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Modelling the noise emitted by turbulent jets is made difficult by their acoustic inefficiency: only
a tiny fraction of the near-field turbulent kinetic energy is propagated to the far field as acoustic
waves. As a result, jet-noise models must accurately capture this small, acoustically efficient
component hidden among comparatively inefficient fluctuations. In this paper, we identify this
acoustically efficient near-field source from large-eddy-simulation data and use it to inform a
predictive model. Our approach uses the resolvent framework, in which the source takes the form
of nonlinear fluctuation terms that act as a forcing on the linearized Navier-Stokes equations.
First, we identify the forcing that, when acted on by the resolvent operator, produces the leading
spectral proper orthogonal decomposition modes in the acoustic field for a Mach 0.4 jet. Second,
the radiating components of this forcing are isolated by retaining only portions with a supersonic
phase speed. This component makes up less than 0.05% of the total forcing energy but generates
most of the acoustic response, especially at peak (downstream) radiation angles. Finally, we
propose an empirical model for the identified acoustically efficient forcing components. The
model is tested at other Mach numbers and flight-stream conditions and predicts noise within 2
dB accuracy for a range of frequencies, downstream angles, and flight conditions.

Key words: ...

1. Introduction
Jet noise is one of the most studied problems in aeroacoustics, thanks largely to Lighthill’s

theoretical framework that allows a connection to be made between the stochastic, nonlinear,
vortical motions of a turbulent jet and the irrotational, linear fluctuations of the resulting acoustic
field (Lighthill 1952). Such a framework is of interest given that there is no rigorous means
by which to decompose a turbulent field into acoustic and non-acoustic components, and,
therefore, no rigorous means by which to uniquely define the source of sound. Lighthill’s
approach—an exact rearrangement of the nonlinear Navier-Stokes system into an inhomogeneous
equation comprising a linear wave operator driven by a nonlinear source term—was the first of
many such reorganisations of the Navier-Stokes equations (Curle 1955; Ffowcs Williams 1963;
Powell 1964; Phillips 1960; Lilley 1974; Howe 1975; Doak 1995; Goldstein 2003). The earliest
acoustic analogies do not consider mean-flow refraction effects (Lighthill 1952; Curle 1955;
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Ffowcs Williams 1963; Powell 1964), while the succeeding analogies consider the effect of the
mean flow on sound propagation at different levels varying from a uniform mean-flow assumption
in locally parallel framework in Phillips (1960) and Lilley (1974) to a non-uniform mean flow
in Howe (1975) and Doak (1995), and finally to incorporating into the acoustic propagator the
linearised Navier-Stokes equations that are written for a specific set of variables in Goldstein
(2003).

In parallel to these developments in aeroacoustics, similar concepts were being investigated
for the study of turbulence. Landahl (1967), for instance, proposed such a framework for the
description of wall pressure fluctuations beneath a wall-bounded turbulent shear flow. More
recently, the same underlying idea has been leveraged for the study of coherent structures in
incompressible turbulent channel flow (McKeon & Sharma 2010; Hwang & Cossu 2010). The
novelty of these recent studies derives from: (1) a discretisation of the inhomogeneous system;
(2) a casting of the problem in frequency space; and, (3) a leveraging of the tools of linear
algebra to explore the link, via the linear resolvent operator, between nonlinear interactions
and the state dynamics they drive. With these three steps, the inhomogeneous system is cast in a
matrix input-output form, and the relationship between ‘forcing’ and ‘response’—in the context of
aeroacoustics, ‘source’ and ‘sound’—can be explored by considering the properties of the matrix
transfer function by which they are connected: singular-value decomposition of the resolvent
matrix operator can reveal the physical mechanisms by which the nonlinear forcing drives the
response or by which the nonlinear source drives the acoustic field.

This framework has substantially enhanced our understanding of coherent structures in
turbulent shear flow. Indeed, it provides a long-sought theoretical grounding for their definition
(Towne et al. 2018). It has been used to study coherent structures in jets (Garnaud et al. 2013;
Schmidt et al. 2018; Lesshafft et al. 2019; Nogueira et al. 2019; Pickering et al. 2021a) and many
other flows (McKeon & Sharma 2010; Beneddine et al. 2016; Yeh & Taira 2019; Nogueira et al.
2021; Morra et al. 2021). In the context of jets, these coherent structures are most-often referred
to as wavepackets (Crighton 1975; Jordan & Colonius 2013; Cavalieri et al. 2019).

The study of coherent structures has also been aided by data-processing and decomposition
techniques, in particular by proper orthogonal decomposition (POD) in its numerous forms
(Lumley 1970; Picard & Delville 2000; Borée 2003; Jung et al. 2004; Tinney et al. 2008; Towne
et al. 2018). A recent study by Karban et al. (2022a) shows how resolvent analysis and extended
spectral POD (Borée 2003) may be combined to probe turbulent shear flows in new and interesting
ways. The study we report here extends this work to the jet-noise problem.

The extension is based on the fact that the resolvent framework can be tailored to choose what
is considered as input (forcing) and output (response). The choice may involve a localisation
in space and/or restriction to a limited number of dependent variables; for example, one may
inquire as to the nature of the nonlinear interactions in a turbulent boundary layer that drive shear-
stress fluctuations at the wall (Karban et al. 2022a). The resolvent methodology may be similarly
adapted to the jet-noise problem by restricting the forcing term to the region of vortical motion,
and the response to the irrotational acoustic field (Jeun et al. 2016). The resolvent framework
thus resembles an acoustic analogy (see the discussion in Karban et al. (2020)); the mean-flow-
based resolvent operator governs the acoustic propagation including refraction due to the mean
shear as well as any linear amplification mechanisms associated with the mean flow. The matrix
formulation of the resolvent framework allows the tools of linear algebra to be used. For instance,
singular value decomposition of the acoustically tailored resolvent operator can give insight into
the mechanisms by which the nonlinear flow interactions drive acoustic waves. This formulation
of the sound generation and radiation problem can be considered a complementary approach to
the classic acoustic-analogy implementations (Chen & Towne 2021).

However, even with this rearrangement of the problem and a study of the properties of the
matrix transfer function, the problem of clearly identifying the acoustically important piece of the
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turbulent flow remains a challenge. This is due, on one hand, to the complex, high-rank structure of
the nonlinear forcing term, and, on the other, to the formidable acoustic inefficiency of unbounded
turbulence: the ratio of acoustic to turbulence fluctuation energy is of order 𝑂 (10−3) as will be
shown later. These problems make it extremely difficult to craft a robust model for the acoustic
source, and it is this that motivates the work we undertake. Our goal is to identify, using extensive
flow data provided by large-eddy simulation, the piece of the flow that drives the acoustic field
and to then propose a model for this piece of the flow that is capable of capturing effects of
operating condition (jet Mach number) and forward flight.

There are many attempts in the literature to model the source of jet noise. A number of them
are based on Goldstein’s generalised acoustic analogy (Goldstein 2003). The source terms in this
configuration are defined as spatio-temporal correlations of nonlinear terms in the perturbation
equations. Some source models in this framework are presented for various jet configurations in
Goldstein & Leib (2008), Karabasov et al. (2010), Leib & Goldstein (2011), Afsar et al. (2019a),
Afsar et al. (2019b), Gryazev et al. (2022) among others.

Another group of studies to predict jet noise are called stochastic methods, where some
synthetic velocity fluctuations which satisfy two-point statistics of the flow are specified, and
the acoustic field is then computed either using acoustic analogies or LEE. One branch of such
stochastic approaches are called ‘stochastic noise generation and radiation’ methods, first applied
to the jet noise problem by Bechara et al. (1994), and then modified by Billson et al. (2004)
and Lafitte et al. (2011). In this method, a synthetic velocity field is obtained via summation of
randomly distributed spatial Fourier modes. The energy content is defined using the von Karman-
Pao energy spectrum. The resulting velocity field is convected using the mean flow, and finally,
the acoustic field is predicted by applying Lighthill’s analogy on this field. Another stochastic
approach used for jet-noise prediction is called the ‘random particle mesh’ (RPM) method (Siefert
& Ewert 2008), where a synthetic stream function is generated by applying solenoidal filters on
random signals, which then is used to compute the source terms forcing LEE to obtain pressure
fluctuations.

As an alternative to these works, a frequency-domain model based on resolvent analysis was
introduced by Towne et al. (2017). They provided a model function tuned using the two-point
forcing correlations in the frequency domain obtained from large-eddy simulation (LES) data.
An empirical relation using turbulent kinetic energy and dissipation rate is then provided to
replace the tuning based on LES data. In another study, Pickering et al. (2021b) predicted using
acoustic-field data from LES how the forcing projects onto the resolvent forcing modes. They
adopted the resolvent-based estimation method given in Towne et al. (2020), but instead of the
forcing statistics, they predicted the projection coefficients and then provided an empirical model
for them. This way, they leveraged the linear mechanisms embedded in the resolvent operator
associated with noise generation and model only the remaining nonlinearities coming from the
forcing. Other studies have used a wavepacket source model for the near-field velocity correlations
paired with Lighthill’s analogy to predict jet noise (Huerre & Crighton 1983; Cavalieri et al. 2011,
2012; Cavalieri & Agarwal 2014; Maia et al. 2019; da Silva et al. 2019).

