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Abstract. We give, first, two new applications related to the range characterization of the range of trace
operator in H2(Ω). After this, we characterize the range of trace operator in the Sobolev spaces W 3,p (Ω)
whenΩ is a connected bounded domain R2 with Lipschitz-continuous boundary.

Résumé. On donne, d’abord, deux nouvelles applications relatives à la caractérisation de l’image de l’opé-
rateur trace dans H2(Ω). Après cela, on caractérise l’image de l’opérateur trace dans les espaces de Sobolev
W 3,p (Ω),Ω étant un domaine borné, connexe de R2 de frontière lipschitzienne.

Manuscript received 11 October 2021, accepted 16 July 2022.

1. Introduction

Let Ω be a connected and Lipschitz subset of R2 whose bounded and orientable boundary is
denoted by Γ. For 1 < p <∞ and m integer, W m,p (Ω) denotes the Sobolev space of functions of
Lp (Ω) whose distributional derivatives up to the order m also belong to Lp (Ω). A famous result of
E. Gagliardo [9] gives, for m = 1, the characterization of the range of the restriction γ0(u) = u|Γ to
Γ. More precisely, Gagliardo proves that the operator γ0 is linear and continuous from W 1,p (Ω)

into W 1− 1
p ,p (Γ) for 1 ≤ p <∞ and has a continuous right inverse for p > 1.

When u ∈W 2,p (Ω), then
∂u

∂x j
∈W 1,p (Ω) for j = 1, . . . , N .

Therefore the normal derivative γ1(u) =∇u ·n ∈ Lp (Γ) since n = (n1, , · · · , , nN ) is defined almost
everywhere and belongs to (L∞(Γ))N . J. Nečas [15] proves that γ0(u) ∈ W 1,p (Γ) and that the
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linear mapping u → (γ0(u), γ1(u)) is continuous from W 2,p (Ω) into W 1,p (Γ)× Lp (Γ). A natural
question is to characterize the range of the mapping (γ0,γ1). A first answer has been obtained
for polygonal-type domains of R2 by Kondrat’ev and Grisvard (see e.g. [12] for full references)
in terms of compatibility conditions at the corners and then the results have been extended to
polyhedral-type domains (N = 3). These characterizations have been extensively used in order to
give regularity results for different types of boundary-value problems.

For general Lipschitz domains a first characterization of the range of (γ0,γ1) has been obtained
for N = 2 in [11] if and p = 2 and extended in [8] for the general case 1 < p <∞. This result reads
as follows: The range of (γ0,γ1)) is the set of (g0, g1) ∈W 1,p (Γ)×Lp (Γ) such that:

∂g0

∂t
t + g1n ∈W 1− 1

p ,p (Γ). (1)

Let us mention, also, that the generalization for the case N = 3 and 1 < p <∞ was obtained by
Buffa et al (see [5]).

The more general characterization of the image of the trace operators in W m,p (Ω), where
Ω is a domain in RN with Lipschitz boundary, has been obtained for arbitrary m and N , by
Maz’ya, Mitrea and Shaposhnikova [13, see Theorem 7.8 and Corollary 7.11]. These authors used
an analytical method based on Taylor expansions in Besov and weighted Sobolev spaces.

In this paper, first of all, we will give two applications of the result of Geymonat and Kra-
sucki [11] to solve a boundary value problem for the bi-laplacian equation. The first application
concerns a regularity result for the solution to a non homogeneous Dirichlet problem for the ho-
mogeneous Bi-Laplacian equation in a lipschitzian domain. This result improve the one obtained
in [7]. Up to our knowledge it is the first time that this result is stated in this form. The second ap-
plication relies on the existence of very weak solution, in Lipschitz domains, to Dirichlet problem
for the Bi-Laplacian equation. It is a first time that one can obtain very weak solution in Lipshitz
domains.

Next, due to a new representation of the Hessian in R3, we characterize the range of the trace
operator in W 3,p (Ω), more precisely, we would like to characterize the range of the application
(γ0,γ1,γ2) defined on W 3,p (Ω) where

γ2 : W 3,p (Ω) → Lp (Γ)

u → γ2(u) = [(∇2 u
)

n
] ·n.

