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Abstract 16 

Releasing the dependence of the low-frequency and broad bandgaps on low 17 

stiffness and bulky masses has been an intractable bottleneck. Although inertial 18 

amplification is a terrific candidate for addressing the barrier, numerous extended ideas 19 

are limited to the classical models, thus, slowing or stalling the advances in this demand. 20 

To break this limit, we report a kind of planar chiral phononic crystal based on Thomson 21 

scattering. Different from the optimization effect produced in the locally resonant 22 

phononic crystals, the mirrored chirality can open a Thomson scattering-induced broad 23 

bandgap when the local resonant sub-structure is discarded. In addition, while 24 

simplifying the material components, we lower the starting frequency of the bandgap 25 

with a virtually unchanged width for the same lattice constant, stiffness and mass. 26 

Consequently, the starting frequency of the attenuation can be in the same order of 27 

magnitude as the local resonance bandgap, while the width is significantly better than 28 

the latter. Our proposal may open a new way to manipulate broadband elastic waves 29 

and validate that Thomson scattering is a promising alternative approach and 30 

mechanism for bandgap formation. 31 

1. Introduction 32 

Chirality, i.e., the spatial arrangement which does not possess centrosymmetry and 33 

rotational symmetry [1-3], makes macroscopic materials with negative Poisson's ratio 34 

effects [4-6]. In essence, the rotation-translation coupling in these lattices is the 35 

fundamental basis of the negative Poisson’s ratio [6, 7]. Therefore, both axial and planar 36 

twist chiral lattices can achieve this unique property [8, 9]. 37 
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Chirality in geometry can not only endow mechanical metastructures with negative 38 

Poisson's ratio as well as twist [10-13], but also can produce phononic crystals (or 39 

elastic metastructures) with some unique dynamical properties, such as elastic wave 40 

polarization [14-18], nonlinear wave propagation[19], enhancing stiffness and damping 41 

[20, 21], widening local resonance-induced bandgap [22-26]. At present, the planar 42 

chiral lattice has been received intensive investigations [27]. In these researches, the 43 

coupling of the translation and rotation can generate a positive elastic module [28, 29], 44 

and embedding locally resonant substructure can achieve negative dynamic equivalent 45 

density [29-31]. When the double negative properties overlap in the same frequency 46 

band, it is beneficial to achieve negative refraction [28, 31, 32]. However, the double 47 

negative properties are unbeneficial for opening a continuous bandgap due to the pass 48 

band with negative group velocity induced by the negative elastic module [29, 31]. 49 

Therefore, using chiral lattices to create a broad local resonance-induced bandgap 50 

mainly depends on the excellent stiffness-mass ratio (specific stiffness) of the matrix 51 

[20, 22, 27, 33]. It is well known that the lower boundary of the local resonance bandgap 52 

is negatively correlated with the ratio of the oscillator and matrix masses [24, 34, 35], 53 

while the bandwidth of the negative dynamic equivalent density is positively correlated 54 

with the ratio of the oscillator to the substrate mass [30, 36]. Therefore, improving the 55 

specific stiffness of the matrix can optimize the local resonance-induced bandgap. 56 

In axial twist chiral phononic crystals [37-39], motion coupling is a critical factor in 57 

bandgap formation [40]. At deep subwavelength scales, because of this coupling, the 58 

outgoing wave will propagate in two polarization modes when the incident wave 59 

polarized in one mode propagates through this chiral substructure. This progress is 60 

analogous to Thomson scattering in classical electromagnetic fields. In classical 61 

Thomson scattering, the incident wave forces the electron to vibrate, thus generating a 62 

divergent wave field. The divergent outgoing field results from superimposing waves 63 

polarized in multiple directions [40]. In this analogy, the chiral sub-unit cell is regarded 64 

as the electron; the two and more waves polarized in different freedoms were 65 

superimposed to form an outgoing wave field [40]. 66 

More critically, a phononic crystal with the Thomson scattering-induced bandgap must 67 

have a second Thomson scattering ability to cause destructive interferences [40]. 68 