In this study, we use a compressible LES database of turbulent jets at different Mach numbers
and operating conditions to develop a source model for jet noise. A numerical high-fidelity
database is required since the analysis involves using both the state and forcing data, and the latter
is not accessible with sufficient spatial and temporal resolution via state-of-the-art measurement
techniques. Forcing data within the resolvent framework has been used to predict flow structures in
previous studies where data was provided by direct numerical simulation (DNS) for low-Renyolds-
number incompressible turbulent flows (Nogueira et al. 2021; Morra et al. 2021; Karban et al.
2022a). We extend its application to acoustic prediction using LES in high-Reynolds-number jets.
We follow a strategy similar to Towne et al. (2017) to propose a data-driven source model that is
used to predict noise generation in subsonic jets, but instead of modelling the two-point forcing



4 U. Karban et al.

correlations directly, we first isolate the acoustically efficient structures. We use the resolvent-
based extended spectral proper orthogonal decomposition (RESPOD) proposed by Towne et al.
(2015) and further developed by Karban et al. (2022a) to perform a preliminary filtering of the
resolvent forcing data. This filtering extracts the forcing subspace correlated with the axisymmetric
acoustic field radiated to low polar angles. The subspace so obtained contains silent-but-correlated
and sound-producing components, and a second filtering is necessary to extract the latter. The one-
to-one correspondence between the SPOD modes of the acoustic field and this forcing subspace
is used to show that the dominant noise generating forcing is the acoustically matched part
(Ffowcs Williams 1963; Crighton 1975; Freund 2001; Cabana et al. 2008; Sinayoko et al. 2011a;
Cavalieri et al. 2019) of the subspace. Different to the existing source models in the literature,
we propose an empirical model using the sound-generating part of the field on the basis of the
acoustically matched piece of the forcing, and adapt it to capture the effects of operating condition
and forward flight. The advantage of the proposed strategy is that it leverages the versatility of the
resolvent framework similar to Pickering et al. (2021b) to systematically identify the dominant
noise-generation mechanisms. Different from their study, here, we start by analysing the forcing
data to identify the noise-generating part and then drive the resolvent operator with this refined
forcing to predict the acoustic field. Given the inefficiency of turbulence to generate noise, such
an identification significantly contributes to the robustness of the final empirical model, as it
retains only the essential information from the forcing data. In summary, the new achievements
of the present work are (i) performing resolvent-based prediction using forcing obtained from an
LES database for high-Reynolds-number turbulent jet, (ii) collective use of linear analysis tools
as a novel strategy for noise-source identification, and (iii) developing an empirical source model,
which can account for flight stream effects, based on the acoustically-matched part of the forcing.

The paper is organised as follows: the mathematical framework for resolvent analysis and
RESPOD is revisited in §2. The details about the numerical database and the resolvent-analysis
tool are given in §3. The process to identify forcing components that generate downstream jet
noise is explained in §4. Based on these acoustically efficient forcing components, an empirical
forcing model is presented in §5, which is then adapted to include Mach-number and flight-stream
effects. Concluding remarks are provided in §6.

2. Modelling framework
The resolvent framework is obtained by linearising the Navier-Stokes (N-S) equations and

arranging them in input-output, or forcing-response, form in the frequency domain, where the
input is nonlinear fluctuations and the output is the state. In the present case, we limit the response
to be the acoustic pressure and aim to extract the forcing associated with this target response. We
achieve this using resolvent-based extended spectral proper orthogonal decomposition (RESPOD)
(Karban et al. 2022a). In this section, we briefly revisit the resolvent framework and the RESPOD
approach.

2.1. Governing equations in resolvent form
The compressible N-S equations are given in compact form as

𝜕𝑡𝒒 = N(𝒒), (2.1)

where N is the N-S operator, 𝒒 = [𝜈, 𝑢𝑥 , 𝑢𝑟 , 𝑢𝜃 , 𝑝]⊤ is the state vector, 𝜈 is specific volume
and 𝑝 is pressure, 𝒖 = [𝑢𝑥 , 𝑢𝑟 , 𝑢𝜃 ]⊤ is the velocity vector in cylindrical coordinates, and 𝑥,
𝑟 and 𝜃 refer, respectively, to the streamwise, radial and azimuthal directions. All variables are
non-dimensionalised by the ambient speed of sound, 𝑐∞, the density, 𝜌∞, and the nozzle diameter,
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𝐷. We consider a discretised system in space, for which linearisation around the mean, 𝒒, yields

𝜕𝑡𝒒
′ − A𝒒′ = 𝒇 , (2.2)

where A = 𝜕𝑞N|𝒒 is the linear operator obtained from the Jacobian of N and 𝒇 contains all
remaining nonlinear terms, which are referred to henceforth as the forcing terms. Equation (2.2)
is Fourier transformed and rearranged to obtain

�̂� = R 𝒇 , (2.3)

where the hat indicates Fourier-transformed quantities and

R = (𝑖𝜔I − A)−1 (2.4)

is the resolvent operator. The resolvent operator can be modified to limit the response to prescribed
measurements via a linear transformation of the state using a matrix, C,

�̂� = C �̂�, (2.5)

such that the input-output relation between forcing, 𝒇 , and measurement, �̂�, is given by,

�̂� = CR 𝒇 . (2.6)

The measurement matrix C can be space-, variable- and even frequency-dependent, although
a frequency-dependent C would imply convoluting the state in the time domain to measure 𝒚.
Throughout this paper, we will focus on the pressure in the acoustic field as our measured quantity;
therefore C is an 𝑁𝐴 × (𝑁𝑉 × 𝑁) matrix, that is one in the elements that correspond to pressure
in the acoustic field and zero for the rest. Here, 𝑁𝐴, and 𝑁 denote the number of discrete points
in the acoustic field and the full domain, respectively, and 𝑁𝑉 denotes the number of variables,
e.g., 𝑁𝑉 = 5 for the compressible N-S equations. Note that spatial discretisation of a system with
𝑁𝑉 variables leads to a state vector with 𝑁𝑉 × 𝑁 elements.

It is also possible to impose restrictions on the forcing in (2.6) via a control matrix, B, as

�̂�𝐵 = R̃ 𝒇 , (2.7)

where R̃ ≜ CRB denotes the modified resolvent operator. Note that, �̂�𝐵 ≠ �̂� in general. B will
later be used to identify irrelevant forcing components for the jet-noise problem, i.e., those terms
which, when suppressed by B, do not lead to changes in the acoustic field, such that �̂�𝐵 ≈ �̂�.

2.2. Resolvent-based extended spectral proper orthogonal decomposition
One of the goals of this study, and indeed one of the broader goals of jet-noise modelling, is to

obtain simplified representations or models of the nonlinear interactions that underpin jet noise.
One such approach is to search for a useful rank reduction. A known trait of turbulent jets and their
sound is the marked difference in complexity between the turbulence and acoustic fields. This
difference implies that, given a discretised turbulent jet database, it may be possible to represent
the acoustic field using a compact basis with a small number of vectors, yielding a low-rank
system, while a substantially larger basis will be required to define the turbulent fluctuations, and
thus the forcing, in the near field, yielding a high-rank system. The fact that one can accurately
calculate the acoustic field using (2.7) (or alternatively, using an acoustic analogy) assuming full
access to the source implies that the resolvent operator (or the Green’s function in an acoustic
analogy) filters the silent structures from the high-rank turbulent source region leading to a low-
rank acoustic field. A central idea underlying the approach we follow here is as follows: given
the linear relation between the forcing and the target response in (2.6), the low-rank structure of
the acoustic field suggests the existence of a low-rank, acoustically active forcing subspace. It is
necessary to identify this subspace, because it is there that modelling work can be done.
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There exist several ways to identify the forcing associated with a given response. A detailed
analysis was provided in Karban et al. (2022a), where a method referred to as ‘Resolvent-based
Extended Spectral Proper Orthogonal Decomposition’ (RESPOD) was used to achieve the above-
mentioned identification. RESPOD is based on the extended proper orthogonal decomposition
presented by Borée (2003) and is related to spectral proper orthogonal decomposition (SPOD)
(Lumley 1970; Picard & Delville 2000; Towne et al. 2018). The aim in RESPOD is to find a
forcing mode, 𝝌 (𝑝) , that is correlated with the 𝑝th SPOD mode, 𝝍 (𝑝) , of the measured response,
�̂�. It was first presented in Towne et al. (2015) and later discussed in Karban et al. (2022a) to
identify the forcing structures that generate wall-attached eddies. Here, we briefly review the
method highlighting how it can be adapted to find the low-rank forcing subspace associated with
sound generation.

For a given ensemble of realizations Ŷ = [ �̂�1 · · · �̂�𝑃] of an 𝑁 dimensional discretised system,
where 𝑃 is the number of Fourier realizations, SPOD involves eigen-decomposition of the CSD
matrix Ŝ ≜ Ŷ Ŷ 𝐻 ,

Ŝ = �̂��̂��̂�
𝐻
, (2.8)

where the eigenvectors, �̂� , and eigenvalues, �̂�, of Ŝ are the SPOD modes and gains, respectively.
An alternative way to obtain the SPOD modes, as shown in Towne et al. (2018), is to perform the
eigendecomposition

Ŷ𝐻WŶ = �̂��̂��̂�
𝐻
, (2.9)

where W is a positive-definite weight matrix, and �̂� is a matrix containing the eigenmodes of
Ŷ 𝐻WŶ . The eigenmodes, �̂� and �̂�, are related as

�̂� = Ŷ�̂��̂�−1/2
, (2.10)

or alternatively as

�̂� = Ŷ𝐻W�̂��̂�−1/2
. (2.11)

Equation (2.10) indicates that it is possible to obtain the SPOD modes as a linear combination of
the realizations. Writing (2.7) with B = I for the ensemble of realizations as

Ŷ = R̃F̂ , (2.12)

where F̂ ≜ [ 𝒇1 · · · 𝒇𝑃] is the matrix of the forcing realisations, and multiplying (2.12) by �̂��̂�−1/2

yields

�̂� = R̃F̂�̂��̂�−1/2
. (2.13)

Equation (2.13) can be written for the 𝑝th SPOD mode by extracting the corresponding columns
in the matrices, �̂� , �̂� and �̂�,

�̂�
(𝑝)

= R̃F̂�̂� (𝑝)𝜆 (𝑝) −1/2
, (2.14)

where �̂� (𝑝) denotes the 𝑝th column in �̂� and 𝜆 (𝑝) denotes the 𝑝th diagonal element in �̂�. We then
define the RESPOD mode of the forcing, �̂� (𝑝) , as

�̂� (𝑝) ≜ F̂�̂� (𝑝)𝜆 (𝑝) −1/2
. (2.15)

Following Borée (2003), it can be shown that the RESPOD mode, 𝝌 (𝑝) , contains all the forcing
components correlated with the SPOD mode, 𝝍 (𝑝) . Furthermore, (2.14) indicates that the two
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modes are connected via the resolvent operator as

�̂�
(𝑝)

= R̃ �̂� (𝑝) . (2.16)

We explain in §3.2 how to calculate (2.16). The ability to identify a RESPOD mode of forcing
with each SPOD mode of the response implies, for the jet-noise problem, that one can use this
approach to identify the low-rank forcing subspace that is correlated with the low-rank acoustic
field, and which, furthermore, generates the low-rank acoustic field when applied to the resolvent
operator. Note that the above analysis could be applied when using an acoustic analogy as
well. A Green’s function that is used to solve the acoustic propagation problem in an acoustic
analogy establishes a linear relation between the source and the acoustic field, and hence, can be
described by a matrix left-multiplying the source for the discretised system, which reduces it to
an input-output form as shown above (Abreu et al. 2019).

