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Abstract

Given a digraph D = (V,A) on n vertices and a vertex v ∈ V , the cycle-degree of v is the minimum

size of a set S ⊆ V (D) \ {v} intersecting every directed cycle of D containing v. From this definition of

cycle-degree, we define the c-degeneracy (or cycle-degeneracy) of D, which we denote by δ∗c (D). It appears

to be a nice generalisation of the undirected degeneracy. For instance, the dichromatic number ~χ(D) of D

is bounded above by δ∗c (D) + 1, where ~χ(D) is the minimum integer k such that D admits a k-dicolouring,

i.e., a partition of its vertices into k acyclic subdigraphs.

In this work, using this new definition of cycle-degeneracy, we extend several evidences for Cereceda’s

conjecture [12] to digraphs. The k-dicolouring graph of D, denoted by Dk(D), is the undirected graph whose

vertices are the k-dicolourings of D and in which two k-dicolourings are adjacent if they differ on the colour

of exactly one vertex. This is a generalisation of the k-colouring graph of an undirected graph G, in which

the vertices are the proper k-colourings of G.

We show that Dk(D) has diameter at most Oδ∗
c
(D)(n

δ∗
c
(D)+1) (respectively O(n2) and (δ∗c (D) + 1))

when k is at least δ∗c (D)+2 (respectively 3
2
(δ∗c (D)+1) and 2(δ∗c (D)+1)). This improves known results on

digraph redicolouring (Bousquet et al. [9]). Next, we extend a result due to Feghali [18] to digraphs, showing

that Dd+1(D) has diameter at most Od,ǫ(n(log n)
d−1) when D has maximum average cycle-degree at most

d− ǫ.

We then show that two proofs of Bonamy and Bousquet [6] for undirected graphs can be extended to

digraphs. The first one uses the digrundy number of a digraph ~χg(D), which is the worst number of colours

used in a greedy dicolouring. If k ≥ ~χg(D)+1, we show that Dk(D) has diameter at most 4 · ~χ(D) ·n. The

second one uses the D-width of a digraph, denoted by Dw(D), which is a generalisation of the treewidth to

digraphs. If k ≥ Dw(D) + 2, we show that Dk(D) has diameter at most 2(n2 + n).
Finally, we give a general theorem which makes a connection between the recolourability of a digraph D

and the recolourability of its underlying graph UG(D). Assume that G is a class of undirected graphs, closed

under edge-deletion and with bounded chromatic number, and let k ≥ χ(G) (i.e., k ≥ χ(G) for every G ∈ G)

be such that, for every n-vertex graph G ∈ G, the diameter of the k-colouring graph of G is bounded by f(n)
for some function f . We show that, for every n-vertex digraph D such that UG(D) ∈ G, the diameter of

Dk(D) is bounded by 2f(n). For instance, this result directly extends a number of results on planar graph

recolouring to planar digraph redicolouring.

1 Introduction to graph recolouring

Given an undirected graph G = (V,E) and a positive integer k, a k-colouring of G is a function α : V −→ [k].
It is proper if, for every edge xy ∈ E, we have α(x) 6= α(y). So, for every i ∈ [k], α−1(i) induces an
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independent set on G. The chromatic number of G, denoted by χ(G), is the smallest k such that G admits a

proper k-colouring.

For any k ≥ χ(G), the k-colouring graph of G, denoted by Ck(G), is the graph whose vertices are the

proper k-colourings of G and in which two k-colourings are adjacent if they differ on the colour of exactly one

vertex. A path between two given colourings in Ck(G) corresponds to a sequence of recolourings, that is, a

sequence of pairs composed of a vertex of G, which is going to receive a new colour, and a new colour for this

vertex. If Ck(G) is connected, we say that G is k-mixing. In the last fifteen years, since the papers of Bonsma,

Cereceda, van den Heuvel and Johnson [8, 13, 14], graph recolouring has been studied by many researchers in

graph theory. We refer the reader to the PhD thesis of Bartier [3] for a complete overview on graph recolouring

and to the surveys of van Heuvel [20] and Nishimura [24] for reconfiguration problems in general.

A famous open conjecture on graph recolouring is due to Cereceda [12] and makes a connection between

the degeneracy of a graph and the diameter of Ck(G). The degeneracy of a graph G, denoted by δ∗(G), is the

largest minimum degree of any subgraph of G. Bonsma and Cereceda [8] and Dyer et al. [17] independently

proved the following.

Theorem 1 (Bonsma and Cereceda [8] ; Dyer et al. [17]). Let k ∈ N and G be a graph. If k ≥ δ∗(G) + 2,

then G is k-mixing.

The diameter of G, denoted by diam(G), is the length of a longest shortest path of G. The original proof

of Theorem 1 also implies that Ck has diameter at most 2n, where n = |V (G)|. Cereceda’s conjecture states

that the diameter of Ck is actually quadratic in n.

Conjecture 2 (Cereceda [12]). Let k ∈ N and G be a graph. If k ≥ δ∗(G) + 2, then diam(Ck(G)) = O(n2).

In the remainder of this section, we recall several results approaching this conjecture, which can be seen as

evidences for the general conjecture. The following are the best existing bounds approaching Conjecture 2 in

the general case1.

Theorem 3 (Bousquet and Heinrich [10]). Let k ∈ N and G be a graph. Then Ck(G) has diameter at most:

(i) O(n2) if k ≥ 3
2 (δ

∗(G) + 1),

(ii) Oǫ(n
⌈ 1

ǫ
⌉) if k ≥ (1 + ǫ)(δ∗(G) + 1), and

(iii) Od(n
d+1) if k ≥ δ∗(G) + 2.

Bousquet and Perarnau [11] also proved the following.

Theorem 4 (Bousquet and Perarnau [11]). Let k ∈ N andG be a graph. If k ≥ 2δ∗(G)+2, then diam(Ck(G)) ≤
(δ∗(G) + 1)n.

In order to obtain possibly simpler versions of Conjecture 2, one can restrict to graphs with bounded maxi-

mum average degree. The maximum average degree of a graphG is mad(G) = max{ 2|E(H)|
|V (H)| | H subgraph of G}.

It is easy to see that every graph G satisfies ⌊mad(G)⌋ ≥ δ∗(G). Hence Conjecture 2 would imply that every

graphG with mad(G) ≤ d− ǫ, where d ∈ N and ǫ > 0, satisfies diam(Ck(G)) = O(n2) for every k ≥ d+ 1.

Feghali showed the following analogue result.

Theorem 5 (Feghali [18]). Let d, k be integers such that k ≥ d + 1. For every ǫ > 0 and every graph G with

n vertices and maximum average degre at most d− ǫ, diam(Ck(G)) = Od,ǫ(n(log n)
d−1).

1Given two computable functions f, g and a parameter Γ, f(n) = OΓ(g(n)) means that there exists a computable function h such

that f(n) = O(h(Γ) · g(n)). Also Γ can be a list of parameters Γ1, . . . ,Γr in which case f(n) = OΓ(g(n)) means that f(n) =
O(h(Γ1, . . . ,Γr) · g(n)).
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Another approach toward Conjecture 2 consists of considering the maximum degree of a graph instead of

its degeneracy. Cereceda has shown (see [12, Proposition 5.23]) that, for every graph G on n vertices and

integer k ≥ ∆(G) + 2, Ck(G) has diameter at most (∆(G) + 1)n, where ∆(G) denotes the maximum degree

of G. In order to get a more precise bound, Bonamy and Bousquet considered the grundy number. Let G be a

graph and O = (x1, . . . , xn) be an ordering of V (G). The greedy colouring αg(O, G) is the proper colouring

in which every vertex xi receives the smallest colour that does not appear in N(xi) ∩ {x1, . . . , xi−1}. The

grundy number of G, denoted by χg(G), is the maximum, over all orderingsO, of the number of colours used

in αg(O, G).

Theorem 6 (Bonamy and Bousquet [6]). For any graphG on n vertices, if k ≥ χg(G)+1, thenG is k-mixing

and diam(Ck(G)) ≤ 4 · χ(G) · n.

A last result approaching Conjecture 2 is due to Bonamy and Bousquet, and makes a connection between

the treewidth of a graph and its recolourability. A tree-decomposition of a graph G = (V,E) is a pair (T,X )
where T = (I, F ) is a tree, and X = (Bi)i∈I is a family of subsets of V (G), called bags and indexed by the

vertices of T , such that:

1. each vertex v ∈ V appears in at least one bag, i.e.
⋃

i∈I Bi = V ,

2. for each edge e = xy ∈ E, there is an i ∈ I such that x, y ∈ Bi, and

3. for each v ∈ V , the set of nodes indexed by {i | i ∈ I, v ∈ Bi} forms a subtree of T .

The width of a tree decomposition is defined as maxi∈I{|Bi| − 1}. The treewidth of G, denoted by tw(G),
is the minimum width of a tree-decomposition of G. It is easy to see that, for any graph G, tw(G) ≥ δ∗(G).
Hence the following result is a weaker version of Conjecture 2.

Theorem 7 (Bonamy and Bousquet [6]). Let k ∈ N and G be an n-vertex graph. If k ≥ tw(G) + 2, then

diam(Ck(G)) ≤ 2(n2 + n).

Bonamy et al. [7] have shown that the bound of Theorem 7 is asymptotically sharp (up to a constant factor).

Organization of the paper. In this work, we extend every result mentioned above to digraphs and dicolour-

ings. A k-dicolouring of a digraph D is a partition of its vertices into at most k acyclic subdigraphs. Every

graph can be seen as a digraph in which every edge is actually two arcs, between the same vertices, in opposite

directions. By extending a result, we mean showing that the result is actually true for every digraph and not only

for symmetric digraphs. Note that a k-dicolouring of a symmetric digraph is indeed a proper k-colouring of its

underlying graph. More precisely, in Section 2, we present the notations and the definitions used throughout

the paper. In particular, we introduce the notion of cycle-degeneracy of a digraph which appears to be useful to

play in directed graphs the role that the degeneracy plays in graphs. Then, we formally state our results, which

are summarized in Table 1.

k ≥ d+ 2 3
2 (d+ 1) 2(d+ 1) ⌈madc⌉+ 1 ~χg + 1 Dw+2

diam(Dk(D)) Od(n
d+1) O(n2) ≤ (d+ 1)n Omadc,ǫ(n(logn)

⌊madc⌋) ≤ 4 · ~χ · n O(n2)

Theorem 12 11(ii) 11(iii) 13 15 22

Table 1: Bounds on the diameter of the k-dicolouring graph Dk(D) where D is a digraph on n vertices,

with cycle-degeneracy d, maximum average cycle-degree madc, ǫ = ⌈madc⌉ − madc, digrundy number ~χg,

dichromatic number ~χ and D-width Dw. The notions above respectively extend the ones of k-colouring graph,

degeneracy, maximum average degree, grundy number, chromatic number and treewidth to digraphs.
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Section 3 is devoted to the proof of Theorem 11, which extends Theorem 1, item (i) of Theorem 3 and

Theorem 4 in the case of digraphs when the degeneracy is replaced by the cycle-degeneracy. In Section 4,

we prove Theorems 12 and 13, which extend to digraphs item (iii) of Theorem 3 and Theorem 5 respectively.

