is persistent (and thus duplicable), also retain a copy of shot(𝛾). To prove (2) we simply perform a case analysis on the disjunction in the precondition. In the case of the right disjunct nothing needs to be done. In the case of the left disjunct, after the operation we obtain ℓ ↦ → 1 in the postcondition as the storing operation has mutated the heap of the program. In addition, from the precondition we have pending(𝛾). To reconcile the postcondition we only need to produce shot(𝛾) from pending(𝛾). This is precisely what the rule shoot allows us to do. To finalize the proof, it suffices to show

{ AwkwardInv * {True} 𝑓 () {𝑥. 𝑥 = ()} * shot(𝛾) } 𝑓 (); ! ℓ {𝑥. 𝑥 = 1}
(3)

For the call to 𝑓 we have a Hoare triple provided in the precondition. As for loading from ℓ, since it is an atomic operation, we can access the invariant again. This time though, since we also have shot(𝛾) we can discard the left disjunct of the invariant as it is impossible due to the rule pendingnot-shot. The fact that we can discard the left disjunct is a key step; it captures the irreversibility of the update to ℓ.

WELL-BRACKETED PROGRAM LOGIC

In this section we present the well-bracketed program logic which is centered around the notion of well-bracketed Hoare triples, which we write as follows:

𝑃 𝑒 𝑥 . 𝑄 O
Just like with an ordinary Hoare triple, 𝑃 is the precondition, 𝑒 is the program, and 𝑄 is the postcondition which may also refer to the final return value of the program bound to 𝑥. Additionally, a well-bracketed Hoare triple is parameterized by a stack mask O, representing the set of names of stacks that are out, i.e., those that are not controlled by the program logic (we will explain this in more detail later). We will omit the stack mask O whenever it is just the empty set.

Intuitively, a well-bracketed Hoare triple is very much like an ordinary triple, except that it has additionally access to ghost stacks which allow reasoning about well-bracketed evolution of ghost state. In Iris, an ordinary triple asserts that assuming 𝑃, 𝑒 runs safely and produces a result satisfying 𝑄 while all invariants are satisfied at each step. A well-bracketed Hoare triple asserts that assuming 𝑃, 𝑒 runs safely and produces a result satisfying 𝑄 while all invariants are satisfied, and that ghost state tracked in ghost stacks evolves in a well-bracketed manner matching the execution of the program.

Standard rules. The well-bracketed program logic satisfies all the rules satisfied by the ordinary Iris program logic for HeapLang, except the fork rule, since concurrency can break wellbracketedness. An excerpt of these is given in Figure 1. Note how these rules never effect the stack mask. The rules wbHoare-alloc, wbHoare-load and wbHoare-store simply reflect the operational semantics of the language, e.g., wbHoare-alloc expresses that when we allocate a new location, it is fresh because we immediately receive exclusive ownership over it in terms of the points-to proposition 𝑥 ↦ → 𝑣. The rule wbHoare-conseqence and wbHoare-inv-open need little explanation. The former is the standard rule of consequence for Hoare logic and the latter is the invariant opening rule inv-open expressed for well-bracketed Hoare triples. The rule wbHoare-frame is the frame rule of separation logic. It states that once a program is proven correct with respect to a certain pre-and postcondition it remains correct in the presence of other resources, be it physical or ghost resources. In rule wbHoare-frame, the use of separating conjunction is key as owning more resources disjoint from 𝑃 can never invalidate 𝑃. The rule wbHoare-bind is an important rule for modular reasoning. It concerns programs of the form 𝐾 [𝑒] that consist of an expression 𝑒 under an evaluation context 𝐾, the part of the program that would run following evaluation of 𝑒. The rule wbHoare-bind states that to show correctness of 𝐾 [𝑒], it suffices to show that 𝑒 is correct, and that 𝐾 is correct when plugging into it any value that satisfies the postcondition of 𝑒. Accessing ghost stacks. The distinguishing feature of well-bracketed triples is the ability to access ghost stacks. Concretely, ghost stacks are tracked using three novel predicates of our well-bracketed program logic: stack • (𝑁 , 𝑠) called system stack, stack • (𝑁 , 𝑠) called user stack, and stack ∃ (𝑁 ) called stack-exists. In these predicates, 𝑁 is the name of the stack and 𝑠 is a sequence of ghost resource names which constitutes the contents of the stack. The idea is that stack • (𝑁 , 𝑠) and stack • (𝑁 , 𝑠) must always agree on the contents of the stack. The former represents the "system's view" (read: the program logic's view) of the stack, which is tracked by well-bracketed Hoare triples. The latter is handed to the user, and therefore represents the "user's view" of the stack. The predicate stack ∃ (𝑁 ) is a persistent proposition. It merely expresses the knowledge that there exists a stack by the name of 𝑁 , without asserting any ownership over it.

wbHoare-conseqence 𝑄 =⇒ 𝑃 ∀𝑣. 𝛷 (𝑣) =⇒ Ψ(𝑣) 𝑃 𝑒 𝛷 O ⊢ 𝑄 𝑒 Ψ O wbHoare-inv-open 𝐼 * 𝑃 𝑒 𝑥 . 𝐼 * 𝑄 O 𝑒 is atomic 𝐼 N * 𝑃 𝑒 𝑥 . 𝑄 O wbHoare-bind 𝑃 𝑒 Ψ O ∀𝑣. Ψ(𝑣) 𝐾 [𝑣] 𝛷 O 𝑃 𝐾 [𝑒] 𝛷 O wbHoare-frame 𝑃 𝑒 𝛷 O ⊢ 𝑃 * 𝑅 𝑒 𝑥 . 𝛷 (𝑥) * 𝑅 O wbHoare-alloc ⊢ True ref (𝑣) 𝑥 . 𝑥 ↦ → 𝑣 O wbHoare-load ⊢ ℓ ↦ → 𝑣 ! ℓ 𝑥 . 𝑥 = 𝑣 * ℓ ↦ → 𝑣 O wbHoare-store ⊢ ℓ ↦ → 𝑣 ℓ ← 𝑤 𝑥 . 𝑥 = () * ℓ ↦ → 𝑤 O
Figure 2 displays the rules that connect well-bracketed Hoare triples to these stack predicates. The Hoare-wbHoare rule asserts that not using ghost stacks is always an option. Indeed, if one is able to verify a triple without leveraging ghost stacks, then the same triple should also hold in the well-bracketed program logic (for an arbitrary mask)! This means that we can combine reasoning in the ordinary program logic with reasoning in the well-bracketed program logic. This allows us stacks-agree to show that well-bracketed programs remain well-bracketed, even in the presence of innocuous uses of non-well-bracketed programs, e.g., programs featuring concurrency -we will discuss this further in Section 5.

stack • (𝑁 , 𝑠) * stack • (𝑁 , 𝑠 ′ ) ⊢ 𝑠 = 𝑠 ′ stack-system-uniqe stack • (𝑁 , 𝑠) * stack • (𝑁 , 𝑠 ′ ) ⊢ False stack-user-uniqe stack • (𝑁 , 𝑠) * stack • (𝑁 , 𝑠 ′ ) ⊢ False stack-exists stack • (𝑁 , 𝑠) ⊢ stack ∃ (𝑁 ) stacks-push stack • (𝑁 , 𝑠) * stack • (𝑁 , 𝑠) ⊢ | ⇛stack • (𝑁 , 𝛾 :: 𝑠) * stack • (𝑁 , 𝛾 :: 𝑠) stacks-pop stack • (𝑁 , 𝛾 :: 𝑠) * stack • (𝑁 , 𝛾 :: 𝑠) ⊢ | ⇛stack • (𝑁 , 𝑠) * stack • (𝑁 , 𝑠)
If one does want to leverage ghost stacks, one can create new stacks using the rule wbHoarecreate-stack, at any point in the proof of a well-bracketed Hoare triple. There are a few points of interest here regarding the rule wbHoare-create-stack. Note how the user of the rule has to pick a predicate 𝑅 parameterized by the fresh stack name 𝑁 , which the program logic picks when creating the stack -this is why in both antecedents of the rule the name 𝑁 is universally quantified. Also, the user obtains both stack • and stack • predicates where the stack is empty. The user can use these predicates, and any other resources and/or invariants, in order to establish 𝑅. Finally, along 𝑅, the user of the rule must return the stack • predicate for some initial stack chosen by the user. This is why the fresh name 𝑁 is not added to the stack mask, unlike the rule wbHoare-access-stack for accessing stack • .

The rule wbHoare-access-stack allows access to the stack • part of existing stacks. The crucial point here is that the contents of the stack are expected to be returned untouched in the postcondition; this is exactly the reason why we can guarantee well-bracketedness. Any temporary changes made must be undone by the time stack is returned. (This will become more evident later, when we consider the proof of VAE.) The rule wbHoare-access-stack requires stack ∃ as evidence that a stack with the name 𝑁 has indeed been created before. Importantly, we must show that the name of the stack, i.e., 𝑁 , is not already in the stack mask O of stacks that are already accessed.

