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Polysemy is the capacity for a word to have multiple meanings. Polysemy detection is a first step for Word Sense Induction (WSI), which allows to find different meanings for a term. The polysemy detection is also important for information extraction (IE) systems. In addition, the polysemy detection is important for building/enriching terminologies and ontologies. In this paper, we present a novel approach to detect if a biomedical term is polysemic, with the long term goal of enriching biomedical ontologies. This approach is based on the extraction of new features. In this context we propose to extract features following two manners: (i) extracted directly from the text dataset, and (ii) from an induced graph. Our method obtains an Accuracy and F-Measure of 0.978.

Introduction

The Web is by far the largest information archive available worldwide evolving. This resource contains important information about several domains. This is the case for biomedicine, that brings knowledge through numerous publications [START_REF] El-Rab | Biomedical text disambiguation using umls[END_REF]. In this context, there are several methods to extract relevant information tackling the disambiguation problem [START_REF] El-Rab | Biomedical text disambiguation using umls[END_REF][START_REF] Zhong | Word sense disambiguation improves information retrieval[END_REF]. This issue has been also recently addressed by the research of concepts, analyzing text to extract instances of concepts associated with user queries [START_REF] Agirre | Random walks for knowledge-based word sense disambiguation[END_REF]. The ontologies are very useful for the identification of concepts; the main objective is the creation of knowledge in a domain. They must be regularly enriched by the introduction of new terms. So, to enrich ontologies/vocabularies with new terms, it is necessary to know the possible senses of a term, this is the well known Word Sense Induction (WSI) domain. One preliminary step is to detect if a term is polysemic (binary decision). If the term is polysemic, then to make a deep search of their senses. To our knowledge, there are no studies for the same purpose.

Therefore, in order to meet the challenge, we propose a novel methodology to detect if a term is polysemic by defining new features, extracted directly from the textual dataset and from an induced graph, as described after. In turn, our methodology uses two dictionaries allowing us to determine the use of a same term in different domains (i.e., biomedical and agronomy). To the best of our knowledge, graphs have never been used to define features for classification purpose. In this work the main idea is to capture the dataset characteristics from the structural shape and size of graph induced from the dataset. This approach enables to obtain excellent results, with 97.8% for Accuracy and F-Measure.

The paper is organized as follows. First, the methodology is detailed in Section 2.. Results are presented in Section 3.. We discuss related work in Section 4. followed by conclusion and perspective in Section 5..

Towards Polysemy Detection

In this section, we present the proposed methodology to determine if a biomedical term is polysemic. We present the new features that serve to characterize the dataset. Figure 1 shows the workflow of our approach, which is described hereafter. 

Extraction of New Features

We present new features based on statistical measures to characterize our dataset. They are extracted directly from the dataset and from an induced graph. We select appropriate learning algorithms to determine if a term is polysemic. Totally 23 features are proposed, 11 direct and 12 from the induced graph. Their effectiveness are illustrated by comparing the results obtained by different supervised algorithms.

Notation: for each term t let A t = a i the set of titles/abstracts of Medline containing t.

Direct Features

To create these features, we apply some statistical measures and we use UMLS 1 and AGROVOC 2 dictionaries, which are respectively a biomedical and agronomic thesaurus. These dictionaries have a degree of overlap, which contains in general the polysemic terms, i.e. terms belonging to biomedical and agricultural domains, for instance "cold" term. So, our hypothesis behind the use of two different dictionaries, is to predict if a term is polysemic only if it appears in these two different contexts. Table 1 shows the 11 direct features created.

Graph-based Features

As previously mentioned, we decided to use the graph structure to characterize our dataset. In such a way, we take advantage of the graph's properties, such as, the neighborhood, the edge weights, the size. We built a undirected graph for each term, each graph is independent from the others.