Necessary conditions are obtained by Geymonat [10].
Even if this result is a particular case of the obtained in [13], our proof is completely new and

different from their. Our proof relies on potential matrices which are similar to potential vectors
introduced in [3]. We hope that we can extend our proof to W m,p (Ω) where Ω is a Lipschitz
domain.

The outline of the paper is the following. In Section 2, we fix some notations. In Section 3,
we give two applications of the result obtained by Geymonat and Krasucki [11] to solve a
Dirichlet boundary value problem for the bi-laplacian equation. In Section 4, we will state
a new characterization of the Hessian which allows us to state and prove in Section 5, the
characterization of the range of the trace operator is obtained in W m,p (Ω) where Ω is a Lipschitz
domain.

2. Notations and preliminaries

In the following, the vectors, the vector functions (or distributions), the matrix functions (or
distributions) and the spaces of vector-valued functions are represented by bold symbols.
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We use the following differential operators throughout the paper: the divergence operator
div : D ′(Ω) →D′(Ω) is defined by

div v =∇·v = ∂v1

∂x1
+ ∂v2

∂x2
for any v = (vi ) ∈D′(Ω).

The scalar rotational operator curl :D′(Ω) →D′(Ω) is defined by

curl v = ∂v2

∂x1
− ∂v1

∂x2
for any v ∈D′(Ω)

The vector rotational operator curl :D′(Ω) →D′(Ω) is defined by

curlϕ=


− ∂ϕ

∂x2

∂ϕ

∂x1

 for any ϕ ∈D′(Ω).

The Hessian matrix operator Hess : D′(Ω) →Ds (Ω) is defined by

Hessϕ=


∂2ϕ

∂x2
1

∂2ϕ

∂x1∂x2

∂2ϕ

∂x2∂x1

∂2ϕ

∂x2
2

 for any ϕ ∈D′(Ω).

For any matrix field

S =
(

s11 s12

s21 s22

)
we define S⋆ by

S⋆ =
(

s22 −s21

−s12 s11

)
Observe that (S⋆)⋆ = S and if the matrix S is symmetric, then

div S⋆ = 0 ⇐⇒ curl S = 0, (2)

where curlS is the vector field curl S1

curl S2


with S i = ( si 1

si 2 ) is the vector given by the ith line of the matrix S.
We define the spaces of rigid displacements by

R(Ω) = {
v = a +b ×x , a, b ∈R2} .

We define the functional space Lp
0 (Ω) by

Lp
0 (Ω) =

{
v ∈ Lp (Ω),

∫
Ω

v · r d x = 0, ∀ r ∈ R(Ω)

}
, (3)

and V1,p
s (Ω) by

V
1,p
s (Ω) =

{
S ∈W1,p

0,s (Ω), div S = 0 inΩ
}

. (4)

If x = (x1, x2) is a generic point of R2, we denotes by x⊥ = (−x2
x1 ) and by t the tangent vector n⊥.

So if w is a function defined on the boundary of Ω, we can write the normal derivative and the
tangential derivative of w on Γ as follow:

∂n w =∇w ·n and ∂t w =∇w · t .(
grad w

)
|Γ = (∂n w)n + (∂t w) t .
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The operator ∂t defined in W 1,p (Γ) = {w ∈ Lp (Γ), ∂t w ∈ Lp (Γ)} can be extended from the space

W 1− 1
p , p (Γ) =

{
w ∈ Lp (Γ),

∫
Γ

∫
Γ

∣∣w(α)−w(β)
∣∣p∣∣α−β∣∣p dαdβ<∞

}
into W − 1

p ,p (Γ) (for more details see [11]). Also by using the same argument of proof of
[4, Corollary 3.7], the following results holds true:

Proposition 1. The following linear operator

∂t : W 1− 1
p ,p (Γ) →W − 1

p ,p (Γ),

is continuous and
Ker∂t =R.

3. Homogeneous Bi-Laplacian problem

In this section, we will consider the following homogeneous Bi-Laplacian problem:

(PB )


∆2u = 0 in Ω,

u = g0 on Γ,
∂u
∂n = g1 on Γ.

(5)

Recall the following result (see [7]).

