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ABSTRACT
Among the various meteorological variables, precipitation is one of significant interest, 
especially for hydrological studies. However, obtaining a reliable precipitation data set 
is a difficult challenge as precipitation can be very discontinuous in space and time. In 
this study, a method to obtain a high resolution precipitation reanalysis over France is 
purposed based on a study from 01/01/2016 to 31/12/2018. The French operational 
regional model Application de la Recherche à l’Opérationnel à Méso-Echelle (AROME) 
is combined with precipitation observations, which have been quality controlled, using 
an optimum interpolation data assimilation algorithm. To use this technique, some 
hypotheses have to be verified, such as the Gaussian distribution of the innovations. 
Since the precipitation distribution is highly asymmetric, a Box-Cox transformation is 
applied to both background and observations to work with variables which behave 
like Gaussian variables. Then, the background and observation standard deviation 
errors are determined thanks to the semi-variogram technique, which provides daily 
values. Results show that the Box-Cox transformation provides better scores for light 
precipitation and has the same quality as the reference – analysis in the physical 
space – for high precipitation amounts.
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1 INTRODUCTION

The ability to produce a reliable precipitation data set is 
very important for hydrological studies as precipitation 
is the input variable with the most significant impact 
in hydrological models (Carrera et al., 2010). Moreover, 
events with high rainfall rates are often related to high 
societal and economical impacts. In France, high rainfall 
events known as “Mediterranean episodes” can be 
associated with flash flood events and can cause a great 
deal of damage. In addition, it is necessary to have a 
good representation of the precipitation amounts over 
a large period for climatological studies. High quality 
rainfall data sets are complicated to obtain due to the 
spatially discontinuous nature of the precipitation. Since 
the 90’s, several projects have been initiated in order to 
evaluate the atmospheric state over a long time period. 
For such studies, the reanalysis method is of particular 
interest as it combines information contained in an a 
priori state of the atmosphere, called background, and 
in the available observations which then leads to a good 
representation of the atmospheric state even in areas 
where the observations are sparse. As a result, many 
meteorological centers produced different sets of global 
reanalyses, such as the European Center for Medium-
range Weather Forecast (ECMWF) with ERA-Interim (Dee 
et al., 2011) and most recently ERA5 (Hersbach et al., 
2020) or the Japan Meteorology Agency (JMA) with 
JRA25 (Onogi et al., 2007) and JRA55 (Kobayashi et al., 
2015). Then, meteorological centers produced regional 
reanalysis for which they can concentrate on a limited 
area, allowing a better resolution. The higher resolution 
of regional reanalyses allows a better representation 
of local events (Kaiser-Weiss et al., 2019) such as flash 
foods, convection, local wind or meteorological effects 
due to orographic features. European Reanalysis and 
Observations for Monitoring (EURO4M) was the first 
regional reanalysis in Europe, and it provided data 
over Europe from 1989 to 2013 at a 22 km resolution 
(Dahlgren et al., 2016). Uncertainties in Ensemble 
Regional ReAnalysis (UERRA) is a project created thanks 
to a cooperation of 12 meteorological centers and 
provides a deterministic (Ridal et al., 2017) reanalysis 
from 1961 to 2015 and a 20-member ensemble (Jermey 
et al., 2015) reanalysis from 1979 to 2016 by using the 
global reanalysis ERA-Interim as the Lateral Boundary 
Conditions (LBC) coupled with the Unified Model (UM) 
as the background for both analyses. Within the UERRA 
project, a first precipitation reanalysis was released at a 
5.5 km resolution over Europe. To produce this surface 
reanalysis, the atmospheric reanalysis was downscalled 
to 5.5 km to be used as background, which leads to a data 
set at a high resolution as it was run offline and so it used 
less computing power. However, this surface reanalysis 
was obtained using a simple technique based on 
Optimum Interpolation (OI) in physical space. As a result, 

this surface reanalysis suffers from some analysis errors, 
such as an underestimation of snow in mountainous 
areas. Under the Copernicus program, another European 
regional reanalysis project is in production which is called 
Copernicus European Regional ReAnalysis (CERRA), using 
the more recent global reanalysis of the ECMWF ERA5 as 
a LBC. This regional reanalysis uses satellite data and in 
situ observations and is directly used as a background 
for a surface reanalysis of two-meter temperature and 
relative humidity at a 5.5 km resolution. Other surface 
reanalyses have been created over the last few years. 
For example, the Système d’Analyse Fournissant des 
Renseignements Adaptés à la Nivologie (SAFRAN) system 
(Durand et al., 1993) has been developed to produce a 
surface reanalysis over France (Vidal et al., 2010) which 
has been used extensively as input for land surface 
models for various purposes such as avalanche risk 
forecasting or water resource monitoring.