In Section 5 we prove Theorem 15, which generalises Theorem 6 to digraphs. In Section 6, we prove Theo-

rem 17 which establishes a relationship between the diameter of the k-dicolouring graph of a digraph D and

the diameter of the k-colouring graph of its underlying graph UG(D), whenD belongs to a number of digraph

classes (e.g., including planar digraphs). Finally, in Section 7 we prove Theorem 22 which extends Theorem 7

to digraphs replacing the treewidth by the D-width. We conclude in Section 8 by discussing the consequences

of our results, especially on planar digraph redicolouring, and detail a few related open questions.

2 Digraph redicolouring and main results

We refer the reader to [2] for notation and terminology not explicitly defined in this paper. Let D = (V,A) be

a digraph. A digon is a pair of arcs in opposite directions between the same vertices. A simple arc is an arc

which is not in a digon. An oriented graph is a digraph with no digon. The bidirected graph associated with a

graph G, denoted by
←→
G , is the digraph obtained from G by replacing every edge by a digon. The underlying

graph of D, denoted by UG(D), is the undirected graphG with vertex set V (D) in which uv is an edge if and

only if uv or vu is an arc ofD. Let v be a vertex of a digraphD. The out-degree (resp. in-degree) of v, denoted

by d+(v) (resp. d−(v)), is the number of arcs leaving (resp. entering) v. We define the maximum degree of v
as dmax(v) = max{d+(v), d−(v)}, and the minimum degree of v as dmin(v) = min{d+(v), d−(v)}. We also

introduce the notion of cycle-degree. The cycle-degree of v, denoted by dc(v), is the minimum size of a set

S ⊆ (V \ {v}) such that S intersects every directed cycle of D containing v.

For each parameter Γ ∈ {max,min, c} we define the corresponding maximum degree of D as ∆Γ(D) =
maxv∈V (D)(dΓ(v)). Analogously, we define the corresponding minimum degree of D as δΓ(D) =
minv∈V (D)(dΓ(v)). Finally, we define the Γ-degeneracy ofD, denoted by δ∗Γ(D), as maxH⊆D(δΓ(H)), where

H ⊆ D denotes that H is a (not necessarily induced) subdigraph of D. An equivalent characterisation of the

degeneracy is the following. For each parameter Γ, δ∗Γ(D) ≤ k if and only if there exists an ordering v1, . . . , vn
of V (D) such that, for each i ∈ [n], then dΓ(vi) ≤ k in D[{vi, . . . , vn}].

Observe that we have dc(v) ≤ dmin(v) ≤ dmax(v). The first inequality holds because each of the sets

N+(v) and N−(v) intersects every directed cycle of D containing v, and the second inequality holds by

definition. This implies ∆c(D) ≤ ∆min(D) ≤ ∆max(D) and δ∗c (D) ≤ δ∗min(D) ≤ δ∗max(D). Moreover, if

N+(v) = N−(v) (meaning that v is not incident to a simple arc) then we have dc(v) = dmin(v) = dmax(v).

Hence, if D is a bidirected graph
←→
G , for each parameter Γ ∈ {c,min,max}, we have ∆(G) = ∆Γ(

←→
G ) and

δ∗(G) = δ∗Γ(
←→
G ). As we will show later, the notion of c-degeneracy appears to be a natural generalisation of

the undirected degeneracy when dealing with the directed treewidth. To the best of the authors’ knowledge,

this extension of the classical degeneracy has not been considered before.

In 1982, Neumann-Lara [23] introduced the notions of dicolouring and dichromatic number, which gener-

alize the ones of proper colouring and chromatic number. For a positive integer k, a k-colouring ofD = (V,A)
is a function α : V −→ [k]. It is a k-dicolouring if α−1(i) induces an acyclic subdigraph in D for each i ∈ [k].
The dichromatic number of D, denoted by ~χ(D), is the smallest k such that D admits a k-dicolouring. There

is a one-to-one correspondence between the proper k-colourings of a graph G and the k-dicolourings of its as-

sociated bidirected graph
←→
G , and in particular χ(G) = ~χ(

←→
G ). Hence every result on graph proper colourings

can be seen as a result on dicolourings of bidirected graphs, and it is natural to study whether the result can be

extended to all digraphs.

Let us show that ~χ(D) ≤ δ∗c (D) + 1. By definition of c-degeneracy, we can find an ordering v1, . . . , vn
of V (D) such that, for every i ∈ [n], there exists Si ⊆ {vi+1, . . . , vn} of size at most δ∗c (D), and such that

Si∪{v1, . . . , vi−1} intersects every directed cycle ofD containing vi. Hence, considering the vertices from vn
to v1, one can greedily find a (δ∗c (D)+1)-dicolouring ofD by colouring each vi with a colour that has not been

chosen in Si. Indeed, suppose for contradiction that, for some i ∈ [δ∗c (D)+1], the subdigraph ofD induced by

4



the set of vertices assigned colour i contains a directed cycle C. Let vj be the leftmost vertex in C according

to the considered ordering. Then, by definition of c-degeneracy we have that (V (C) \ {vj}) ∩ Sj 6= ∅, but this

contradicts the fact that, by construction of the colouring, the colour of vj is different from all the colours of

the vertices in Sj .

The notion of digraph redicolouring was first introduced by Bousquet et al. in [9]. For any k ≥ ~χ(D),
the k-dicolouring graph of D, denoted by Dk(D), is the graph whose vertices are the k-dicolourings of D
and in which two k-dicolourings are adjacent if they differ by the colour of exactly one vertex. Observe that

Ck(G) = Dk(
←→
G ) for any graphG. A redicolouring sequence between two dicolourings is a path between these

dicolourings in Dk(D). The digraphD is k-mixing if Dk(D) is connected. In [9], the authors mainly study the

k-dicolouring graph of digraphs with bounded min-degeneracy or bounded maximum average degree, and they

show that finding a redicolouring sequence between two given k-dicolouring of a digraph is PSPACE-complete.

Dealing with the min-degeneracy of digraphs, they extended Theorems 1, 3(i) and 4:

Theorem 8 (Bousquet et al. [9]). Let k ∈ N and D be a digraph on n vertices. Then:

(i) if k ≥ δ∗min(D) + 2 then D is k-mixing,

(ii) if k ≥ 3
2 (δ

∗
min(D) + 1) then diam(Dk(D)) = O(n2), and

(iii) if k ≥ 2(δ∗min(D) + 1) then diam(Dk(D)) ≤ (δ∗min(D) + 1)n.

They also proposed a stronger version of Conjecture 2 for digraphs:

Conjecture 9 (Bousquet et al. [9]). Let k ∈ N and D be a digraph. If k ≥ δ∗min(D)+ 2, then diam(Dk(D)) =
O(n2).

Digraph redicolouring was also investigated in [25], where the author deals with the maximum degrees of

a digraph instead of its degeneracies. In particular, he shows the following extension of a result of Feghali et

al. [19] to digraphs.

Theorem 10 (Picasarri-Arrieta [25]). Let D = (V,A) be a connected digraph with ∆max(D) = ∆ ≥ 3,

k ≥ ∆+ 1, and α, β be two k-dicolourings of D. Then one of the following holds:

• α or β is an isolated vertex in Dk(D), or

• there is a redicolouring sequence of length at most O(∆2|V |2) between α and β.

In Section 3, we show that each of the proofs of the statements of Theorem 8 can be adapted to show the

following stronger result.

Theorem 11. Let k ∈ N and D be a digraph on n vertices. Then:

(i) if k ≥ δ∗c (D) + 2 then D is k-mixing,

(ii) if k ≥ 3
2 (δ

∗
c (D) + 1) then diam(Dk(D)) = O(n2), and

(iii) if k ≥ 2(δ∗c (D) + 1) then diam(Dk(D)) ≤ (δ∗c (D) + 1)n.

The maximum average degree of D is mad(D) = max{ 2|A(H)|
|V (H)| | H subdigraph of D}. The average

cycle-degree of a digraph D = (V,A) is adc(D) = 1
|V |

∑

v∈V dc(v). The maximum average cycle-degree of

D is madc(D) = max{adc(H) | H subdigraph of D}. For every undirected graph G, we have madc(
←→
G ) =

mad(G).
In Section 4, we prove, based on the proofs of [18], the following two extensions of Theorem 3(iii) and

Theorem 5, respectively.

Theorem 12. Let D be a digraph and k ≥ δ∗c (D) + 2 = d+ 2. Then diam(Dk(D)) = Od(n
d+1).
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Theorem 13. Let d ≥ 1 and k ≥ d+1 be two integers, and let ǫ > 0. IfD is a digraph satisfying madc(D) ≤
d− ǫ, then diam(Dk(D)) = Od,ǫ(n(log n)

d−1).

Observe that every digraph D satisfies madc(D) ≤ 1
2 mad(D). This holds because, for every vertex

v ∈ V (D), dc(v) ≤
1
2 (d

+(v) + d−(v)). Hence, for every subdigraphH of D, we have:

2|A(H)| =
∑

v∈V (H)

(d+(v) + d−(v)) ≥ 2
∑

v∈V (H)

dc(v) = 2 · adc(H) · |V (H)|.

Hence, the following is a direct consequence of Theorem 13.

Corollary 14. Let d ≥ 1,k ≥ ⌊d+3
2 ⌋ be two integers, and let ǫ > 0. If D is a digraph satisfying mad(D) ≤

d− ǫ, then Dk(D) has diameter at most:

(i) Od

(

n(logn)
d−1
2

)

if d is odd, and

(ii) Od,ǫ

(

n(logn)
d−2
2

)

otherwise.

The digrundy number of a digraph D = (V,A), introduced in [1], is the natural analogue of the grundy

number for digraphs. If φ is a dicolouring ofD, then φ is a greedy dicolouring if there is an ordering v1, . . . , vn
of V such that, for each vertex vi and each colour c smaller than φ(vi), the set of vertices ({v1, . . . , vi−1} ∩
φ−1(c)) ∪ {vi} contains a directed cycle. The digrundy number of D, denoted by ~χg(D), corresponds to the

maximum number of colours used in a greedy dicolouring of D. The following result generalises Theorem 6.

Theorem 15. For any digraph D, if k ≥ ~χg(D) + 1, then diam(Dk(D)) ≤ 4 · ~χ(D) · n.

Analogously to the undirected case, we always have ~χ(D) ≤ ~χg(D) ≤ ∆c(D) + 1. Thus, the following is

a direct consequence of Theorem 15. Note also that this is an improvement of the case k ≥ ∆max(D) + 2 of

Theorem 10.

Corollary 16. For any digraph D, if k ≥ ∆c(D) + 2, then diam(Dk(D)) ≤ 4 · ~χ(D) · n.

In Section 6 we show the following general result which makes a connection between the recolourability of

a digraph and the recolourability of its underlying graph.

Theorem 17. Let G be a family of undirected graphs, closed under edge-deletion and with bounded chromatic

number, and let k ≥ χ(G) (i.e. k ≥ χ(G) for every G ∈ G) be such that, for every n-vertex graph G ∈ G,

the diameter of Ck(G) is bounded by f(n) for some function f . Then for any n-vertex digraph D such that

UG(D) ∈ G, the diameter of Dk(D) is bounded by 2f(n).

In particular, since removing edges does not increase the treewidth of a graph, the following is a conse-

quence of Theorems 7 and 17 (by taking G = {G | tw(G) ≤ ℓ} for some constant ℓ).

Corollary 18. Let k ∈ N and D be a digraph. If k ≥ tw(UG(D)) + 2, then diam(Dk(D)) = O(n2).