Theorem 2. LetΩ be a bounded open subset of RN of class of C0,1, with N ≥ 2 and let

g0 ∈ H 1(Γ) and g1 ∈ L2(Γ). (6)

Then there exists a unique u ∈ H 3/2(Ω) solution to Problem (PB ) with the estimate

∥u∥H 3/2(Ω) ≤ C
(∥∥g0

∥∥
H 1(Γ) +

∥∥g1
∥∥

L2(Γ)

)
. (7)

On the other hand, we know that if Ω is a bounded open subset of RN of class of C0,1 and
f ∈ L2(Ω), then there exists a unique solution u ∈ H 2

0 (Ω) satisfying∆2u = f inΩwith the estimate

∥u∥H 2(Ω) ≤ C
∥∥ f

∥∥
L2(Ω) . (8)

We know that if g0 ∈ H 1(Γ) and g1 ∈ L2(Γ) verify the condition (1) with p = 2, then there exists
a function u ∈ H 2(Ω) satisfying u = g0 and ∂u

∂n = g1 on Γwith the estimate

∥u∥H 2(Ω) ≤ C

∥∥∥∥∂g0

∂t
t + g1n

∥∥∥∥
H 1/2(Γ)

. (9)

The question that interests us here is to find such a function u in addition biharmonic inΩ.

Theorem 3. LetΩ be a bounded open subset of RN of class C0,1, with N ≥ 2. Let g0 and g1 be satisfy
the conditions (6) and (1). Then there exists a unique biharmonic function u ∈ H 2(Ω) satisfying
u = g0 and ∂u

∂n = g1 on Γwith the estimate (9).

Proof. Let w ∈ H 2(Ω) such that w = g0 and ∂w
∂n = g1 on Γ. We know that there exists a unique

solution z ∈ H 2
0 (Ω) satisfying ∆2z =∆2w inΩ. The required function is given by u = w − z. □

Remark 4. Let us introduce the following Hilbert space

H 1/2
T (Γ) = {

v ∈ H 1/2(Γ); vτ = 0
}

.

Clearly
v ∈ H 1/2

T (Γ) ⇐⇒ v = g n with g ∈ L2(Γ) and g n ∈ H 1/2(Γ)

The above result asserts that for any

g ∈ L2(Γ) such that g n ∈ H 1/2(Γ)
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there exists a function u ∈ H 2(Ω)∩H 1
0 (Ω) such that ∂u

∂n = g on Γ. Moreover among all functions
satisfying these conditions, there is one that is biharmonic.

We will see now an interested consequence of this result which will allow us to establish the
existence of very weak solutions in domains which are only Lipschitz. Before that, recall that if Ω
is of class C1,1 and g ∈ H−1/2(Γ), then there exists a unique harmonic function u ∈ L2(Ω) satisfying
u = g on Γ. WhenΩ is not sufficiently regular, there is not possible, in general, to define the trace
of harmonic function u ∈ L2(Ω) in H−s (Γ) for some s > 0. So, let us introduce the following Hilbert
space:

M(Ω) = {
v ∈ L2(Ω); ∆v ∈ L2(Ω)

}
.

We denote its norm by

∥v∥M(Ω) =
(
∥v∥2

L2(Ω) +∥∆v∥2
L2(Ω)

)1/2
.

It is easy to prove that D(Ω) is dense in M(Ω).
As a consequence of this density result and of Theorem 3, we can prove the following lemma.

Lemma 5. Let Ω be a bounded open set of RN of class C0,1, with N ≥ 2. The linear mapping
v 7−→ (vn)|Γ defined on D(Ω) can be extended to a linear continuous mapping

M(Ω) −→ [
H 1/2

T (Γ)
]′

.