Data assimilation (DA) methods combine observations 
with a background field, generally coming from a 
Numerical Weather Prediction (NWP) model. DA contains 
many hypotheses about the variable characteristics, 
such as the Gaussian distribution of the variable or 
even the knowledge of the background and observation 
errors. If the first hypothesis can be applicable for global 
variables, it is rarely the case for very local ones such as 
precipitation, as this variable is very asymmetric, with 
a great proportion of light precipitation compared to 
rare high precipitation events. This characteristic of the 
precipitation makes the analysis of this variable very 
complicated. As a consequence, the precipitation analysis 
is a problem often studied by many meteorological 
centers. A common solution to the problems related with 
the precipitation is the use of a data transformation to map 
a variable into a new one having a Gaussian distribution. 
Many transformations have been tested over time, such 
as the logarithm (Mahfouf et al., 2007; Rodríguez-Puebla 
et al., 2001), the Gaussian anamorphism (Amezcua and 
Van Leeuwen, 2014, Devers et al., 2020, Lien et al., 2013, 
Lussana et al., 2020), and the Box-Cox transformation 
(Box and Cox, 1964; Cecinati et al., 2017, Erdin et al., 2012, 
Ishak and Ahmad, 2018, Lespinas et al., 2015, Tippett 
et al., 2007). However, the use of a data transformation, 
such as the Box-Cox transformation induces a significant 
bias (Evans, 2013, Fortin et al., 2015) which can induce 
large errors in hydrological models (Carrera et al., 2010). 
The background field errors, coming from the hypotheses 
assumed in the modeling systems and the observation 
errors (coming from measurement errors, the more 
common and known one being the undercatchment of 
precipitation due to the wind effect, (Sevruk, 1996)), have 
also to be determined. A common and easy solution is the 
use of fixed errors, but this is not optimal as precipitation 
suffers from more measurement errors when falling 
in a solid form or when the winds are stronger. Many 
studies have been done to determine the optimal values 
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of the observation and background errors. They have 
proposed different methods to allow the determination 
of the background and observation errors, such as the 
diagnostic a posteriori (Desroziers et al., 2005), the 
maximum likelihood method (Dee and Da Silva, 1999) 
or even the semi-variogram technique (Lespinas et al., 
2015, Touma et al., 2018, Wang et al., 2019).

In this study, a method to analyze precipitation at a 
high resolution is proposed. The domain is over France at 
a 1.3 km resolution, which is used since it is the resolution 
of the Application de la Recherche à l’Opérationnel à Méso-
Echelle (AROME) operational weather forecast model. In 
order to give precipitation a near-Gaussian distribution, the 
Box-Cox transformation is applied to both the background 
and the observations. This transformation also allows the 
use of the semi-variogram technique to determine daily 
background and observation errors. As this transformation 
induces a negative bias for the analyzed state, a bias 
correction method is used and presented herein. In the first 
section, the DA system used in this study is presented. The 
data transformation method is also presented followed by 
a presentation of the semi-variogram technique which was 
used to determine the background and observation errors. 
The bias correction applied to the transformed back into 
physical space data is also detailed. The second section 
presents the different scores used in this study for assessing 
the benefit and the potential of the proposed method. 
Statistical scores are calculated over the whole period to 
have a global evaluation, and they are also calculated for 
different seasons (winter, spring, summer and autumn). 
A convective case is also studied to evaluate the impact 
of the Box-Cox transformation compared to the analysis 
obtained with the existing surface analysis system used for 
the UERRA surface reanalysis (MESCAN) for situations with 
high precipitation amounts. Finally, section 4 deals with 
the conclusions and the perspectives of this work.

2 EXPERIMENTAL SETUP AND 
METHODS

This section presents the different methods used to 
produce the precipitation analysis. First, the analysis system 
MESCAN is presented, including the background and the 
observations used in this study. The data transformation 
is then presented followed by the presentation of a 
geostatistical method allowing the daily determination 
of the background and observation errors. Then, the bias 
induced by the data transformation is presented and a 
bias correction formula is proposed.

2.1 THE MESCAN DATA ASSIMILATION SYSTEM
In this study, the analysis is calculated with an OI 
algorithm by combining information contained in the 
observations and in a background state with the MESCAN 
system developed by Soci et al. (2016) for the UERRA 

project. The analysis state is found by determining the 
analysis variance error minimum using a Bayesian 
approach. By using the background vector, xb, the 
observation vector, yo, the observation operator, H, which 
interpolates the background values to the observation 
space by taking into account the dynamic of the NWP 
model and can be non-linear, the analysis state a

ix  at a 
grid point i is defined as:
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In Eq. (1), p is the number of observation points used to 
calculate the analysis at the grid point i, and wij are the 
weights attached to the innovations ( )o b