Specifically, two polarization modes are produced through the first Thomson scattering. 69 

After that, the scattered waves vibrating in these two modes each take on the role of 70 

secondary incident waves for a second Thomson scattering. These second scattered 71 
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waves polarized in the same mode will have opposite phases, and thus cause destructive 72 

interferences [40]. During the quantification of the analogous Thomson scattering, the 73 

inertia matrix will show the inertial amplification effect [41-43]. It has been 74 

demonstrated that the geometric and physical parameters, including lattice constant, 75 

equivalent stiffness, and density, are inextricably linked to the starting frequency and 76 

width of the bandgap [44-46]. Because of the inertial amplification [37, 39], whose 77 

dynamic inertia can be amplified without increasing the static inertia, theoretically, this 78 

bandgap can be lower than Bragg scattering for the same lattice constant, equivalent 79 

density, and stiffness [41, 47], and this lattice will be lighter than the local resonance 80 

lattice for the same lattice constant, equivalent stiffness and bandgap width 81 

requirements [41, 47-49]. In other words, inertial amplification is a critical concept to 82 

release the dependence of the low-frequency and broad bandgaps on low stiffness and 83 

bulky masses. However, numerous extended research ideas are limited to the classical 84 

models to slow or stall the advances in this problem [48-56]. The proposal of the 85 

Thomson scattering provides new insight into designing more phonon crystals with an 86 

inertial amplification effect.  87 

Based on the Thomson scattering mechanism, this work proposes a single-phase planar 88 

torsional chiral phononic crystal to achieve a low-frequency and wide-band 89 

confinement. In contrast to previous works, we use a chiral lattice not because of its 90 

higher specific stiffness but because of its motion coupling. It is essential to state that 91 

our "kinematic coupling" is not the negative equivalent modulus but the coupling that 92 

allowed for Thomson scattering phenomena in elastodynamics. To generate destructive 93 

interferences, the chiral unit cell will be mirrored to be anti-chiral. Eventually, the anti-94 

chiral super-unit cell can open a low-frequency and broad bandgap. In contrast to the 95 

conventional local resonance, this Thomson scattering lattice has a broader bandgap 96 

and nearly the same order of magnitude decay starting frequency for the same lattice 97 

constant, equivalent stiffness, and density conditions. The material damping can 98 

effectively suppress the high-frequency modes, so that the bandgap exhibits the effect 99 

of a low-pass filter rather than a band-stop filter in the axial chiral lattice. 100 

The paper is organized as follows. Section 1 presents the background for planar chiral 101 

phononic crystals. In order to distinguish our design method from that based on local 102 

resonance and clear the superiority of this study, Section 2 is devoted to comparing 103 

classical local resonance-induced and Thomson scattering-induced planar chiral 104 

phononic crystals. Then, the design mechanism is discussed in Section 3. Section 4 105 
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presents a single-phase planar chiral phononic crystal with a more superior bandgap 106 

obtained according to the two-stage inertial amplification in the translation-rotation 107 

coupling system. Section 5 exhibits an experimental verification. Finally, Section 6 108 

concludes the paper.  109 

2. Design & Method 110 

The low-frequency and broad bandgaps contradict equivalent physical parameters such 111 

as lattice constant, equivalent stiffness, equivalent density [44, 45]. For a fair 112 

comparison and to clarify the innovation of our study, we have embedded local 113 

resonance substructures and steel pillars in an identical chiral matrix to form a local 114 

resonance lattice (Fig. 1(a)) and a composite lattice (Fig. 1(b)) with equal weight. The 115 

minimum period of the local resonance (Fig. 1(a)) and the composite structures (Fig. 116 