We will use this approach to obtain a low-rank representation of the forcing that is responsible
for most of the acoustic energy radiated by a turbulent jet. The advantage of identifying a low-rank
forcing is twofold: (i) one needs to model only that piece in the forcing; (ii) not dealing with
the entire CSD matrix of the forcing is convenient in terms of computing the response, which
would otherwise require multiplication of the resolvent operator by an 𝑁 × 𝑁 matrix, where 𝑁 is
generally very large. Given the number of realisations, 𝑃, and the degree of freedom, 𝑁 , which
usually satisfy 𝑃 ≪ 𝑁 , this approach provides a computationally inexpensive means of obtaining
a low-rank system.

3. Numerical databases and tools
The numerical analysis in this study is conducted in two stages: (i) identification of low-rank

forcing by post-processing a large eddy simulation (LES) database, and (ii) performing acoustic
predictions by computing the response of the resolvent operator driven by the identified forcing
modes. In the following subsections, we provide details about the LES database and the resolvent
analysis, respectively.

3.1. Large eddy simulation database
The numerical database used in this study to develop an empirical forcing model consists of

LES of four subsonic jets, one at jet Mach number, 𝑀 𝑗 ≜ 𝑈 𝑗/𝑐 𝑗 = 0.4, with no flight effect and
others at 𝑀 𝑗 = 0.9 with or without flight effect. We use three other LES databases at 𝑀 𝑗 = 0.7
with or without flight effect and at 𝑀 𝑗 = 0.8 without flight effect to test the model. The LES
was conducted using the unstructured flow solver ‘Charles’ (Brès et al. 2017). In all cases, the
jets are isothermal and ideally expanded. Two of the cases at 𝑀 𝑗 = 0.9 contain a flight stream
at 𝑀∞ = 0.15 and 0.3, respectively. All of the jets are turbulent thanks to a synthetic forcing
applied inside the nozzle, generating a fully-turbulent boundary layer at the jet exit (Brès et al.
2018; Maia et al. 2022). Other parameters related to each simulation are tabulated in Table 1,
where 𝑅𝑒 = 𝜌 𝑗𝑈 𝑗𝐷/𝜇 𝑗 denotes the Reynolds number, 𝜇 denotes the dynamic viscosity, 𝐷 is
nozzle diameter, 𝑈, 𝑃 and 𝑇 denote the mean streamwise velocity, pressure and temperature,
respectively, c.v. stands for control volume, 𝑑𝑡 = 𝑑𝑡𝑐∞/𝐷 and 𝑡sim = 𝑡sim𝑐∞/𝐷 are time step and
total time of the simulation in acoustic units, where 𝑡 is the physical time, and Δ𝑡 is the time step
in acoustic units used for data storage. The subscripts, 𝑗 , ∞ and 0 denote jet exit, free-stream and
stagnation conditions, respectively. Throughout this paper, velocities are non-dimensionalized
with the ambient speed of sound, 𝑐∞, lengths with nozzle diameter, 𝐷, pressure with 𝜌∞𝑐2

∞/2,
and time with 𝑐∞/𝐷. Frequencies are reported in Strouhal number, 𝑆𝑡 = 𝑓 𝐷/𝑈 𝑗 , where 𝑓 is the
dimensional frequency.

The axisymmetric nature of jets renders possible decomposing the flow into azimuthal Fourier
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Figure 1. Snapshots of the first azimuthal Fourier mode of pressure (grey) and temperature (color) for
the cases M04Mc00 (top-left), M09Mc00 (top-right), M09Mc15 (bottom-left), M09Mc30 (bottom-right).
Color-scale for pressure linearly varies between [−6 × 10−3, 6 × 10−3] for all cases. Color-scale for
temperature is given as [1, 1.01], [1, 1.03], [1, 1.02], [1, 1.02] for the abovementioned four cases,
respectively.

modes and analysing them separately. To facilitate azimuthal Fourier decomposition, for each case,
the LES data is interpolated onto a cylindrical grid with mesh size (𝑁𝑥 , 𝑁𝑟 , 𝑁𝜃 ) = (656, 138, 128),
where 𝑁𝑥 , 𝑁𝑟 and 𝑁𝜃 are the number of grid points in streamwise, radial and azimuthal directions.
The cylindrical grid extends in 𝑥, 𝑟, 𝜃 ∈ [0, 30] × [0, 6] × [0, 2𝜋].

The linearised N-S equations in the time domain for the 𝑚th azimuthal Fourier mode are given
as

𝜕𝑡𝒒
′ (𝑚) − A(𝑚)𝒒′ (𝑚)

= 𝒇 (𝑚) , (3.1)

where the superscript (·) denotes the azimuthal mode number. We limit our analysis to the acoustic
field in the first azimuthal mode, 𝑚 = 0, only. In the interest of developing modelling approaches,
in a step-by-step methodology, it is common in the literature to focus first on this component,
as it is clearer that it corresponds to coherent structures (Sandham & Salgado 2008; Freund &
Colonius 2009; Cavalieri et al. 2012, 2013; Jordan & Colonius 2013). Besides this strategical
reason, the mode 𝑚 = 0 is the dominant mode for the downstream noise where jet noise has
its peak as stated by Cavalieri et al. (2012) and many other studies. These reasons makes the
axisymmetric mode the natural choice to start modelling jet noise.

In figure 1, snapshots of pressure and temperature for the first azimuthal Fourier mode, 𝑚 = 0,
are shown for the four cases used for tuning of the empirical model. Temperature is shown
as an indicator of turbulent fluctuations in the shear layer. Pressure is saturated to show the
acoustic waves propagating from the jets. It is seen that the case M09Mc00 (see table 1 for case
abbreviations) has the strongest pressure gradients, and thus, highest noise level. Existence of
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Table 1. Details of the LES database. The first four and the last three cases are used to tune and test the
empirical model, respectively.

case 𝑅𝑒 𝑀 𝑗 𝑀∞ 𝑃0/𝑃∞ 𝑇0/𝑇∞ # of c.v. 𝑑𝑡 Δ𝑡 𝑡sim

M04Mc00 0.45 × 106 0.4 0.0 1.12 1.03 16 × 106 1 × 10−3 0.1 3000
M09Mc00 1.01 × 106 0.9 0.0 1.69 1.16 16 × 106 1 × 10−3 0.1 2000
M09Mc15 1.01 × 106 0.9 0.15 1.69 1.16 22 × 106 1 × 10−3 0.1 2000
M09Mc30 1.01 × 106 0.9 0.3 1.69 1.16 22 × 106 1 × 10−3 0.1 2000

M07Mc00 0.79 × 106 0.7 0.0 1.39 1.10 22 × 106 1 × 10−3 0.1 2000
M07Mc15 0.79 × 106 0.7 0.0 1.39 1.10 22 × 106 1 × 10−3 0.1 2000
M08Mc00 0.90 × 106 0.8 0.15 1.52 1.13 22 × 106 1 × 10−3 0.1 2000

the flight stream suppresses both the turbulent fluctuations and the noise generated by the jet, at
a level increasing with the flight velocity. The flow fields for the remaining three cases are not
shown for brevity. All seven cases are validated against experimental data. A detailed validation
can be found in Brès et al. (2018) for the cases M04Mc00 and M09Mc00 and in Maia et al.
(2022) for the remaining cases. The M09Mc00 case is publicly available as part of a database for
reduced-complexity modelling of fluid flows (Towne et al. 2022).

The case M04Mc00 contains both the state and the forcing data while others contain only the
state data. The forcing data, once the state data is stored, is obtained via the procedure devised in
Towne (2016) and summarised in algorithm 1. The extraction of the forcing data is restricted to
the M04Mc00 case, as aliasing effect in the database (see Appendix A and (Karban et al. 2022b)
for a detailed discussion) increase with Mach number, rendering resolvent-based prediction using
forcing data unreliable for the remaining flow cases. Both the state and forcing data are Fourier

Algorithm 1 Computing the forcing
1: Calculate the state 𝒒 through LES with 𝑑𝑡 = 0.001 and store it at every 200th time step.
2: Calculate and save the mean flow �̄�.
3: Calculate and save G( �̄�), where G is the nonlinear LES operator. Note that G is different

from the N-S operator, N , as the sub-grid scales are filtered in G.
4: For each snapshot, calculate 𝜕𝒒/𝜕𝑡 = G(𝒒).
5: For each snapshot, calculate A𝒒′ ≈ G(�̄�+𝜖 𝒒′ )−G(�̄�)

𝜖
, where 𝜖 is a sufficiently small number.

6: Interpolate 𝒒, 𝜕𝒒/𝜕𝑡, and A𝒒′ data onto the cylindrical grid.
7: Compute the forcing in the time domain using (2.2).

transformed using blocks containing 512 snapshots in time with an overlap ratio of 75%. To
minimize spectral leakage, we use an exponential windowing function (Martini et al. 2019),

𝑊 (𝑡) = 𝑒𝑛
(
4− 𝑇

𝑡 (𝑇−𝑡 )

)
, (3.2)

with 𝑛 = 1 and window size 𝑇 = 512Δ𝑡. The correction discussed in Martini et al. (2019), which
is necessary to satisfy (2.3) when a windowing function is applied during the temporal Fourier
transform (FT), is implemented while computing the forcing terms in the frequency domain.
The correction is shown in Nogueira et al. (2021) to significantly improve the convergence of
resolvent-based prediction of the response via (2.3).
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3.2. Resolvent analysis
Resolvent-based prediction of the response using the forcing data is achieved via a custom

resolvent analysis code (Bugeat et al. 2019). The code uses the finite-volume method to solve the
linearised N-S equations decomposed into azimuthal Fourier modes. The input-output relation in
(2.3) is written for a given azimuthal mode, 𝑚, as

�̂� (𝑚) = R (𝑚) 𝒇 (𝑚) , (3.3)

where R (𝑚) ≜ (𝑖𝜔I−A(𝑚) )−1. In practice, the response, �̂� (𝑚) , to a given forcing 𝒇 (𝑚) is computed
by solving the linear system

L(𝑚) �̂� (𝑚) = 𝒇 (𝑚) , (3.4)

where L(𝑚) = R (𝑚) −1
= (𝑖𝜔I −A(𝑚) ) is a sparse linear operator. The resolvent code solves (3.4)

via LU decomposition using the PETSc library (Balay et al. 1997). Once the LU decomposition
is performed, (3.4) can be solved efficiently for numerous forcing vectors. This allowed us to
calculate at once the responses to different Fourier realisations of the forcing, which then are used
to compute the power spectral density (PSD) of the resulting acoustic field via Welch averaging.
When calculating the response of the modified resolvent operator to a RESPOD forcing mode as
in (2.16), we simply replaced the vector on the right-hand side of (3.4) with B �̂� (𝑝) .