However, the treewidth of the underlying graph of D is not a satisfying extension of treewidth to digraphs,

since it does not take under consideration the orientations in D. There exist, at least, four well known gen-

eralisations of treewidth to digraphs: the directed treewidth (introduced in [22], see also [26]), the D-width

(introduced in [27], see also [28]), the DAG-width (introduced in [5]) and the Kelly-width (introduced in [21]).

An out-arborescence is a rooted tree in which every edge is oriented away from the root. A directed tree-

decomposition (T,W ,X ) of a digraphD = (V,A) consists of an out-arborescenceT = (I, F ) rooted in r ∈ I ,

a partitionW = (Wt)t∈I of V into non-empty parts, and a family X = (Xe)e∈F of subsets of vertices of D
such that, for every tt′ ∈ F we have:

1. Xtt′ ∩ (
⋃

t′′∈T
t′
Wt′′ ) = ∅ (where Tt′ denotes the subtree of T rooted in t′), and

6



2. for every directed walk P with both ends in
⋃

t′′∈T
t′
Wt′′ and some internal vertex not in

⋃

t′′∈T
t′
Wt′′ ,

it holds that V (P ) ∩Xtt′ 6= ∅.

The width of (T,W ,X ) equals maxt∈I |Ht|−1, whereHt =Wt∪
⋃

e∈F,t∈eXe, and the directed treewidth

of D, denoted by dtw(D), is the minimum width of its directed tree-decompositions. Recall that the treewidth

of an undirected graph is always at least its degeneracy. However it is well known that there exist digraphs with

arbitrary large min-degeneracy and directed tree-width exactly one. We include a proof for completeness.

Proposition 19 (Folklore). For every integer d, there exists a digraphD = (V,A) such that every vertex v ∈ V
satisfies d+(v) ≥ d, d−(v) ≥ d, and dtw(D) = 1.

Proof. Let T be a tree rooted in r ∈ V (T ) with depth at least d (that is, all leaves are at distance at least d from

the root), such that every non-leaf vertex has at least d children. We orient each edge uv of T from the parent

to its child. Then we add every arc uv such that v is an ancestor of u. In the obtained digraph D, every vertex

has out-degree at least d.

Then we add a disjoint copy ~D of D in which we reverse every arc, so in ~D every vertex has in-degree at

least d. We finally add every arc from ~D to D.

In the resulting digraph, every vertex has out-degree and in-degree at least d. Moreover, the directed

treewidth of a digraph is equal to the maximum directed treewidth of its strongly connected components. For

each edge uv of T , such that u is the parent of v, we label uv with u. Then T , together with this labelling, is a

directed tree-decomposition of both D and ~D and has width 1. This follows from the fact that every directed

cycle of D containing a vertex must also contain its father in T .

The following proposition shows that, dealing with directed treewidth, c-degeneracy, compared to min-

degeneracy, appears to be a better generalisation of the undirected one.

Proposition 20. For every digraphD, it holds that dtw(D) ≥ δ∗c (D).

Proof. Consider an optimal directed tree-decomposition (T,W ,X ) of D. If t is a leaf of T and v is a vertex in

Wt, then Ht \ {v} intersects every directed cycle of D containing v. Thus, dc(v) ≤ dtw(D). Moreover, since

t is a leaf of T , it is easy to verify that removing v from D does not increase its directed treewidth, and we can

repeat the same argument in D \ {v}.

Proposition 20 implies that ~χ(D) ≤ dtw(D) + 1 for every digraph D and, together with Theorems 11

and 12, implies the following.

Corollary 21. Let k ∈ N and D be a digraph on n vertices.

(i) if k ≥ dtw(D) + 2 then D is k-mixing and diam(Dk(D)) = Odtw(n
dtw+1),

(ii) if k ≥ 3
2 (dtw(D) + 1) then diam(Dk(D)) = O(n2), and

(iii) if k ≥ 2(dtw(D) + 1) then diam(Dk(D)) ≤ (dtw(D) + 1)n.

The interested reader may have a look at [5] (respectively [21]) and see that DAG-width (respectively Kelly-

width) is bounded below by min-degeneracy (respectively by min-degeneracy plus one). Thus, Corollary 21

also holds for DAG-width (respectively Kelly-width minus one).

Finally, in Section 7, we show that the proof of Theorem 7 extends to digraphs using D-width. A D-

decomposition of a digraph D = (V,A) is a pair (T,X ) such that T = (I, F ) is an undirected tree and X =
(Xv)v∈I is a family of subsets (called bags) of V indexed by the nodes of T , which satisfies Property (∗) stated

below, for which we first need a definition. For a vertex subset S ⊆ V , let the support of S in (T,X ), denoted

by TS , be the subgraph of T with vertex-set {t ∈ I | Xt∩S 6= ∅} and edge-set {tt′ ∈ F | ∃u ∈ S∩Xt∩Xt′}.
A D-decomposition must ensure the following property:

(∗) for every subset S ⊆ V , if D[S] is strongly connected then TS is a non-empty subtree of T .
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Similarly to undirected tree-decompositions, the width of (T,X ) is the maximum size of its bags minus

one, and the D-width of D, denoted by Dw(D), is the minimum width of its D-decompositions. Note that, for

every v ∈ V , D[{v}] is strongly connected, and therefore Property (∗) can be seen as a generalization of the

basic properties of undirected tree-decompositions that state that the set of bags containing some vertex v must

induce a (connected) subtree and that every vertex must belong to at least one bag. Note also that, if {u, v} is a

digon ofD, Property (∗) implies that u and v must belong to a common bag of (T,X ). Hence, every bidirected

graphG satisfies tw(G) = Dw(
←→
G ), and the following is actually a generalisation of Theorem 7. Our proof is

strongly based on the proof of Theorem 7.

Theorem 22. IfD = (V,A) is an n-vertex digraph with Dw(D) ≤ k−1, then diam(Dk+1(D)) ≤ 2(n2+n).

Note that the bound of Theorem 22 is asymptotically sharp (up to a constant factor) since Theorem 7 is

already known to be sharp. Finally, observe that the digraphD built in the proof of Proposition 19 also satisfies

Dw(D) = 1 but δ∗min(D) ≥ d. Again, the following easy proposition shows that, dealing with the D-width,

c-degeneracy, compared to min-degeneracy, appears to be a better generalisation of the undirected one.

Proposition 23. For every digraphD, it holds that Dw(D) ≥ δ∗c (D).

Proof. Consider an optimal directed D-decomposition (T,X = (Xt)t∈V (T )) of D. Let t be a leaf of T and

v be a vertex in Xt that belongs to no other bag Xt′ (this is possible unless Xt ⊆ Xt′ , tt
′ ∈ E(T ), in which

case we just remove the bag t from the decomposition). We claim that Xt \ {v} intersects every directed cycle

of D containing v (which directly implies dc(v) ≤ Dw(D)). Assume not, and let C be a directed cycle such

that Xt ∩ V (C) = {v}. Then, since D[V (C)] is strongly connected, TV (C) must be connected. This is a

contradiction since t is an isolated vertex in TV (C).

Analogously to the directed treewidth, Proposition 23, together with Theorems 11 and 12, implies the

following (note that the two first items are also implied by Theorem 22, but the third one is not).

Corollary 24. Let k ∈ N and D be a digraph on n vertices.

(i) if k ≥ Dw(D) + 2 then D is k-mixing and diam(Dk(D)) = ODw(n
Dw+1),

(ii) if k ≥ 3
2 (Dw(D) + 1) then diam(Dk(D)) = O(n2), and

(iii) if k ≥ 2(Dw(D) + 1) then diam(Dk(D)) ≤ (Dw(D) + 1)n.

3 Bounds on the diameter of Dk(D) when k ≥ 3
2(δ
∗
c(D) + 1)

This section is devoted to the proof of Theorem 11, and we will prove each item of its statement independently.

Let us restate it.

Theorem 11. Let k ∈ N and D be a digraph on n vertices. Then:

(i) if k ≥ δ∗c (D) + 2 then D is k-mixing,

(ii) if k ≥ 3
2 (δ

∗
c (D) + 1) then diam(Dk(D)) = O(n2), and

(iii) if k ≥ 2(δ∗c (D) + 1) then diam(Dk(D)) ≤ (δ∗c (D) + 1)n.

Proof of Theorem 11(i). The proof is by induction on n = |V (D)|. The result clearly holds for n ≤ 1. Let us

assume that n > 1 and that the result holds for n− 1. Let α, β be any two k-dicolourings of D and let v ∈ V
be a vertex satisfying dc(v) ≤ δ∗c (D). Let α′, β′ be the two k-dicolourings induced, respectively, by α and β
on D − {v}. By induction, there exists a redicolouring sequence α′ = α′

1, . . . , α
′
q = β′ where α′

i and α′
i−1

differ by the colour of exactly one vertex vi ∈ V \ {v}, for every 1 < i ≤ q.
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Now, we build the following redicolouring sequence from α to β. At step i, if vi can be recoloured as from

α′
i−1 to α′

i, then recolour vi accordingly. Otherwise, this implies that there exists a directed cycle containing v
and vi whose all vertices (but vi) have colour α′

i(vi). By definition of cycle-degree, there exists a transversal

X of the directed cycles containing v, with |X | ≤ δ∗c (D) and v /∈ X . Let c 6= α′
i(vi) be a colour that does not

appear in X (it exists since k ≥ δ∗c (D) + 2). Colour v with c and then vi with α′
i(vi). Finally (after step q),

recolour v with its final colour β(v).

A k-list assignment in an undirected graphG is a function L : V (D)→ 2[k] on V (D) such that L(v) ⊆ [k]
for each vertex v ∈ V (D). An L-colouring of G is a proper colouring α of G such that α(v) ∈ L(v) for

every vertex v. Given such a list assignment L, C(G,L) is the graph whose vertices are the L-colourings

of G and in which two colourings are adjacent if they differ by the colour of exactly one vertex. An L-

recolouring sequence is a path in C(G,L). Also, we say that L is a-feasible if, for some ordering v1, . . . , vn
of V , |L(vi)| ≥ |N(v) ∩ {vi+1, . . . , vn}|+ 1 + a for every i ∈ [n]. Also we say that an L-colouring c avoids

a set of colours S if for every vertex v ∈ V (G), c(v) does not belong to S. We need the following lemma

from [9, Lemma 20], which was indirectly proved first in [10].

Lemma 25 ([9, 10]). Let G = (V,E) be an undirected graph on n vertices, L be a k-list assignment of G that

is
⌈

k
3

⌉

-feasible and α an L-colouring of G that avoids a set S of
⌈

k
3

⌉

colours. Then for any set of
⌈

k
3

⌉

colours

S′, there is an L-colouring β of G that avoids S′ and such that there is an L-recolouring sequence from α to β
of length at most 4k+12

3 n.

Proof of Theorem 11(ii). Let D = (V,A) be a digraph on n vertices and k ≥ 3
2 (δ

∗
c (D) + 1). Let (v1, . . . , vn)

be a cycle-degeneracy-ordering of D, that is, an ordering such that for each i ∈ [n], there exists Xi ⊆
{vi+1, . . . , vn}, |Xi| ≤ δ∗c (D), such that every directed cycle ofD containing vi must intersect {v1, . . . , vi−1}∪
Xi.