1(b)) is one-quarter of the lattices shown in Fig. 1. Thus, we named the geometries 117 

shown in Fig. 1(a) and Fig. 1(b) as super-unit cells. The local resonance unit cell (Fig. 118 

1(a)) is composed of three materials, including the nylon with the elastic module 119 

𝐸 =1.6e9 Pa, density 𝜌 =1000 kg/m!, Poison’s ratio 𝑣 =0.4, the steel with the elastic 120 

module 𝐸 =2.1e11 Pa, density 𝜌 =7850 kg/m!, Poison’s ratio 𝑣 =0.3, and the rubber 121 

with the elastic module 𝐸 =5e6 Pa, density 𝜌 =1000 kg/m!, Poison’s ratio 𝑣 =0.47. 122 

The composite unit cell (Fig. 1(b)) is polluted from the local resonance lattice, where 123 

the rubber is replaced by nylon. The rubber has the same density as the nylon to ensure 124 

that the two lattices have the same mass. In addition to the outer circle diameter 𝑑"=20 125 

mm of the rubber, the two super-unit cells have the same other geometric parameters, 126 

including the lattice constant 𝑎 =50 mm, the angle 𝜃 =30°, the width 𝑙 = 10 mm 127 

and thickness 𝑡 = 2.5  mm, and the parameters ℎ =8.32 mm and 𝑑# =12.4 mm. 128 

Therefore, the two lattices have the same equivalent density. The ligaments are more 129 

easily deformed compared to the lumped mass, so the equivalent stiffness of the lattice 130 

is mainly determined by the ligaments. Since both lattices have the same ligaments, 131 

both have a quasi-same equivalent stiffness. 132 
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  133 
Fig. 1. (a)-(b) Schematics and (c)-(d) band structures of the arrayed local resonant super-unit cell 134 
and composite super-unit cell. The unit cell is one-quarter of the lattice. 135 
Fig. 1(c) and Fig. 1(d) illustrate the band structures of the local resonance lattice (Fig. 136 

1(c)) and composite lattice ( Fig. 1(d)), which are obtained in the solid mechanic 137 

module of COMSOL Multiphysics through applying the Bloch periodic boundary [57] 138 

on the super-unit cell. It can be found that the local resonance bandgap extends from 139 

about 800 to 1050 Hz, while in the composite lattice, we have a narrow bandgap, i.e., 140 

3540-3760 Hz. According to the relative width of the bandgap to evaluate the two unit 141 

cells [58], it is 27% of the local resonance unit cell and 6% of the composite structure. 142 

In short, the local resonance unit cell has better performance than the composite 143 

structure for both starting frequency and width of the bandgap. 144 

To obtain the broad bandgap similar to that of Refs. [37, 40], it is indispensable to mirror 145 

unit cells shown in Fig. 1. The geometries of the mirrored super-lattices are presented 146 

in Fig. 2(a) and (b), and the band structures are shown in Fig. 2(c) and Fig. 2(d). One 147 

can observe that the bandgap of the local resonance extends from 700 to 1050 Hz. 148 

Compared with the previous results shown in Fig. 1(c), the lower boundary is shifted 149 

down by about 100 Hz, and the upper boundary is nearly invariable. Remarkably, for 150 

the composite super-unit cell, the narrow bandgap shown in Fig. 1(d) becomes a 151 

continuous and broad bandgap extending from 1600 to 5200 Hz, with the lower 152 

boundary significantly lowered from 3540 Hz to 1600 Hz. 153 
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To sum up, it is effective that mirroring improves the lower boundary of the local 154 

resonance bandgap. Still, the mirroring here is an optimization without changing the 155 

mechanism of the bandgap opening. Unlike in the local resonance super-unit cell, 156 

mirroring in the composite super-unit cell activates a new mechanism, thus resulting in 157 

a broad bandgap, which sets our study and approaches apart from the traditional design 158 

ideas. 159 

 160 
Fig. 2. (a)-(b) Schematics and (c)-(d) band structures of the mirrored local resonant super-unit cell 161 
and composite super-unit cell. 162 
 163 
3. The mechanism of the bandgap opening 164 