Graph construction: A graph (see Figure 2) for each biomedical term is built. Vertices denote terms, and edges denote co-occurrence relations between terms. Cooccurrences between terms are computed as the weight of the relation in the initial dataset. This relation is statisticbased by linking all co-occurring terms without considering their meaning or function in the text. Each graph is built with the first 1 000 terms extracted with BIOTEX application 3 from A t . The graph is undirected as the edges imply that terms simply co-occur, without any further distinction regarding their role. We use the Dice coefficient (called D), a basic measure to compute the co-occurrence between two terms x and y in a text (i.e. title or abstract) in order to create the graph. Table 1 shows the 12 graph-based features. In Figure 2, v t represents the vertex with the term t, v i represents a vertex i in the graph, N(v i ) the neighborhood of v i , |N(v i )| the number of neighbors of v i , r j the neighbor j of v i , weight(v, r j ) the edge weight between v i and its neighbor r j , it means weight(v i , r j ) = D(v i , r j ).

1 http://www.nlm.nih.gov/research/umls/ 2 http://aims.fao.org/agrovoc 3 http://tubo.lirmm.fr/biotex/ Direct Features 1) Number of Words: represented as nW ords(t), is the number of words that contains the term t. For instance nWords(Lung cancer)= 2.

2) Number of UMLS Terms: represented by termsU (t), that is the number of UMLS terms contained in the set of abstracts At.

3) Minimum of UMLS Terms: denoted as minU (t), represents the minimum number of UMLS terms contained for each a of At. minU (t) = min(termsU (a1), termsU (a2), ...) 4) Maximum of UMLS Terms: denoted as maxU (t), represents the maximum number of UMLS terms contained for each a of At. maxU (t) = max(termsU (a1), termsU (a2), ...) 5) Mean of UMLS terms: denoted as meanU (t), represents the mean of number of UMLS terms for each a of At.

meanU (t) = 1 n × n i=1 termsU (ai)
6) Standard deviation of UMLS Terms: denoted as sdU (t), represents the standard deviation of number of UMLS terms contained for each a of A. 

sdU (t) = 1 n-1 × n i=1 (termsU (ai) -meanU (t)) 2 7)
meanA(t) = 1 n × n i=1 termsA(ai)
11) Standard deviation of AGROVOC Terms: denoted as sdA(t), represents the standard deviation of number of AGROVOC terms contained for each a of A. Example: An illustrative example on how to extract features has been submitted as supplementary material of this paper.

sdA(t) = 1 n-1 × n i=1 (termsA(ai) -meanA(t)) 2 Graph-based Features 1)

Machine Learning Algorithm

We use some well-known supervised algorithms, implemented in the Weka4 software with the default parameters per each algorithm, such as:

Naives Bayes (NB) Meta Bagging (MB) AdaBoost (AB) M5P Tree (M5P) Tree Decision (TD) Multilayer Perceptron (NN) SVM (SVM)

MultiClassClassifier Logistic (MCC)

Extraction of New Features

We present new features based on statistical measures to characterize our dataset. They are extracted directly from the dataset and from an induced graph. We select appropriate learning algorithms to determine if a term is polysemic.

The main idea, is to capture the characteristics of dataset from the structural shape and size of graph induced from the dataset. Totally 23 features are proposed, 11 direct and 12 from the induced graph. Their effectiveness are illustrated by comparing the results obtained by different supervised algorithms.

Notation: for each term t let A t = a i the set of titles/abstracts of Medline containing t.

Data and Results

Gold Standard Dataset

Our dataset is composed of 406 ambiguous and not ambiguous entities. The ambiguous entities have been extracted from the MSH WSD5 (Jimeno-Yepes et al., 2011) dataset, which consists of 106 ambiguous abbreviations, 88 ambiguous terms, and 9 which are a combination of both, for a total of 203 ambiguous entities. The rest of the dataset of 203 not ambiguous entities, built with the same methodology from MSH WSD. This dataset is well-known in Word Sense Disambiguation literature applied to the biomedical domain. This dataset has been submitted accompanying this paper. Table 2 summarizes the details of our gold standard dataset. 