Let G = (V,E) be the undirected graph where E = {vivj | vj ∈ Xi, i ∈ [n]}. We first prove that each

proper colouring ofG is a dicolouring ofD. Assume that this is not the case, and there exists a proper colouring

α of G such that D, coloured with α, contains a monochromatic directed cycle C. Let vi be the least vertex

of C in the ordering (v1, . . . , vn). Then C must contain a vertex vj in Xi. This is a contradiction, since α is a

proper colouring of G and vivj ∈ E.

By construction, G has degeneracy at most δ∗c (D). Using Theorem 3(i), we get that Ck(G) has diameter at

most C0n
2 for some constant C0.

Let α be any k-dicolouring of D. We will now show that there exists a dicolouring α′ of D that is also a

proper colouring of G, and such that there exists a redicolouring sequence between α and α′ of length at most

C1n
2 for some constant C1. Set δ∗ = δ∗c (D) ≥ δ∗(G), Yi = {vi+1, . . . , vn}, and Hi = G− Yi for all i ∈ [n].

Let Li be the k-list assignment of Hi defined by

Li(vj) = [k] \ {α(v) | v ∈ Xj ∩ Yi} for all j ∈ [i].

Since k, the total number of colours, is at least 3
2 (δ

∗ + 1), for every j ∈ [i] we have:

|Li(vj)| ≥ k − |Xj ∩ Yi|

≥
k

3
+

2

3

3

2
(δ∗ + 1)− |Xj ∩ Yi|

≥ |Xj ∩ {vj+1, . . . , vi}|+ 1 +
k

3
.

Hence, since |Li(vj)| is an integer, Li is a
⌈

k
3

⌉

-feasible k-list assignment of Hi.

Remark 26. Let γ be a dicolouring ofD such that for some i, γ agrees with α on {vi+1, . . . , vn} and γ|Hi
(the

restriction of γ toHi) is an Li-colouring ofHi. Then anyLi-recolouring sequence starting from γ|Hi
onHi is a

redicolouring sequence inD. Indeed, assume this is not the case and at one step, we get to an Li-colouring ζ of

Hi but ζD contains a monochromatic cycle C, where ζD(v) = ζ(v) when v belongs to Hi and ζD(v) = γ(v)
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γi :

Hi

v1 vi vi+1

· · ·
vj

· · ·
v
i+⌈ k

3 ⌉
vn

6= cj

Xj

γ′i :

v1 vi vi+1

· · ·
vj

· · ·
v
i+⌈ k

3 ⌉

· · ·
vn

ηi :

v1 vi vi+1

· · ·
vj

· · ·
v
i+⌈ k

3 ⌉

· · ·
vn

γ
i+⌈ k

3 ⌉
:

v1 vi vi+1

· · ·
vj

· · ·
v
i+⌈ k

3 ⌉

· · ·
vn

avoids S avoids S′ avoids S′′

4k+12
3 n

⌈

k
3

⌉

4k+12
3 n

Figure 1: The redicolouring sequence between γi and γ
i+⌈ k

3 ⌉
.

otherwise. Let vj be the vertex of C such that j is minimum in the cycle-degeneracy-ordering of D. Then

C must intersect Xj in some vertex vq . Thus either q ≤ i and then vqvj is a monochromatic edge in Hi or

q ≥ i+ 1 but then ζ(vq) = γ(vq) = α(vq) does not belong to Li(vj). In both cases, we get a contradiction.

Claim 27. Let γi be a k-dicolouring of D, agreeing with α on Yi+1, which induces an Li-colouring of Hi

avoiding at least
⌈

k
3

⌉

colours in Hi. Then there is a redicolouring sequence of length at most 8k+24
3 n +

⌈

k
3

⌉

from γi to a dicolouring γ
i+⌈ k

3 ⌉
which induces an L

i+⌈ k

3 ⌉
-colouring of H

i+⌈ k

3 ⌉
avoiding at least

⌈

k
3

⌉

colours

in H
i+⌈ k

3 ⌉
. Moreover, γ

i+⌈ k

3 ⌉
agrees with α on Y

i+⌈ k

3 ⌉
.

Proof of the claim. Figure 1 illustrates the different steps of the proof of the claim. The main steps are first to

remove the colours of a set S′ in Hi which then allows to remove the colours of a set S′′ for vertices vi+1 to

v
i+⌈ k

3 ⌉
and finally reach a colouring where no colour of S′′ appears in H

i+⌈ k

3 ⌉
(see the definitions of S′ and

S′′ below).

Let S be a set of colours of size exactly
⌈

k
3

⌉

avoided by γi onHi. For each vertex vj in {vi+1, . . . , vi+⌈ k

3 ⌉
},

we choose a colour cj so that each of the following holds:

• cj belongs to Lj(vj), and

• for each ℓ ∈ {i+ 1, . . . , j − 1}, cℓ is different from cj .

Note that this is possible because Lj is
⌈

k
3

⌉

-feasible. Now let S′ be the set {ci+1, . . . , ci+⌈ k

3 ⌉
}. Observe that

|S′| =
⌈

k
3

⌉

. By Lemma 25, there is, in Hi, an Li-recolouring sequence of length at most 4k+12
3 n from γi to

some γ′i that avoids S′. This recolouring sequence extends to a redicolouring sequence in D by Remark 26. In

the obtained dicolouring, since γ′i avoids S′ on Hi, we can recolour successively vj with cj for all i+1 ≤ j ≤
i+

⌈

k
3

⌉

(starting from vi+1 and moving forward to v
i+⌈ k

3 ⌉
). This does not create any monochromatic cycle by

choice of cj . Let ηi be the resulting dicolouring of D. Now we define a list assignment L̃i of Hi as follows:

L̃i(vj) = [k] \ {ηi(v) | v ∈ N(vj) ∩ {vi+1, . . . , vn})) for all j ∈ [i].
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Using the same arguments as we did for Li, we get that L̃i is
⌈

k
3

⌉

-feasible for Hi. Note that ηi is an

L̃i-colouring of Hi that avoids S′. Let S′′ be any set of
⌈

k
3

⌉

colours disjoint from S′. By Lemma 25, there

is, in Hi, an L̃i-recolouring sequence of length at most 4k+12
3 n from ηi to some η′i that avoids S′′. This

recolouring sequence extends directly to a redicolouring sequence in D. Since S′ is disjoint from S′′, the

obtained dicolouring is an L
i+⌈k3 ⌉

-colouring ofH
i+⌈ k

3 ⌉
that avoids at least

⌈

k
3

⌉

colours in H
i+⌈ k

3 ⌉
. Hence we

get a redicolouring sequence from γi to the desired γ
i+⌈ k

3 ⌉
, in at most 8k+24

3 n+
⌈

k
3

⌉

steps. ♦

Note that γ⌈ k

3 ⌉
(a dicolouring satisfying the assumptions of Claim 27 for i =

⌈

k
3

⌉

) can be reached from α

in less than n steps: for all j ∈ [
⌈

k
3

⌉

], choose a colour cj so that each of the following holds:

• cj belongs to Lj(vj), and

• for each ℓ ∈ [j − 1], cℓ is different from cj .

Now we can recolour successively v1, . . . , v⌈ k

3 ⌉
(in this order) to their corresponding colour in {c1, . . . , c⌈ k

3 ⌉
}.

Then applying Claim 27 iteratively at most

⌊

n

⌈ k

3 ⌉

⌋

≤ 3n
k

times, we get that there is a redicolouring sequence

of length at most n + 3n
k

(

8k+24
3 n+ k

3

)

from α to a dicolouring α′ of D that is also a proper colouring of G.

Note that there exists a constant C1, independent of k, such that n+ 3n
k

(

8k+24
3 n+ k

3

)

≤ C1n
2.

Let α and β be two k-dicolourings of D. As proved above, there is a redicolouring sequence of length at

mostC1n
2 fromα (resp. β) to a dicolouringα′ (resp. β′) ofD that is also a proper colouring ofG. Since Ck(G)

has diameter at most C0n
2, there is a recolouring sequence of G of length at most C0n

2 from α′ to β′, which

is also a redicolouring sequence of D (since every proper colouring of G is a dicolouring of D). The union of

those three sequences yields a redicolouring sequence from α to β of length at most (2C1 + C0)n
2.

Proof of Theorem 11(iii). Let α and β be two k-dicolourings. Let us show by induction on the number of

vertices that there exists a redicolouring sequence fromα to β where every vertex is recoloured at most δ∗c (D)+
1 times.

If n = 1 the result is obviously true. Let D be a digraph on at least two vertices, let u be a vertex such that

dc(u) ≤ δ∗c (D) and let D′ = D − u. We denote by α′ and β′ the dicolourings of D′ induced, respectively,

by α and β. By induction and since δ∗c (D
′) ≤ δ∗c (D), there exists a redicolouring sequence from α′ to β′

such that each vertex is recoloured at most δ∗c (D) + 1 times. Now we consider the same recolouring steps to

recolour D, starting from α. If for some step i, it is not possible to recolour vi to ci, this must be because u is

currently coloured ci and recolouring vi to ci would create a monochromatic directed cycle. By definition of

cycle-degree, there exists a transversal X of the directed cycles containing u, with |X | ≤ δ∗c (D) and u /∈ X .

Since k ≥ 2δ∗c (D) + 2, there are at least δ∗c (D) + 2 colours that do not appear in X . We choose c among these

colours so that c does not appear in the next δ∗c (D) + 1 recolourings of X , and we recolour u with c.
Since |X | ≤ δ∗c (D) and since each vertex in D′ is recoloured at most δ∗c (D) + 1 times, the total number of

recolourings in X is at most δ∗c (D)(δ∗c (D) + 1) in the redicolouring sequence obtained by induction. Hence,

in this new redicolouring sequence, u is recoloured at most δ∗c (D) times. We finally have to set u to its colour

in β. Doing so u is recoloured at most δ∗c (D) + 1 times. This concludes the proof.

4 Bounds on the diameter of Dk(D) when k ≥ δ∗c (D) + 2

This section is devoted to the proofs of Theorems 12 and 13, which are based on the proofs of [18].

In all the section, f, g : N
2 −→ N are the functions defined as f(s, t) = (s + 1)!(2t)s and g(s, t) =

2sf(s, t) + 2s+ 1 respectively. The following is straightforward.
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Proposition 28. For every s, t ∈ N, s 6= 0, the following inequalities hold:

f(s, t) ≥
t

∑

q=1

(

2(s+ 1)f(s− 1, q)
)

. (1)

g(s, t) ≥ 2f(s, t) + 2 + g(s− 1, t). (2)

g(s, t) = Os(t
s). (3)

We now prove the following main lemma2.

Lemma 29. Let D = (V,A) be a digraph, (V1, . . . , Vt) be a partition of V , and s ≥ 0, k ≥ s + 2 be two

integers. Let h ∈ [t] be such that, for every p ≤ h and every u ∈ Vp, there exists Xu ⊆
⋃t

i=p+1 Vi such that

|Xu| ≤ s and Xu intersects every directed cycle containing u in D −
⋃p−1

i=1 Vi.
Then, for every k-dicolouring α of D and for any colour c ∈ [s+ 2], there exists a redicolouring sequence

between α and some k-dicolouring β such that:

• for every v ∈
⋃h

i=1 Vi, β(v) 6= c and β(v) ≤ s+ 2,

• no vertex of
⋃t

i=h+1 Vi is recoloured, and

• each vertex in
⋃h

i=1 Vi is recoloured at most f(s, h) times.