In all computations, a sponge zone is placed within 𝑥/𝐷 = [20, 30] and 𝑟/𝐷 = [6, 12] at
the downstream and outer ends of the domain, respectively, to avoid spurious reflections. The
domain is extruded to 12𝐷 in the radial direction to accommodate the top sponge region. A single
damping function of the form

1 − 1 − 𝑒𝜅
(𝜂−𝜂𝑠 )2

(𝜂𝑠−𝜂𝑚𝑎𝑥 )2

1 − 𝑒𝜅 (3.5)

is used to damp fluctuations in both 𝑥 and 𝑟 directions, where 𝜅 = 4, 𝜂 denotes either the 𝑥 or
𝑟 coordinate, 𝜂𝑠 denotes the beginning of the sponge zone and 𝜂𝑚𝑎𝑥 denotes the domain end
position. Further details can be found in Bugeat et al. (2019).

The original code was written based on conservative variables, while the LES forcing database
was generated using the primitive-like variable set, 𝒒 = [𝜈, 𝒖, 𝑝], as discussed in §2.1, yielding
a compatibility issue. To overcome this issue, a correction derived by Karban et al. (2020) is
implemented.

4. Identification of the acoustically efficient forcing components
The goal of this study is to extract acoustically relevant forcing components that underpin noise-

generation mechanisms in subsonic jets and to propose an empirical model for these components.
Identification of the noise-generating part of the forcing prior to empirical modelling is crucial
for the model to yield robust acoustic predictions. To achieve this, we proceed as follows. Using
the database M04Mc00, which contains both the state, 𝒒, and the forcing, 𝒇 , we first conduct the
analysis outlined in §2 based on RESPOD to identify the acoustically active forcing components.
We limit the study to mechanisms associated with noise generation at low polar angles, which
we refer to as downstream noise. We then discuss how to further decompose the low-rank forcing
associated with the acoustic field to extract the part which satisfies the acoustic matching criterion
(Ffowcs Williams 1963; Crighton 1975).

4.1. Masking the forcing vector
Before performing a dedicated analysis to obtain a low-rank forcing model, we first reduce the
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Figure 2. PSD of pressure predicted using resolvent analysis with masking applied in space (top) and in
variables (bottom) in comparison to the LES data at 𝑟 = 5𝐷 for the case M04Mc00 at 𝑆𝑡 = 0.6.

number of the forcing terms to model. This is achieved by applying spatial and componentwise
masking in the forcing data to observe the effect of the masked regions/components on noise
generation. This masking involves zeroing certain parts of the forcing vector using the matrix
B. Figure 2 shows the result of different masks in terms of the PSD of the acoustic pressure at
𝑆𝑡 = 0.6. Masking the forcing beyond 𝑟 > 2𝐷 or 𝑟 > 4𝐷 yields nearly identical results in the
entire flow domain. Masking beyond 𝑟 > 1.5𝐷 also yields nearly identical noise fields in the
downstream region, 𝑥 > 6𝐷, while a slight discrepancy is observed in the region 𝑥/𝐷 ∈ [3, 6].
The turbulent regions of different jet configurations shown in figure 1 suggest that the jet spreading
rate, which determines the forcing region, is similar in the cases M04Mc00 and M09Mc00 while
it is reduced for the coflow cases. Given these observations, the 𝑟 < 2𝐷 limit defined for the
M04Mc00 case is considered applicable for the remaining cases as well. We therefore limit the
forcing to the region 𝑟 < 2𝐷 for the rest of the analysis.

Componentwise masking of the forcing shows that the components 𝑓𝜈 and 𝑓𝑝 , which correspond
to the mass and energy equations, respectively, have negligible contribution to the acoustic
field. Masking the component 𝑓𝑢𝑟 , which is the forcing associated with the radial momentum
equation, causes significant reduction in the sideline noise while not affecting the acoustic field
in the downstream region. On the other hand, masking the component 𝑓𝑢𝑥

, which is the forcing
associated with the streamwise momentum, causes significant reduction in the downstream noise
while having limited effect on the sideline noise. These results indicate that the forcing term
𝑓𝑢𝑥

in the region 𝑟 < 2𝐷 is solely responsible for downstream noise generation, consistent with
the observation of Freund (2001) using Lighthill’s analogy. In what follows, focusing on the
downstream noise generation only, we aim to identify the acoustically active subspace associated
with this single forcing component.

4.2. Applying RESPOD to obtain low-rank forcing
We now aim to obtain a low-rank representation of the subspace of the forcing associated with

the most-energetic components of the acoustic field. To achieve this, we first compute the SPOD



12 U. Karban et al.

Figure 3. SPOD eigenvalues of the pressure in the acoustic field (top) and streamwise forcing, 𝑓𝑢𝑥
, in the

near field (bottom) for the case M04Mc00 at 𝑆𝑡 = 0.6.

modes of the acoustic field, and we then use RESPOD to extract the associated forcing modes, as
described in §2.2. In figure 3, the SPOD eigenvalues of the pressure in the downstream acoustic
field, defined as 𝑥/𝐷, 𝑟/𝐷 ∈ [6, 30] × [4, 6], and those of the forcing term 𝑓𝑢𝑥

in the turbulent
region, defined as 𝑥/𝐷, 𝑟/𝐷 ∈ [0, 30] × [0, 2], are shown for 𝑆𝑡 = 0.6. For the acoustic field, the
leading SPOD eigenvalue corresponds to more than 75% of the total acoustic energy. The sum
of the first five SPOD eigenvalues corresponds to 99% of the total acoustic energy, indicating a
low-rank organisation in the acoustic field. For the forcing in the near field, on the other hand,
the leading SPOD mode contains less than 6% of the total energy in 𝑓𝑢𝑥

. Around one hundred
modes are required to capture 90% of the total forcing energy, indicating an extremely high-rank
structure. As discussed earlier, this difference between the near-field turbulence forcing and the
acoustic field is the crux of the jet-noise problem, which we aim to overcome by educing the
small portion of the forcing responsible for the acoustic field.

Using RESPOD, we extract from this high-rank forcing data a low-rank subspace that is
correlated with the low-rank pressure structures observed in the acoustic field. In figure 4, we
show the leading SPOD mode of pressure in the acoustic field and the associated RESPOD mode
of the forcing in the near field, together with the energy distribution of the first twenty RESPOD
forcing modes. The leading SPOD mode takes the form of an acoustic wave propagating at
some angle, while the associated RESPOD forcing mode contains a disorganised structure, which
may imply underconvergence in the forcing mode, despite the very long time-series used for
the analysis. The first RESPOD mode contains less than 0.8% of the total forcing energy, but
it is associated with the leading SPOD mode of the acoustic field, corresponding to 75% of
the total noise in the downstream region. This result shows the importance of applying such
an identification prior to any modelling effort. Without this extraction of the low-rank forcing
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Figure 4. Optimal SPOD mode of acoustic pressure and the associated RESPOD mode of the forcing (top)
together with the energy distribution in the first twenty RESPOD modes of the forcing (bottom) for the case
M04Mc00 at 𝑆𝑡 = 0.6. The acoustic and forcing fields in the top plot are denoted by the black and green
dashed boxes, respectively.

structure, a fitting function optimised using the forcing data will be affected by the existence of
energetic structures that do not significantly contribute to sound generation.

No smooth trend is observed in the energy of the first twenty RESPOD forcing modes, contrary
the SPOD modes in the acoustic field. As discussed in Karban et al. (2022a), RESPOD does
not impose a strict filtering on the forcing to extract the active structures that actually drive the
acoustic field, but finds the correlated part which includes silent-but-correlated structures. Lack
of a smooth trend in the energy of the RESPOD forcing modes implies underconvergence of
these modes. Given that the active part in the RESPOD forcing modes are linearly related to
the SPOD modes of the acoustic field, they should experience the same convergence rate. The
underconvergence in the RESPOD forcing modes can then be attributed to the contribution of
the silent-but-correlated structures, causing also the mode shape to be significantly less organised
compared to the associated SPOD mode. This underconvergence observed in the forcing modes
does not pose a problem in the following analysis. The SPOD modes of the response and the
RESPOD modes of the forcing are computed using Fourier realisations of response and forcing
that exactly correspond to the same time window. In the ideal case of an error-free database,
(2.3) is therefore satisfied for each pair of response-forcing realisations. So, no matter how
underconverged the forcing data is, the structures generating the converged acoustic field are, by
construction, ensured to be contained in the forcing mode seen in figure 4.

As discussed in §2.2, the first RESPOD forcing mode contains all structures correlated with
the leading SPOD mode. This indicates that the remaining forcing that amounts to 99% of the
total forcing energy can generate only 25% of the total acoustic energy. In figure 5, we show a
comparison of the true acoustic field and the acoustic fields obtained using rank-5 and rank-1
forcing truncations obtained using RESPOD for a number of frequencies, 𝑆𝑡 ∈ [0.4, 1]. The
rank-5 forcing, which contains the RESPOD forcing modes corresponding to the first five SPOD
modes of the acoustic field, recovers nearly the entire acoustic field in the downstream region.
The rank-1 forcing, i.e. the RESPOD forcing mode corresponding to the optimal SPOD mode of
the acoustic field, also recovers a significant portion of the downstream acoustic field. Although
the acoustic field predicted by the rank-1 forcing should correspond to 75% of the total acoustic
energy at 𝑆𝑡 = 0.6, as the response should be identical to the optimal SPOD mode of the acoustic
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Figure 5. PSD of acoustic pressure generated using rank-5 and rank-1 forcing, respectively, obtained by
RESPOD, in comparison to the acoustic field obtained from LES data (corresponding to full-rank forcing
in the ideal case) at different frequencies ranging from 𝑆𝑡 = 0.4 to 1 (from top to bottom).

field, the actual prediction amounts to around 60%. A similar discrepancy is observed for the
rank-5 prediction, which recovers 80% of the acoustic energy while it should generate 99%. This
is due to the errors contained in the LES database, causing a loss in the correlation information
between the response and the forcing. Despite all the limitations of the existing database as
discussed in appendix A, we see that it is still possible to define a rank-1 forcing that can generate
most of the downstream noise.

In what follows, we further decompose the rank-1 forcing obtained by RESPOD to extract
the acoustically active forcing components which drive the leading SPOD mode of the acoustic
pressure seen in figure 4.