The final rule for using stacks of ghost names is rule wbHoare-mend-stack and it is the exact dual of wbHoare-access-stack. The soundness of this rule relies on the fact that well-bracketed Hoare triples always respect all stacks. The rule wbHoare-mend-stack allows us to temporarily put the stack back so as to give access to it to the rest of the program. However, at the same time, it guarantees that the stack will come back to us unchanged. (See the discussion below regarding the proof of VAE.) Note also that since we have stack • (𝑁 , 𝑠) in the precondition of the Hoare triple in the consequent of the rule wbHoare-mend-stack, we know that the name 𝑁 must be in the stack mask O as it cannot both be tracked by the program logic and outside at the same time.

Reasoning with ghost stacks. Ghost stack predicates come with a straightforward ghost theory that corresponds to the intuition given earlier. Figure 3 lists the formal rules that one may leverage on the stack predicates one gets access to by applying some of the rules of Figure 2.

The propositions stack • (𝑁 , 𝑠) and stack • (𝑁 , 𝑠) express exclusive ownership over respective halfs of the ghost stack named 𝑁 . They consequently agree on the stack contents (stacks-agree) and are unique (stack-system-uniqe and stack-user-uniqe). Given stack • (𝑁 , 𝑠) one may derive a persistent witness that the stack 𝑁 exists (stack-exists). Finally, when having full access to both halves of a ghost stack, one may update its contents, either by pushing a new ghost name (stacks-push), or popping the top of the stack (stacks-pop).

The Adequacy Theorem of the Well-Bracketed Program Logic

The adequacy theorem of the well-bracketed program logic, establishing its soundness, is similar to that of the ordinary program logic of Iris. It states that any program 𝑒 for which we have Hoare triple is safe, i.e., it does not crash, and whenever it terminates to a value 𝑣, 𝑣 satisfies the postcondition. Formally, this is stated as the following theorem.

Theorem 3.1 (Adeqacy). Let 𝑒 be a program, 𝜎 be the initial state (usually the empty heap in HeapLang), and 𝜑 a meta-logic predicate on values, i.e., a predicate that does not involve Iris -a Coq predicate of type Val → Prop. The following holds:

4 ⊢ | ⇛SI(𝜎) * True 𝑒 𝑥 . ⌈𝜑 (𝑥)⌉ =⇒ Safe 𝜑 (𝜎, 𝑒)
where SI is the predicate reflecting the state of the programming language into Iris resources. In case of HeapLang it reflects the heap in Iris resources so as to define and validate all the rules governing heap points-to propositions.

Notice that in the adequacy theorem above the postcondition must be a meta-level proposition 𝜑 (⌈•⌉ embeds meta-level propositions, i.e., Prop in Coq into Iris's iProp), as otherwise the predicate Safe 𝜑 does not make sense at the meta level. We emphasize that the statement of the adequacy theorem above is the same as for the standard Iris program logic -recall that the point of the well-bracketed program logic is to prove a wider class of specifications, not to change the meaning of specifications.

Note how the statement of the adequacy theorem above requires the user of the theorem to provide resources for the initial state of the program (rather trivial when we start in the empty heap). It does not, however, require the initialization resources for ghost stacks. This is because the initialization of ghost stacks, always with the empty collection of stacks, is taken care of as part of the proof of the adequacy theorem. Apart from this initialization of the collection of ghost stacks, the proof of the adequacy theorem above follows directly from the adequacy theorem of the ordinary program logic of Iris. The reason why we always initialize with the empty collection of ghost stacks is because, whereas there are cases where it makes sense to speak of executing a program on a non-empty heap, it makes no sense to start a proof with an existing collection of stacks. That is, proofs should always allocate their required stacks using the rule wbHoare-create-stack.

The Soundness of the Well-Bracketed Program Logic. Note again that both the statement of the adequacy theorem (the implication), and the predicate Safe 𝜑 are statements in the meta-theory (i.e. Coq in our Coq formalization). It is only the initialization of the resources for the initial state and the proof of well-bracketed Hoare triples that take place in Iris. (These facts are syntactically indicated by the Iris turnstile being delimited by the surrounding parentheses.) In other words, to trust that the program is indeed safe, one only needs to trust the soundness of the meta theory (Coq) and nothing about Iris, its construction, the rules of the ordinary program logic of Iris, or the rules of the well-bracketed program logic. Hence, the adequacy theorem above does indeed establish soundness of well-bracketed program logic.

Following the strategy of Iris's ordinary program logic (see our Coq formalization), we in fact prove a stronger version of the adequacy theorem for the well-bracketed program logic which implies, and is used to prove, the adequacy theorem detailed above. This stronger adequacy theorem is also used to prove the adequacy theorem that is used in Section 6 to establish well-bracketedness as a trace property.

Proof of VAE

Now we have all the necessary building blocks to prove correctness and well-bracketedness of VAE. The specification VAE-spec we ascribe to VAE is similar to the specification awkward-spec of the Awkward example we saw earlier, except it is expressed in terms of well-bracketed Hoare triples instead of Iris's ordinary Hoare triples.

True

let 𝑟 = ref(0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 𝑔. ∀𝑓 . True 𝑓 () 𝑥 . 𝑥 = () 𝑔 𝑓 𝑥 . 𝑥 = 1 (VAE-spec)
In the proof we first allocate the location ℓ, and obtain ℓ ↦ → 0. We then allocate an instance 𝛾 of the one-shot resource using the rule make-one-shot, just as in the proof of the Awkward example. At this point, we use the rule wbHoare-create-stack to create a new stack and pick the invariant VAE-inv below, together with stack ∃ (𝑁 ), as the predicate 𝑅. We use the resources we have at hand together with the rule stacks-push to obtain stack • (𝑁 , [𝛾]) and stack • (𝑁 , [𝛾]) in order to establish the invariant VAE-inv below. Subsequently, we return stack • (𝑁 , [𝛾]) to the program logic.

VAEInv ≜ ∃𝛾, 𝑠. stack • (𝑁 , 𝛾 :: 𝑠) * (ℓ ↦ → 0 * pending(𝛾)) ∨ (ℓ ↦ → 1 * shot(𝛾)) N vae (VAE-inv)
Note that the invariant VAE-inv is similar to the awkward-inv invariant, except for the fact that the name of the one-shot instance is not fixed. Instead, it is the name on the top of the stack 𝑁 . What remains is to show the following for the body of the closure returned by VAE:

VAEInv * stack ∃ (𝑁 ) * True 𝑓 () 𝑥 . 𝑥 = () ℓ ← 0; 𝑓 (); ℓ ← 1; 𝑓 (); ! ℓ 𝑥 . 𝑥 = 1 (4)
Here, we wish to reason about the well-bracketed nature of the calls to the closure. Hence, we proceed by applying the rule wbHoare-access-stack to obtain stack • (𝑁 , 𝑠 ′ ) for some stack 𝑠 ′ , which leaves us with having to prove:

VAEInv * stack • (𝑁 , 𝑠 ′ ) * True 𝑓 () 𝑥 . 𝑥 = () ℓ ← 0; 𝑓 (); ℓ ← 1; 𝑓 (); ! ℓ 𝑥 . 𝑥 = 1 * stack • (𝑁 , 𝑠 ′ ) {𝑁 } (5) 
Here, the stack 𝑠 ′ is just some stack for which we only know the following by the fact that the invariant VAE-inv holds: 𝑠 ′ is non-empty, and furthermore, the one-shot resource whose name is on top of the stack reflects the value stored in ℓ. This makes intuitive sense: we have to show the spec (4) without knowing whether or not it is the first call to the VAE closure, or whether it is a nested call, i.e., a call (indirectly) made by the closure itself, because it was passed a function 𝑓 that calls the closure itself. (See Section 3.3 for more details on the latter situation.) As we will see in the rest of the proof, during the part where the program writes 0 to ℓ, we create a new instance of the one-shot resource and push its name on the stack. On the other hand, when the program writes 1 to ℓ, we pop the ghost name on top of the stack. To make the intuition we develop here clearer, let us call the writing of 0 in the VAE closure "opening the bracket" and writing 1, "closing the bracket". Following this intuitive terminology, we can describe the contents of the stack 𝑠 ′ as follows. The stack 𝑠 ′ , in addition to the name of the original one-shot resource allocated at the beginning of the proof (at the bottom of the stack), stores all the names of one-shot resources corresponding to the "opening the bracket" part of all the parent calls to the VAE closure (in case of nested calls), with the most recent parent call that has not yet "closed the bracket" on top of the stack. In other words, if the current call to the VAE closure is not a nested call, i.e., all previous calls to the closure have already terminated, the stack 𝑠 ′ is a singleton, storing only the ghost name of the original one-shot resource that was allocated at the beginning of the proof.