Statics can illustrate the polarization mode and direction of the LMs in dynamics in 165 

deep subwavelength [37, 59]. To understand the underlying physics, the static 166 

deformation of the mirrored super-unit cell (Fig. 3(a)) is computed numerically with 167 

COMSOL solid module. In the simulation, the material is linear, and geometric 168 

nonlinearity is not considered. As shown in Fig. 3, for easy differentiation, the first layer 169 

chiral units L$ are numbered ① and ②, and the second layer L% are numbered ③ 170 

and ④. The nodes between the ① and ③ as well as the ② and ④ are defined as 171 

𝑝$ and 𝑝%. Both upper and lower plates are considered as rigid, and the rest of the 172 

structure is defined as nylon. A force 𝐹 along -𝑦 axis is applied at the top of the upper 173 
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plate and a fixed boundary condition is set at the lower plate. 174 

In this chiral system, when the incident wave polarizing in translational harmonic 175 

motion goes through the first-layer unit cell L$ , the outgoing wave will have two 176 

polarizations, i.e., translation and rotation [37]. By analogy, each subsequent wave 177 

passing through a layer of chiral unit cells is equivalent to passing through Thomson 178 

scattering once more. Therefore, we defined that the first layer L$ refers to the first 179 

Thomson scattering and the second layer L% refers to the second Thomson scattering 180 

[40].  181 

Fig. 3(a) is the total deformation of the mirrored super-unit cell. One can observe from 182 

the deformation profiles that all chiral unit cells have significant translation along 𝑦-183 

axis and rotation around the 𝑧-axis, as well as slight translation along 𝑥-axis. For ease 184 

of understanding, we ignore the translational motion in the 𝑥 -axis in following 185 

discussion. The coupled phenomenon indicates that the unit cell has first two basic 186 

properties of Thomson scattering bandgap, i.e., two orthogonal motions and they are 187 

coupled on the same lumped mass. However, to realize the Thomson scattering bandgap, 188 

generating the opposite sub-motions in the same unit cell is crucial.  189 

Although there is a significant reverse of the motion between the unit cells in L$ and 190 

L%, it is unclear whether the movements of the unit cells in L$ can create opposite sub-191 

motions in the same polarization of the unit cells in L%. Consequently, for the sake of 192 

clarity, we have limited the 𝑧-axis rotational freedom and 𝑦-axis translational freedom 193 

of the L$ unit cells separately to distinguish the polarized directions of the L% unit 194 

cells drived by the two types of motion of the L$ unit cells. 195 

Fig. 3(b) is the deformation profile when the rotation of L$ is limited. In this condition, 196 

the unit cells ① and ② have only the translation along 𝑦 axis. It can be found that 197 

nodes 𝑝$ and 𝑝% will move along -𝑦 axis and close to each other. According to the 198 

movements of two nodes, from the perspective of the unit cells ③ and ④, the force 199 

direction of the node 𝑝$ is denoted as the inset in the upper right of Fig. 3(b), and the 200 

ones of the node 𝑝% is presented as the inset in the lower right of Fig. 3(b). When the 201 

translational degrees of freedom of the layer L$ are constrained, the deformation of 202 

the super-unit cell is shown in Fig. 3(c). For clarity, Fig. 3(d) shows the enlarged 203 

deformation profile of L%, and the force directions of nodes 𝑝$ and 𝑝% are illustrated 204 

in the right of Fig. 3(d). Comparing the force directions shown in Fig. 3(b) and Fig. 205 