4.3. Isolating the radiating component of the low-rank forcing
In figure 6, the acoustic fields generated by the first two RESPOD modes are shown for the case

M04Mc00 at a number of frequencies, 𝑆𝑡 ∈ [0.4, 1.0]. The first modes at all frequencies contain a
single wave propagating at some angle with no jump in the phase. On the other hand, there exists
a phase shift in the second modes that moves upstream with increasing frequency. The phase
shift appears in order to satisfy orthogonality between the first and the second modes, which is
expected as RESPOD finds the forcing modes that generate the SPOD modes, which comprise
an orthogonal basis. Note, however, that, no such orthogonality is ensured for the forcing modes.

Looking at the acoustic field of the first RESPOD mode, it is apparent that the propagation
angle is nearly constant, around 30◦ when measured from the downstream end, for all frequencies,
reminiscent of a Mach-wave-like mechanism (c.f. Tam et al. (2008)). To explore this trend, we
consider a wave in the streamwise direction defined by, exp(−𝑖𝑘𝑥𝑥), where 𝑘𝑥 is the streamwise
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Figure 6. Real part of the pressure generated using first (left), and second (right) RESPOD mode of the
forcing at different frequencies ranging from 𝑆𝑡 = 0.4 to 1 (from top to bottom). Color scale ranges between
[−1 × 10−6, 1 × 10−6].

Figure 7. Projection of first and second RESPOD modes of the forcing, respectively, onto streamwise
harmonic waves with supersonic phase speeds. Different frequencies ranging from 𝑆𝑡 = 0.4 to 1 are shown
from top to bottom.
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Figure 8. Real part of the first RESPOD mode of the forcing (left) compared to its subsonic (middle) and
supersonic (right) parts. Different frequencies ranging from 𝑆𝑡 = 0.4 to 1 are shown from top to bottom.

wavenumber associated with a phase speed

𝑐𝑥 = 𝜔/𝑘𝑥 , (4.1)

where 𝜔 = 2𝜋𝑆𝑡 is the angular frequency. For a Mach-wave-like mechanism, the phase speed
is greater than the speed of sound, 𝑐∞, and the propagation angle is given by cos−1 (𝑐∞/𝑐𝑥)
(Ffowcs Williams 1963; Crighton 1975). We project the first and the second RESPOD forcing
modes onto this wave, varying in the phase speed over the range [𝑐∞, 2𝑐∞], yielding

𝑎 (𝑝) (𝑘𝑥 , 𝑆𝑡) = ⟨𝝌 (𝑝) (𝑥, 𝑟, 𝑆𝑡), 𝑒−𝑖𝑘𝑥 𝑥⟩ ≜
∫
𝑆

𝝌 (𝑝) (𝑥, 𝑟, 𝑆𝑡)𝑒−𝑖𝑘𝑥 𝑥𝑑𝑆, (4.2)

where 𝑝 is the RESPOD mode number and 𝑆 is the 2D domain spanning the 𝑥 and 𝑟 directions.
The results are shown in figure 7. It is seen that at all frequencies, the projection coefficient, 𝑎 (1) ,
peaks around 1.1-1.2𝑐∞, which corresponds to an angle of ∼ 30◦, consistent with the propagation
angle observed in the acoustic response field. The coefficient, 𝑎 (2) , on the other hand, has a
dip around the same value at all frequencies, reminiscent of the orthogonality observed in the
response modes of figure 6.

These results suggest that projection of the forcing onto supersonic waves is the relevant
mechanism for generation of downstream noise, consistent with previous hypotheses and models
(Freund 2001; Cavalieri et al. 2012; Jordan & Colonius 2013; Cavalieri et al. 2019). To test this
hypothesis, we define the following Fourier transform (FT) in the streamwise direction,

F𝑥 (a) =
∫ 𝐿

0
a𝑒−𝑖𝑘𝑥 𝑥𝑑𝑥, (4.3)

where 𝐿 = 30𝐷 is the domain length. Using this FT, we decompose the first RESPOD mode of the
forcing, 𝝌 (1) , into two parts, 𝝌 (1−) and 𝝌 (1+) , containing subsonic and supersonic components,
respectively (Sinayoko et al. 2011b). The resulting forcing fields are depicted in comparison to
the original forcing mode in figure 8. It is seen that most of the forcing energy is contained
in the subsonic part of the mode, 𝝌 (1−) , making it indistinguishable from 𝝌 (1) . The supersonic
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Figure 9. PSD of the acoustic pressure generated by the first RESPOD mode of the forcing (solid) compared
to its subsonic (dashed) and supersonic (dash-dotted) parts. Different frequencies ranging from 𝑆𝑡 = 0.4 to
1 are shown from top to bottom.

Figure 10. Energy ratio of the supersonic part of the RESPOD mode of the forcing.

component, 𝝌 (1+) , takes the form of a compilation of radially thin wavepackets with a disorganised
radial phase structure.

The acoustic response generated by these subsonic and supersonic modes, 𝝌 (1−) and 𝝌 (1+) ,
respectively, are compared to the response of the entire first RESPOD mode of the forcing,
𝝌 (1) , in figure 9 for a range of frequencies. It is clear that the supersonic modes underpin noise
generation at all frequencies. Removing the supersonic components leads to more than an order-
of-magnitude reduction in sound generation. The energy contained in the supersonic part of the
RESPOD modes of the forcing is shown in figure 10 for different mode numbers and frequencies.
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The following definition is used to calculate the energy of a given mode, 𝝋, defined in a domain
Ω, ∫

Ω

𝝋⊤𝝋𝑑Ω. (4.4)

Note that an energy norm is not required in the above definition since all the modes we investigate
contain a single variable. For all the modes and frequencies, the supersonic components contain
less than 5% of the mode energy. The first RESPOD mode of the forcing already contains less
than 1% of the total forcing energy, which means that the energy fraction of the supersonic part of
the first RESPOD mode of the forcing, 𝝌 (1+) , with respect to the total forcing energy at the same
frequency, is ∼0.04%, while it generates ∼ 75% of the total acoustic energy in the downstream
region for a frequency range 𝑆𝑡 = [0.4, 1.0] at 𝑀 𝑗 = 0.4.

The analysis above identifies the forcing subspace that actively contributes to noise generation
in the M04Mc00 case. As discussed earlier, this data-driven approach is only applicable for this
case, since the errors contained in LES database prevent us from extracting reliable forcing data
at higher Mach numbers. In the following section, we will discuss how to develop an empirical
model for these forcing structures and extend it to other flow cases.

5. Empirical modelling of the acoustically efficient forcing component
The noise-generating forcing structures shown in figure 8 do not immediately reveal a spatial

form that is easy to model, and careful characterisation is required to represent it using empirical
formulation. In what follows, we first present a modelling strategy based on the supersonic part of
the first RESPOD mode of the forcing for the case M04Mc00, which yields a fundamental form
of the model equation. The model parameters are chosen such that they can be easily adapted
to account for frequency, jet Mach number and flight effect. The model parameters are tuned
first regarding the forcing modes extracted from the LES. We then apply a second tuning for
some of the parameters using the acoustic fields obtained from the LES. Given the high energy
contained in the optimal SPOD mode of the acoustic pressure in the downstream region, we focus
on modelling the supersonic part of the first RESPOD mode of the forcing only; i.e., we construct
a rank-1 model.

5.1. Empirical source modelling for 𝑀 𝑗 = 0.4
As shown in figure 8, the supersonic mode, 𝝌 (1+) , roughly follows the jet spreading and has

the form of thin wavepackets elongated in the streamwise direction spanning most of the flow
domain. Given the radial randomness of these thin wavepackets, a model for the 𝑥-𝑟 structure is
not feasible. We therefore make use of the characteristics of the modified resolvent operator, R̃,
which yields the acoustic pressure as the response thanks to the measurement matrix C.

In resolvent analysis, a singular value decomposition (SVD) of the resolvent operator is used
to identify mechanisms by which the output (acoustic pressure in our case) is driven by the input
(forcing). The SVD is given as

R̃ = U𝜮V 𝐻 , (5.1)

where U and V are the response and forcing modes, respectively, and 𝜮 denotes the resolvent
gain. The RESPOD forcing mode is projected onto the forcing modes of the modified resolvent
operator and then amplified by the resolvent gains to generate the acoustic response whose spatial
organisation is defined by the response modes. The projection between the forcing and RESPOD
modes can be considered as a two-dimensional discrete integration in the streamwise and radial
directions. It was reported in Jeun et al. (2016) and later in Bugeat et al. (2022) that the forcing
modes of the acoustic resolvent operator, R̃, take the shape of streamwise supersonic waves with
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Figure 11. Real (blue) and imaginary (orange) parts of the supersonic part of the first RESPOD mode of
the forcing integrated in the radial direction. Different frequencies ranging from 𝑆𝑡 = 0.4 to 1 are shown
from top to bottom.

almost constant radial support within the region where forcing is active. When projecting the
RESPOD modes onto the forcing modes, the radially thin supersonic wavepackets observed in
figure 8 are integrated in the radial direction without any modulation by the optimal forcing
mode. This implies that the forcing modes of figure 8 can be replaced by a line source obtained
by radial integration, justifying the use of line-source models in the literature (Michalke 1970;
Michel 2009; Lesshafft et al. 2010; Cavalieri et al. 2011; Cavalieri & Agarwal 2014; Maia et al.
2019; da Silva et al. 2019). The resulting line sources at different frequencies are shown in figure
11 for the case M04Mc00. We observe wavepackets spanning 𝑥/𝐷 = [0, 20] with a dominant
wavenumber at all frequencies. Note that the forcing data does not decay to zero at the end of the
domain, which is a side effect of using a streamwise Fourier transform, which assumes periodicity
in the streamwise direction. These spurious oscillations are filtered when applying these modes
to the resolvent operator thanks to the sponge zone beyond 𝑥/𝐷 = 20.