j j jd y H x= - . The 
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where R stands for the matrix of the observation error 
covariances, B stands for the matrix of the background 
error covariances and k is between 1 and p. p has been 
set to 16 historically so that each model grid point is 
surrounded by a minimum number of observations, but 
not too large for computational cost issues. Under the 
hypothesis that only horizontal background errors are 
considered, background errors are homogeneous and 
isotropic and coefficients of the matrix B are modelled by 
a second-order auto-regressive function (Mahfouf et al., 
2007) defined by Eq. (3) where ri,j is the distance between 
the points i and j, L is the characteristic horizontal scale 
and σb is the standard deviation of the background error. 
As in the regional reanalysis UERRA, σb is set to 13 mm in 
this study even if the use of the (Desroziers et al., 2005) 
diagnosis shows that this value is likely too high and 
is dependent on the season, with higher values during 
summer and autumn and lower values in winter and 
spring (not shown here), which is in agreement with the 
results obtained in Soci et al. (2016) in which the use 
of the a posteriori diagnosis gave estimated values of 
the standard deviation of observation and background 
errors for December (σo = 2.35 mm and σb = 4.49 mm) 
and for June (σo = 4.19 mm and σb = 6.98 mm). Under the 
hypothesis of uncorrelated observation errors, the matrix 
of the observation error covariances, R, is diagonal and the 
coefficients are defined by Eq. (4) where σo stands for the 
standard deviation of observation errors and δi,j stands for 
the Kronecker delta (i.e. δi,j = 1 if i = j and is null otherwise):

 , ,2
, (1 ) ( )i j i j
i j b

r r
B exp

L L
s= + -  (3)

 2
, , oi j i jR d s=  (4)

Different instruments can be used to measure precipi-
tation. The most common one is the tipping bucket. 
Therefore, the measure can suffer from many error 
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sources. The most common and the most documented 
one results from the undercatchment due to the wind. 
Moreover, it has been shown that observation errors are 
greater when the precipitation rate is high (L’Ecuyer and 
Stephens, 2002). Then, to take this effect into account, a 
variable σo which is formulated following Eq. (5) and used 
in the European reanalysis UERRA, is considered in this 
study. It is expressed as

 s

ì =ïïïï= + <íïïï >ïî


24

24 24

24

0.001 if 0

0.7 0.1 if 0 50

5.7 if  

 

50

h

o h h

h

RR mm

RR RR mm

RR mm
 (5)

This equation gives a great deal of confidence to null 
observations, and the higher the precipitation rate, the 
less confidence is given in measurements. The limit 
for cumulative precipitation over 24h (denoted RR24h 
hereafter) of 50 mm is fixed to be close to the ratio 

2( )o

b

s
sa=  of the operational configuration of SAFRAN 

(σo = 5 mm and σb = 13 mm) which is used for surface 
reanalysis at Météo-France. A small value of σo for null 
precipitation (0.001 mm) is used to avoid overestimation 
of light precipitation produced by the model in the UERRA 
reanalysis. Such use of a variable formula of σo has also 
been tested in previous studies and is operational in the 
MESAN system used for the HIRLAM EURO4M surface 
reanalysis (Landelius et al., 2016), but with a greater slope 
in the linear relationship between σo and precipitation 
values (0.2) and without a limit for high precipitation 
values. However, if the use of a variable such as σo shows 
better results in general, it highlights some drawbacks 
such as an over-confidence in rain gauge with problems 
such as undercatchment for example. Therefore, the a 
posteriori diagnosis applied by precipitation class proved 
that the error of the background standard deviation also 
depended on the precipitation rate (not shown here). 
Fixed value (σb = 13 mm) is considered in this study as it 
is used in the UERRA reanalysis, which is the reference in 
surface reanalysis over Europe.

2.2 BACKGROUND DATA
As explained before, the OI algorithm combines 
information from a background with observations. 
The background field is very important for long 
meteorological reconstructions as it brings some 
information in areas where the observational data 
set is sparse (Donat et al., 2014). Generally, the 
background come from a numerical weather forecast 
model, except for the SAFRAN precipitation analysis in 
which the background is a climatological field. In this 
study, the French regional operational model AROME 
(Seity et al., 2011) at a resolution of 1.3 km (Brousseau 
et al., 2016) has been chosen. This is a non-hydrostatic 
model, which explicitly resolves deep convection and 
uses a cycled 3DVar analysis scheme to analyze the 

state of the atmosphere at a hourly frequency and an 
OI scheme to analyze the two meter air temperature 
and humidity at a three hours frequency, and it 
produces the initial state for the next forecast. Regional 
models aim at giving better information for local scale 
events, such as flash floods, which often occur in the 
South East of France during the fall. The precipitation 
analysis is run in an offline mode, meaning that the 
operational precipitation forecasts of AROME are used 
as background fields in the offline analysis. To match 
the period of the observed precipitation, the outputs 
of AROME from forecast lead time +6h to +30h have 
been used, which correspond to 06UTC, day D to 06UTC, 
day D+1, as in the operational version of MESCAN used 
at Météo-France. In this study, the background used is 
referenced as AROME-1.3 km.