Proof. We proceed by induction on s. Assume first that s = 0 and let H the subdigraph of D induced by
⋃h

i=1 Vi. We claim that D does not contain any directed cycle which intersects V (H). Indeed, if D contains

such a directed cycle C, let q ∈ [h] be the smallest index such that V (C) ∩ Vq 6= ∅, and let u ∈ V (C) ∩ Vq .

Then C is a directed cycle containing u in D −
⋃q−1

i=1 Vi, so Xu must intersect C. This yields a contradiction

because Xu = ∅ (since |Xu| = 0). Thus, since no directed cycle of D intersects V (H), in α we can recolour

each vertex of H with the colour c′ ∈ [2] different from c. Since f(0, h) = 1, we get the result.

Assume now that s > 0. Let C be the set of colours greater than s+2 and let W be the set of vertices with

colour c or any colour c′ ∈ C in α. Formally, C = [s+ 3, k] and W = {v ∈ V (D) | α(v) = c ∨ α(v) ∈ C }.
If k = s+ 2, C is empty and W is the set of vertices coloured c.

Let q ∈ [h] be the smallest index such that Vq ∩W 6= ∅. If such an index does not exist, then we take α = β

and we are done. Let Uq−1 =
⋃q−1

i=1 Vi (when q = 1 we let U0 be the empty set). For each colour a ∈ [s + 2]
different from c, we define Wa as follows:

Wa = {u ∈W ∩ Vq | ∀v ∈ Xu, α(v) 6= a}

Observe that every vertex in Wa is recolourable to colour a in D−Uq−1 since Xu intersects every directed

cycle containing u in D − Uq−1. Note also that every vertex u ∈ W belongs to some Wa (maybe to several)

because |Xu| ≤ s. Whenever a vertex belongs to several sets Wa, we remove it from one, so at the end the

collection (Wa)a∈[s+2],a 6=c is a partition of W . Figure 2 illustrates the structure of D dicoloured with α.

Claim 30. Let φ be a k-dicolouring of D such that:

• φ and α agree on
⋃t

i=q+1 Vi and Vq \W ,

• ({c} ∪ C ) ∩ φ(Uq−1) = ∅, and

• ∀a ∈ [s+ 2], a 6= c, either φ(Wa) = {a} or φ(Wa) ⊆ ({c} ∪ C ).

2In his original proof, Feghali claims to obtain, in the statement corresponding to the third item of Lemma 29 for undirected graphs, a

multiplicative factor (s+1) instead of (s+1)! (in the function f ). Since we are not able to understand how the smaller factor is obtained

in the original proof, we state our result with the larger factor of which we are sure of the correctness, which anyway is hidden in the

asymptotic notation.
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V1

. . .

Vq−1 Vq

Vq \W

Ws+2
...

Wau
...

W1

. . .

Vh

. . .

Vt

Xu

Uq−1

avoids colours {c} ∪ C coloured with {c} ∪ C avoids colour a

Figure 2: The structure of the digraphD dicoloured with α, which we assume to be an (s+ 2)-dicolouring for

clarity. Note that Wc does not exist and Xu may intersect Vq+1 ∪ · · · ∪ Vh−1.

Then for every a ∈ [s+2], a 6= c such that φ(Wa) ⊆ ({c}∪C ), there exists a redicolouring sequence between

φ and a k-dicolouring ψ such that:

• each vertex in Uq−1 is recoloured at most 2f(s− 1, q − 1) times,

• each vertex in Wa is recoloured exactly once (to colour a),

• no vertex of D − (Uq−1 ∪Wa) is recoloured, and

• ({c} ∪ C ) ∩ ψ(Uq−1) = ∅.

Proof of the claim. By definition of Wa and because φ and α agree on
⋃t

i=q+1 Vi, note that every vertex

u ∈ Wa is recolourable to colour a if a /∈ φ(Uq−1). Hence the key idea is to remove colour a from Uq−1, then

recolour every vertex in Wa with a, and finally remove the colour c from Uq−1 that we may have introduced.

Along this process, we will never introduce any colour of C . When q = 1, note that we can just recolour every

vertex in Wa with a.

Let u1, . . . , ur be an ordering of Uq−1 such that the vertices in Vp appear before the vertices in Vp′ for every

1 ≤ p′ < p ≤ q − 1. Whenever it is possible, in φ, we recolour every vertex u1, . . . , ur (in this order) with

colour c. Let η be the obtained dicolouring of D, and let S be the set of vertices coloured c in η. We define

D′ = D − S, h′ = q − 1 and s′ = s− 1. Also for every p ∈ [t] we define V ′
p = Vp \ S. Finally we define η′

as the induced dicolouring η on D′.

Let us prove that, for every p ≤ h′ and every u ∈ V ′
p , the set of vertices X ′

u = Xu \ S satisfies |X ′
u| ≤

|Xu| − 1 ≤ s′ and intersects every directed cycle containing u in D′ −
⋃p−1

i=1 V
′
i .

First, since u ∈ V ′
p , we know that u has not been recoloured to c in the previous process. It means that

recolouring u with c creates a monochromatic directed cycle C. Moreover, since c /∈ φ(Uq−1) and by choice

of the ordering u1, . . . , ur, we know that such a directed cycle C is included in
⋃t

i=p Vi. By assumption on

Xu, we haveXu ∩V (C) 6= ∅. Since Xu ⊆
⋃t

i=p+1 Vi and φ(V (C) \ {u}) = {c} we deduce that Xu ∩S 6= ∅,
which shows |X ′

u| ≤ |Xu| − 1 ≤ s′.

We now prove that X ′
u intersects every directed cycle containing u in D′ −

⋃p−1
i=1 V

′
i . Let C be such a

directed cycle. Since C is also a directed cycle in D −
⋃p−1

i=1 Vi, we know that C intersects Xu. We also know

that V (C) ∩ S = ∅ because C is a directed cycle in D′. Hence, C intersects Xu \ S = X ′
u as desired.
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By the remark above, we can apply the induction on Lemma 29 with D′, (V ′
1 , . . . , V

′
t ), h

′, s′, η′ and a
playing the roles ofD, (V1, . . . , Vt), h, s, α and c respectively. Hence, by induction, there exists a redicolouring

sequence (which does not use colour c) in D′ from η′ to some dicolouring ζ′ such that:

• for every v ∈
⋃q−1

i=1 V
′
i , ζ

′(v) /∈ ({a} ∪ C ),

• no vertex of
⋃t

i=q V
′
i is recoloured, and

• each vertex of
⋃q−1

i=1 V
′
i is recoloured at most f(s− 1, q − 1) times.

Since this redicolouring sequence does not use colour c, and because η(S) = {c}, it extends into a redicolouring

sequence in D between η and ζ, where ζ(u) = ζ′(u) when u ∈ (Uq−1 \ S), ζ(u) = c when u ∈ S and

ζ(u) = φ(u) otherwise. Since ζ(v) 6= a for every vertex v ∈ Uq−1 and by choice of Wa, in ζ we can recolour

every vertex in Wa to colour a. Note that the vertices in S∩Uq−1 have been recoloured exactly once (to colour

c), which is less than f(s− 1, q − 1).

We will now remove the colour c we introduced in Uq−1. We use exactly the same process as before,

swapping the roles of c and a. So, whenever it is possible, starting with u1 and moving forwards towards

ur, we recolour each vertex of Uq−1 with colour a. Let ξ be the obtained dicolouring of D. We define

R = {v ∈ V (D) | ξ(v) = a}, D̃ = D − R, and Ṽi = Vi \ R for every i ∈ [t]. Finally let ξ̃ be the induced

dicolouring ξ on D̃. By induction, there exists a redicolouring sequence (which does not use colour a) in D̃
from ξ̃ to some dicolouring ψ̃ such that:

• for every v ∈
⋃q−1

i=1 Ṽi, ψ̃(v) 6= c,

• no vertex of
⋃t

i=q Ṽi is recoloured, and

• each vertex of
⋃q−1

i=1 Ṽi is recoloured at most f(s− 1, q − 1) times.

This gives, in D, a redicolouring sequence from ξ to some dicolouring ψ which does not use colour c on Uq−1.

Concatenating the redicolouring sequences we built, we conclude the existence of the desired redicolouring

sequence from φ to ψ in which every vertex in Uq−1 is recoloured at most 2f(s − 1, q − 1) times, vertices in

Wa are recoloured exactly once to colour a, and the other vertices of D are not recoloured. ♦

Now we may apply Claim 30 on α (playing the role of φ) to obtain a redicolouring sequence from α to a

dicolouring α′ (corresponding to ψ) in which Wa has been recoloured to a (for some fixed a ∈ [s+ 2], a 6= c),
and colours {c}∪C do not appear in α′(Uq−1). Note that, in Claim 30, the obtained dicolouring ψ satisfies the

assumptions on φ. Thus, we may repeat this argument on α′ to recolourWa′ for some a′ ∈ [s+2], a′ /∈ {c, a}.
Repeating this process for each colour a ∈ [s + 2] different from c, we obtain a redicolouring sequence

between α and some dicolouring in which colours {c} ∪ C do not appear in Uq−1 ∪ Vq and such that each

vertex of Uq−1 is recoloured at most (s+1) ·2f(s−1, q−1) times and every vertex in Vq is recoloured at most

once. Since f(s− 1, q) ≥ 1 and f(x, y) is non-decreasing in y, a fortiori every vertex of
⋃q

i=1 Vi is recoloured

at most 2(s+ 1)f(s− 1, q) times.

We have shown above that, if colours {c}∪C are not appearing in
⋃q−1

i=1 Vi, then in at most 2(s+1)f(s−

1, q) recolourings per vertex, we can also remove them from Vq (and we do not recolour vertices in
⋃t

i=q+1 Vi).
Thus we can repeat this argument at most h times to find a redicolouring sequence between α and a dicolouring

β in which colours {c}∪C do not appear in
⋃h

i=1 Vi. In this redicolouring sequence, the number of recolourings

per vertex of
⋃h

i=1 Vi is at most

h
∑

q=1

(

2(s+ 1)f(s− 1, q)
)

≤ f(s, h) by Inequality (1),

which concludes the proof.
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Lemma 31. Let D = (V,A) be a digraph on n vertices and let (V1, . . . , Vt) be a partition of V such that for

every p ∈ [t] and u ∈ Vp, there exists Xu ⊆ ∪ti=p+1Vi such that |Xu| ≤ s and Xu intersects every directed

cycle containing u in D −
⋃p−1

i=1 Vi. Then, for any k ≥ s+ 2, Dk(D) has diameter at most g(s, t) · n.

Proof. We will show that, for any two k-dicolouringsα, β of D, there exists a redicolouring sequence between

them where each vertex is recoloured at most g(s, t) times, showing the result. We proceed by induction on s.
When s = 0, D is acyclic so we can directly recolour every vertex v from α(v) to β(v). Since g(0, t) = 1, we

get the result.

Assume now that s > 0. By Lemma 29, there is a redicolouring sequence from α to an (s+1)-dicolouring

α̃ in which each vertex ofD is recoloured at most f(s, t) times (by taking h = t and c = s+2). Symmetrically,

we have a redicolouring sequence from β to an (s+ 1)-dicolouring β̃ in which each vertex of D is recoloured

at most f(s, t) times. We will now find a redicolouring sequence between α̃ and β̃.