3(d), it can be found that the translation and rotation of the unit cells L$ result in node 206 
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𝑝$ (or 𝑝%) having opposite force directions, respectively. Because of the symmetry of 207 

the system, we can take unit cells ① and ③ as analytical objectives. Regarding the 208 

unit cell ① shown in Fig. 3(b), it will have the translation along -𝑦 axis and rotation 209 

around -z axis when it is compressed; conversely, it will produce the translation +𝑦 210 

axis and rotation around +𝑧 axis when it is stretched. When unit cell ① has only 211 

translation, it will compress unit cell ③, at which time unit cell ③ will produce -𝑦-212 

axis translation and -𝑧-axis rotation; when unit cell ① has only rotation, it will stretch 213 

unit cell ③, as a result, unit cell ③ will have +𝑦-axis translation and +𝑧-axis rotation. 214 

In other words, when unit cell ①  is compressed, it has two polarizations, i.e., 215 

translation and rotation. Further, these two polarizations drive unit cell ③ have two 216 

sub-translations and two sub-rotations simultaneously. The most crucial is that these 217 

sub-motions of the unit cells L%  vibrating in the same polarization have opposite 218 

directions. Consequently, the chiral twist super-unit cell shown in Fig. 3(a) satisfies the 219 

three conditions of generating Thomson scattering bandgap, i.e., two and more 220 

orthogonal motions coupled on the same lumped mass. After the second Thomson 221 

scattering, the sub-motions polarized in the same mode have opposite initial motion 222 

directions, which is the underlying mechanism by which this super-unit cell can achieve 223 

a low-frequency and wide bandgap. 224 

 225 
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 226 
Fig. 3. Deformation profiles of the mirrored lattice under the condition of (a) free, (b) constrained 227 
𝑧-axis rotation of the L!, and (c) constrained 𝑦-axis translation of the L!. (d) Enlargement of Fig. 228 
3(c). The black wireframe is the original shape of the lattice. The red arrow points to the deformation 229 
direction. 230 
 231 
The analytical approach was applied to the arrayed super-unit cell (in Fig. 4(a)) to 232 

clarify the difference between arrayed and mirrored super-unit cells. The arrayed super-233 

unit cell is unstable because it produces shear motion along the 𝑥 axis under the 𝑦-234 

direction load. The unstable phenomenon can be observed from the animations in 235 

Supplementary information. To realize the same input displacement condition as the 236 

mirrored phononic crystal, the translational motion of the upper top plate in the 𝑥-237 

direction is constrained in the calculation, while the other boundary conditions are the 238 

same as the ones applied on the mirrored super-unit cell. 239 

Fig. 4(a) is the total static deformation profile. Different from Fig. 3(a), the deformation 240 

is asymmetric. Some unit cells have a significant rotation, such as unit cell ②, while 241 

some units do not have significant rotation, such as unit cell ①, even if both translation 242 

and rotation are feeble, such as unit cell ④. In more details, when the rotation of the 243 

unit cells L$  around 𝑧  axis is constrained, the deformation of the unit cells L% 244 

exhibits the same direction but to a different extent, as illustrated in Fig. 4(b). Also, 245 

when the rotation of the unit cells L$ along -𝑦 axis is constrained, the deformation of 246 
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the unit cells L%  exhibits the same direction but to a different extent as well, as 247 

illustrated in Fig. 4(c). The right insets of Fig. 4(b) and Fig. 4(d) show the force 248 

directions from the viewpoint of the unit cells L%. One can observe that both nodes 𝑝$ 249 

and 𝑝% have opposite force directions in the y-direction, which seems to mean that 250 

there are destructive interferences in the arrayed super-unit cell. However, the force 251 

direction in 𝑥-direction is identical. Because of the identical force direction, the super-252 

unit cell has the asymmetric deformation, and some chiral unit cells have almost 253 

completely lost the coupled motion, which is one of the critical conditions for this 254 

bandgap generation. Consequently, the arrayed super-unit cell does not have the 255 

excellent bandgap of the mirrored super-unit cell, although both unit cells have the same 256 

equivalent density, lattice constant, and virtually identical stiffness and strength (Please 257 

refer to Fig. A1). 258 

 259 

 260 
Fig. 4. Deformation profiles of the arrayed lattice under the condition of (a) free, (b) constrained z-261 
axis rotation of the L!, and (c) constrained 𝑦-axis translation of the L!. (d) Enlargement of Fig. 262 
4(c). The black wireframe is the original shape of the lattice. The red arrow points to the deformation 263 
direction. 264 
 265 
4. Single-phase planar phononic crystal  266 