2.3 OBSERVATION DATA
Observations used as inputs for the MESCAN system are 
checked by a quality control method used at Météo-
France and developed by the department in charge 
of climatology at Météo-France. This quality control 
determines stations where null (resp. high) values are 
observed while the majority of neighbouring stations 
do not register null (resp. high) values. Thus, two kriging 
methods were used to estimate the rain gauge based 
values using neighbouring stations. The rain gauge 
value is judged as doubtful if the difference between 
this estimated value and the real value is too large. In 
this study, for stations where there are two or more 
observations, only the observation where the quality 
control shows no doubtful flags is considered. In the case 
that more than one observation is flagged as good, only 
the first observation is taken even if another solution can 
be the creation of a “super” observation by taking the 
average between the different observations as used in 
(Mahfouf et al., 2007). In this way, the observation data 
set reached around 2500 observations each day.

2.4 GAUSSIAN TRANSFORMATION
As explained in the introduction, UERRA precipitation 
reanalysis is obtained thanks to an OI algorithm applied 
in the physical space. One of the important hypothesis 
of the OI algorithm is the Gaussian distribution of 
the innovations. However, as precipitation has a very 
asymmetric distribution, this hypothesis is, in general, 
not valid. The use of a data transformation to approach a 
Gaussian distribution is a common method to overcome 
this problem. Many transformations have been tested 
for several studies and it appears that the Box-Cox 
transformation is the best adapted for precipitation 
(Legates and Willmott, 1990), and it is also rather easy 
to implement. As a consequence, in this study, a Box-Cox 
transformation of variable y (Eq. (6)) is used to calculate 
the analysis. The Box-Cox transformation is defined 
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by the tuple l = (l1, l2), hereafter called the Box-Cox 
parameters. The variable in the transformed space is 
defined as:

 

1
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1( ) ( )
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2 1

( ) 1
if 0

( )

( )if 0
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log y

l

l l
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l l

ìï + -ï ¹ïï= =íïïï + =ïî
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where y is the original variable in the physical space, and 
y(l) is the Box-Cox transformation of y. When the Box-Cox 
transformation is not defined (i.e. when l1 = 0 and y + 
l2 ⩽ 0 or l1 ≠ 0 and y + l2 < 0), BC(l)(y) is set to 0. It is 
important to remark that the Box-Cox transformation 
can not be applied to negative values of y + l2 when l1 
≠ 1. Different studies have been conducted to optimize 
the Box-Cox parameters (Erdin et al., 2012; Ishak and 
Ahmad, 2018). Moreover, it can be seen that for l = (l1 
→ 0, l2 = 1), the Box-Cox transformation approaches the 
logarithm transformation used in (Mahfouf et al., 2007).

However, the analysis in the transformed space does 
not bring a valuable information and can not be used 
directly by downstream application such as hydrology as 
hydrological models need physical precipitation values 
as input. Therefore, it is necessary to define the analysis 
in the physical space so the Eq. (6) has to be inverted. 
As the Box-Cox transformation is reversible, it is possible 
to define the real inverse Box-Cox transformation with 
Eq. (7) as

 ( ) ( ) ( )
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1
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 1 if 
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Y BC y

exp y

l l
l l

l

l l l

l l

-
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As for the Box-Cox transformation, it is considered that 
(BC(l))–1 (y(l)) = 0 when l1 ≠ 0 and y(l)l1 + 1 < 0. It is easy 
to demonstrate that Y = y.

In order to obtain an innovation distribution as 
close as possible to a Gaussian distribution, a study to 
determine the optimal values of the Box-Cox parameters, 
and especially of l1 has been done. In this study, the 
transformed innovation is defined as y(l) = BC(l)(yo) – 
BC(l) [H(xb)]. The transformed innovation is not defined 
as y(l) = BC(l) [yo – H(xb)] because the input of the Box-
Cox transformation has to be positive (see the previous 
paragraph) which is not always the case for the variable 
yo – H(xb). It is, in fact, the main goal of the parameter l2. 
Therefore, this parameter has to be calculated every day 
and is, in fact, highly variable every day (not shown here). 
Thus, (Fortin et al., 2015) has shown that the intermittent 
nature of precipitation is only kept by considering l2 = 0 
after the use of the bias correction (see section 2.6). As 
a result, in the following of this study, l2 is set to 0. As 
it is mainly the asymmetric property of the precipitation 
which make it a non-Gaussian variable, only l = (l1,0) 
where l1 ∈ [0,1] are considered. More precisely, only 

*1
1 ,k kl = Î  are considered for reasons explained in 

section 2.6. To determine optimal value of l1, Quantile-
Quantile-plots (QQ-plots) of the variable y(l) are calculated 
for many values of l1, which express the true quantiles of 
the variable compared to the quantiles of the variable if it 
had a Gaussian distribution. These plots give a line and a 
cloud of points for which we can calculate the correlation 
factor. The more this correlation factor is close to 1, the 
more y(l) has a Gaussian distribution.

In this study, two different methods are used to 
determine the optimal value of l1. The first method 
gives a time series of optimal values of l1 (Figure 1a). To 
obtain this time series, the correlation factor is calculated 
daily for each value of l1. The daily optimal value of l1 
is obtained by considering the l1 value corresponding to 
the higher value of the correlation factor (Figures 1a,b 
and c). The second method gives the l1 values which are 
used in this study. The correlation factor is calculated 
each day for each l1 value and then, the mean value of 
this correlation factor over the whole period (Figure 1d) 
is examined : if this mean correlation factor is superior to 
0.85, then it is considered that the l1 value can be used 
for the OI analysis.