Let v1, . . . , vn be an ordering of V such that the vertices in Vp appear before the vertices in Vp′ for every

1 ≤ p′ < p ≤ t. In both α̃ and β̃, starting with v1 and moving forwards towards vn, we recolour, whenever it

is possible, each vertex of V with colour s+2. This is done in at most two recolourings per vertex (one in both

dicolourings). Let α̂ and β̂ be the two obtained dicolourings. Observe that the vertices coloured s+ 2 in α̂ are

exactly the vertices coloured s + 2 in β̂. We define S = {v ∈ V | α̂(v) = s + 2} and H = D − S. Let α̂|H

and β̂|H be the dicolourings induced by α̂ and β̂ onH , respectively. For each p ∈ [t], let V ′
p = Vp \S. Observe

that (V ′
1 , . . . , V

′
t ) is a partition of V (H) such that for every p ∈ [t] and u ∈ V ′

p , X ′
u = Xu \ S has size at most

s − 1 and intersects every directed cycle containing u in D −
⋃p−1

i=1 Vi (the arguments are the same as in the

proof of Lemma 29). Thus, by induction, there exists in H a redicolouring sequence between α̂|H and β̂|H ,

using only colours in [s+1] in which every vertex is recoloured at most g(s− 1, t) times. Since the vertices in

S are coloured s+ 2, this redicolouring sequence extends to D and gives a redicolouring sequence between α̂
and β̂. Thus, we have obtained a redicolouring sequence between α and β in which the number of recolourings

per vertex is at most 2f(s, t) + 2 + g(s− 1, t) ≤ g(s, t) by Inequality (2).

We will now prove Theorems 12 and 13 with Lemma 31.

Theorem 12. Let D be a digraph and k ≥ δ∗c (D) + 2 = d+ 2. Then diam(Dk(D)) = Od(n
d+1).

Proof. Take any cycle-degeneracy ordering v1, . . . , vn of D, and set Vi = {vi} for every i ∈ [n]. Set s = d
and t = n, and the result follows directly from Lemma 31 and Inequality (3).

Theorem 13. Let d ≥ 1 and k ≥ d+1 be two integers, and let ǫ > 0. IfD is a digraph satisfying madc(D) ≤
d− ǫ, then diam(Dk(D)) = Od,ǫ(n(log n)

d−1).

Proof. Our goal is to find a partition (V1, . . . , Vt(n)) of V (D) such that t(n) = Od,ǫ(logn). Moreover, we need

for every p ∈ [t(n)] and every u ∈ Vp, that there exists Xu ⊆
⋃t(n)

i=p+1 Vi, |Xu| ≤ d − 1, that intersects every

directed cycle containing u inD−
⋃p−1

i=1 Vi. If we find such a partition, then by Lemma 31, applied for s = d−1
and t = t(n), we get that diam(Dk(D)) ≤ g(d−1, t(n))·n, implying that diam(Dk(D)) = Od,ǫ(n(log n)

d−1)
since t(n) = Od,ǫ(log n) and by Inequality (3).

Let us guarantee the existence of such a partition. Let H be any subdigraph of D on nH vertices. For

every vertex u ∈ V (H), we let Xu ⊆ V (H) \ {u} be a set of dHc (u) vertices intersecting every directed cycle

containing u in H (where dHc (u) denotes the cycle-degree of u in H). The existence of Xu is guaranteed by

definition of the cycle-degree.

Then let J = (V (H), F ) be an auxiliary digraph, built fromH , whereF = {uv | v ∈ Xu}. Let S ⊆ V (H)
be the set of all vertices v with d+J (v) ≤ d−1 (where d+J (v) denotes the out-degree of v in J). Then |S| ≥ ǫ

d
nH ,
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for otherwise we have the following contradiction:

madc(D) ≥ madc(H) ≥
1

nH

∑

v∈V (H)

dHc (v) =
1

nH

∑

v∈V (H)

d+J (v)

≥
1

nH

∑

v∈V (H)\S

d+J (v)

≥
1

nH

(nH − |S|)d > (1−
ǫ

d
)d = d− ǫ,

where in the last inequality we have used that |S| < ǫnH

d
. Now let us prove that J [S] has an independent set

I of size at least
|S|

2d−1 . By choice of S, every subdigraph J ′ of J [S] satisfies ∆+(J ′) ≤ d − 1. Hence, for

every such J ′, we have
∑

v∈V (J′)(d
+
J′(v) + d−J′(v)) = 2|A(J ′)| ≤ 2(d− 1)|V (J ′)|. In particular, this implies

that UG(J [S]) is (2d − 2)-degenerate, and χ(UG(J [S])) ≤ 2d − 1. Take any proper (2d − 1)-colouring of

UG(J [S]), its largest colour class is the desired I .

Hence, we have shown that H admits a set of vertices I ⊆ V (H), of size at least ǫ
(2d−1)dnH , such that for

every vertex u ∈ I there exists Xu ⊆ (V (H) \ I), |Xu| ≤ d − 1, that intersects every directed cycle of H
containing u.

Since the remark above holds for every subdigraphH of D, we can greedily construct the desired partition

(V1, . . . , Vt(n)) by picking successively such a set I in the digraph induced by the non-picked vertices. By

construction, we get that t satisfies the following recurrence:

t(i) ≤ t

(

i−
ǫi

(2d− 1)d

)

+ 1.

Thus we have t(n) ≤ logb(n) where b = 1
1− ǫ

(2d−1)d
, implying that

t(n) ≤
1

− log(1− ǫ
(2d−1)d)

· log(n) = Od,ǫ(log(n)),

which concludes the proof.

5 Bound on the diameter of Dk(D) when k ≥ ~χg(D) + 1

This section is devoted to the proof of Theorem 15.

Theorem 15. For any digraph D, if k ≥ ~χg(D) + 1, then diam(Dk(D)) ≤ 4 · ~χ(D) · n.

Proof. Let α be any k-dicolouring of D and β be any ~χ(D)-dicolouring of D. We will show by induction on

~χ(D) that there exists a redicolouring sequence of length at most 2 · ~χ(D) · n between α and β. The claimed

result will then follow. If ~χ(D) = 1, the result is clear since D is acyclic.

Starting from α, whenever a vertex can be recoloured to colour k, we recolour it. Then we try to recolour

the remaining vertices with colour k − 1, and we repeat this process for every colour k − 1, . . . , 2. At the

end, the obtained dicolouring γ is greedy (with colours ordered from k to 1). Actually, γ is exactly the greedy

dicolouring obtained from any ordering v1, . . . , vn of V (D) where i < j whenever γ(vi) > γ(vj).
Since γ is a greedy dicolouring, and because k ≥ ~χg(D) + 1, colour 1 is not used in γ. This allows us to

recolour every vertex of V1 = {v ∈ V (D) | β(v) = 1} to colour 1 (V1 6= ∅ since β uses colours [~χ(D)]). If η
is the obtained dicolouring, then η and β agree on colour 1. Note also that, starting from α, we reached η by

recolouring each vertex at most twice. Thus, the distance between α and η in Dk(D) is at most 2n.

Consider H = D − V1. Since β is an optimal dicolouring of D, ~χ(H) = ~χ(D) − 1. Thus, by induction,

there exists a redicolouring sequence between η|H and β|H (that is, the restrictions of η and β, respectively,

to H) of length at most 2(~χ(D) − 1)n, that does not use colour 1. This directly extends to a redicolouring

sequence between η and β in D, which together with the redicolouring sequence between α and η gives a

redicolouring sequence between α and β of length 2 · ~χ(D) · n.
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6 Using the underlying graph to bound the diameter of Dk(D)

This section is devoted to the proof of Theorem 17.

Theorem 17. Let G be a family of undirected graphs, closed under edge-deletion and with bounded chromatic

number, and let k ≥ χ(G) (i.e. k ≥ χ(G) for every G ∈ G) be such that, for every n-vertex graph G ∈ G,

the diameter of Ck(G) is bounded by f(n) for some function f . Then for any n-vertex digraph D such that

UG(D) ∈ G, the diameter of Dk(D) is bounded by 2f(n).

Proof. Let D = (V,A) be such a digraph, and let γ be any proper k-colouring of UG(D). We will show,

for any k-dicolouring α of D, that there is a redicolouring sequence between α and γ of length at most f(n),
showing the result. Let Gα = (V,E) be the undirected graph where E = {uv | uv ∈ A,α(u) 6= α(v)}.

First observe that α is a proper k-colouring of Gα by construction of Gα. Note also that γ is a proper

k-colouring of Gα because Gα is a subgraph of UG(D). Moreover, since Gα is a subgraph of UG(D), by

assumption on G, we know that there exists a recolouring sequence between α and γ in Gα of length at most

f(n).
Next we show that every proper k-colouring of Gα is a dicolouring of D, implying that the recolouring

sequence between α and γ in Gα is also a redicolouring sequence between α and γ in D. For purpose of

contradiction, let us assume that β is a proper k-colouring ofGα butD, coloured with β, contains a monochro-

matic directed cycle C. Then, by construction of Gα, for each arc xy of C, we must have α(x) = α(y), for

otherwise xy would be a monochromatic edge in Gα. This shows that C is monochromatic in D coloured with

α, a contradiction.

Theorem 17 directly extends to digraphs a number of known results about recolouring planar graphs. We

discuss further these applications in Section 8.

7 Case of digraphs with bounded D-width

This section is devoted to the proof of Theorem 22.

Theorem 22. IfD = (V,A) is an n-vertex digraph with Dw(D) ≤ k−1, then diam(Dk+1(D)) ≤ 2(n2+n).

The following claim can be easily deduced from the definition of a D-decomposition.

Claim 32. Let (T,X = (Xv)v∈V (T )) be a D-decomposition of a digraph D = (V,A) and tt′ ∈ E(T ) such

that v ∈ Xt′ \Xt. Then, (T,X ′ = (X ′
v)v∈V (T )) such that X ′

u = Xu for all u 6= t and X ′
t = Xt ∪ {v} is a

D-decomposition of D = (V,A). Moreover, if |Xt| < |Xt′ |, (T,X ′) has the same width as (T,X ).

A D-decomposition (T,X ) is reduced if, for every tt′ ∈ E(T ), Xt \Xt′ and Xt′ \Xt are non-empty. It

is easy to see that any digraphD admits an optimal (i.e., of width Dw(D)) D-decomposition which is reduced

(indeed, if Xt ⊆ Xt′ for some edge tt′ ∈ E(T ), then contract this edge and remove Xt from X ).

A D-decomposition (T,X ) of D-width k ≥ 0 is full if every bag has size exactly k+1. A D-decomposition

(T,X ) is valid if |Xt \ Xt′ | = |Xt′ \ Xt| = 1 for every tt′ ∈ E(T ). Note that any valid D-decomposition

is full and reduced. Note also that, if (T,X ) is valid and t ∈ V (T ) is a leaf of T , then there exists a (unique)

vertex v ∈ V that belongs only to the bag Xt. Such a vertex v is called a baby.

Lemma 33. Every digraph D = (V,A) admits a valid D-decomposition of width Dw(D).

Proof. Let (T,X ) be an optimal reduced D-decomposition of D = (V,A), which exists by the remark above

the lemma. We will progressively modify (T,X ) in order to make it first full and then valid.

While the current decomposition is not full, let tt′ ∈ E(T ) such that |Xt| < |Xt′ | = Dw(D) + 1 and

let v ∈ Xt′ \ Xt. Add v to Xt. The obtained decomposition is still a D-decomposition of width Dw(D) by

Claim 32. Moreover, the updated decomposition remains reduced all along the process, as since |Xt| < |Xt′ |
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and the initial decomposition is reduced, Xt′ must contain another vertex u 6= v with u /∈ Xt. Eventually, the

obtained decomposition (T,X ) becomes an optimal full D-decomposition.