Our previous study [40] has demonstrated that the coupling of the orthogonal motions 267 
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is analogous to Thomson scattering. During the quantitative description of the Thomson 268 

scattering based on the analytical formalism, the inertia matrix exhibits inertial 269 

amplification [40]. Interestingly, the involvement of the rotation allows the system to 270 

have two stages of inertial amplification, one of which depends on angle 𝜃, and the 271 

other on the rotational inertia of lumped masses [46]. The larger the rotational inertial 272 

is, the lower the starting frequency of the bandgap is. 273 

Regarding the composite structure shown in Fig. 2(b), it is not conducive to 274 

manufacturing and controlling the robustness of the elastic dynamics in practice [60]. 275 

Besides, steel, as a material with high density, is not suitable for obtaining large 276 

rotational inertia. To overcome these limitations, we propose a single-phase chiral unit 277 

cell composed of a matrix Ⅰ and a lumped mass Ⅱ, as shown in Fig. 5(a). The parameter 278 

𝐻 = 2ℎ+ 𝑙 is designed to maintain the same height in z-axis as the composite unit cell. 279 

For the meshing in the numerical calculation, the diameter 𝑑& is equal to 𝐷# −2 mm 280 

(please refer to Fig. 1(b) to find 𝐷#). In order to use the rotational inertia of the lumped 281 

mass to generate a low starting frequency of the bandgap, while giving enough space 282 

for the dynamical deformation of the system, we set the diameter as 𝐷"=0.5𝑎	-2 mm. 283 

Ultimately, for comparison purpose, the entire lattice (Fig. 5(a)) needs to have the same 284 

weight as the composite lattice (Fig. 1(b)), so 𝛾 = 20°. The super-unit cell shown in 285 

Fig. 5(b) can be obtained by mirroring the lattice Ⅲ shown in Fig. 5(a). Fig. 5(c) is the 286 

band structure of the model exhibiting a broad bandgap within 965-5025Hz. Compared 287 

to the composite super-unit cell, the starting frequency is reduced from 1510 Hz to 965 288 

Hz, with a decrease of 36%. The upper boundary of the bandgap is reduced from 5200 289 

Hz to 5025 Hz. The relative width of the bandgap is improved from 110% to 135%. It 290 

is worth noting that these variations happened in the case of the same lattice constant, 291 

equivalent density, and stiffness.  292 
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 293 
Fig. 5. (a) Schematics of the single-phase unit cell composed by Ⅰ the matrix and Ⅱ the lumped mass. 294 
(c) Band structure of the (b) mirrored unit cell. 295 
 296 
5. Experimental verification and discussion 297 

The FRFs of the finite structure (shown in Fig. 6 (a)), composed by 2×3 unit cells, is 298 

measured numerically and experimentally to validate the prediction of the created 299 

bandgap in the band structure. Two foams support the sample to levelling and isolate 300 

the vibration from the background [61]. A cubic block was designed at both the 301 

excitation end 𝑆# and the output end 𝑆" to facilitate the installation of the transducer 302 

and the excitation during the experiment. The same geometry is used in the simulation 303 

to minimize the differences between experiments and simulations. In the COMSOL 304 