To proceed with proving (5) above, since the store operation ℓ ← 0 is atomic, we can open the invariant (by isolating the store operation using the wbHoare-bind) to obtain stack • (𝑁 , 𝛾 1 :: 𝑠) which we use along with the rule stacks-agree to unify 𝑠 ′ with 𝛾 1 :: 𝑠, which leaves us having to prove the following (note how the postcondition of (6) implies the invariant as required):5 

VAEInv * stack • (𝑁 , 𝛾 1 :: 𝑠) * stack • (𝑁 , 𝛾 1 :: 𝑠) * (ℓ ↦ → 0 * pending(𝛾 1 )) ∨ (ℓ ↦ → 1 * shot(𝛾 1 )) ℓ ← 0 𝑥 . 𝑥 = () * (pending(𝛾 1 ) ∨ shot(𝛾 1 )) * stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) * stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) * ℓ ↦ → 0 * pending(𝛾 2 )) {𝑁 } (6) 
and the following for the code after the store operation:

VAEInv * (pending(𝛾 1 ) ∨ shot(𝛾 1 )) * stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) * True 𝑓 () 𝑥 . 𝑥 = () 𝑓 (); ℓ ← 1; 𝑓 (); ! ℓ 𝑥 . 𝑥 = 1 * stack • (𝑁 , 𝛾 1 :: 𝑠) {𝑁 } (7) 
Observe that we have to show two triples because we have applied the wbHoare-bind rule (from bottom to top) and that we "made a good choice" of Ψ in wbHoare-bind, which will allow us to complete the proof. Note further how at this point in the proof, we do not know whether ℓ stores 0 or 1 prior to our store operation; hence the only thing we can retain is (pending(𝛾 1 ) ∨ shot(𝛾 1 )) (cf. the precondition of ( 7)). Nonetheless, by creating a new instance 𝛾 2 of the one-shot resource we have managed to reestablish the invariant, this time by taking 𝛾 to be 𝛾 2 and the stack 𝑠 to be 𝛾 1 :: 𝑠.

In addition, since we keep hold of stack • , we remember the exact contents of the stack even after reestablishing the invariant. To show that (7) holds, we use the wbHoare-bind and wbHoare-frame (to frame VAEInv and pending(𝛾 1 ) ∨ shot(𝛾 1 )) rules, which leaves us having to prove the following: 

To establish (8) we simply use the rule wbHoare-mend-stack and then it suffices to show the following trivial triple:

True 𝑓 () 𝑥 . 𝑥 = () 𝑓 () 𝑥 . 𝑥 = ()
We proceed with proving (9) by again using the wbHoare-bind rule to isolate the store operation.

We then use the rule wbHoare-inv-open to open the invariant as before, this time unifying the stacks of stack • (which we have) and stack • (which we obtain from the invariant). From this we learn that the current instance name of the one-shot resource tracking the state of ℓ is in fact 𝛾 2 . Thus, we have to show:

VAEInv * (pending(𝛾 1 ) ∨ shot(𝛾 1 )) * stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) * stack • (𝑁 , 𝛾 2 ::

𝛾 1 :: 𝑠) * (ℓ ↦ → 0 * pending(𝛾 2 )) ∨ (ℓ ↦ → 1 * shot(𝛾 2 )) ℓ ← 1 𝑥 . 𝑥 = () * stack • (𝑁 , 𝛾 1 :: 𝑠) * stack • (𝑁 , 𝛾 1 :: 𝑠) * ℓ ↦ → 1 * shot(𝛾 1 ) {𝑁 } (10) 
and the following for the code after the store operation:

VAEInv * stack • (𝑁 , 𝛾 1 :: 𝑠) * shot(𝛾 1 ) * True 𝑓 () 𝑥 . 𝑥 = () 𝑓 (); ! ℓ 𝑥 . 𝑥 = 1 * stack • (𝑁 , 𝛾 1 :: 𝑠) {𝑁 } (11) 
To prove (10), we use the rule stacks-pop to pop 𝛾 2 from the stack. Again, at this point, we do not know what the value of ℓ is. As we discussed earlier, it depends on whether the function 𝑓 has called the closure of VAE or not. Nonetheless, we are performing a store operation storing 1 into ℓ. Furthermore, whether we have obtained pending(𝛾 2 ) or shot(𝛾 2 ) from the invariant, either resource is not of any use to us anymore. Hence, we discard it. 6 At this point, the only missing piece (to ensure that we have indeed applied the wbHoare-bind rule correctly) is to obtain shot(𝛾 1 ). However, we have pending(𝛾 1 ) ∨ shot(𝛾 1 ), left over from the last time we opened the invariant. In either case, we can obtain shot(𝛾 1 ) -in the case of the left disjunct we simply use the rule shoot.

Note that since shot(𝛾 1 ) is persistent we can both use it to reestablish the invariant, and at the same time pass it to the rest of the program, i.e., the postcondition of (10), and the precondition of (11). To prove the correctness of the call to 𝑓 in (11) we simply repeat the argument as in the previous call to 𝑓 . This leaves us to show the following in order to finish the proof:

VAEInv * stack • (𝑁 , 𝛾 1 :: 𝑠) * shot(𝛾 1 ) ! ℓ 𝑥 . 𝑥 = 1 * stack • (𝑁 , 𝛾 1 :: 𝑠) {𝑁 } (12) 
Here we can access the invariant again, and since we know that the stack must be 𝛾 1 :: 𝑠 and, moreover, we have shot(𝛾 1 ) we can exclude the case where ℓ stores 0, and thereby finish the proof! Note how, save for the use of the stack, the overarching argument of the proof of VAE resembles the proof of the Awkward example. In a sense, our methodology of using the stack has decoupled the part of the reasoning that relates to well-bracketedness from the rest of the proof.

VAE applied to itself

As we discussed earlier, the intricacy of reasoning about VAE arises from the fact that the callback 𝑓 can itself invoke the closure returned by VAE. Here is a simple example where this happens:

let 𝑔 = let 𝑟 = ref(0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 in 𝑔 (𝜆_. 𝑔 (𝜆_. ()); ()) (VAE-self-applied)
It is now quite simple to prove that VAE-self-applied returns 1. We use the specification VAE-spec above, which only requires us to show the following: 

To prove ( 14) we use the wbHoare-bind rule together with the Hoare triple in the precondition once more. Thus, there remains only two things to show: (1) that the program, after the call to 𝑔, returns (), which is obvious, and (2) the following, which is again trivial:

True (𝜆_. ()) () 𝑥 . 𝑥 = () (15) 
Applying the Adequacy theorem yields that running the program VAE-self-applied (in terms of the operational semantics) starting in the empty heap will always result in 1.

The semantic essence of well-bracketedness

An interesting aspect of our well-bracketed program logic is the fact that we have instantiated it with HeapLang, a concurrent programming language, with the caveat that the program logic does not have a rule for reasoning about forking of threads. In Section 5 we will show how this allows us to reason about well-bracketedness even for programs that use concurrency (in an innocuous way). This means that, the well-bracketed program logic does not rely on a syntactic restriction of programs to capture well-bracketedness. Instead, it captures the notion of well-bracketedness at a semantic level. That is, we can use the well-bracketed Hoare logic to establish well-bracketedness, in addition to the usual partial correctness (safety) property of Iris Hoare triples. For further justification of this claim, see Section 6, where we show that well-bracketed Hoare triples enforce well-bracketedness of calls and returns, stated as an intensional trace property.

THE INTERNALS OF THE WELL-BRACKETED PROGRAM LOGIC

In this section we begin the process of explaining how the well-bracketed program logic is constructed internally. We explain the internal construction of the well-bracketed program logic by peeling off layers of abstraction, one after the other. We first explain how well-bracketed Hoare triples are defined in terms of well-bracketed weakest preconditions. We then explain how well-bracketed weakest preconditions themselves are defined in terms of ordinary Iris weakest preconditions. To define well-bracketed weakest preconditions we use a ghost theory of stack collections. Later on, in Section 9 we present the details of the ghost theory of stack collections. This also includes the theory of stacks we have seen before governing predicates stack • , stack • , and stack ∃ . We conclude this section with a discussion of how well-bracketed weakest precondition rules can be derived from corresponding Iris weakest precondition rules.

The Definition of the Well-Bracketed Program Logic

In Iris, Hoare triples are defined in terms of weakest preconditions as follows:

{𝑃} 𝑒 {𝛷} ≜ □ 𝑃 - * wp 𝑒 𝛷
Here, □ is the persistently modality which enforces that Hoare triples are persistent. In practice this means that all the non-persistent resources necessary for correctness of 𝑒 must be captured by 𝑃. In other words, the precondition is not underapproximating the necessary conditions for correctness of 𝑒. The connective - * , pronounced magic wand, or simply wand, is the separating implication; it is to separating conjunction * , what implication =⇒ is to ordinary conjunction ∧. We define well-bracketed Hoare triples in terms of well-bracketed weakest preconditions, in the same way ordinary Hoare triples are defined in terms of ordinary weakest preconditions. Here S is a mapping from stack names to stacks. The proposition AllStacksExcept(S, O) asserts that the map S describes all stacks in existence, and, moreover, that it owns all propositions stack • (𝑁 , S(𝑁 )) for all stacks except for those whose names are in O. Note that we allow the map of stacks to grow from S to S ′ . This is to allow the program logic to allocate more stacks as necessary. However, we require that in the end S ⊆ S ′ (as sets of pairs), meaning that all the stacks that existed in S must remain exactly the same in S ′ ! All the rules governing the AllStacksExcept predicate which are necessary for validating the rules of the well-bracketed program logic are given in Figure 4. The rule stack-exists-in states that an existing stack must always be in the map of all stacks. Note how the stack map must always agree with stack • whenever the stack is tracked by AllStacksExcept. On the other hand, the set O in AllStacksExcept are exactly the set of stacks that are not tracked by AllStacksExcept, as evidenced by the rules stack-system-is-out and change-out-stack. The latter states that the map S in AllStacksExcept(S, O) can be arbitrarily updated for any stack that is not tracked by AllStacksExcept. The rules stack-take-out and stack-put-back respectively allow us to take stack • propositions out of AllStacksExcept and put them back (as long as they agree) with the map of stacks. These rules together with change-out-stack allow us to take a stack out, update it arbitrarily and then put it back. There is no restriction on how the stack may evolve as far as the theory around AllStacksExcept predicate is concerned. The stack discipline is instead enforced in the definition of well-bracketed weakest preconditions wbwp-definition as it requires in the postcondition that the map of stacks has only grown but not changed in any other way (captured by the condition: S ⊆ S ′ ). Finally, the rule create-stack allows us to create fresh stacks whose stack • part initially remains within the AllStacksExcept predicate.