Moreover, we have the Green formula: For all v ∈ M(Ω) and ϕ ∈ H 2(Ω)∩H 1
0 (Ω),∫

Ω
v∆ϕdx −

∫
Ω
ϕ∆v dx = 〈

(vn)Γ,∇ϕ〉
. (10)

Remark 6. When Ω is of class C1,1, then the linear mapping v 7−→ v |Γ defined on D(Ω) can be
extended to a linear continuous mapping

M(Ω) −→ H−1/2(Γ)

and we have the Green formula: For all v ∈ M(Ω) and ϕ ∈ H 2(Ω)∩H 1
0 (Ω),∫

Ω
v∆ϕdx −

∫
Ω
ϕ∆v dx =

〈
v,
∂ϕ

∂n

〉
. (11)

We now can solve the Laplace equation with singular boundary condition. For that we need to
introduce the following spaces:

HL2
0(Ω) =

{
v ∈ L2(Ω); ∆v = 0 inΩ and v = 0 onΓ

}
and

L2(Ω)⊥HL2
0(Ω) =

{
z ∈ L2(Ω); ∀ h ∈HL2

0(Ω),
∫
Ω

zh = 0

}
.

Theorem 7. LetΩ be a bounded open set of RN of class C0,1, with N ≥ 2. For any

g ∈ H−1/2(Γ) such that g n ∈ [
H 1/2

T (Γ)
]′

there exists a unique function u ∈ L2(Ω), unique up to an addictive function of HL2
0(Ω), solution to

the problem

∆u = 0 inΩ and un = g n on Γ, (12)

with the estimate

∥u∥L2(Ω) ≤ C∥g n∥[
H 1/2

T (Γ)
]′ .
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Proof. Thanks to the Green formula (10), it is easy to verify that u ∈ L2(Ω) is solution to Prob-
lem (12) is equivalent to the following variational formulation: Find u ∈ L2(Ω) such that for all
ϕ ∈ H 2(Ω)∩H 1

0 (Ω), ∫
Ω

u∆ϕdx = 〈
g n,∇ϕ〉[

H 1/2
T (Γ)

]′×H 1/2(Γ) . (13)

Indeed, let u ∈ L2(Ω) be a solution to (12). Then, the Green formula (10) yields (13).
Conversely, let u ∈ L2(Ω) be a solution to (13). Taking ϕ in D(Ω), we obtain ∆u = 0 in Ω

and u ∈ M(Ω). Using this last relation and again the Green formula (10), we deduce that for all
ϕ ∈ H 2(Ω)∩H 1

0 (Ω), 〈
un,∇ϕ〉[

H 1/2
T (Γ)

]′×H 1/2(Γ) =
〈

g n,∇ϕ〉[
H 1/2

T (Γ)
]′×H 1/2

T (Γ) .

Let µ ∈ H 1/2
T (Γ). By Remark 4, we know that there exits ϕ ∈ H 2(Ω)∩H 1

0 (Ω) such that µ=∇ϕ on Γ.
Thus, 〈

un,µ
〉[

H 1/2
T (Γ)

]′×H 1/2
T (Γ) =

〈
un,∇ϕ〉[

H 1/2
T (Γ)

]′×H 1/2
T (Γ) =

〈
g n,µ

〉[
H 1/2

T (Γ)
]′×H 1/2

T (Γ) .

and un = g n on Γ.
Let’s then solve Problem (13). We know that for all F ∈ L2(Ω)⊥HL2

0(Ω), there exists a unique

ϕ ∈ H 2(Ω)∩H 1
0 (Ω) satisfying −∆ϕ= F inΩ, with the estimate

∥v∥H 2(Ω) ≤C∥F∥L2(Ω).

Using estimate (8) we get∣∣∣〈g n,∇ϕ〉[
H 1/2

T (Γ)
]′×H 1/2

T (Γ)

∣∣∣≤ ∥g n∥[
H 1/2

T (Γ)
]′∥∇ϕ∥H 1/2(Γ) ≤ C ∥g n∥[

H 1/2
T (Γ)

]′∥F∥L2(Ω).

In other words, we can say that the linear mapping

T : F 7−→ 〈
g n,∇ϕ〉[

H 1/2
T (Γ)

]′×H 1/2
T (Γ)

is continuous on L2(Ω)⊥HL2
0(Ω), and according to the Riesz representation theorem, there exists

a function u ∈ L2(Ω), unique up to an addictive element of HL2
0(Ω), such that

∀ F ∈ L2(Ω), T (F ) =
∫
Ω

u F,

i.e u is solution of Problem (13). □

4. An Hessian representation for Lp -symmetric matrix fields

In this section, we will present a new characterization of the Lp -symmetric by using the Hessian
matrix. For that, we need some results, the first one is the following vector potential theorem
which have been presented by Duràn and Muschietti in [8]:

Lemma 8. Let 1 < p <∞, v ∈ Lp (Ω) with div v = 0 inΩ and satisfying the compatibility condition

〈v ·n,1〉Γ j = 0 for j = 0, · · · , J .