To characterise these wavepackets, we perform a FT in the streamwise direction. The amplitude
and phase of the Fourier coefficients are shown in figure 12 for a range of frequencies. The
wavenumber has been scaled by 𝑐∞/𝜔 so that the abscissa in the figure is the inverse phase
speed, with the range [-1,1] corresponding to the supersonic phase speeds. We see the same
peak corresponding to a phase speed, 𝑐𝑥 = 1.1722𝑐∞ at all frequencies, with energy contained
in the immediate neighboring wavenumbers as well. The ordinate of the figure is scaled with
𝑆𝑡, and the peak has a nearly constant amplitude under this scaling. We ignore the rest of the
spectrum and investigate the phase relation between this peak and the neighboring wavenumbers
only, as shown in figure 12. The exact value of the phase affects only the global phase of the
response, and thus is random. The shape of the forcing modes is determined by the change
in phase with respect to wavenumber. There exists a phase difference of ∼ 0.5𝜋 between the
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Figure 12. Amplitude (left) and phase (right) of the streamwise FT of the integrated line source. Red dashed
line shows the isolated spectrum used for modelling. Vertical dashed black lines indicate the phase speed,
𝑐𝑥 = 1.1722𝑐∞, and dashed blue lines mark the neighbouring wavenumbers to that. Different frequencies
ranging from 𝑆𝑡 = 0.4 to 1 are shown from top to bottom.

central and leftmost wavenumbers. The phase difference between the central and rightmost
wavenumbers is either around −1.7𝜋 or around 0.3𝜋, which correspond to the same phase shift
as 0.3𝜋 = mod(−1.7𝜋, 2𝜋).

Given these observations, we need to find a model consisting of three wavenumbers, the
wavenumber corresponding to the constant phase speed observed and the neighbouring ones,
with some empirical phase and amplitude relations in between and a global amplitude which
scales with 𝑆𝑡. We propose the following empirical model,

F𝑥 (𝜉) =
𝐴

𝑆𝑡

(
𝑒𝑖 𝜋𝑘

𝑝
𝑥 + 𝐵

(
𝑒𝜙1𝑖 𝜋𝑘

𝑝−
𝑥 + 𝑒𝜙2𝑖 𝜋𝑘

𝑝+
𝑥

))
, (5.2)

where 𝐴 = 4.6 × 10−7, 𝐵 = 0.8, 𝜙1 = 0.5, 𝜙2 = −0.7, 𝑘 𝑝𝑥 = 𝑆𝑡/(𝛽𝑐∞) is the wavenumber
corresponding to the peak observed in figure 12 with 𝛽 = 1.1722, and 𝑘 𝑝±𝑥 denotes the neighboring
wavenumbers with Δ𝑘𝑥 = 1/30 where 30 is the domain length. The corresponding forcing
model, 𝜉, can then be obtained by taking the inverse FT of (5.2) in 𝑥. Note that the neighboring
wavenumbers provide the wavepacket amplitude envelope without having to define a Gaussian-
like form. Choosing a different domain length would change Δ𝑘𝑥 , and therefore the resulting
forcing model. But we anticipate that the results are not sensitive to this parameter, which will be
justified later when showing the results for models at higher Mach numbers using the same value
for 𝐿. Figure 13 shows a comparison of the forcing model obtained from (5.2) and the line source
obtained from the LES data. The model has a similar spatial support and the same dominant
wavelength corresponding to the line source. Similar to the line source data, the empirical model
is also assumed to be periodic in the streamwise direction, causing the spurious oscillations at
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Figure 13. Real (blue) and imaginary (orange) parts of the line source (left) compared to the line-source
model given by (5.2) (right). Different frequencies ranging from 𝑆𝑡 = 0.4 to 1 are shown from top to bottom.

the end of the domain, as mentioned above, to appear in the model as well. Once again, these
artifacts are damped by the sponge zone within the resolvent operator.

We now compare the acoustic response generated by this model to the response of the first
RESPOD mode of the forcing, 𝝌 (1) , in figure 14 for a range of frequencies. The model accurately
predicts downstream noise generation for high frequencies while it yields an underprediction at
lower frequencies. The sound directivity is seen to be well captured at all frequencies, which
implies that the underprediction at low frequencies can be fixed by adding a tuning parameter
to the model. In the following section, we apply corrections to the model using acoustic data to
improve predictions and to include Mach-number and flight effects.

5.2. Tuning the model using acoustic data from the LES
We discussed earlier that the errors in the LES database cause the correlation between the

forcing and the acoustic field to be partially contaminated, yielding the response generated by
the first RESPOD forcing mode, 𝝌 (1) , to globally underpredict the optimal SPOD mode of the
acoustic field. As the forcing model in (5.2) is constructed based on the supersonic part of this
forcing mode, the effect of the errors in the database is inherited in the model, 𝜉. To minimise
this effect, we tune the model using the acoustic data obtained directly from the LES. The tuning
process is summarised as follows: we first correct the mode amplitude using the acoustic field
from the M04Mc00 case to better capture the overall sound level and its change with respect to
frequency. The same frequency scaling will then be used for all other flow cases. To tune the
model for Mach number effects, we will use the acoustic field from the M09Mc00 case. Finally
to tune the model for flight stream effects, we will use the acoustic fields from the M09Mc15 and
M09Mc30 cases.

We start tuning the model, 𝜉 by adding a scalar correction to better match the optimal SPOD
mode of the acoustic field. In figure 15, the energy ratio of the response generated by the model,
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Figure 14. PSD of the acoustic pressure generated by the first RESPOD mode of the forcing (solid) compared
to that of the line-source model (dashed) for the case M04Mc00. Different frequencies ranging from 𝑆𝑡 = 0.4
to 1 are shown from top to bottom.

Figure 15. Energy ratio of the response generated by the line-source model (dashed) compared to that in the
optimal SPOD mode of the acoustic pressure (solid). The energy ratio obtained using the corrected model
is also shown (dash-dotted). Normalisations are done using the acoustic energy in the downstream region at
each frequency.

𝜉, is compared with that of the optimal SPOD mode of the acoustic pressure as a function of
frequency. Normalization is done using the total acoustic energy in the downstream region. It is
seen that the underprediction of the model increases as the frequency decreases. A correction in
the amplitude and changing the 𝑆𝑡−1 scaling to 𝑆𝑡−3/2 yields the corrected trend seen in figure
15.
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We now test the ansatz (5.2) to see if it can capture the Mach-number effect. The phase
difference between 𝑘 𝑝𝑥 and 𝑘 𝑝−𝑥 mainly determines the shape of the envelope of the wavepacket
while the phase difference between 𝑘 𝑝𝑥 and 𝑘 𝑝+𝑥 determines its streamwise position. It was also
found that the resulting acoustic field does not strongly depend on the value of 𝐵. Given these
observations, we set 𝛽, 𝐴, 𝜙2 as free parameters to tune, and we keep 𝜙1 fixed to keep the
wavepacket shape unchanged.

Assuming that the parameter 𝛽 varies linearly with the jet Mach number 𝑀 𝑗 and matching the
observed value at 𝑀 𝑗 = 0.4 and the observed phase velocity at 𝑀 𝑗 = 0.9 yields the expression

𝛽 = 0.7722 + 𝑀 𝑗 . (5.3)

For 𝑀 𝑗 = 0.9, this results in a propagation angle of 53.3◦, very close to the value observed by
Bugeat et al. (2022).

To set the amplitude, 𝐴, and the phase constant, 𝜙2, we performed tests to find the parameters
that best match the acoustic field in the case M09Mc00. We finally obtained the empirical relations

𝐴 = 3.22 × 10−6𝑀
7/2
𝑗
, (5.4)

𝜙2 = 0.1 − 𝑆𝑡. (5.5)

The resulting model equation with these corrections reads

F𝑥 (𝜉) = 3.15 × 10−6

√︄
𝑀7

𝑗

𝑆𝑡3

(
𝑒𝑖 𝜋𝑘

𝑝
𝑥 + 𝐵

(
𝑒0.5𝑖 𝜋𝑘𝑝−

𝑥 + 𝑒 (0.1−𝑆𝑡 )𝑖 𝜋𝑘
𝑝+
𝑥

))
, (5.6)

where

𝑘
𝑝
𝑥 =

𝑆𝑡

(0.7722 + 𝑀 𝑗 )𝑐∞
, (5.7)

and 𝑘 𝑝±𝑥 denotes once again the neighboring wavenumbers withΔ𝑘𝑥 = 1/30. The resulting acous-
tic field is shown in figure 16 for M04Mc00 and M09Mc00 and compared to the corresponding
LES data. It is seen that the model given in (5.6) yields a prediction that well matches the LES
data in the downstream region at all frequencies. The acoustic response does not noticeably differ
for the case M04Mc00 whether one uses a constant or linearly varying value for the phase, 𝜙2.

Finally, we extend the empirical model given in (5.6) to take into account the flight effect. It is
known that the effect of flight is to suppress noise, largely due to the suppression of turbulence
in the shear layer (Maia et al. 2022). We compare the noise generated in the cases M09Mc00,
M09Mc15 and M09Mc30, respectively, in figure 17 with two different scalings. Defining,

𝑘 𝐼 (𝑀 𝑗 , 𝑀∞) =
∫
𝑆

𝐾 (𝑀 𝑗 , 𝑀∞)𝑑𝑆, (5.8)

where 𝐾 (𝑀 𝑗 , 𝑀∞) denotes the turbulent kinetic energy as a function of the jet Mach number, 𝑀 𝑗 ,
and the flight Mach number, 𝑀∞, and using the scaling 𝑘2

𝐼
causes the sidestream noise in the three

cases to collapse on top of each other. The dominant terms in the forcing have the form 𝒖 · ∇𝒖,
which has the same dimension with turbulent kinetic energy differentiated in space. Inspired from
this, we defined a scaling factor using 𝜕𝑥𝐾 as

𝑘 𝐼,𝑥 (𝑀 𝑗 , 𝑀∞) =
∫
𝑆

𝜕𝑥𝐾 (𝑀 𝑗 , 𝑀∞)𝑑𝑆. (5.9)

The scaling 𝑘2
𝐼,𝑥

yields a slightly improved match in the peak noise level of the three cases. To
determine if this scaling should be directly adopted in the forcing model, one needs to understand
the effect of the free stream on the efficiency of the noise generation mechanisms embedded in
the resolvent operator. For this, we performed a resolvent-based noise prediction using the same
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Figure 16. PSD of the acoustic pressure obtained using line-source model (5.6) to that extracted from the
LES for the cases M04Mc00 (left) and M09Mc00 (right). Different frequencies ranging from 𝑆𝑡 = 0.4 to 1
are shown from top to bottom.

forcing in the three cases at 𝑀 𝑗 = 0.9. The resulting acoustic fields are shown in figure 18,
where it is seen that the change in the mean flow does not strongly affect noise level, but causes
a change in the directivity in a similar fashion as observed in the LES data seen in figure 17.
This suggests that one may use the same mathematical form for the source model for jets with or
without flight effect, applying an amplitude correction. We adopt 𝑘2

𝐼,𝑥
scaling for the empirical

model as the peak noise, which occurs in the downstream region, is more relevant for the present
study. Besides the amplitude correction, comparison of the model prediction with the LES data
with flight stream effect yielded that the phase constant, 𝜙2, is to be updated as

𝜙2 = 0.1 − 𝑆𝑡
𝑀 𝑗 − 𝑀∞

𝑀 𝑗

, (5.10)

resulting in the final equation for the jet-noise source model,

F𝑥 (𝜉) = 3.15 × 10−6 Γ

√︄
𝑀7

𝑗

𝑆𝑡3

(
𝑒𝑖 𝜋𝑘

𝑝
𝑥 + 𝐵

(
𝑒0.5𝑖 𝜋𝑘𝑝−

𝑥 + 𝑒 (0.1−𝑆𝑡 (𝑀 𝑗−𝑀∞ )/𝑀 𝑗 )𝑖 𝜋𝑘𝑝+
𝑥

))
, (5.11)

where

Γ ≜
𝑘 𝐼,𝑥 (𝑀 𝑗 , 𝑀∞)
𝑘 𝐼,𝑥 (𝑀 𝑗 , 0)

. (5.12)

The resulting acoustic response of the model forcing obtained by taking the inverse FT of (5.11) is
compared to the acoustic fields coming from the LES data in the cases M09Mc15 and M09Mc30,
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Figure 17. PSD of the acoustic pressure for the cases M09Mc00 (solid), M09Mc15 (dashed) and
M09Mc30 (dash-dotted) with no scaling (top), 𝑘2

𝐼
scaling (center) and 𝑘2

𝐼,𝑥
scaling (bottom) at 𝑆𝑡 = 0.6.