mask-subset-dom AllStacksExcept(S, O) ⊢ O ⊆ dom(S) stack-exists-in stack ∃ (𝑁 ) * AllStacksExcept(S, O) ⊢ 𝑁 ∈ dom(S) stack-user-not-out 𝑁 ∉ O stack • (𝑁 , 𝑠) * AllStacksExcept(S, O) ⊢ S(𝑁 ) = 𝑠 stack-system-is-out stack • (𝑁 , 𝑠) * AllStacksExcept(S, O) ⊢ 𝑁 ∈ O stack-take-out 𝑁 ∈ dom(S) \ O AllStacksExcept(S, O) ⊢ ∃𝑠. AllStacksExcept(S, O ∪ {𝑁 }) * stack • (𝑁 , 𝑠) stack-put-back S(𝑁 ) = 𝑠 stack • (𝑁 , 𝑠) * AllStacksExcept(S, O) ⊢ AllStacksExcept(S, O \ {𝑁 }) change-out-stack 𝑁 ∈ O AllStacksExcept(S, O) ⊢ AllStacksExcept(S [𝑁 ↦ → 𝑠 ′ ], O) create-stack AllStacksExcept(S, O) ⊢ | ⇛∃𝑁 . 𝑁 ∉ dom(S) * AllStacksExcept(S [𝑁 ↦ → ∅], O) * stack • (𝑁 , ∅)

𝑃 𝑒 𝛷

Deriving Well-Bracketed Weakest Precondition Rules

The well-bracketed program logic is constructed on top of the existing Iris program logic. This has two major implications. The first implication is that whenever a rule in the well-bracketed program logic has a counterpart in the Iris program logic (this is the case for all rules except for Hoare-wbHoare, wbHoare-create-stack, wbHoare-access-stack, and wbHoare-mend-stack), then we can prove soundness of that rule in the well-bracketed program logic by just applying the proof of the corresponding rule in Iris's program logic. The second implication is that we can combine reasoning steps of the two program logics, as witnessed by rule Hoare-wbHoare. Below, we will discuss how the well-racketed program logic's rules are derived.

As for the bespoke rules of the well-bracketed program logic, i.e., wbHoare-create-stack, wbHoareaccess-stack, and wbHoare-mend-stack, it is not difficult to see that the rules presented in Figure 4 allow us to validate all of them. The interested reader is referred to the rather short proofs of these rules in our Coq development. We divide the rest of the rules into two groups, those general rules that apply to all instantiations of the logic, e.g., wbHoare-conseqence, wbHoare-inv-open, wbHoare-bind, etc., and those that reflect the semantics of the basic building blocks of the language, e.g., wbHoare-alloc, wbHoare-load, etc.

The general rules are proven directly by unfolding the definition of Hoare triples (both wellbracketed Hoare triples and the underlying ones), and the definition of well-bracketed weakest preconditions. The proof then follows using the corresponding Iris rule for Iris's weakest preconditions. To derive the rules for the basic building blocks of the language, we simply apply the rule Hoare-wbHoare to lift the operation's Hoare triple in the underlying program logic to the well-bracketed program logic.

Proving the rule Hoare-wbHoare is straightforward. We just need to unfold the definition of well-bracketed triples. Intuitively, if an expression does not interact with other parts of the program that rely on well-bracketedness (as its correctness does not require taking ghost stacks into account), then it cannot break well-bracketedness either, because it does not have access to ghost stacks.

The rule Hoare-wbHoare may seem surprising in that it seems to allow "side-stepping" the well-bracketed logic completely. That is, by carrying all reasoning in the ordinary program logic, and then lifting it to the well-bracketed logic only at the very end. However, this is not the case, in particular in the case of higher-order programs (such as VAE)! Since proving VAE-spec requires both establishing and assuming well-bracketed Hoare triples, one cannot simply use Hoare-wbHoare to get a well-bracketed specification of VAE "for free". The rule Hoare-wbHoare is nevertheless an interesting rule, in that it allows us to prove that innocuous uses of non-well-bracketed programs (e.g., programs featuring concurrency) can be safely combined with other well-bracketed programs, as we discuss next in Section 5.

WELL-BRACKETED REASONING AND CONCURRENCY

One difference between the current work and other works that have verified correctness of VAE [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF][START_REF] Aïna | Efficient and Provable Local Capability Revocation Using Uninitialized Capabilities[END_REF][START_REF] Skorstengaard | StkTokens: Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using Linear Capabilities[END_REF]] is that others have done so using a logical relations model. Logical relations models, put succinctly, are models of the entire programming language stating particular properties that all (well-typed) programs in the language satisfy. This makes them useful for showing language-level properties, e.g., that all programs terminate (normalization), type-safety, well-bracketedness, etc. By contrast, in this paper, we present a program logic which expresses well-bracketedness of programs without saying anything about the other programs in the programming language. Indeed, in the HeapLang programming language we use here, one can easily use concurrency to write non-well-bracketed programs. As we will discuss in Section 7, our program logic can also be used to construct logical relations models capable of showing that all programs are well-bracketed (if this is guaranteed by the programming language in question). In this section we demonstrate how the well-bracketed program logic can be used to show well-bracketedness of certain function calls even if part of the program is not wellbracketed. Before that, however, we will first demonstrate, via a simple example, how concurrency can break well-bracketedness.

Concurrency Breaking Well-Bracketedness. As an example of concurrency breaking wellbracketedness consider the following program:

let 𝑔 = let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 in fork {𝑔 (𝜆_. ())} ; 𝑔 (𝜆_. ())
(bad-concurrency)

It takes the VAE closure, 𝑔 here, and calls it twice concurrently (with a trivial argument). Here, we assume that programs' execution terminates when all its threads terminate. When the program terminates, it returns the result of its main thread. That is, the final result of the program badconcurrency above is the result of the call to 𝑔 in the main thread. Under certain schedulings, the program bad-concurrency above can produce 0 as its final result. Here is an example:

I. Schedule all of the calls to 𝑔 in the main thread until before the very last expression which reads and returns the value of the reference. II. Switch to the forked-off thread and execute 𝑔 until it writes 0 into the reference. III. Switch back to the main thread to read 0 and terminate the main thread. IV. Switch back again to the forked-off thread and run it to completion. This shows that concurrency can break well-bracketedness in general. Indeed, the reason for the program bad-concurrency above returning 0 under the above scheduling is that this scheduling breaks well-bracketedness. That is, under this scheduling, the call to 𝑔 in the forked-off thread terminates after its caller, the main thread program.

Innocuous Concurrency. Despite concurrency breaking well-bracketedness, as discussed above, we present here an example of innocuous concurrency and show that we can use our well-bracketed program logic to reason about such cases. The example innocuous-concurrency below is a simple case of innocuous concurrency that uses VAE. Many schedulings of the program innocuousconcurrency below are not well-bracketed as per our definition. That is, a function execution outlives it caller, but nonetheless this does not impact well-bracketedness of the calls and returns to the VAE closure. The program innocuous-concurrency is as follows:

let 𝑔 = let first = ref (true) in let res = ref (None) in let rec wait () = if ! res = None then wait () else ()in 𝜆_. if ! first then first ← false; fork {res ← Some(fact 1000000)} else wait () in let ℎ = let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); ! 𝑟 in ℎ 𝑔 (innocuous-concurrency)
This program applies the VAE closure to a function whose execution depends on whether it is the first time it is executed or not. The first execution, i.e., when the reference first stores true, forks a thread that computes the factorial of a large number and stores the result in he reference res.

The subsequent calls will simply wait for the computation of the large factorial to terminate, i.e., for res to not be None. Clearly, in many runs the factorial function in the forked thread does not terminate before the second call to function 𝑔. (The operational semantics of HeapLang makes no assumptions regarding scheduling.) Hence, this program does exhibit non-well-bracketed behavior as per our definition. Despite this, innocuous-concurrency still behaves well-bracketed, at least as far as VAE is concerned. We can prove this by showing the following:

True ℎ 𝑔 𝑥 . 𝑥 = 1 (16) 
where ℎ and 𝑔 are as in innocuous-concurrency above. To prove ( 16) above, by using the VAE-spec from earlier, it suffices to show the following:

True 𝑔 () 𝑥 . 𝑥 = () (17) 
We can prove (17) above using the rule Hoare-wbHoare, which leave us to prove the following Iris triple:

{True} 𝑔 () {𝑥. 𝑥 = ()} (18) 
The Hoare triple (18) above, however, is just a rather easy exercise in concurrent separation logic. It can be proven by simply using the following invariant after allocating the two references first and res: ∃𝑏 ∈ {true, false} . first ↦ → 𝑏 * (res ↦ → None ∨ ∃𝑛 ∈ N. res ↦ → Some(𝑛))

N fact

WELL-BRACKETEDNESS AS A TRACE PROPERTY

Our well-bracketed program logic allows proving that VAE returns 1. This is then understood as a witness that our program logic is strong enough to reason about programs that make essential use of well-bracketedness of calls and returns. We now make this argument very explicit by showing that well-bracketed Hoare triples imply well-bracketedness of calls and returns, stated as an intensional trace property.