Now, while (T,X ) is not valid, let tt′ ∈ E(T ), x, y ∈ Xt \Xt′ and u, v ∈ Xt′ \Xt (such an edge of T and

four distinct vertices of V must exist since (T,X ) is full and reduced but not valid). Then, add a new node t′′

to T , with corresponding bag Xt′′ = (Xt′ \ {u})∪ {x} and replace the edge tt′ in T by the two edges tt′′ and

t′′t′. Clearly, subdividing the edge tt′ by adding a bagXt′′ = Xt′ still leads to an optimal full (but not reduced)

D-decomposition of the same width. Then, adding x to Xt′′ makes that (T,X ) remains a D-decomposition

(by the first statement of Claim 32). Finally, we must prove that removing u from Xt′′ preserves the fact that

we still have a D-decomposition. Indeed, let S be a strong subset whose support TS (before the subdivision)

contains tt′ (clearly, the other strong subsets are not affected by the change in the decomposition). It must

be because of some vertex in z ∈ Xt ∩ Xt′ and so z ∈ Xt′′ . Therefore, the support TS , obtained after the

subdivision and the modifications to Xt′′ , contains both edges tt′′ and t′′t′, and therefore it remains connected.

Note that, after the modifications, (T,X ) is still full and reduced.

Note that, after the application of each step as described above, either the maximum of |Xt \Xt′ | over all

edges tt′ ∈ E(T ), or the number of edges tt′ ∈ E(T ) that maximize |Xt \Xt′ |, strictly decreases, and none of

these two quantities increases. Therefore, the process terminates, and eventually (T,X ) becomes an optimal

valid D-decomposition.

Given a valid D-decomposition (T,X ) of a digraphD = (V,A), two vertices u, v ∈ V are parents, denoted

by u ∼p v, if their supports Tu and and Tv (we use Tv instead of T{v} for denoting the support of a single

vertex {v}) are vertex-disjoint and there is an edge tt′ ∈ E(T ) with t ∈ V (Tv) and t′ ∈ V (Tu). Let∼(T,X ) be

the transitive closure of ∼p.

Lemma 34. Let (T,X ) be an optimal valid D-decomposition of a digraph D = (V,A). Then, ∼(T,X ) defines

an equivalence relation on V which has exactly Dw(D) + 1 classes. Moreover, the vertices of each class

induce an acyclic subdigraph of D.

Proof. The facts that ∼(T,X ) is well-defined and that there are Dw(D) + 1 classes follow from the fact that

(T,X ) is valid. Now, let C be any equivalence class of ∼(T,X ). For purpose of contradiction, let us assume

that D[C] contains a directed cycle Q. By definition of a D-decomposition, the support TQ must induce a

subtree of T . Since, by definition of ∼(T,X ), the supports of the vertices of Q are pairwise vertex-disjoint, the

support TQ must consist precisely of the disjoint union of the supports of the vertices of Q, and hence TQ is

not connected, a contradiction.

Given a valid D-decomposition (T,X ) ofD = (V,A), the corresponding equivalence relation∼(T,X ), and

a subset X ⊆ V , a k-colouring α of D (which is not necessarily a dicolouring) is X-coherent with respect to

(T,X ) if, for every u, v ∈ X such that u ∼p v, and for every t ∈ V (Tv), v is the unique vertex coloured α(v)
in Xt, and α(u) = α(v). In what follows, we will just say X-coherent, as the D-decomposition will always be

clear from the context.

Claim 35. Let (T,X ) be a valid D-decomposition of a digraph D = (V,A) of width k − 1 ≥ 0. Then, D
admits a k-colouring that is V -coherent.

Proof of the claim. Consider any ordering C1, . . . , Ck+1 of the classes of ∼(T,X ). Let α be the colouring

associating with each vertex v the index i such that v ∈ Ci. Then α is V -coherent. ♦

The following claim is straightforward, so we skip its proof.

Claim 36. Let (T,X ) be a valid D-decomposition of a digraph D = (V,A) of width k − 1 ≥ 0 and let α be

a k-colouring of D that is V -coherent. Then, the equivalence classes of ∼(T,X ) are precisely α1, . . . , αk (the

colours classes of α). In particular, by Lemma 34, α is a k-dicolouring.

Lemma 37. LetD = (V,A) be an n-vertex digraph and let (T,X ) be a valid D-decomposition ofD = (V,A)
of width k − 1 = Dw(D). Let α and β be two (k + 1)-dicolourings of D that are V -coherent. Then, α and β
are at distance at most 2n in Dk+1(D).
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Proof. We prove the existence of a redicolouring sequence from α to β in Dk+1(D) that recolours each vertex

at most twice.

Let S1, . . . , Sk be the equivalence classes of ∼(T,X ). By Claim 36, each Si corresponds exactly to one

colour class of α and exactly one colour class of β. In particular, both α and β use indeed k colours (not neces-

sarily the same). Consider the undirected complete graph H on k vertices x1, . . . , xk , and the two colourings

αH , βH of H defined as {αH(xi)} = α(Si) and {βH(xi)} = β(Si). It is known (see [6, Lemma 5]) that there

is a redicolouring sequence in H between αH and βH in which every vertex is recoloured at most twice. This

directly extends to a redicolouring sequence between α and β (when xi is recoloured with colour c in H , we

recolour every vertex in Si with c in D). Note that this is indeed a redicolouring sequence because at each step

of the sequence, in the corresponding colouring, every colour class is a subset of some Si, which induces an

acyclic subdigraph by Lemma 34.

Given a tree T rooted in r ∈ V (T ) and two vertices u, v of T , we say that v is a descendant of u if u
belongs to the path between r and v in T .

Lemma 38. Let D = (V,A) be an n-vertex digraph and (T,X ) be a valid D-decomposition of D = (V,A)
of width k− 1 ≥ 0. Let T be rooted in r ∈ V (T ). Let α be a (k+1)-colouring of D that is (V \Xr)-coherent

and let c ∈ [k + 1] such that α(v) 6= c for all v ∈ Xr. Then, for every t, t′ ∈ V (T ) with t′ being a descendant

of t, if there exists v ∈ Xt with α(v) = c, then v is the unique vertex of Xt coloured with c and there exists a

unique u ∈ Xt′ with α(u) = c.

Proof. For purpose of contradiction, let us assume that there exist t, t′ ∈ V (T ) such that t′ is a descendant of

t, a vertex in Xt is coloured with c, and no vertex in Xt′ is coloured with c. Over all possible such pairs {t, t′},
we choose one such that the distance between t and t′ in T is minimum. Then t′ is a child of t.

Let v ∈ Xt such that α(v) = c and let {u} = Xt′ \ Xt, where we have used that (T,X ) is valid. Note

that u ∼(T,X ) v and that, since Tu is connected, u /∈ Xr. Since α is (V \ Xr)-coherent, we must have

α(u) = α(v) = c, a contradiction.

The uniqueness of u and v comes from the fact that u, v /∈ Xr since α(v) = α(u) = c, and because by

hypothesis α is (V \Xr)-coherent.

Lemma 39. Let D = (V,A) be an n-vertex digraph, let (T,X ) be a valid D-decomposition of D = (V,A)
of width k − 1, and let T be rooted in r ∈ V (T ). Let y ∈ Xr and let α be a (k + 1)-dicolouring of D that

is (V \ (Xr \ {y}))-coherent. Let D′ be the digraph obtained by identifying y and all vertices v such that

y ∼(T,X ) v and let α′ be the dicolouring ofD arising from α. If there exists a (k+1)-dicolouring β′ ofD′ that

can be reached from α′ by recolouring each vertex at most once, then the (k + 1)-dicolouring β that naturally

extends β′ to D (i.e., β(v) = β′(y) for all v ∼(T,X ) y) can be reached from α by recolouring each vertex at

most once.

Proof. This follows from the fact that α is (V \ (Xr \ {y}))-coherent, and thus every bag Xt has exactly one

vertex of the colour of y, which is the colour of the unique vertex v ∼(T,X ) y that belongs to Xt. Hence, to go

from α to β, we follow the same redicolouring sequence for every vertex u ≁(T,X ) y, and when we recolour y
in D′, we simply recolour every vertex v ∼(T,X ) y with the same colour as y.

Claim 40. Let D = (V,A) be an n-vertex digraph, let (T,X ) be a valid D-decomposition of D = (V,A) of

width k−1. Let α be a (k+1)-dicolouring ofD and x ∈ V (D) be any vertex. Let c ∈ [k+1] be a colour such

that, for every vertex v ∈
⋃

x∈Xt
Xt, α(v) 6= c. Then the (k + 1)-colouring obtained from α by recolouring x

with c is a dicolouring.

Proof of the claim. Assume this is not the case, and recolouring x with c creates a monochromatic directed

cycle C. Then since D[V (C)] is strongly connected, the support TV (C) of V (C) is a non-empty subtree. This

implies that there exists y ∈ V (C) \ {x} such that y and x belong to one same bag Xt. This contradicts the

choice of c. ♦
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Lemma 41. Let D = (V,A) be an n-vertex digraph, let (T,X ) be a valid D-decomposition of D = (V,A) of

width k − 1, and let T be rooted in r ∈ V (T ). Let α be a (k + 1)-dicolouring of D that is (V \Xr)-coherent

and such that the colour c does not appear in Xr, i.e., there exists c ∈ [k + 1] such that α(v) 6= c for all

v ∈ Xr. Then, there exists a (k + 1)-dicolouring β of D and a redicolouring sequence α = γ1, . . . , γℓ = β
such that:

• β is (V \Xr)-coherent,

• β(v) 6= c for all v ∈ V ,

• every vertex of D \Xr is recoloured at most once,

• no vertex of Xr is recoloured, and

• if xi is the vertex recoloured between γi and γi+1, then, for every vertex v ∈
⋃

xi∈Xt
Xt, γi(v) 6=

γi+1(xi).

Proof. The proof is by induction on k− 1 + |V (T )|, where k− 1 is the width of (T,X ). If k− 1 = 0, then D
is acyclic and colour c can be eliminated by recolouring every vertex at most once with a same colour distinct

from c. Note that the vertices in Xr are not recoloured and the last condition holds trivially since every bag has

size one.

If |V (T )| = 1, the result holds trivially since the colour c does not appear in Xr, so we may take β = α.

Hence, r must have at least one child. Let us fix one child v of r, and let {y} = Xv \Xr. Let Tv be the subtree

of T rooted in v and let Dv be the subdigraph of D induced by
⋃

t∈V (Tv)
Xt.

• If α(y) 6= c, then c does not appear in Xv. Let (Tv,Y) = (Tv, {Xt | t ∈ V (Tv)}) be the decomposition

of Dv obtained from T . Let D′
v be the digraph obtained from Dv by identifying y with all vertices of its

class with respect to (Tv,Y). Note that (Tv,Y) is a full decomposition of D′
v. By contracting each edge

tt′ ∈ E(Tv) such that Yt = Yt′ (in D′), we obtain (T ′
v,Y

′) a valid decomposition of D′
v.