Results

In this section, we report experiments done to evaluate the performance of the new proposed features (in total twenty three). Algorithms cited in section 2.2. are evaluated with a 10-cross-validation. Results are provided in terms of Accuracy (A), Precision (P), Recall (R), and F-Measure (F) over the dataset. In section 3.2.1., experiments are done with direct and graph-based features separately. We also wanted to explore the performance of the features by mixing the 11 direct features with the 12 graph-based features, these results are presented in section 3.2.2.. As major studies deals with the identification of the correct meaning of a term, a comparison of our approach with others can not be provided. To our knowledge there are not studies focused in the detection of polysemy with binary output (i.e., true or false). 

Direct and Graph-based Features

Discussion

We evaluate in detail the informativeness of the features. For this purpose, from Table 4 we take the created decision tree (TD), in order to discuss the types of features highlighting by this algorithm. Figure 3 shows the associated decision tree. We can see that only 4 of the 23 features have been taken into account for classification. Two direct (minU (t), sdA(t)) and two graph-based (sum(v t ), ngU M LS(v t )) features. The two direct features are extracted with UMLS (minU (t)) and AGROVOC (sdA(t)), this confirms that overlapping between the two dictionaries are useful to detect the biomedical term polysemy. We can observe in Figure 3 that the combination of minU (t) and sum(v t ) allows us to classify the most not polysemic terms, 199 of 203. Table 5 presents the confusion matrix, corresponding to an Accuracy (A) of 0.97 (see Table 4, column A, row TD). 

Related Work

One related task to polysemy detection is the term ambiguity detection (TAD) [START_REF] Baldwin | Automatic term ambiguity detection[END_REF], which given a term and a corresponding topic domain, determines whether the term uniquely references a member of that topic domain. For instance, given a term such as Brave and a category such as film, the task is make a binary decision as to whether all instances of Brave reference a film by that name. In this case, the term Brave is already indexed in this category. In our case, we evaluate candidate terms that are not indexed. Another close study proposes a measure to decide if a preposition is polysemous to determine the preposition senses [START_REF] Köper | A rank-based distance measure to detect polysemy and to determine salient vector-space features for german prepositions[END_REF]. In this case, the prepositions exist already in a terminology. This is similar to the well studied issues of named entity disambiguation (NED) and word sense disambiguation (WSD). These tasks assume that the number of senses of a word is given. This makes these tasks inapplicable in enriching terminology tasks. One task that requires polysemy detection is word sense induction (WSI), which attempts to both figure out the number of senses of a word, and what they are. WSI uses unsupervised techniques to automatically identify the set of senses denoted by a word [START_REF] Navigli | A quick tour of word sense disambiguation, induction and related approaches[END_REF][START_REF] Wang | A sense-topic model for word sense induction with unsupervised data enrichment[END_REF]. The main approaches to WSI proposed are categorized in four types: i) Context clustering: The distributional profile of words implicitly expresses their semantics, a well-known approach to context clustering is the context-group discrimination algorithm [START_REF] Schütze | Automatic word sense discrimination[END_REF][START_REF] Van De Cruys | Latent semantic word sense induction and disambiguation[END_REF]; ii) Word clustering: Cluster words which are semantically similar and to discover a sense, for instance the work of [START_REF] Pantel | Discovering word senses from text[END_REF]; iii) Co-occurrence Graphs: These techniques have the same principle than the word clustering approaches, but they use graphs of word co-occurrences to identify the set of senses of a word [START_REF] Navigli | Inducing word senses to improve web search result clustering[END_REF], for instance some algorithms such as HyperLex [START_REF] Véronis | Hyperlex: lexical cartography for information retrieval[END_REF], Pagerank [START_REF] Agirre | Evaluating and optimizing the parameters of an unsupervised graph-based wsd algorithm[END_REF][START_REF] Agirre | Personalizing pagerank for word sense disambiguation[END_REF]; and iv) Probabilistic clustering: The objective is to formalize WSI in a generative model. For each ambiguous word a distribution of senses is drawn [START_REF] Lau | Word sense induction for novel sense detection[END_REF][START_REF] Brody | Bayesian word sense induction[END_REF].