Figure 18. PSD of the acoustic pressure obtained using the line-source model given in (5.6) for the cases
M09Mc00 (solid), M09Mc15 (dashed) and M09Mc30 (dash-dotted) at 𝑆𝑡 = 0.6.

respectively, in figure 19. The error at all the frequencies remains within 2dB for the downstream
region.

5.3. Blind testing the model under different operating conditions
To test the validity of the model given in (5.11), we use three LES cases that were not used in its

development: M07Mc00, M07Mc015 and M08Mc00 (see table 1 for details). The predictions are
compared against the LES data in figure 20. The acoustic response generated by the forcing model
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Figure 19. PSD of the acoustic pressure obtained using the line-source model given in (5.11) (dashed)
compared to the LES data (solid) for the cases M09Mc15 (left) and M09Mc30 (right). Different frequencies
ranging from 𝑆𝑡 = 0.4 to 1 are shown from top to bottom.

predicts the downstream acoustic field with a 1dB accuracy within the region 𝑥/𝐷 = [10, 20] for
the static jets at 𝑀 𝑗 = 0.7 and 0.8, except for a sharper decay observed at 𝑆𝑡 = 1 beyond 𝑥 = 19𝐷
for both cases. For the case with flight effect, the peak noise level is predicted accurately at all
the frequencies. The accuracy of the prediction is within 2 dB for the region 𝑥/𝐷 = [10, 20] at
𝑆𝑡 = 0.4 and 0.6 and for the region 𝑥/𝐷 = [12, 20] at 𝑆𝑡 = .8. A sharper decay is observed for
𝑆𝑡 = 1 at 𝑥 = 14𝐷. These results show that the proposed forcing model is capable of predicting
jet noise within the Mach number and Strouhal number ranges 𝑀 𝑗 = [0.4, 0.9] and 𝑆𝑡 = [0.4, 1],
respectively. The suppression of jet noise due to flight effect is also well captured for the regime
𝑀∞/𝑀 𝑗 < 0.33. Beyond these limits, the validity of the model remains to be tested.

We also present a comparison of the model prediction and the LES data as a function of
frequency in figure 21 for all the cases investigated in this study at two different propagation
angles, 𝜃 = 15◦ and 25◦ measured from the downstream end, which correspond to 𝑥/𝐷 = 18.7
and 10.7, respectively, in previous figures showing PSD data. The region 𝜃 < 25◦ roughly
determines the acoustic field dominated by the first RESPOD forcing mode and thus, the region
of validity of the model. And 𝜃 = 15◦ is near the sponge zone limit used in the resolvent
computations. The frequency range in this comparison is extended to 𝑆𝑡 = [0.1, 1.5] to show the
model performance beyond the range it has been tuned for. We limit the analysis to this range
since, below 𝑆𝑡 = 0.1, the hydrodynamic fluctuations reaches the acoustic field as reported by
Nekkanti & Schmidt (2021) who used the same database for the cases M09Mc00 and M07Mc00;
and at 𝑆𝑡 = 1.5, the acoustic level is already 20 dB less than the peak in all the cases.

For the range 𝑆𝑡 = [0.4, 1], the model accurately predicts the acoustic field for all the cases,
despite some underestimation for the cases M04Mc00, M07Mc15 and M09Mc30 at 𝜃 = 25◦. But at
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Figure 20. PSD of the acoustic pressure obtained using the line-source model given in (5.11) (dashed)
compared to the LES data (solid) for the cases M07Mc00 (left), M07Mc15 (center) and M08Mc00 (right).
Different frequencies ranging from 𝑆𝑡 = 0.4 to 1 are shown from top to bottom.

slightly lower propagation angles, the model starts to yield better predictions for these three cases
as well, as can be seen in figures 16, 19 and 20. At 𝑆𝑡 = 1.5, the model yields accurate predictions
in all the cases except for the cases M07Mc00 and M08Mc00 at 𝜃 = 15◦. At frequencies below
𝑆𝑡 = 0.4, the model starts to overpredict the acoustic level which becomes evident at 𝑆𝑡 = 0.1 in all
the cases. We expect the model to be valid only above a certain frequency, the forcing amplitude is
scaled by 1/𝑆𝑡3/2 in (5.11), which tends to infinity as 𝑆𝑡 → 0. The overprediction remains within
3 dB at 𝑆𝑡 = 0.2 for all the cases except M07Mc00, M07Mc15 and M09Mc30, where it reaches
up to 5 dB. Another reason that may explain the poor performance at low frequencies is that
the identity of the leading resolvent mode switches from Kelvin-Helmholtz to Orr mechanism at
around St = 0.3 (Pickering et al. 2020), and the very different physics of Orr modes would require
a different forcing model.

Finally, we test our model against experimental data available in the literature. We choose the
cold jet experiments conducted in NASA SHJAR (Khavaran & Bridges 2009) denoted with set
point 7, for which an LES database was generated by Markesteijn & Karabasov (2017) and the
mean flow and acoustic field data was provided in Gryazev et al. (2023). The jet has a Mach
number 𝑀 = 0.9 with a static-to-total temperature ratio 𝑇𝑗/𝑇0 = 0.835 and nozzle pressure ratio
𝑁𝑃𝑅 = 2.861. The acoustic data is provided at three angles in Gryazev et al. (2023): 𝜃 = 30◦, 60◦
and 90◦ out of which, only 𝜃 = 30◦ is relevant for our model considering that our study is limited
to the axisymmetric mode and low-propagation angles. Figure 22 shows the comparison of the
resolvent-based prediction against the experimental data. We see the model slightly underpredicts
the acoustic field at low 𝑆𝑡 while the discrepancy increases up to 5 dB at 𝑆𝑡 = 1.5. The reason for
this discrepancy is that the model predicts only the acoustic field of the axisymmetric mode while
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Figure 21. PSD of the acoustic pressure obtained from LES (solid) and predicted by the line-source model
(dashed) for static jet cases (top) and cases with flight stream (bottom) at two different propagation angles,
𝜃 = 15◦ (left) and 25◦ (right).

Figure 22. PSD of the acoustic pressure at 𝑚 = 0 predicted by the line-source model (orange) for the
NASA-SHJAR-SP7 jet compared against the experimental data for the total acoustic field at 𝜃 = 30◦.

the experimental data is obtained for the total acoustic field. It is known that the axisymmetric
mode dominates that the acoustic field at low angles and low 𝑆𝑡 while the contribution of the
higher-order azimuthal modes increases with frequency (Brès et al. 2016; Faranosov et al. 2017).
The trend observed here is consistent with the literature (see figure 9 in Brès et al. 2016).

5.4. Discussion on the empirical modelling
We have presented a rank-1 model for acoustic sources in subsonic jets, defined within the
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resolvent framework. The overall prediction involves mean flow and turbulent kinetic energy
data, which can be obtained from a RANS solution. It is known that there is a strong connection
between the wavepackets found in the jet near field and the noise in the acoustic field (Cavalieri
et al. 2012). It is therefore reasonable to assume that the forcing responsible for noise generation
emerges from the nonlinear interaction of different wavepackets in the jet. The accuracy of the
predictions implies that our model successfully incorporates the essential information from these
wavepacket interactions to generate the downstream noise. The model consists of forcing structures
with supersonic phase speeds determined by shifting the jet Mach number by a constant value.
Such structures with supersonic phase speeds in subsonic jets are potentially a product of (i) spatial
modulation of the convected waves due to the shape of the wavepacket, yielding a supersonic tail
in the wavenumber domain (Crighton 1975; Tam et al. 2008; Jordan & Colonius 2013), or (ii)
jittering in the wavepackets, which manifests in the frequency domain as coherence decay, causing
a shift in the energy of the wavepacket towards supersonic wavenumbers (Cavalieri et al. 2011;
Cavalieri & Agarwal 2014). Both model problems (Cavalieri & Agarwal 2014; Cavalieri et al.
2019) and real jet data (Maia et al. 2019; da Silva et al. 2019) have shown that the noise generated
by a wavepacket in a subsonic jet is highly sensitive to the coherence decay rate embedded in
the source model. Indeed, a source model based on a wavepacket with unit coherence, although
matching the near-field wavepacket obtained experimentally, generates an acoustic field that is
off by up to 40 dB compared to the experimental data (Baqui et al. 2013; Jordan et al. 2014).
This implies that the supersonic structures we observe in the forcing data are more likely to be
associated with the coherence decay in the jet near field, and thus the jitter mechanism. Given
this perspective, the model presented here can be considered to provide an indirect representation
of the coherence decay occurring due to jittering in subsonic turbulent jets.

6. Conclusions
We outlined a methodology to identify the source of subsonic jet noise at low (downstream)

propagation angles. Since noise generation by turbulent flows is nonlinear, it is not possible
to uniquely define the source terms. Acoustic analogies (Lighthill (1952); Lilley (1974); Howe
(1975); Doak (1995); Goldstein (2003); etc.) recast the Navier-Stokes (N-S) equations as a
acoustic wave equation, with all other terms considered as the source. In this study, we instead
adopt the resolvent framework, in which the linearized N-S equations serve as the operator and
all nonlinear terms remaining after linearisation about the mean flow are viewed as the source
terms, or forcing, in resolvent terminology.