V6.0 solid mechanics module, a harmonic excitation force 𝐹 is applied to the input 𝑆#, 305 

and the accelerations of 𝑆# and 𝑆" are recorded simultaneously by two domain point 306 

probes. The sweep frequency range covers 200 Hz to 7000 Hz with a frequency 307 

resolution of 5 Hz. The ratio of 𝑆"  to 𝑆#  is defined as the FRF. The experimental 308 

configuration (shown in Fig. 6) includes M+p Vibpilot, Modelshop K2007E01, and two 309 

acceleration transducers PCB353 B15.  310 

The numerical and experimental results are illustrated in Fig. 6(b), where the blue plot 311 

corresponds to the simulation while the red plot to the experimental measurement. One 312 

can see that the attenuation of both results starts at about 710 Hz. The band gap type 313 
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can be determined from the distribution of energy within the bandgap. In Fig. 6(c), we 314 

have presented the deformation profiles at 3000 Hz. It can be found that the energy is 315 

mainly concentrated on the two lumped masses close to the source. In more detail, the 316 

vibration mode of the lumped masses is mainly rotational. According to the Thomson 317 

scattering mechanism, the attenuation relies mainly on the destructive interference 318 

formed during the second Thomson scattering, so the energy is mainly localized in the 319 

first layer of lumped masses, as presented in our previous work [40]. In other words, 320 

this bandgap belongs to the Thomson scattering type. 321 

Compared to the numerical FRF of Fig. 6(b), there are some discrepancies between 322 

numerical and experimental results. Exceptionally, the depth of the experimental FRFs 323 

does not exceed 1e-4, which is because the output signal is already at the same level as 324 

the background noise. Besides, some numerical peaks close to 6200 Hz should belong 325 

to pass bands, but their attenuation coefficient approximates that of the bandgap in the 326 

experimental result. To find the reason, the deformation profile at 6250 Hz is shown in 327 

Fig. 6(d). It is clear that the resonant modes are the local resonance of the lumped 328 

masses. It has been demonstrated that damping in nylon is an effective approach to 329 

suppressing high-frequency local resonance modes [61, 62]. When the Rayleigh 330 

damping of 𝛼=0.1 s'$  and 𝛽= 4e-7 s [61, 62] is considered in simulation, as 331 

illustrated by the black dashed line in Fig. 6(b), the resonant peaks near 6250 Hz are 332 

compressed effectively, which is relative to a weak upward trend of the experimental 333 

result. In addition, manufacturing errors and the slight bending of the entire sample 334 

might be the causes of some peak shifts in experimental results, such as the difference 335 

between the numerical peak at 1750 Hz and experimental ones at 1400 Hz. Nevertheless, 336 

the consistent trend between the experiment and simulation can reveal the bandgap 337 

existence. 338 
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 339 
Fig. 6. (a) Photograph and configuration of the experiment. (b) Numerical and experimental FRFs.  340 
The red zone is the theoretical bandgap width predicted from the band structure. Deformation 341 
profiles at (c) 2968 Hz and (d) 6200Hz.  342 
 343 
It is worth noting that the bandgap range predicted in the band structure is 965 Hz-5025 344 

Hz. The attenuation range shown in FRF is 710 Hz-6220 Hz. The starting frequency of 345 

the attenuation in FRF is lower by about 250 Hz than that of the bandgap, with a relative 346 

difference of more than 25%. The cutoff of the bandgap is more than 1000 Hz higher 347 

than the prediction in band structure; the relative bandgap width is 135% in the bandgap, 348 

but the result is 159% in FRF.  349 

To analyze the causes of the lower boundary differences, it is necessary to analyze the 350 

resonant modes from 710 Hz to 970 Hz located at the lower boundary of the bandgap. 351 

There are seven orders of passbands and three types of resonance modes. For simplicity, 352 

Fig. 7(a)-(c) show the three typical vibration modes (some repeated vibration modes 353 

are not mentioned). The first mode (in Fig. 7(a)) is the local deformation at the ligament; 354 

the second mode (in Fig. 7(b)) is the translation of the lumped mass in the z-axis; the 355 

third mode (in Fig. 7(c)) is the rotation of the lumped mass around an axis in the surface. 356 