In Figure 1a, the time series of running average over 
150 days – to avoid noise as optimal l1 values are highly 
variable from one day to another – of optimal values of 
l1 is plotted. It can be seen that optimal values of l1 have 
a seasonal variation with greatest values during autumn 
and winter and lower ones during spring and summer, 
with the mean value over the whole period being l1 = 
0.28. This is coherent with the type of precipitation 
during winter, which is essentially stratiform and 
thus is characterized by large scale features and as a 
consequence, the precipitation transformation is less 
useful than during summer, when convective events 
often occur (which can be very located events). It can 
be seen that l1 values are lower during spring 2017, 
which can be explained by the fact that this spring was 
a very dry one compared to the other springs considered 
in this study (total mean observed precipitation are 3.04 
mm for spring 2016, 2.35 mm for spring 2017 and 3.41 
mm for spring 2018). The time series of running average 
over 150 days of correlation factors corresponding to the 
optimal l1 time series are plotted in Figure 1b and the 
distribution of correlation factor over the study period is 
plotted in Figure 1c. It can be seen that the majority of 
the coefficients are between 0.9 and 1, which proves the 
ability of the Box-Cox transformation to give a Gaussian 
distribution to the innovations. An important correlation 
between l1 values and the correlation factor should be 
noted : the more the values of l1 are small (resp. high), 
the more the correlation factor is small (resp. high).

The mean value of the correlation factor for each l1 
value is shown in Figure 1d. It should be noted that for 
l1 = 0, the logarithmic transformation used in (Mahfouf 
et al., 2007) (l1 = 0 and l2 = 1) is considered in this study. It 
can be seen that the correlation factor allows a maximum 
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value for 1
1 4l =  and is higher than 0.85 for 1

1 3l = . From 
this figure, two important conclusions can be made : 
the minimum of the correlation factors is obtained for 
l1 = 1, which represents the physical space so this result 
proves the importance of Box-Cox transformation to give 
a Gaussian distribution for innovations. Thus, it can be 
seen that for l1 = 0 (logarithmic transformation), there is 
an increase of the correlation factor, which reinforces the 
use of logarithm transformation for precipitation analysis 
in previous studies.

From these results, the Box-Cox parameters 1
4( ,0)l=  

and 1
3( ,0)l=  were used to calculate the precipitation 

analysis. A comparison between the scores of the 
analyses compared to independent observations (see 
section 3.1) show that the transformed back into physical 
space using the Box-Cox transformation with 1

3( ,0)l=  
works better than using the Box-Cox transformation with 

1
4( ,0)l= . Indeed, the bias – which refers here as the bias 

of the model (or the analysis) compared to observation 
data set, following Eq.(27) – (resp. RMSE) of the analysis 
using 1

3( ,0)l=  is –0.11 mm (resp. 2.38 mm) while the 
bias (resp. RMSE) of the analysis using 1

4( ,0)l=  is –0.13 
mm (resp. 2.47 mm). As a result, 1

3( ,0)l=  was retained in 
the following of this study.

2.5 GEOSTATISTICAL DETERMINATION OF THE 
BACKGROUND AND OBSERVATION ERRORS
To estimate statistical errors for the observations and the 
background, (Desroziers et al., 2005) used an iterative 

method, meaning the analysis has to be run more than 
one time. As this method is relatively expensive, another 
method called the semi-variogram technique is used 
in this study to determine these errors. This technique 
is used in the Canadian Precipitation Analysis (CaPA) 
system (Lespinas et al., 2015) and it relies upon the 
fact that two observations are more correlated if they 
are near than if they are far away from one another. 
Then, the semi-variogram permits the calculation of the 
correlation between two points separated by a distance, 
h. In this section, the different steps leading up to the 
determination of BC

os  (observation standard deviation 
error in Box-Cox space) and BC

bs  (background standard 
deviation error in Box-Cox space) are described.

The daily experimental semi-variogram per distance 
class is defined as:

 
( )

2

1

1
( ) [ ( ) ( )]

2 ( )

N h

e i i

i

h Z x Z x h
N h

g
=

= - +å  (8)

where N(h) is the number of observations taken into 
account for each distance class, Z stands for the variable 
considered (here the transformed innovation defined 
in the previous section), Z(xi) is the innovation at an 
observed station i, and Z(xi+h) is the innovation at a 
station separated from the previous one by a distance 
of h.