One area which extracts several kinds of features is Metalearning. The objective is given a dataset to select a suitable predictive model. The steps of Meta-Learning are: a) Meta-features extraction, and b) Evaluation and selection of the best learner algorithm to the dataset. Meta-features are categorized in 3 classes. The first one is based on statistical and information-theoric characterization. The second one exploits properties of some induced hypothesis, for instance tree, graphs. The third one, landmarkers, uses information obtained from the performance of learning algorithms as features. In this paper we investigated the two first types of meta-features in order to propose original features (see Section 2.). The most frequent extracted features from datasets, are frequency, mean, standard deviation, etc. These measures have been used to extract metafeatures according to an induced decision tree [START_REF] Peng | Improved dataset characterisation for meta-learning[END_REF]. The authors extracted 15 meta-features. Additional features have been proposed, as transformations of existing ones [START_REF] Castiello | Meta-data: Characterization of input features for metalearning[END_REF], and some guidelines have been fixed to select the most informative ones. In their work, 9 new meta-features have been proposed. Other statistic meta-features have been presented in [START_REF] Reif | Meta2features: Providing meta-learners more information[END_REF], the authors added an additional feature selection method in order to automatically select the most useful measures. A similar work (Reif et al., 2012a) presented a new function, which is a novel data generator for creating datasets. As we saw, induced decision tree is in general used to extract features, but there is not approach based on graph models for feature extraction. Graphs are a very useful structure thanks to their properties.

Conclusions and Perspectives

In this paper, we present a novel approach to predict if a term is polysemic focused on the biomedical domain. The main contribution of this paper is the definition of new features, which are directly extracted from the text dataset and from an induced graph. Our novel approach is based on the extraction of new features that characterize better our dataset. This allowed a more efficient classification task (polysemy prediction). For the classification we used the most well-known supervised algorithms over the whole features. First, we evaluated the direct features. Then, the evaluation of graph-based features. And finally, we evaluated the performance of mixing these two kinds of features, obtaining the best results. The results were calculated in terms of Accuracy, Precision, Recall and F-Measure. We observed the set of supervised algorithms on the features mixing got an accuracy (A) between 95.3% and 97.8%. Next step is the use of the created graph, to determine the possible senses for poslysemic terms. Different perspectives can be considered in the future, such as increasing the number of features using other dictionaries like Wordnet associated to a general domain.
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 1 Figure 1: Workflow Methodology for Polysemy Prediction.

Figure 2 :

 2 Figure 2: Graph created for the term t.

  Number of Neighbors: is the number of neighbors of vertex vt in the induced graph. ng(vt) = |N(vt)| 2) Sum of Edge Weights: denoted as sum, represents the sum of edge weights specifically for the vertex vt in the graph created for t. sum(vt) = ng(vt) j=1 weight(vt, rj) 3) Minimum of Number of Neighbors: denoted as minNG, represents the minimum number of neighbors of all vi in the graph created for t. minN G(t) = min(ng(v1), ng(v2), ...) 4) Maximum of Number of Neighbors: denoted as maxNG, represents the maximal number of neighbors of all vi in the graph created for t. maxN G(t) = max(ng(v1), ng(v2), ...) 5) Mean of Number of Neighbors: denoted as meanNG, represents the mean of the number of neighbors of all vi in the graph created for t. meanN G(t) = 1000 i=1 ng(vi) 1000 6) Standard deviation of Number of Neighbors: denoted as sdNG, represents the standard deviation of the number of neighbors of all vi in the graph created for t. sdN G(t) = √ 1000 i=1 (ng(vi)-meanN G(t)) 2 1000-1 7) Min of Sum of Edge Weights: denoted as minSUM, represents the minimum sum of edge weights of all vi on the graph created for t. minSU M (t) = min(sum(v1), sum(v2), ...) 8) Max of Sum of Edge Weights: denoted as maxSUM, represents the maximum sum of edge weights of all vi on the graph created for t. maxSU M (t) = max(sum(v1), sum(v2), ...) 9) Mean of Sum of Edge Weights: denoted as meanSUM, represents the mean of sum of edge weights of all vi in the graph created for t. meanSU M (t) = 1000 i=1 sum(vi) 1000 10) Standard deviation of Sum of Edge Weights: denoted as sdSUM, represents the standard deviation for the sum of edge weights of all vi in the graph created for t. sdSU M (t) = √ 1000 i=1 (sum(vi)-meanSU M (t)) 2 1000-1 11) Number of Neighbors in UMLS: represented as ngUMLS, is the number of terms being neighbors with the vertex vt in the graph and in turn are in UMLS. ngU M LS(vt) = |N(vt)|r j ∈U M LS 12) Sum of Edge Weights in UMLS: as sumUMLS, represents the sum of edge weights for vt that are in UMLS for the graph created for t. sumU M LS(vt) = ngU M LS(vt) j=1 weight(vt, rj)