We extended the concept of using forcing data within the resolvent framework, which was
applied earlier to predict flow structures in low-𝑅𝑒 turbulent flows, to acoustic prediction in
high-𝑅𝑒 turbulent jets. We showed that downstream noise is generated mainly by the streamwise
momentum forcing term. We then obtained a low-rank reconstruction of this forcing term using the
RESPOD method (Towne et al. 2015; Karban et al. 2022a). The RESPOD method yields forcing
modes that generates the SPOD modes of the measured response, which is selected to be the
acoustic pressure in this study. The response modes are orthogonal to each other by construction.
Searching for a similar orthogonality on the forcing side, we projected the RESPOD modes
of the forcing onto streamwise harmonic waves with different phase velocities varying in the
supersonic range, which yielded two critical outcomes: (i) projection coefficients corresponding
to the first RESPOD mode of the forcing peaked around the same phase velocity at all the
frequencies investigated; (ii) projection coefficients corresponding to the second RESPOD mode
of the forcing showed a dip around the same phase velocity as a trace of the orthogonality in
the response. Decomposing the first RESPOD mode of the forcing into supersonic and subsonic
components, we demonstrated that it is the supersonic part of the forcing which generates the
majority of the acoustic field in the downstream region.
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The resolvent framework requires the mean flow data and the forcing model requires the
turbulent kinetic energy, in case of non-zero flight stream. In this study, we obtained these data
using the LES, which was shown to match the experimental data (Brès et al. 2018; Maia et al.
2022). One can alternatively obtain these performing a RANS simulation, which are then expected
to be less accurate. The dependency of the model results on the turbulence models used in case
of a RANS simulation, and on the accuracy of the first-order statistics in general is yet to be
determined in a future study.

Given that the forcing modes of the acoustic resolvent operator, i.e., the resolvent operator that
includes the measurement matrix that extracts the acoustic pressure as the response, supports a
radially compact line source as the optimal forcing, we integrated the identified forcing in the
radial direction, which yielded a wave packet with a dominant wavenumber corresponding to a
constant phase velocity for all frequencies in the range 𝑆𝑡 = [0.4, 1]. Using this information, we
introduced a model equation for the line source. We tested the line source for different flow cases
with or without flight stream effects. Tuning the model by comparing the acoustic response it
generated against the noise field extracted from the LES data resulted in a model in which the
amplitude is scaled with 𝑀7/2

𝑗
and 𝑆𝑡−3/2 and a linear phase relation is obtained changing with

𝑆𝑡 and 𝑀∞. The model generates a noise field with an error of less than 2 dB in the downstream
region in subsonic jets over a range of frequencies. The Mach scaling in the empirical model
leads to a 𝑀7 power law for the forcing, reminiscent of the 𝑀8 power law of Lighthill’s. The
power factor is known to increase at lower directivity, with a peak of ∼ 9.5 around 𝜃 = 30◦ (Tam
et al. 2008; Khavaran & Bridges 2009). The difference between the power factors of the forcing
and the acoustic field suggests that the efficiency of linear amplification mechanisms in a jet in
terms of noise generation at low propagation angles significantly increases with Mach number.
This result can be expected given the fact that noise generation efficiency of supersonic jets are
higher than that of subsonic jets by orders of magnitude (Jordan & Colonius 2013; Cavalieri et al.
2019). The dependency of the forcing on 𝑆𝑡, on the other hand, remains for the time being an
empirical constant, which requires further investigation to establish a physical relevance.

It should be mentioned here that each step of the proposed methodology provided an essential
piece of information leading to the final empirical model. For instance, although RESPOD yielded
rank-1 forcing modes capable of accurately predicting the downstream acoustic field, our efforts
on source modeling based on these modes did not yield robust empirical models, which was not
reported in this study. Identifying the sound-generating part in these modes by investigating the
resulting acoustic field and the optimal forcing modes of the modified resolvent operator was
necessary to be able to devise a robust source model. Using RESPOD prior to filtering the sound-
generating part of the forcing modes, on the other hand, allowed us to identify a constant effective
phase velocity, which greatly simplified the resulting source model. Our analysis shows the
importance of using the right combination of available linear algebra tools to predict flow-related
phenomena.

Identifying a dominant phase speed in the acoustically efficient forcing can be of practical
importance beyond yielding a source model for noise generation in subsonic jets. One can
investigate the interaction mechanisms that generate forcing components at this phase speed.
Given the elongated wavepacket structure observed in the source, it is reasonable to assume that
these structures are associated with interaction of certain wavepackets and may potentially be
traced back in the nozzle, which may help to design strategies to control the jet noise. It was
already shown in Maia et al. (2021) that real-time control in forced jets is possible by measuring the
stochastic disturbances in the upstream region near the nozzle exit. The control practice becomes
much harder in unforced jets due to loss of coherence between the actuators and the measurements.
But this loss of coherence might be due to very poor signal-to-noise ratio in unforced jets. Our
observation that the acoustically efficient forcing amounts to less than 0.04% of the total forcing
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energy for the 𝑀 𝑗 = 0.4 case supports this hypothesis. Extracting the structures at the dominant
phase speed observed in the forcing in real-time by two-point measurements can significantly
enhance the signal-to-noise ratio that is necessary for a successful control application.

The present approach is based on the Mach-wave mechanism. Such a model is bound to be
limited to low propagation angles, as the phase speed corresponding to 90◦ should tend to infinity
for the same mechanism to be responsible for side stream propagation as well. However, we
believe that a similar analysis based on resolvent framework can still be helpful in understanding
the underlying mechanism for sidestream propagation in subsonic jets. Prediction of the sideline
noise requires extending the present analysis to higher azimuthal modes and to consider the
forcing terms of the radial momentum together with the streamwise momentum terms, which are
left as future tasks.
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Appendix A. Errors in the numerical database
To achieve accurate resolvent-based predictions of the response, the forcing and the response

data should satisfy (2.3). Similarly, the RESPOD method assumes that the forcing and the response
are connected to each other in the frequency domain via the resolvent operator as in (2.14). The
LES database contains errors from several sources that cause the above conditions to be violated.
Here, we briefly discuss here these error sources and their potential effect on the results.

The LES data is generated by solving the spatially filtered N-S equations. The forcing data,
as discussed in §3.1, is obtained by computing the numerical Jacobian of this nonlinear LES
operator to create a consistent forcing. The resolvent code, on the other hand, uses the linearised
N-S equations without taking into account the filtering of the sub-grid scales implemented in
the LES solver. This creates a compatibility issue when driving the resolvent operator with the
forcing data obtained from the LES. Considering that the LES is sufficiently refined to capture
the acoustic signature of the jet in an accurate way, we may assume that the differences between
the LES and the N-S operators are small, at least for the scales we are interested in, and the
sub-grid-scale filtering do not pose significant error in the database.

The LES data were first generated on an unstructured grid and then interpolated onto a
cylindrical grid to facilitate azimuthal decomposition. Although the cylindrical grid has a
distribution similar to that of the LES grid in streamwise and radial directions (Brès et al. 2017),
interpolating the data stored in control volumes onto grid points causes interpolation errors in
the data. Besides, the mesh used for the resolvent operator is not identical to the cylindrical grid
used to store the LES data. The difference in the mesh requirement for the LES and the resolvent
operator may vary, particularly at high frequencies, as the resolvent operator does not benefit
from any sub-grid-scale filtering. Using a separate mesh for the resolvent operator requires an
additional interpolation, introducing additional errors (although we expect that the errors due to
this second interpolation are smaller compared to the first interpolation).

The LES data were stored with a temporal downsampling ratio of 200, yielding a sampling
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Figure 23. Comparison of the PSD of pressure extracted from LES and predicted via resolvent analysis at
𝑟 = 5𝐷 for the case M04Mc00 at 𝑆𝑡 = 0.6.

frequency, 𝑆𝑡𝑠 = 12.5, for which the Nyquist limit to avoid aliasing is given as 6.25 (Nyquist
1928; Shannon 1948). A detailed analysis of the aliasing the LES database was given in Karban
et al. (2022b), where it was shown that significant aliasing was observed in the forcing data
even though it is negligible in the response. As resolvent analysis is performed in the frequency
domain, aliasing appears as an error source for both forcing identification based on RESPOD and
the resolvent-based prediction of the response.

These errors accumulate in the LES database. It is not possible to accurately quantify
contributions from each error source, but one may use the difference between the state obtained
directly from the LES and its prediction obtained using the resolvent tool as a global measure of the
total error included in the database. In figure 23, we show a comparison of the PSD of the pressure
in the acoustic field, i.e., at 𝑟 = 5𝐷, directly extracted from the LES data, and its resolvent-based
prediction for the case M04Mc00 at 𝑆𝑡 = 0.6. The acoustic field is predicted with reasonable
accuracy, except the most upstream part, 𝑥 < 1𝐷, where the resolvent-based prediction suffers
from a boundary condition effect. These error levels are similar to those observed by Towne
et al. (2021) when comparing the PSD extracted from an LES database and obtained from a
forced resolvent model for a supersonic jet. These results show that, although being contaminated
by errors to a certain extent, the current database can be used to investigate noise generation
mechanism in jets at this Mach number. At higher Mach numbers, aliasing is seen to affect the
spectral estimates at such a level that the resolvent-based analysis using forcing data becomes
unreliable.
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simulation for jet noise: azimuthal decomposition and intermittency of the radiated sound, arXiv:
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3050.

Brès, Guillaume A., Jordan, Peter, Jaunet, Vincent, Le Rallic, Maxime, Cavalieri, André V. G.,
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Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4, 063901.

Lighthill, Michael James 1952 On sound generated aerodynamically i. general theory. Proceedings of
the Royal Society of London. Series A. Mathematical and Physical Sciences 211 (1107), 564–587.

Lilley, G. M. 1974 On the noise from jets. AGARD CP-131 pp. 13–1.
Lumley, J. L. 1970 Toward a turbulent constitutive relation. Journal of Fluid Mechanics 41 (2), 413–434.
Maia, Igor A., Brès, Guillaume, Lesshafft, Lutz & Jordan, Peter 2022 The effect of a flight stream

on subsonic turbulent jets.
Maia, I. A., Jordan, P., Cavalieri, A. V. G. & Jaunet, V. 2019 Two-point wavepacket modelling of jet noise.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 (2227),
20190199, arXiv: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2019.0199.
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