In order to have enough observations in each distance 
class, the number of pairs used, N(h), and the sum of the 
innovation differences are calculated over a period of 

Figure 1 Determination of optimal values of l1 over the whole period : (a) is the time series of optimal l1 values (in blue) and its mean 
value (in red), (b) is the associated correlation factor, with daily values (in blue) and its mean value (in red), (c) is the distribution of the 
correlation factor over the whole period and (d) are the mean correlation factors over the whole period for each l1 value.
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several days N(d). Then, the semi-variogram used in this 
study is defined by:

 ( ) ( )
( ) ( ) 2

( )
1 1

1

1
( )

2 ( )

N d N h

e i iN d j j
j i

j

j

h Z x Z x h
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=

é ù= - +ê úë ûåå
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where j relates the fact that it is calculated on the jth day. 
A study (not shown here) has been done to determine 
the best value of the number of days to take into account 
in order to have enough observations in each distance 
class, but, also to prevent a signal from being smoothed 
too much. As a result, a period of 30 days is chosen in 
this study.

The use of semi-variograms implies that precipitation 
field is assumed to be spatially stationary, which is not 
really a good assumption as different mountainous areas 
play an important role in France such as the Pyrenees, 
the Alps, the Corsican mountains and the Massif Central. 
Wang et al. (2019) tuned Eq.(8) to take into account the 
elevation. Even if it has be shown that in complex terrain, 
the tuned equation provides better results, the use of 
classical semi-variogram equation (Eq. (8)) is used in this 
study.

Daily theoretical semi-variograms are obtained using 
daily experimental semi-variograms obtained with Eq. 
(9). Both semi-variograms are plotted in Figure 2a. The 
theoretical semi-variogram is obtained by fitting an 
experimental semi-variogram. BC

os  correspond to the 
theoretical semi-variogram value for the lower distance, 
BC
bs  is the asymptotic value of theoretical semi-variogram 

and L is the distance for which 75% of the asymptotic 
value is obtained (Figure 2b).

Two different methods have been tested in this 
study. First, all observed stations are used to calculate 
the semi-variogram (Method 1). Then, a new sample 
has been used by considering only stations where both 
observation and background are strictly greater than zero 
to calculate the semi-variogram (Method 2), because 
precipitation measurement errors only occur when there 

is precipitation. For method 2, between 40% and 80% 
(resp. 20% and 70%) of the stations are not considered 
for observations (resp. background) for the semi-
variogram calculation. Results are shown in Figure 3 for 
the Box-Cox transformation with 1

3( ,0)l= . It can be seen 
that both methods provide similar values of BC

bs  during 
the whole period while some differences can be pointed 
out for BC

os  values. Indeed, it can be seen that even if BC
os  

values are similar for both methods, BC
os  values are, in 

general, higher (resp. lower) during summer (resp. winter) 
for the Method 2. Higher values of BC

os  are related to 
periods when there is a lot of null observed precipitation. 
When these null precipitation observations are deleted 
in the data set, the daily mean observed precipitation 
is then highly increased. These results are in agreement 
with the variable formula of σo purposed for MESCAN 
in the UERRA project (the weaker the precipitation, the 
more observation can be trusted, see Eq. (5) and section 
2.1). From now, values obtained with Method 2 will be 
considered in the MESCAN analysis (Figure 4). It can be 
seen that there is a seasonal variation of BC

bs  with higher 
(resp. lower) values during summer (resp. winter). This is 
due to the fact that winter contains, in general, stratiform 
precipitation with a large amplitude compared to local 
structures which occurs during summer, which can be 
more complicated to be well-predicted since the scales 
considered can be lower than the model resolution. On 
the other hand, BC

os  values are very consistent during the 
study period and there is not a visible seasonal variation 
even if summer is associated with higher BC

os  values 
(especially during summer 2017 and summer 2018). 
These results are consistent with those obtained by 
(Wang et al., 2019) and (Soci et al., 2016).

2.6 BIAS CORRECTION
2.6.1 Origins of the bias
In order to correct the bias induced by the data 
transformation and its inverse transformation, it is 
important to understand the origins of this bias. In 
this part, only the case l1 ≠ 0 has been considered. As 

Figure 2 Experimental (blue cross) and theoretical (red line) semi-variograms (a) and determination of ,BC BC
o bs s  and L (b).
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explained before, both the Box-Cox transformation 
(Eq. (6)) and its inverse function (Eq. (7)) are non-linear 
transformations. The analysis state in the transformed 
space, ( )a Tix , is calculated from:

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1

p
a b o b
i i ij jTT j

j

x BC x w BC y H BC xl l l

=

ì üï ïé ùï ï= + -í ýê úï ïë ûï ïî þ
å  (10)

where (wij)T stands for the weights calculated in the 
transformed space. In this study, H(xb)j is obtained by 
considering the nearest model point from the observation 
point j. As a consequence, one can deduce:

 ( ) ( )( ) ( )b b

jj
H BC x BC H xl l é ùé ù = ê úê úë û ê úë û

 (11)

It can be seen from Eq. (10) that values transformed by 
the Box-Cox transformation are added. However, the 
Box-Cox transformation is defined only for positive inputs 
and the results interval is bounded to the left:
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As a result, the inverse Box-Cox transformation is defined as:
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Then, if we consider [ [2, ,x y lÎ - +¥ , then 
1

2

1

1( ) ( )( ) ( ) [2 , [BC x BC y
lll l
l

-
+ Î +¥ . For now, it can be 

deduced that inverse Box-Cox transformation can not 

Figure 3 Daily values of BC
os  (a) and BC

bs  (b) for the two methods.