Then there exists a function ψ ∈W 1,p (Ω) such that curlψ= v in Ω.

The previous lemma is the key to generalize the Airy’s function theorem in Lp (Ω). In fact it
suffices to follow the same steps of proof of [11, Theorem 2] to obtain the following result:

Lemma 9. Given S = (si j )i , j=1,2 ∈ Lp
s (Ω), then S fulfills the following statements:

div S = 0 in Ω, (14)

〈S i ·n, 1〉Γ j
= 0 for i = 1, 2 and j = 0, · · · , J , (15)

〈S1 ·n, x2〉Γ j
= 〈S2 ·n, x1〉Γ j

for j = 0, · · · , J , (16)
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if and only if there exists an Airy’s function w ∈W 2,p (Ω) such that

s11 = ∂2w

∂x2
2

, s12 =− ∂2w

∂x1∂x2
and s22 = ∂2w

∂x2
1

. (17)

We are now in position to give a characterization of Lp -symmetric matrix field as a Hessian of
a scalar field belonging to W 2,p (Ω).

Theorem 10. Given S ∈ Lp
s (Ω), then S fulfills the following statements:

curlS i = 0 in Ω, for i = 1, 2 (18)〈
St , e i

〉
Γ j

= 0 for i = 1, 2 and j = 0, · · · , J , (19)

〈St , x〉Γ j = 0 for j = 0, · · · , J , (20)

if and only if there exists w ∈W 2,p (Ω) such that

S = Hess w in Ω. (21)

Proof.

(i) First, let S = Hess w with w ∈W 2,p (Ω). It is clear that S belongs to Lp
s (Ω) and satisfies (14).

It remains to show that S satisfies the compatibility conditions (19) and (20). Lemma 9
implies that the following compatibility conditions hold true〈

S⋆n,e i
〉
Γ j

= 0 for i = 1, 2 and j = 0, · · · , J , (22)〈
S⋆1 ·n, x2

〉
Γ j

= 〈
S⋆2 ·n, x1

〉
Γ j

for j = 0, · · · , J . (23)

Let us observe the following equalities

S⋆1 ·n = S2 · t and S⋆2 ·n =−S1 · t .

So, we have the relations (19) and (20).
(ii) Conversely, let S ∈ Lp

s (Ω) satisfies the compatibility conditions (14)-(20). Then, the matrix
S⋆ ∈ Lp

s (Ω satisfies (22) and (23). Moreover, as curl S = 0 in Ω, then div S⋆ = 0 in Ω. Due
to Lemma 9, there exists w ∈W 2,p (Ω) such that

S⋆ =


∂2w

∂x2
2

− ∂2w

∂x1∂x2

− ∂2w

∂x2∂x1

∂2w

∂x2
1

 .

Consequently,
S = Hess w in Ω. □

5. The range of the traces of W 3,p (Ω)

Geymonat [10] proved that if Ω is a Lipschitz domain of R2 and (g0, g1, g2) ∈ W 1,p (Γ)×Lp (Γ)×
Lp (Γ) belongs to the range of the operator (γ0, γ1, γ2), then it must satisfy the following conditions

q := ∂g0

∂t
t + g1n ∈W 1,p (Γ), (24)

and
H := [(∇q t

) · t
]

t ⊗ t + [(∇q t
) ·n

]
(t ⊗n +n ⊗ t )+ g2 n ⊗n ∈W1− 1

p ,p (Γ). (25)

In this section, we will show that the necessary conditions (24) and (25) are sufficient. First, we
will show the following results.
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Lemma 11. The operator

div : W1,p
0,s → Lp

0 (Ω), (26)

is onto. Consequently, for each vector field v ∈ Lp
0 (Ω), there exists a symmetric matrix field S in

W
1,p
0,s (Ω) such that

div S = v in Ω,

and there exists a constant C depending only on p andΩ such that

∥S∥W1,p (Ω) ≤C∥v∥Lp (Ω).