Note that |V (T ′
v)| < |V (T )| and the width (T ′

v,Y
′) equals the width of (Tv,X ). Hence by induction

there exists a (k + 1)-dicolouring β′
v of D′

v that is (V (D′
v) \ Xv)-coherent and such that β′

v(w) 6= c
for all w ∈ V (D′

v). Moreover, there is a redicolouring sequence from α′
v , the dicolouring α restricted

to D′
v, to β′

v such that every vertex of D′
v \ Xv is recoloured at most once, and vertices in Xv are not

recoloured. Note finally that, whenever a vertex x is recoloured, it is recoloured with a colour that is not

appearing in
⋃

x∈Xt
Xt.

By Lemma 39, there exists a (k + 1)-dicolouring βv of Dv that is (V (Dv) \Xv)-coherent and such that

βv(w) 6= c for every vertex w ∈ V (Dv). Moreover, there is a redicolouring sequence γv = (γ1, · · · , γℓ)
from γ1 = αv, the dicolouring α restricted to Dv , to γℓ = βv such that every vertex of Dv \ Xv is

recoloured at most once. Furthermore, note that βv is indeed (V (Dv) \ (Xv \ {y})-coherent because we

identified y with all vertices of its class in D′
v .

Along this redicolouring sequence γv, when a vertex x is recoloured between γi and γi+1, let us show

that, for every vertex z ∈
⋃

x∈Xt
Xt, γi(z) 6= γi+1(x). Let us first assume that x does not belong to

the class of y with respect to (Tv,X ). If z ∼(Tv,X ) y, then by induction, γi+1(x) 6= γi(y) = γi(z).
Otherwise (z not in the class of y), by induction, we directly have that γi+1(x) 6= γi(z). Second, let us

assume that x belongs to the class of y. Hence, z ≁(Tv,X ) y since x and z belong to a same bag. By

induction,

Finally, this redicolouring sequence in Dv is indeed a redicolouring sequence in D because of the prop-

erty above and by Claim 40.

• If α(y) = c, by Lemma 38 and because (T,X ) is (V \ Xr)-coherent, every bag in Tv contains ex-

actly one vertex coloured c and the set of vertices coloured with c is precisely Y := {w ∈ Xt | t ∈
V (Tv), w ∼(T,X ) y}. The reduced decomposition obtained from (Tv,Y) = (Tv, {Xt \ Y | t ∈ V (Tv)})
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is a valid decomposition ofD′
v = Dv−Y of width k−2. Observe that it is full because we remove exactly

one vertex from each bag. Let c′ be a colour that does not appear in Xv \ {y}. Observe that the width of

(Tv,Y) is at most k− 2. Thus, by induction, there exists a k-dicolouring β′ of D′
v that is (V (D′

v) \Xv)-
coherent and such that β′(w) /∈ {c, c′} for every vertex w ∈ V (D′

v) and β′ can be obtained from α′
v , the

restriction of α to D′
v, by recolouring each vertex of V (D′

v) \Xv at most once. By then recolouring all

vertices of Y to c′, we obtain a (k + 1)-dicolouring β of Dv that is (V (Dv) \ (Xv \ {y}))-coherent and

such that β(w) 6= c for every vertex w ∈ V (Dv) and β can be obtained from αv, the restriction of α to

Dv, by recolouring each vertex of Dv \ (Xv \ {y}) at most once, as we wanted to prove.

Along the obtained redicolouring sequence, by induction, when a vertex x that is not in the class y is

recoloured, it is recoloured with a colour different from the colours of
⋃

x∈Xt
(Xt \ Y ). Since Y is

coloured with c, and no vertex is recoloured with c, it is recoloured with a colour different from the

colours of
⋃

x∈Xt
(Xt \ Y ). Finally, when y′ ∼(T,X ) y is recoloured, it is recoloured with c′ which is a

colour that is not appearing in Dv. This shows the last property.

Finally, this redicolouring sequence in Dv is indeed a redicolouring sequence in D because of the prop-

erty above and by Claim 40.

Repeating the process above for each child v of r, we finally obtain a redicolouring sequence from α to

some (k+1)-dicolouring β such that β(w) 6= c for all w ∈ V . Moreover, at each step, in both cases, no vertex

ofXr is recoloured, so no vertex of Xr is recoloured all along the redicolouring sequence. Also, if v and v′ are

two children of r, and x is a vertex of D that belongs to V (Dv) ∩ V (Dv′), then x also belongs Xr, implying

that x is not recoloured. Thus, every vertex that is recoloured belongs to V (Dv) for exactly one child v of r,
implying that, in the obtained redicolouring sequence, every vertex of D \Xr is recoloured at most once.

Finally, note that β is (V \Xr)-coherent because, in both cases, the obtained dicolouring βv is (V \ {Xv \
{y}})-coherent.

Lemma 42. Let D = (V,A) be an n-vertex digraph and (T,X ) be a valid D-decomposition of D = (V,A)
of width k − 1 ≥ Dw(D). For every (k + 1)-dicolouring α of D there exists a V -coherent (k + 1)-colouring

β of D such that α and β are at distance at most n2 in Dk+1(D).

Proof. Let us root T at r ∈ V (T ) arbitrarily. For a vertex t ∈ V (T ), let Tt be the subtree of T rooted at t and

let Dt = D[
⋃

v∈V (Tt)
Xv].

We will define inductively an ordering (v1, . . . , vn) on V and a sequence (α = γ0, γ1, . . . , γn = β)
of (k + 1)-dicolourings of D such that γi is Xi-coherent with Xi = {v1, . . . , vi} (set X0 = ∅) for every

0 ≤ i ≤ n and such that it is possible to go from γi to γi+1 by recolouring every vertex of Xi at most twice

and vi+1 at most once. Note that γn = β is V -coherent.

First note that γ0 is trivially X0-coherent since X0 = ∅.
Let i ≥ 0 and assume (v1, . . . , vi) and (γ1, . . . , γi) that satisfy the above properties have already been

defined. Let vi+1 ∈ V \Xi be any vertex that appears in some bag Xt such that V (Dt) \Xt ⊆ Xi (if i = 0
then t is a leaf and v1 is a baby). Note that γi|Dt

, the restriction of γi to Dt, is a (V (Dt) \ Xt)-coherent

dicolouring of Dt. Let c be any colour that does not appear in Xt coloured with γi. By Lemma 41, there exists

a (k+1)-dicolouring ξ ofDt that is (V (Dt)\Xt)-coherent and such that ξ(v) 6= c for every vertex v ∈ V (Dt)
and ξ can be reached from γi|Dt

by recolouring each vertex of V (Dt) \Xt ⊆ Xi at most once (when i = 0,

this sequence is empty). Note that the same recolouring sequence allows to go from γi to the (k+1)-colouring

γ′i (whose restriction to Dt is ξ) by recolouring each vertex of Xi at most once and so that γ′i(v) 6= c for all

v ∈ V (Dt). Then, we can go from γ′i to γi+1 by recolouring each vertex w ∈ V (Dt) such that w ∼(T,X ) vi+1

with colour c (note that all the vertices that are recoloured at this phase are in Xi except vi+1). Then, γi+1 is

Xi+1-coherent. Therefore, the induction properties hold for i+ 1.

At the end, we find the desired redicolouring sequence between α and β in which the total number of

recolourings is at most:
∑

0≤i≤n−1

(2|Xi|+ 1) =
∑

0≤i≤n−1

(2i+ 1) = n2,
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which concludes the proof.

Now the proof of Theorem 22 follows from Lemma 37 and Lemma 42.

Theorem 22. IfD = (V,A) is an n-vertex digraph with Dw(D) ≤ k−1, then diam(Dk+1(D)) ≤ 2(n2+n).

Proof. Take α and β two k-dicolourings. Let (T,X ) be a valid D-decomposition of D of width k − 1 ≥
Dw(D). By Lemma 37, there is a redicolouring sequence from α (respectively β) to a dicolouring α′ (respec-

tively β′) that is V -coherent. Moreover, there is such a redicolouring sequence of length at most n2. Then by

Lemma 42, there is a redicolouring sequence between α′ and β′ of length at most 2n. Altogether, this gives a

redicolouring sequence between α and β of length at most 2(n2 + n).
Note that you can always build a valid D-decomposition of width k− 1 ≥ Dw(D) unless k ≥ |V (D)|+1,

in which case the result is easy to prove.

8 Consequences on redicolouring planar digraphs and open questions

In this work, we generalized several evidences for Cereceda’s conjecture to digraphs. In particular, our results

give more support to Conjecture 9. One can consider the following question which, if true, would imply

Conjectures 2 and 9.

Question 43. Let k ∈ N andD be an n-vertex digraph such that k ≥ δ∗c (D)+2. Is is true that diam(Dk(D)) =
O(n2)?

Using Proposition 20, an analogue question is the following.

Question 44. Let k ∈ N andD be an n-vertex digraph such that k ≥ dtw(D)+2. Is is true that diam(Dk(D)) =
O(n2)?

The same question remains open when we replace directed treewidth by DAG-width or Kelly-width. In

every case, if true, it would give another generalisation of Theorem 7.

Note that Conjecture 9 implies Conjecture 2. We ask if the converse is true.

Question 45. Does proving Cereceda’s conjecture for undirected graphs imply its analogue in digraphs?

Finally we pose a few questions on redicolouring planar digraphs. The girth of a graph is the size of a

shortest cycle. The girth of a digraph is the girth of its underlying graph. Using Theorem 17, we know that

every result on recolouring planar graphs extends to digraphs (up to a factor two). In particular, a number of

results from [4, 10, 16, 18], that we recap in Table 2, remain true on digraphs (the table is taken from [4]).

g

k
4 5 6 7 9 ≥ 10

3 +∞ +∞ +∞ O(n6) [10] O(n2) [10] O(n) [15]

4 +∞ O(n4) [10] O(n log3 n) [18] O(n) [16] - -

5 < +∞ [4] O(n log2 n) [18] - - - -

6 O(n3) [10] O(n) [4] - - - -

≥ 7 O(n log n) [18] - - - - -

Table 2: Bound on the diameter of Ck(G) when G is a planar graph with girth at least g. The value ‘+∞’

means that there exists a graph for which Ck(G) is not connected, and the value ‘< +∞’ means that Ck(G) is

connected but no reasonable upper bound is known.
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We ask if these results can be improved for oriented planar graphs (that means, planar digraphs with no

digons). Using our results and some results of [9], we obtain bounds on the diameter of Dk(~G) when ~G is an

oriented planar graph. We recap them in Table 3.

g

k
2 3 4 5 6

3 +∞ [9] ? O(n3) Th. 12 O(n log3(n)) Cor. 14 O(n) [9]

4 ? O(n2) [9] O(n) [9] - -

5 < +∞ [9] O(n log(n)) Cor. 14 - - -

Table 3: Bound on the diameter of Dk(~G) when ~G is a oriented planar graph with girth at least g. The value

‘?’ means that we do not know whether Dk(~G) is connected.

We finally ask for the missing values in Table 3.

Question 46. Is every oriented planar graph 3-mixing?

Question 47. Let ~G be an oriented planar graph with girth(~G) ≥ 4. Is it true that ~G is 2-mixing?

A famous conjecture by Neumann-Lara (see [2]) states that every oriented planar graph has dichromatic

number at most two. As a partial result, one may explore following question which, if true, implies that

Question 46 is a consequence of Neumann-Lara’s conjecture.

Question 48. Let ~G be an oriented planar graph satisfying ~χ(G) ≤ 2. Is it true that ~G is 3-mixing?
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