Figure 4 Daily values of BC
os  and BC

bs  for the Box-Cox transformation with 1
3

( ,0)l= .
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always be applied to added values transformed by the 
Box-Cox transformation. Therefore, in order to use any 
values, the Box-Cox transformation has been extended as:
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It is important to note the discontinuity of the Box-Cox 
transformation at 0. Indeed, for y < 0, BC(l)(y) = 0 while 

1
2

1

1( )(0)BC
lll
l

-
= . As a consequence, by considering l2 = 0 

and *1
1 ,k kl = Î , then BC(l)(0) = –k. Then, the larger the 

value of k, the more the singularity in 0 for the Box-Cox 
transformation is large.

In the same way, inverse Box-Cox transformation has 
been extended as:
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A very simple example to understand the effect of the 
non-linearity of the Box-Cox transformation in the analysis 
process is explained here. We consider a fixed background 
value b

ix  (here we will consider the background value to be 
0 mm, 5 mm, 10 mm and 200 mm). If only one observation 

is used to correct the background, the analysis state in 
physical space (denoted a

ix  hereafter) is defined as follows:

 ( )a b o b
i i j j
x x y H x= + -  (14)

whereas in transformed space, the analysis state (noted 

,
a
i Tx  hereafter) is defined as:

 ( ) ( ) ( ) ( )1( ) ( ) ( ) ( )
,
a b o b
i T i j j
x BC BC x BC y BC H xl l l l- ì üé ùï ïï ï= + - ê úí ýï ïê úë ûï ïî þ

 (15)

where l is fixed to 1
3( ,0) in this part.

We consider a fixed value of 3 o
jy mm=  and H(xb)j 

values vary to correct the background from –2.5 mm to 
2.5 mm (increment values, i.e. ( )o b

j jy H x-  in Eq. (14)) in 
physical space. Therefore, in the case in which 0 b

ix mm= , 
only positive increments are considered (from 0 mm to 3 
mm) in order to consider positive analysis values. Figure 5 
shows the values of a

ix  and ,
a
i Tx  for background values 

of 0 mm, 5 mm, 10 mm and 200 mm ((a), (b), (c) and 
(d) respectively). It can be seen on this figure that if the 
background is null, the analysis calculated in the Box-
Cox space will always underestimate the precipitation. 
Then, if the background is not null, the analysis in the 
Box-Cox space will underestimate the precipitation when 
the increment is negative and it will overestimate the 
precipitation when the increment is positive.

Figure 5 Put on evidence of the bias induced by the Box-Cox transformation. The red line stands for the analysis wanted ( a
ix ) and the 

blue line stands for the analysis obtained after the Box-Cox transformation ( ,
a
i Tx ) for background values fixed at 0 mm (a), 5 mm (b), 

10 mm (c) and 200 mm (d).
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Another explanation of the bias can be found 
in Fletcher and Zupanski (2006). In Box-Cox space, 
background and observation errors are normally 
distributed. As a result, the analysis error is also 
normally distributed, and symmetric around the mean. 
Therefore, mean, median and mode are the same. As 
a result, the best estimate (analysis) can be chosen as 
the median, the mean or the mode, which makes no 
difference. However, inverse Box-Cox transformation 
has to be applied to the analysis to obtain precipitation 
in the physical space. After this step, the precipitation is 
no more normally distributed. As a result, the choice of 
the mean, median or mode will have an impact on the 
analysis, and can be another source of bias.

2.6.2 Bias correction
Using a transformed variable is a very efficient method 
for resolving the non-Gaussian distribution of the 
variable, but it also introduces a bias when moving 
back to physical space due to the non-linear aspect of 
the transformation (see the previous section). Avoid 
solving the induced bias can be a source of big error in 
the analysis and this type of systematic error can be 
detrimental for hydrological applications. For example, it 
is possible to run the precipitation analysis in logarithmic 
space with MESCAN but since the bias correction is not 
addressed, this option was not used in the UERRA surface 
reanalysis. CaPA uses the Box-Cox transformation and 
Evans (2013) developed a bias correction formula. In 
this study, a slightly transformed CaPA bias correction 
formula is used.

The derivation of the bias correction formula is given in 
the Appendix C. To determine this formula, a Taylor series 
decomposition of Eq. (7) is used. An important remark is 
that Eq. (7) can be derived for order n, ∀n ∈ ℕ*\{1}, using 
a recursive relation:
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1 1( )1( ) ( ) ( )
1 1

1

1 1
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=
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It can be deduced from Eq. (16) that if 1
1 kl =  with k ∈ ℕ* 

then ∀l > k so that
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l

BC yl l-é ù
=ê ú
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As the Taylor decomposition is truncated, it is more 
accurate to have *1

1 ,k kl = Î  to neglect as few terms as 
possible for the bias correction, with the lowest value of 
k possible. Thus, for a normal variable 2~ ( , )X m s , then, 

2 11, [( ) ] 0nn E X m +" - =  and (2 )!2 2

2 !
[( ) ] n

nn k

n
E X m s- = .