Because these modes are orthogonal to the excitation direction, they cannot be 357 

effectively excited under the current excitation conditions. 358 

 359 
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 360 
Fig. 7. (a)-(c) Three types of modes at the lower boundary (within 710–970 Hz) of the bandgap. (d)-361 
(f) Three types of modes at the upper boundary (within approximately 5000-6100 Hz). 362 
 363 
The upper boundary has a higher band spectrum density, but generally, it can be 364 

summarized as three patterns shown in Fig. 7(d)-(f), including the combined mode of 365 

the torsion of ligaments and rotation of the lumped mass (shown in Fig. 7(d)), the 366 

rotational mode of lumped masses around the 𝑧 axis (shown in Fig. 7(e)), and the 367 

torsional mode of ligaments Fig. 7(f). Similar to low boundaries, the inability of these 368 

modes to effectively truncate the bandgap is due to orthogonality between the excitation 369 

direction and these modes. 370 

In order to verify the above analysis, the out-of-plane input is applied in the simulation. 371 

The numerical results are shown in Fig. 8. It can be found that the attenuation starts at 372 

1000 Hz and the cutoff frequency is 5000 Hz, which coincides with the prediction in 373 

band structure shown in Fig. 5(c). This analysis confirms the explanation that the 374 

attenuation width in the experimental FRF is wider than the energy band prediction. 375 

 376 
Fig. 8. Numerical FRF of the normal excitation. The red area refers to the bandgap width. 377 
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6. Conclusion  378 

In summary, a single-phase planar chiral phononic crystal with a low-frequency and 379 

broad bandgap induced by Thomson Scattering has been proposed and investigated 380 

numerically and experimentally. Under the same lattice constant, stiffness and mass, 381 

the mirrored chirality only improves the width and starting frequency of the local 382 

resonance bandgap, while it can open a broad bandgap when the local resonant sub-383 

structure is discarded. The superior bandgap performance depends on the Thomson 384 

scattering provided by translational and rotational coupling. According to the two-stage 385 

inertial amplification, we further simplified the material components of the unit cell and 386 

lowered the starting frequency of the bandgap as well, while the method is the changing 387 

in the appearance of the lumped masses only. The consequent result is that the starting 388 

frequency of the attenuation can be in the same order of magnitude as the local 389 

resonance bandgap and, moreover, the width is significantly better than the latter. 390 

Notably, different from the axially chiral phononic crystals whose bandgap exhibits 391 

band-pass filter properties, the blueprint carried out in this work has low-pass filtering 392 

properties due to the material damping. One cannot deny that the local resonance can 393 

generate a low-frequency bandgap due to the relevance between the starting frequency 394 

and the elastic module of the coating material [35, 63]. Of course, a new proposal in 395 

design may offer the possibility of increasing the inertial amplification factor, for the 396 

purpose of reducing the reliance on low stiffness and bulky masses for low-frequency 397 

and broad bandgaps [48]. These properties obtained in this work may make Thomson 398 

scattering a powerful approach and mechanism. 399 

 400 

Appendix. A 401 

 402 
Fig. A1. Schematics of the ligaments. The red line is the symmetric line of the thickness, 403 
which is tangent to the black circle. Please note, the diameter of that circle is equal to 404 
𝐷# − 𝑡. 405 



17 
 

 406 
Appendix. B 407 

 408 
Fig. A2. The photographs of the mirrored lattice (a), arrayed lattice (b), and compression experiment 409 
(c). In order to ensure that the sample will not deform significantly in the normal direction during 410 
compression, the thickness 𝑙 is 30 mm. Other geometric dimensions are the same as the matrix Ⅰ 411 
Fig. 5(a). The universal testing machine is Instron 5982 and the loading speed is 2 mm/min. (d) The 412 
experimental results of the force-displacement curves. 413 
 414 
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