Proof. The proof is based on [6, Theorem 3] and it is composed on three steps.

Step 1. We show a vector version of J. L. Lions lemma. Here, we follow the same steps of proof
of [1, Theorem 3.1]. Let v ∈D′(Ω) be such that ∇s v ∈W−1,p

s (Ω). The identity

∂ j (∂k vi ) = ∂ j (∇s v)i k +∂k (∇s v)i j −∂i (∇s v) j k

implies that for any k, i = 1,2, the distribution ∂k vi has a gradient in W −2,p (Ω). Then [2, Propo-
sition 2.1] implies that ∂k vi is in W −1,p (Ω). In other words, ∇vi belongs to W −1,p (Ω) for each
i = 1,2. Again [2, Proposition 2.1] implies that v ∈ Lp (Ω).

Step 2. We show an extension of Donati’s theorem. Let p ′ be the conjugate of p and S ∈W−1,p ′
s

(Ω) be such that

W−1,p′ (Ω)〈S, e〉
W

1,p
0 (Ω)

= 0 for all e ∈V1,p
0,s (Ω). (27)

Moreau’s theorem [14] implies that there exists v ∈D′(Ω) such that ∇s v = S in Ω. By Step 1, we
get v ∈ Lp (Ω).

Step 3. We show that the operator (26) is onto. As consequence of Step 2, we deduce that the
following operator

∇s : Lp ′
(Ω)/R(Ω) →

[
V

1,p
s (Ω)

]◦
. (28)

is an isomorphism. Above the polar set is defined as follows:[
V

1,p
s (Ω)

]◦ = {
S ∈W−1,p ′

s (Ω) satisfying (27)
}

.

So, the dual operator

div : W1,p
0,s (Ω)/V1,p

s (Ω) → Lp
0 (Ω), (29)

is an isomorphism.

□

Lemma 12. Let A ∈W1− 1
p ,p

s (Γ) satisfies the compatibility conditions (19) and (20) of Theorem 10.
Then, there exists S ∈W1,p

s (Ω) such that

curl S = 0 in Ω and S = A on Γ. (30)

Moreover, there exists a constant C depending only on p andΩ such that

∥S∥W1,p (Ω) ≤C∥A∥
W

1− 1
p ,p

(Γ)
. (31)

Proof. Let A be as in the statement of Lemma 12 and M ∈W1,p
s (Ω) be such that M |Γ = A on Γ and

satisfies the estimate

∥M∥W 1,p (Ω) ≤C∥A∥
W

1− 1
p ,p

(Γ)
. (32)
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Let us observe that

div M⋆ =


∂m22

∂x1
− ∂m21

∂x2

−∂m12

∂x1
+ ∂m11

∂x2

=
(

curl M 2

−curl M 1

)
.

Now, setting v = div M⋆. We search R ∈W1,p
0,s (Ω) such that div R = v inΩ. By using (19), we get∫

Ω
v ·e1 d x =

∫
Ω

(
∂m22

∂x1
− ∂m21

∂x2

)
d x =

∫
Γ

M 2 · t dσ= 0.

By the same, we get ∫
Ω

v ·e2 d x =−
∫
Γ

M 1 · t dσ= 0.

And by using (20), we get∫
Ω

v · x⊥ d x =−
∫
Ω

M⋆ : ∇x⊥ d x +
∫
Γ

(
M⋆n

) · x⊥ dσ=−
∫
Γ

(M t ) · x dσ= 0.

The second integral above is equal to zero since M⋆ is symmetric and also the third on the
boundary by using (20). Then, Lemma 11 implies that there exists R ∈W 1,p

0,s (Ω) such that div R =
div M⋆ and satisfies the estimate

∥R∥W1,p (Ω) ≤C∥A∥
W

1− 1
p ,p

(Γ)
. (33)

The symmetric matrix S = M −R⋆ ∈W1,p
s (Ω) satisfies

S |Γ = M |Γ = A with ∥S∥W1,p (Ω) ≤C∥A∥
W

1− 1
p ,p

(Γ)
.