To this end, we apply the technique introduced by [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF], in which one can derive intensional trace properties from separation logic specifications as so-called "free theorems". (We do not have space to recall all the details of [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF], so this section is necessarily a bit high-level.) Using this technique, we show that given an arbitrary program specified using a well-bracketed Hoare triple, the trace of its interactions with a client (as "call" and "return" events) necessarily belongs to a language of well-bracketed traces. (Well-bracketed traces being defined inductively using a grammar matching corresponding call and return events.) In other words, our program logic not only allows proving that VAE returns 1, but is also powerful enough to explicitly capture the well-bracketedness of every function call and return across a higher-order, reentrant specification such as that of VAE.

We first port the general framework of [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF] to work with our program logic. We then consider an arbitrary expression 𝑒 satisfying the specification of VAE, dubbed VAESpec and parameterized by the implementation 𝑒 and initial resources 𝑃 0 :

VAESpec(𝑒, 𝑃 0 ) ≜ 𝑃 0 𝑒 𝑔. ∀𝑓 . {True} 𝑓 () {𝑥. 𝑥 = ()} 𝑔 𝑓 𝑥 . 𝑥 = 1 (VAESpec)
Note that, since this specification uses well-bracketed triples in a higher-order fashion, the earlier remark of Section 4.2 applies. Such a specification cannot be derived from a standard specification that would be stated using standard Hoare triples.

Next, the central idea is to consider an instrumented version of 𝑒 with additional calls to primitives that record events on a global linear trace collected during the execution. Since we want to inspect calls and returns to the VAE closure, the instrumentation is defined as follows. We use the fresh primitive to generate a fresh identifier (a string) and record an event on the trace with this identifier: if fresh(call) returns 𝜏, then the event ⟨𝜏, call⟩ has been added to the trace. We then use emit to simply add an event to the trace: emit(𝜏, ret) adds the event ⟨𝜏, ret⟩. In other words, for each call to the VAE closure we emit a pair of call (before) and ret events with a matching unique identifier 𝜏.

instrument (𝑒) ≜ let 𝑔 = 𝑒 in 𝜆𝑓 . let 𝜏 = fresh(call) in let 𝑟 = 𝑔 𝑓 in emit(𝜏, ret); 𝑟
For any 𝑒 that satisfies VAESpec, the goal is now to prove that instrument (𝑒) produces a trace of call and ret events that is well-bracketed. The language L seq of well-bracketed traces (as sequences of program values) is easily defined. We let L seqfull ⊆ Val * be the language of well-bracketed complete traces defined below, and then take L seq to be its prefix closure.

L seqfull ::= ⟨𝜏, call⟩ • L seqfull • ⟨𝜏, ret⟩ | L seqfull • L seqfull | 𝜀 (𝜏 ∈ Tag ≜ String)
Following the methodology from [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF] we can then prove that instrument (𝑒) satisfies VAESpec while emitting traces in L seq , as captured by:

VAESpec(𝑒, True) - * VAESpec(instrument (𝑒), trace(𝜀) * traceInv(L seq )) (instrument-trace)
Technically speaking, we use [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF]'s traceInv predicate to indicate that L seq is the trace invariant which has to be upheld during all executions. Establishing instrument-trace is the main proof step, where we make use of the key reasoning principles provided by our well-bracketed program logic. As a last step, we combine the instrument-trace lemma with the Adequacy Theorem of [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF], adapted to our program logic. (This adequacy theorem, in our case, is derived from the stronger variant of Adequacy we mentioned in Section 3.1, which instead of Safe 𝜑 concludes trace properties of the program). We obtain a theorem that does not depend on auxiliary predicates such as traceInv, and which expresses that emitted events belong to the expected language of traces directly according to the operational semantics. (We point to the Coq development for the exact statement of this theorem.)

It is worth noting that the present result holds for any implementation satisfying VAESpec, and for any client of this implementation satisfying the adequate well-bracketed Hoare triple. As such, we can instantiate the above theorem by implementations or clients that, e.g., internally use concurrency, as long as they satisfy the required specifications: we still get that their interaction trace is a well-bracketed sequence of calls and returns.

The Logical Essence of Well-Bracketed Control Flow 111:21 7 WELL-BRACKETED LOGICAL RELATIONS MODELS So far we have shown that our well-bracketed program logic, which has only been instantiated with HeapLang, a concurrent language, can be used to reason about well-bracketed programs in a language that does not guarantee well-bracketedness. We furthermore showed, in Section 5, that our program logic can be employed to reason about well-bracketedness even in the presence of innocuous concurrency. In this section we will show that, when instantiated to a programming language where all programs are well-bracketed, our well-bracketed program logic can be used to construct a logical relations model in Iris. Such logical relations models enable reasoning about well-bracketedness, similarly to the more explicit Kripke logical relations of Georges et al. [2021], [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF], and [START_REF] Skorstengaard | StkTokens: Enforcing Well-Bracketed Control Flow and Stack Encapsulation Using Linear Capabilities[END_REF] mentioned earlier.

To demonstrate this point, we took both the unary and binary logical relations models presented in [START_REF] Krebbers | Interactive proofs in higher-order concurrent separation logic[END_REF] for F 𝜇,ref ,8 almost verbatim (we removed concurrency), and only replaced the weakest preconditions in these logical relations models with well-bracketed weakest preconditions mutatis mutandis. For an introductory treatise on logical relations models in Iris see [START_REF] Timany | A Logical Approach to Type Soundness[END_REF].

Unary Logical Relations

The unary logical relations model of [START_REF] Krebbers | Interactive proofs in higher-order concurrent separation logic[END_REF] allows one to prove semantic type soundness: by showing that a program 𝑒 is in the logical relation for its type, it holds that 𝑒 does not crash when run. Type safety is achieved by showing that all well-typed programs are indeed in the logical relations that corresponds to their types. As discussed in detail by [START_REF] Timany | A Logical Approach to Type Soundness[END_REF] this approach allows one to safely combine syntactically well-typed programs with semantically type sound programs, even if the latter are not necessarily syntactically well-typed. Here we consider the following example program, which we explain below:

let 𝑟 = ref (0) in 𝜆𝑓 . 𝑟 ← 0; 𝑓 (); 𝑟 ← 1; 𝑓 (); if ! 𝑟 ≠ 1 then () () else 1 (VAE-check)
This program is essentially the same as VAE except it performs a check before returning the final value. If the return value is not 1 then it crashes (applies the unit value to itself), otherwise it simply returns 1. The program VAE-check is not syntactically well-typed as it is treating the unit value () as a function. Nonetheless, it is semantically type sound of the expected type: (1 → 1) → Z.

Formally, we write this as follows: in a mutually recursive fashion by induction on types.11 As types feature type-level variables (used in universal, existential, and recursive types) all interpretation relations are parameterized by a mapping 𝛿 mapping free type variables to their value interpretations, i.e., predicates of type Val → iProp □ . The expression interpretation is simply defined in terms of well-bracketed weakest preconditions, capturing that a closed expression is in the interpretation for a type if it is safe and it produces a value in the value interpretation of that type. The definition of the expression relation is the only place where our logical relations model deviates from that in [START_REF] Timany | A Logical Approach to Type Soundness[END_REF]. We use well-bracketed weakest preconditions as opposed to the ordinary Iris weakest preconditions used by [START_REF] Timany | A Logical Approach to Type Soundness[END_REF], which enables reasoning about well-bracketedness. The value interpretation describes when a value is, or rather behaves as, a value of a type. For the base types, 1, B, and Z, it simply requires the value to be an appropriate constant. Type variables are interpreted by looking up in the map 𝛿. Products and sums are interpreted to require their values to have the appropriate form with underlying terms again in the value interpretation for the corresponding type. A value in the interpretation of a function type, when applied to a value in the interpretation of the domain type, must produce an expression in the codomain type. Universal and existential types are interpreted using the quantifiers of the logic, i.e., by quantifying over arbitrary value interpretation predicates. We write 𝑣 ⟨⟩ for specialization of a polymorphic value to a type, which we omit in the program expression. Note that 𝑣 ⟨⟩ is an expression and not a value as polymorphic terms are suspended, and are only run after specialization. The value interpretation of recursive types is defined using Iris' guarded fixed points. The guarded fixed point 𝜇𝑟 . 𝑃 is always defined, and is a fixed point, i.e., 𝜇𝑟 . 𝑃 ⊣⊢ 𝑃 [𝜇𝑟 . 𝑃/𝑟 ], whenever the variable 𝑟 appears only guarded in 𝑃, i.e., under a later modality, ⊲. Intuitively, the interpretation of a recursive type 𝜇𝛼 . 𝜏 says that a value must be a folded value where the underlying unfolded value is a value of type 𝜏, where 𝛼 is itself interpreted as the recursive type 𝜇𝛼 . 𝜏. Finally, the value interpretation of a reference type ref (𝜏) requires that values be memory locations always storing a value in the interpretation of 𝜏.