Figure 3 :

 3 Figure 3: Decision Tree.

  Number of AGROVOC Terms: denoted as termsA(t), represents the number of AGROVOC terms contained in the set of abstracts At of t. 8) Minimum of AGROVOC Terms: denoted as minA(t), is the minimum number of AGROVOC terms contained in each a of At.

minA(t) = min(termsA(a1), termsA(a2), ...) 9) Maximum of AGROVOC Terms: denoted as maxA(t), is the maximum number of AGROVOC terms contained in each a of At. maxA(t) = max(termsA(a1), termsA(a2), ...) 10) Mean of AGROVOC Terms: denoted as meanA(t), represents the mean of number of AGROVOC terms for each a of At.

Table 1 :

 1 New Features for Polysemy Detection

Table 2 :

 2 Details of our Gold Standard Dataset

	Description	Dataset
	Nb of Entities	406
	Nb of Ambiguous Entities	203
	Nb of Not Ambiguous Entities	203
	Nb of Tokens of the Context of Ambiguous Entities	7 597 337
	Nb of Tokens of the Context of Not Ambiguous Entities 8 294 378
	Mean of Tokens for each Ambiguous Entity	37 425
	Mean of Tokens for each Not Ambiguous Entities	40 859

  Table3shows the results obtained on our dataset with direct features (left side) and graph-based features (right side). We can see that M5 Model tree gets the best results with direct features, and Meta Bagging gets the best results with graph-based features. Both with an accuracy (A) of 0.921. This means that the supervised algorithms with our direct features have classified correctly 92% instances (polysemic or not).

			Direct Features			Graph-based Features
		A	P	R	F	A	P	R	F
	NB	0.860 0.863 0.860 0.859	0.860 0.863 0.860 0.859
	AB	0.897 0.903 0.897 0.896	0.899 0.900 0.899 0.899
	TD	0.879 0.882 0.879 0.879	0.882 0.884 0.882 0.882
	SVM	0.919 0.922 0.919 0.919	0.874 0.875 0.874 0.874
	MB	0.892 0.896 0.892 0.891	0.921 0.922 0.921 0.921
	M5P	0.921 0.925 0.921 0.921	0.884 0.885 0.884 0.884
	NN	0.906 0.907 0.921 0.906	0.906 0.907 0.906 0.906
	MCC 0.914 0.915 0.914 0.914	0.914 0.914 0.914 0.914

Table 3 :

 3 Direct and Graph-based Features3.2.2. Combining two kinds of FeaturesWe study the effect of feature mixing, that means direct plus graph-based features. These two types of features are combined and Table4reports the results. We can see that Neural Network model (Multilayer Perceptron) gets excellent results, with an accuracy (A) of 97.8%. This table illustrates as well that the minimal performance is 95.3% of accuracy. We can prove that the combination of two kinds of features gives the best results.

		A	P	R	F
	NB	0.956 0.956 0.956 0.956
	AB	0.975 0.976 0.975 0.975
	TD	0.970 0.970 0.970 0.970
	SVM	0.966 0.966 0.966 0.966
	MB	0.970 0.970 0.970 0.970
	M5P	0.963 0.963 0.963 0.963
	NN	0.978 0.978 0.978 0.978
	MCC 0.953 0.953 0.953 0.953

Table 4 :

 4 Combining two kinds of Features

Table 5 :

 5 Confusion Matrix

http://www.cs.waikato.ac.nz/ml/weka/

http://wsd.nlm.nih.gov/
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