Observe that div S⋆ = 0, then curl S = 0. Moreover, (32) and (33) implies that the estimate (31)
holds, which ends the proof. □

Lemma 13. Let g0 ∈ W 1,p (Γ), g1, g2 i n Lp (Γ) be such that the vector field q = ∂g0
∂t t + g1n be in

W 1,p (Γ). Then, the matrix field H defined by

H = [(∇q t
) · t

]
t ⊗ t + [(∇q t

) ·n
]

(t ⊗n +n ⊗ t )+ g2 n ⊗n,

satisfies 〈
H t , e1〉

Γ j
= 〈

H t , e2〉
Γ j

= 〈H t , x〉Γ j = 0, j = 1, · · · , J . (34)

Proof. As q ∈ W 1,p (Γ), there exists w ∈ W 2,p (Ω) such that w|Γ = g0, ∂w
∂n = g1 and q = (∇w)|Γ

(see [11]). By definition of tangential derivatives, we get(∇q
)

t = ∂t q = (∇2w
)

t .

A simple calculus gives

(n ⊗n) t = 0, (n ⊗ t ) t = n, (t ⊗n) t = 0, (t ⊗ t ) t = t . (35)

Then, we get

H t = [(∇q t
) · t

]
[(t ⊗ t ) t ]+ [(∇q t

) ·n
]

[(t ⊗n +n ⊗ t ) t ]+ g2 [(n ⊗n) t ]

= [(∇q t
) · t

]
t + [(∇q t

) ·n
]

n

= (∇q
)

t =∇2w t .

Finally, Theorem 10 implies that〈
H t , e i

〉
Γ j

=
〈
∇2 w t , e i

〉
Γ j

= 0, i = 1,2, j = 1, · · · , J ,

〈H t , x〉Γ j =
〈∇2 w t , x

〉
Γ j

= 0, j = 1, · · · , J . □
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We are now in position to characterize the range of the trace operator in W 3,p (Ω).

Theorem 14. Let g0 ∈ W 1,p (Γ), g1, g2 ∈ Lp (Γ) be given. Then, there exists w ∈W 3,p (Ω) such that

w = g0,
∂w

∂n
= g1 and

∂2w

∂n2 = g2 on Γ, (36)

if and only if g0, g1 and g2 satisfy the conditions (24) and (25).

Proof.

(i) First, let w ∈ W 3,p (Ω), g0 = w|Γ, g1 = ∂w
∂n and g2 = ∂2w

∂n2 . By definition of tangential
derivatives, then the vector field q and the matrix field H defined in Lemma 13 satisfy
the conditions (24) and (25):

q = (∇w)|Γ ∈W 1,p (Γ) and H = (∇2w
)
|Γ ∈W

1− 1
p ,p

s (Γ).

(ii) Conversely, Lemma 13 implies that H satisfies the compatibility conditions (19) and (20),
then Lemma 12 implies that there exists S ∈W1,p

s (Ω) such that curlS = 0 in Ω and S = H
on Γ. As the matrix S satisfies the conditions (14)-(20), then there exists w0 ∈ W 2,p (Ω)
such that ∇2w0 = S in Ω. Consequently, w0 ∈ W 3,p (Ω) and (∇2w0)|Γ = H . A simple
calculus gives

(n ⊗n)n = n, (n ⊗ t )n = 0, (t ⊗n)n = t , (t ⊗ t )n = 0.

Then,

(Hn) ·n = ((∇2w0
)

n
) ·n = ∂2w0

∂n2 = g2 on Γ. (37)

Also, using (35), we get (∇2w0
)

t = H t = (∇q) t on Γ.

Hence, Proposition 1 implies that q = (∇w0)|Γ+ c0 where c0 ∈ R2. Let us observe that the
following fonction w1 = w0 +c0 · x satisfies

∂2w1

∂n2 = ∂2w0

∂n2 = g2, q =∇w1 and
∂w1

∂n
= g1.

Moreover,
(∇w1) · t = q · t =∇g0 · t .

Again, Proposition 1 implies that g0 = (w1)|Γ + c1 where c1 ∈ R. Finally, the function
w = w1 + c1 answers to our question since

w = g0,
∂w

∂n
= ∂w1

∂n
= g1 and

∂2w

∂n2 = ∂2w0

∂n2 = g2

which ends the proof of Theorem 14.

□
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