∅ | ∅ ⊨ VAE-check : (1 → 1) → Z (semantic
∅ c 𝛿 (𝜖) ≜ True Γ, 𝑥 : 𝜏 c 𝛿 (ì 𝑣 𝑤) ≜ Γ c 𝛿 (ì 𝑣) * 𝜏 𝛿 (𝑤) Ξ | Γ ⊨ 𝑒 : 𝜏 ≜ □ ∀𝛿, ì 𝑣 . dom(Ξ) ⊆ dom(𝛿) - * Γ c 𝛿 (ì 𝑣) - * 𝜏 e 𝛿 (𝑒 [ì 𝑣/ì 𝑥])
Here, we consider locations to be of a syntactically distinct class from the rest of the values with an implicit injection to them. This is why we write ∃(ℓ : Loc). (𝑣 = ℓ) * . . . to express that the value is some location ℓ. The "always storing a value in the interpretation of 𝜏" part is captured by an invariant asserting ownership over the location, and enforcing the desired property. Note that the invariant name is derived from the location itself assigning distinct names to distinct locations.

The expression and value interpretations, which are predicates on closed terms, are lifted to arbitrary open programs in the semantic typing judgment Ξ | Γ ⊨ 𝑒 : 𝜏 in the standard way for logical relations models, i.e., by closing open terms with semantically well-typed values ì 𝑣 of the appropriate type, and by universally quantifying over all possible semantic type-level environments 𝛿 for the free type variables. For this purpose we define the typing context interpretation Γ c 𝛿 (ì 𝑣) so as to require that each value is in the value interpretation for its corresponding type in Γ.

Now, given the definition of the unary logical relations we return to establishing semantic typing of VAE-check. Since VAE-check is a closed program, semantic typing of VAE-check above is equivalent to (1 → 1) → Z e ∅ (VAE-check). This can in turn, after unfolding the expression and value interpretations, be simplified into a form which very closely resembles VAE-spec of Section 3.2 -note that 1 ∅ only holds for a singleton consisting of the unit value. That is, we get the following, after the aforementioned simplifications: As a result, we can employ the same line of reasoning as in Section 3.2 to prove the semantic typing of VAE-check! We emphasize that the earlier logical relations model of [START_REF] Krebbers | Interactive proofs in higher-order concurrent separation logic[END_REF] does not support reasoning about well-bracketedness, and thus cannot be used to show semantic typing of VAE-check.

Binary Logical Relations

In addition to the unary logical relations model above, our work also includes a binary logical relations model which can be used to establish contextual refinements and equivalences. Again, this logical relations model is very similar to that in [START_REF] Timany | A Logical Approach to Type Soundness[END_REF] with the minor difference of replacing weakest preconditions with well-bracketed weakest preconditions, and removing concurrency. Recall that for a pair of programs 𝑒 and 𝑒 ′ such that Ξ | Γ ⊢ 𝑒 : 𝜏 and Ξ | Γ ⊢ 𝑒 ′ : 𝜏, we say that 𝑒 contextually refines a program 𝑒 ′ , written Ξ | Γ ⊢ 𝑒 ≤ ctx 𝑒 ′ : 𝜏, if in any context (any program of ground type with a hole), we can replace 𝑒 ′ with 𝑒 without changing the overall behavior of the program. In a refinement Ξ | Γ ⊢ 𝑒 ≤ ctx 𝑒 ′ : 𝜏, we often refer to 𝑒 as the implementation and 𝑒 ′ is the specification. We say that 𝑒 is contextually equivalent to 𝑒 ′ , written

Ξ | Γ ⊢ 𝑒 ≈ ctx 𝑒 ′ : 𝜏, if both Ξ | Γ ⊢ 𝑒 ≤ ctx 𝑒 ′ : 𝜏 and Ξ | Γ ⊢ 𝑒 ′ ≤ ctx 𝑒 : 𝜏 hold.
The binary logical relations model is set up so that whenever 𝑒 logically refines 𝑒 ′ , i.e., when the pair (𝑒, 𝑒 ′ ) is in the logical relation, written

Ξ | Γ ⊢ 𝑒 ≤ log 𝑒 ′ : 𝜏, then we can conclude Ξ | Γ ⊢ 𝑒 ≤ ctx 𝑒 ′ : 𝜏.
We use our binary logical relations model to prove that VAE is contextually equivalent to the program 𝜆𝑓 . 𝑓 (); 𝑓 (); 1 at type (1 → 1) → Z. The latter simply calls 𝑓 twice before returning 1. We prove the equivalence by showing the two refinements. For both directions, the essence of the reasoning is the same as that of the proof of VAE in Section 3.2. We start by allocating the reference for VAE, regardless of which side VAE is on, obtain a stack using wbHoare-create-stack, and proceed to establish the exact invariant as in VAE-inv. We then follow a similar proof strategy to show that the VAE program returns 1 regardless of the side of refinement it appears on. For the detailed proof, see our accompanying Coq formalization.

DISCUSSION: ENCODING STATE TRANSITION SYSTEMS

In this paper we have proposed ghost stacks as a logical mechanism for reasoning about wellbracketedness. We demonstrated that ghost stacks can be used to reason logically about examples that prior work reasoned about using relational models indexed over state transition systems with private and public transitions. One may naturally ask whether ghost stacks are indeed stronger than state transition systems. That is, can we reason about all programs that one could using state transition systems? The answer is: yes, we can. We prove this by showing that we can use ghost stacks to encode a given state transition system with private and public transitions into program logic predicates that essentially track the state of the state transition system. These predicates are defined using the monotone resource algebra [START_REF] Timany | Reasoning about monotonicity in separation logic[END_REF] to construct a resource that can only be updated in accordance with the public transition relation. The private transitions are modeled using ghost stacks. For brevity, we refer the reader to our accompanying technical appendix and Coq formalization for further details of this encoding, and a proof of VAE which uses the encoding of the state transition system VAE-sts instead of the more direct proof using ghost stacks presented earlier.

One interesting observation regarding the proof of VAE is that we only ever use the top element of the ghost stack. Indeed, the proof could also have been carried out if instead of pushing on the stack we had kept the stack a singleton. That is, instead of pushing, we could have swapped the top (only) element of the stack with the new ghost name when making a "private transition". However, in the general encoding of state transition systems (see the Coq proof for details) we need to refer to the stack elements below the top elements in order to assert that "private transitions" do take place according to the private transition relation of the state transition system we work with.

THE GHOST THEORY OF STACK COLLECTIONS

To define the predicates AllStacksExcept, stack 

• (𝑁 , 𝑠) ≜ stack IN • (𝑁 , 𝑠) * SubsetOfDom({𝑁 }) stack • (𝑁 , 𝑠) ≜ stack IN • (𝑁 , 𝑠) * SubsetOfDom({𝑁 }) stack ∃ (𝑁 ) ≜ SubsetOfDom({𝑁 }) AllStacksExcept(S, O) ≜ O ⊆ dom(S) * EntireDom(dom(S)) * * 𝑁 ∈dom( S)\O stack • (𝑁 , S(𝑁 ))
The SubsetOfDom predicate is the only predicate among these predicates that is persistent. The predicates SubsetOfDom and EntireDom together track, in terms of resources, the finite domain of draw the stack name from. The only side condition is that the set 𝐴 must be an infinite set. The idea is that the infinitude of 𝐴 guarantees existence of a fresh stack name that appears in 𝐴. Here we take 𝐴 to be the set of all stack names except for those in dom(S) which is by definition a finite set.

RELATED AND FUTURE WORK

We have already discussed the most closely related work in the Introduction; in this section we discuss other related work.

Reasoning About Well-Bracketedness via Contextual Equivalences. To the best of our knowledge, prior work has only reasoned about correctness of programs that depend on wellbracketedness by using models that can prove contextual program equivalences. For instance, [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] used a binary logical relations model to prove that VAE is (contextually) equivalent to a program that simply calls its higher-order argument twice and returns 1. In contrast, we present a program logic for reasoning about well-bracketedness. One advantage of our program logic approach is that it can both be used to reason about partial correctness of programs and to build logical relation models for reasoning about semantic type soundness and contextual equivalence, as shown in Section 7.

Apart from logical relations models, which we have already discussed, other semantic approaches have also been used to study well-bracketedness. In particular, well-bracketedness has been captured semantically in game semantics models, which have been developed for a variety of programming languages, e.g., [START_REF] Abramsky | A fully abstract game semantics for general references[END_REF]Laird 1997;[START_REF] Murawski | Functions with local state: Regularity and undecidability[END_REF][START_REF] Murawski | Game Semantics for Good General References[END_REF]. Game semantics has been used to obtain fully-abstract denotational semantics which can thus in principle be used to prove program equivalences by showing that the game-based denotations of programs (called strategies) are equivalent. However, it is not trivial to do so for concrete challenging examples, such as the Awkward and Very Awkward examples.

Inspired by game semantics models, so-called operational game semantics techniques [Lassen andLevy 2007, 2008;[START_REF] Støvring | A Complete, Co-inductive Syntactic Theory of Sequential Control and State[END_REF] develop an approach called "normal form bisimulation" which are coinductive relations which, in essence, can be used to show equivalence of programs' Böhm trees.

Environmental bisimulation techniques [START_REF] Biernacki | A Complete Normal-Form Bisimilarity for State[END_REF][START_REF] Hur | The Marriage of Bisimulations and Kripke Logical Relations[END_REF][START_REF] Sumii | A Complete Characterization of Observational Equivalence in Polymorphic 𝜆-Calculus with General References[END_REF][START_REF] Sumii | A Bisimulation for Dynamic Sealing[END_REF] define relational models on expressions using coinduction. These techniques can prove the contextual equivalence for the VAE example (similar to our logical relation in Section 7.2). Notable among these is the work of [START_REF] Hur | The Marriage of Bisimulations and Kripke Logical Relations[END_REF] where the authors, inspired by [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF], incorporate state transition systems with public/private transitions to improve support for reasoning about evolution of local state. [START_REF] Biernacki | A Complete Normal-Form Bisimilarity for State[END_REF] present a bisimulation relation over untyped terms. In order to ensure well-bracketedness [START_REF] Biernacki | A Complete Normal-Form Bisimilarity for State[END_REF], following [START_REF] Jagadeesan | Open Bisimulation for Aspects[END_REF]; [START_REF] Laird | A Fully Abstract Trace Semantics for General References[END_REF], uses a stack of evaluation contexts. Similarly to [START_REF] Dreyer | The Impact of Higher-Order State and Control Effects on Local Relational Reasoning[END_REF] and what we did in Section 7.2, [START_REF] Biernacki | A Complete Normal-Form Bisimilarity for State[END_REF] use their bisimulation relation to show that VAE is equivalent to a program that calls its argument twice and returns 1.

Recently, [START_REF] Jaber | Compositional relational reasoning via operational game semantics[END_REF] proposed so-called Kripke normal-form bisimulations, which combine ideas from normal-form bisimulation and Kripke logical relations with game semantics, and which also accounts for well-bracketing and can be used to prove contextual equivalence for the VAE example.

The closest work to ours is a short unpublished note by [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF]. [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] generalizes the higher-order frame rule and the anti-frame rule of his earlier work [START_REF] Pottier | Hiding Local State in Direct Style: A Higher-Order Anti-Frame Rule[END_REF] to enable reasoning about well-bracketedness. The system that [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] works in is not a program logic but rather a type-and-capability system. A capability 𝐼 in this system, according to [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF]: "at the same time asserts ownership and describes the type structure of a piece of state. (One could also think of 𝐼 as a separation logic assertion.)" Intuitively, capabilities indicate the (possible) side-effects of a computation. The higher-order frame rule of [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] allows conjoining capabilities to the type of computations that do not require those capabilities -essentially weakening a computation without a certain side-effect to one where (the capability for) the side-effect is included in the type. The anti-frame rule, being the dual of the higher-order frame rule, allows hiding a local side-effect -a capability can be removed from the type of a computation if that capability regards resources that are allocated and initialized by the code in question. The generalization presented by [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] parameterizes capabilities with an arbitrary kind and a relation on the elements of that kind. [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] uses the term kind instead of what would normally be called a type, e.g. the kind Z of integers.) The generalizations of the higher-order frame rule and the anti-frame rule enforce that programs only change state in a way that obeys the given relation. Intuitively, in effect, the parameter of the capability and the relation on it are, respectively, analogous to the states of the state-transition-system and its public transition relation. [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] present a proof, in the form of a typing derivation, of VAE with an assertion before the end of the closure that asserts that the return value is always 1. The capability picked here asserts ownership over the location allocated by VAE. It furthermore requires that the value of the location is in the set {0, 1}, and that this value is exactly the same as the integer parameter of the capability. The relation on the parameter is simply taken to be the ≤ relation on integers. The higher-order frame rule and the anti-frame rule of [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF], at a very high intuitive level, respectively play the roles of our rules wbHoare-mend-stack and wbHoare-access-stack, the major difference being that our program logic decouples ownership (capabilities in [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF]) from the well-bracketedness mechanism, i.e., stacks. In contrast to our formalized proofs, [START_REF] Pottier | Generalizing the higher-order frame and anti-frame rules[END_REF] does not prove but only conjectures the soundness of his proposed generalizations of the higher-order frame and anti-frame rules.

Innocuous Control Effects. In Section 5 we discussed how our program logic can be used to reason about well-bracketedness of programs that make use of concurrency in an innocuous way. This raises the question of whether our program logic can reason about well-bracketed programs in the presence of innocuous control effects such as call/cc or algebraic effects and handlers. We conjecture that it is the case if there are reasoning principles in place that can be used as the basis for our logic. For instance, for call/cc, the context-local weakest preconditions of [START_REF] Timany | Mechanized Relational Verification of Concurrent Programs with Continuations[END_REF] ensure context-locality, i.e., that all the uses of call/cc are not observable from outside. Building our well-bracketed program logic on top of context-local weakest preconditions should result in a system which can reason about innocuous uses of call/cc. As for algebraic effects and handlers with delimited control effects, Hoare-logic-based reasoning principles for programs in such systems usually come equipped with clear markers which demarcate the limits of the control effects within the program, e.g., the protocols in de Vilhena and [START_REF] Emílio | A Separation Logic for Effect Handlers[END_REF]. We conjecture that such logics can serve as a basis for a well-bracketed program logic that can reason about well-bracketedness in the presence of innocuous uses of control effects.

CONCLUSION

We have presented a versatile well-bracketed program logic which captures the essence of wellbracketedness. We showed how our program logic can be used directly to reason about tricky examples, whose correctness relies on well-bracketedness. In particular, we used the well-bracketed program logic to prove correctness of implementation of the very awkward example (VAE) in HeapLang, a concurrent language which does not enforce well-bracketedness. We used this fact to demonstrate that even in the presence of innocuous concurrency, we can still employ our program logic to establish well-bracketedness of the calls to the VAE closure, even if the entire execution trace is not necessarily well-bracketed. Furthermore, we employed the technique of [START_REF] Birkedal | Theorems for Free from Separation Logic Specifications[END_REF] to show that well-bracketed Hoare triples imply that the traces of calls and returns produced by the program are in fact well-bracketed. We also used our well-bracketed program logic to construct (unary and binary) logical relations models for a sequential programming language were well-bracketedness is enforced by the operational semantics. The remarkable aspect of these logical relations models is that they are almost entirely standard [START_REF] Krebbers | Interactive proofs in higher-order concurrent separation logic[END_REF]] except for the use of well-bracketed weakest preconditions in place of ordinary weakest preconditions of Iris. We used both of these logical relations models to show examples that rely on well-bracketedness.
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 1 Fig. 1. All the rules satisfied by the ordinay program logic are also satisfied by the well-bracketed program logic -this figure depicts a sample set.
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 3 Fig. 3. Reasoning rules on ghost stacks.

  stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) * True 𝑓 () 𝑥 . 𝑥 = () 𝑓 () 𝑥 . 𝑥 = () * stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) for the code after calling 𝑓 : VAEInv * (pending(𝛾 1 ) ∨ shot(𝛾 1 )) * stack • (𝑁 , 𝛾 2 :: 𝛾 1 :: 𝑠) * True 𝑓 () 𝑥 . 𝑥 = () ℓ ← 1; 𝑓 (); ! ℓ 𝑥 . 𝑥 = 1 * stack • (𝑁 , 𝛾 1 :: 𝑠) {𝑁 }

  ∀𝑓 . True 𝑓 () 𝑥 . 𝑥 = () 𝑔 𝑓 𝑥 . 𝑥 = 1 𝑔 (𝜆_. 𝑔 (𝜆_. ()); ()) 𝑥 . 𝑥 = 1 (13) The Logical Essence of Well-Bracketed Control Flow 111:15To prove (13) we simply use the Hoare triple in the precondition of (13). After this step, we only need to show: 7∀𝑓 . True 𝑓 () 𝑥 . 𝑥 = () 𝑔 𝑓 𝑥 . 𝑥 = 1 𝑔 (𝜆_. ()); () 𝑥 . 𝑥 = ()
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 4 Fig. 4. Rules governing AllStacksExcept.
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  𝑃 - * wbwp 𝑒 𝛷 O Well-bracketed weakest preconditions themselves are defined in terms of ordinary Iris weakest preconditions. wbwp 𝑒 𝛷 O ≜ ∀S. AllStacksExcept(S, O) - * wp 𝑒 𝑥 . ∃S ′ . S ⊆ S ′ * AllStacksExcept(S ′ , O) * 𝛷 (𝑥) (wbwp-definition)

Fig. 5 .

 5 Fig. 5. The expression interpretation _ e , value interpretation _ typing context interpretation _ c , and semantic typing judgment for F 𝜇,ref . 9

  wbwp VAE-check 𝑔. □ ∀𝑓 . □ ∀𝑤 . 𝑤 = () - * wbwp 𝑓 𝑤 𝑦. 𝑦 = () - * wbwp 𝑔 𝑓 𝑦. 𝑦 ∈ Z Finally, we can get rid of the quantified 𝑤 inside, and substitute it with (), and fold the well-bracketed weakest preconditions into equivalent well-bracketed Hoare triples: wbwp VAE-check 𝑔. ∀𝑓 . True 𝑓 () 𝑦. 𝑦 = () 𝑔 𝑓 𝑦. 𝑦 ∈ Z
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	In Iris we write 𝑃	N	for the persistent (and hence duplicable) proposition that asserts that 𝑃
	holds invariantly. The N in 𝑃	N	is the name of the invariant. It is used for bookkeeping purposes.
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  typing of VAE-check)Here, the relation Ξ | Γ ⊨ 𝑒 : 𝜏 is the semantic typing relation, distinguished from the syntactic typing relation by the use of ⊨ instead of ⊢. The Ξ is the context of type variables (ranged over by 𝛼, 𝛽, . . . ), while Γ is the context of term variables (ranged over by 𝑥, 𝑦, . . . ); both are empty in this case as VAE-check is a closed program. The complete definition of our unary logical relations model for F 𝜇,ref is given in Figure5. At the heart of this model are the so-called expression interpretation _ e and value interpretation _ . 10 These are, unary relations (predicates) on closed expressions and values, respectively. The former has type Expr → iProp, while the latter has type Val → iProp □ . Here iProp is the universe of Iris propositions and iProp □ is the universe of persistent Iris propositions. The value interpretation should be persistent while expressions need not be. This is because in our CBV semantics expressions are evaluated only once. The resulting values, however, can be freely duplicated and reused multiple times. The expression and value interpretations are defined𝜏 e 𝛿 ≜ 𝜆𝑒. wbwp 𝑒 𝜏 𝛿 𝛼 𝛿 ≜ 𝛿 (𝛼) 1 𝛿 ≜ 𝜆𝑣. 𝑣 = () B 𝛿 ≜ 𝜆𝑣. 𝑣 ∈ {true, false} Z 𝛿 ≜ 𝜆𝑣. 𝑣 ∈ Z 𝜏 1 × 𝜏 2 𝛿 ≜ 𝜆𝑣. ∃𝑣 1 , 𝑣 2 . (𝑣 = (𝑣 1 , 𝑣 2 )) * 𝜏 1 𝛿 (𝑣 1 ) * 𝜏 2 𝛿 (𝑣 2 ) 𝜏 1 + 𝜏 2 𝛿 ≜ 𝜆𝑣. 𝑖 ∈ {1,2} ∃𝑤 . (𝑣 = inj 𝑖 𝑤) * 𝜏 𝑖 𝛿 (𝑤) 𝜏 → 𝜌 𝛿 ≜ 𝜆𝑣. □ ∀𝑤 . 𝜏 𝛿 (𝑤) - * 𝜌 e 𝛿 (𝑣 𝑤) ∀𝛼 . 𝜏 𝛿 ≜ 𝜆𝑣. □ ∀(Ψ : Val → iProp □ ). 𝜏 e 𝛿,𝛼↦ →Ψ (𝑣 ⟨⟩) ∃𝛼 . 𝜏 𝛿 ≜ 𝜆𝑣. ∃(Ψ : Val → iProp □ ). ∃𝑤 . (𝑣 = pack⟨𝑤⟩) * 𝜏 𝛿,𝛼↦ →Ψ (𝑤) 𝜇𝛼 . 𝜏 𝛿 ≜ 𝜇 (Ψ : Val → iProp □ ). 𝜆𝑣. ∃𝑤 . (𝑣 = fold 𝑤) * ⊲ 𝜏 𝛿,𝛼↦ →Ψ (𝑤) ref(𝜏) 𝛿 ≜ 𝜆𝑣. ∃(ℓ : Loc). (𝑣 = ℓ) * ∃𝑤 . ℓ ↦ → 𝑤 * 𝜏 𝛿 (𝑤)
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  • , stack • , and stack ∃ we introduce the following new propositions which are themselves directly defined in terms of ghost resources: stack IN • , stack IN • , EntireDom, and SubsetOfDom. The predicates AllStacksExcept, stack • , stack • , and stack ∃ are defined as follows: stack

For concreteness, we focus on the Iris separation logic in this paper, but we believe the ideas we present could also be used in other separation logics, e.g.,[START_REF] Nanevski | Communicating State Transition Systems for Fine-Grained Concurrent Resources[END_REF]. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August

Our one-shot resource is a slight simplification of the one-shot resource of Jung et al. [2016]. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.
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In practice Iris's Hoare triples are equipped with a mask, which is a set of invariant names, to ensure that invariants are not opened in a nested way. For the sake of simplicity we ignore these masks in this paper. We also elide the use of the so-called later modality in this paper which technically should also appear in this rule.Proc. ACM Program. Lang., Vol. POPL, No.

4, Article 111. Publication date: August 2023.
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In the Coq formalization, following Iris's terminology, the Safe predicate is called adequate. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

Note that we retain the invariant as it is persistent. Also, in the Hoare triple (6) we implicitly frame the specs for 𝑓 . Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

Iris is an affine separation logic. Hence, we can always discard resources as necessary. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

Since (well-bracketed) Hoare triples are persistent they can be freely duplicated and also moved in and out of preconditions just like ordinary Hoare triples of Iris; see[START_REF] Birkedal | Lecture Notes on Iris: Higher-Order Concurrent Separation Log[END_REF] for more details. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

Sequential System F featuring both universal and existential types, recursive types, and higher-order references. 10 Note that the superscript 𝑒 in the _ e relation is part of the notation, not an argument. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.

In practice (in the Coq development) this conceptual mutuality is broken by defining the expression interpretation first as a general predicate transformer of the type (Val → iProp □ ) → (Expr → iProp), which is essentially just the (well-bracketed) weakest precondition in our case. The value interpretation is then defined based on this general predicate transformer. Proc. ACM Program. Lang., Vol. POPL, No. 4, Article 111. Publication date: August 2023.
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the map of all stacks. These predicates, as their names suggest, are defined so that the set tracked by a SubsetOfDom predicate is a subset of the set tracked by EntireDom: SubsetOfDom(𝐴) * EntireDom(𝐵) ⊢ 𝐴 ⊆ 𝐵 (dom-subset) SubsetOfDom(𝐴) * SubsetOfDom(𝐵) ⊣⊢ SubsetOfDom(𝐴 ∪ 𝐵) (dom-distributes) EntireDom(𝐵) * finite(𝐴) ⊢ | ⇛EntireDom(𝐴 ∪ 𝐵) * SubsetOfDom(𝐴)

(dom-grow)

The predicates stack • and stack • both feature SubsetOfDom({𝑁 }) to express that the name 𝑁 is indeed in the domain of all tracked stacks. The other parts of these predicates, stack IN • and stack IN

•

are defined to satisfy the following basic rules:

Note how these rules specify that the stacks always agree (stacks IN -agree), that they are initially created in a way that they agree (stacks IN -create), and that they may only be updated as long as the agreement is maintained (stacks IN -update). The reason why it is necessary to track the domain of the map of stacks in a separate resource is because we need to prove that whenever we have stack • or stack • , for some stack 𝑁 , then the stack 𝑁 must indeed be in the map tracked by AllStacksExcept.

Otherwise, the latter would only be a collection of stack • predicates for which we only know that they are not in the stack mask.

It is easy to see how the rules above can derive the rules governing stack • and stack • : stacksagree, stack-system-uniqe, stack-user-uniqe, stack-exists, stacks-push, and stacks-pop -the stack-like behavior of the rules stacks-push and stacks-pop is not enforced at the level of resources but only by the "interface" of the rules for updating stack • and stack • .

It only remains for us to justify that the definitions of AllStacksExcept, stack • , stack • , and stack ∃ do indeed satisfy the rules presented in Figure 4. The rule mask-subset-dom follows by definition. For the rule stack-exists-in we essentially only need to apply dom-subset. As for the rule stackuser-not-out, we will first apply the rule stack-exists together with mask-subset-dom to obtain that 𝑁 ∈ dom(S). Given that 𝑁 ∉ O, the proposition stack • (𝑁 , S(𝑁 )) must be part of the big separating conjunction in the definition of the AllStacksExcept proposition. This allows us to conclude the proof by applying the rule stacks-agree. For the rule stack-system-is-out, assume the contrary, i.e., that 𝑁 ∉ O. Since SubsetOfDom({𝑁 }) is included in the definition of stack • (𝑁 , 𝑠), we have 𝑁 ∈ dom(S). This means that we can obtain stack • (𝑁 , S(𝑁 )) from the big separating conjunction in the definition of the AllStacksExcept proposition. This is a contradiction as per stack-systemuniqe. The rules stack-take-out and stack-put-back, respectively, simply take the system part of the stack, stack • , out of the big separating conjunction in the definition of AllStacksExcept, and put it back in there. Note that there is nothing in the definition of AllStacksExcept(S, O) that pins down the contents of a stack that is in the mask O. Hence, the contents of such a stack can be changed arbitrarily in the S part of AllStacksExcept(S, O). This is exactly what the rule change-out-stack states. In order to validate the rule create-stack we allocate a new stack 𝑁 using the rule stacks INcreate. We then use the rule dom-grow to update the EntireDom and obtain SubsetOfDom({𝑁 }). This allows us to construct stack • and stack • propositions as necessary. However, we need to guarantee that the name 𝑁 is indeed fresh, in the sense that it is not already an element of dom(S). This is why in the rule stacks IN -create we have the possibility to pick a set 𝐴 of stack names to