So, by considering that ( ) ( ) 2]~ [( ) ,( )a BC
ay xl l s  where BC

as  
stands for the standard deviation of the analysis error 
in the transformed space and is defined by (Daley, 
1993):
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Then it is easy to demonstrate that:
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Thus, for k = 2 or k = 3, Eq. (6) is equivalent to a square-
root or a cubic-root transformation, respectively. Then, for 

1
1 3l = , the corrected analysis values will be defined by:
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For 1
1 4l = , the corrected analysis values will be defined by:
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The correction for the analysis calculated in the logarithm 
space is:
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It can be seen from Eq. (18) that BC
as  is a spatially variable 

coefficient, meaning that there are some places where 
the analysis is more accurate. As this parameter is used as 
a coefficient product in the Eq. (21) and Eq. (22), it can be 
deduced that the better the analysis, the less precipitation 
is added owing to the bias correction. As stated in (Fortin 
et al., 2015), if the analysis is null, it is expected that the 
bias correction does not bring any precipitation, which 
implies the choice of l2 = 0. The bias correction formula 
used in this study is therefore slightly different from the 
one used in CaPA. Indeed, Eq. (24) is used in the CaPA 
analysis for which a factor 

2

2

( )

( )
1

BC
a
BC
b

s

s
-  is accounted for avoid 

adding precipitation when no observation contributes 
to the analysis (i.e. when 2 2( ) ( )BC BC

a bs s= ). In this study, 
it is decided to remove this coefficient because it is not 
derived from the mathematical demonstration of bias 
correction.
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3 RESULTS

3.1 TOOLS FOR EVALUATION
Using the same quality control as that used to produce 
the observations used as input to the MESCAN system, 
930 observations have been picked to make a data set 
for the evaluation. This data set is independent of the 
data set used as input for MESCAN analysis. The locations 
and the altitudes of these observations are shown in 
Figure 6. Even if the number of observations is high, some 
areas are not well-covered by this data set, such as the 
mountainous areas (Pyrenees, Alps, Massif Central and 
Corsican mountains).

Analysis results have been evaluated over the period 
from 01/01/2016 to 31/12/2018 in order to be able 
to use the operational outputs from AROME-1.3 km. 
The evaluation is done at the observations’ location 
corresponding to the circles in Figure 6(a). As a 
consequence, analysis outputs are interpolated to the 
observation locations using a 16-point inverse distance 
weighted mean interpolation. The use of 16 points to 
interpolate analyses and background to observation 
points was motivated to avoid penalizing them if a 
precipitating event is detected but poorly located.

Different scores were calculated such as the bias, the 
Root-Mean Square Error (RMSE) which give spatial and 
general information, the Heidke Skill Score (HSS) and 
the Frequency Bias Index (FBI) which give information 

on analysis accuracy and bias frequency for different 
precipitation classes. The definition of these scores are 
given in Appendix B. In order to evaluate the analysis, the 
number of dry days, defined as the days where RR24h ⩽ 
0.1 mm produced by the analysis and by the observations 
are also compared.

In this study, MESCAN with variable σo (Eq. (5)) is 
considered as the reference and outputs from the 
analysis made in the Box-Cox space with 1

3( ,0)l=  will be 
evaluated.

3.2 RESULTS OVER THE WHOLE PERIOD
First, the scores were calculated over the whole period 
from 01/01/2016 to 31/12/2018. In Table 1, the bias and 
the RMSE of the different experiments are shown. This 
table also provides information about the difference of 
the accumulated daily precipitation averaged over France 
between the observations and the different experiments 
(see Figure 7) at the end of the period. The background 
AROME-1.3 km exhibits a very small bias which is in fact the 
result of a seasonal bias which can be seen in the Figure 7 
and will be discussed in the next section. It is found that 
each analyses underestimates the precipitation. Indeed, 
the reference largely underestimates the precipitation 
over the whole period with a constant bias. The dry bias 
induced by the Box-Cox transformation compared to 
observations is shown in Table 1. This table also illustrates 
the efficiency of the bias correction proposed by Eq. (21), 

Figure 6 Spatial coverage of the evaluation observations’ altitudes (m) (a) and number of stations per altitude (b).

EXPERIMENT BIAS 
(mm)

RMSE 
(mm)

DIFFERENCE AT THE 
END OF THE PERIOD

AROME1-3 km 1.73 10–2 3.85 +18.91 mm (+0.71%)

Reference –0.17 2.54 –180.91 mm (–6.84%)

Box-
Cox

Back in physical space –0.11 2.38 –118.63 mm (–4.48%)

Correction (Eq.(21)) –5.41 10–2 2.40 –59.24 mm (–2.24%)

Correction (Eq. (24)) –5.67 10–2 2.39 –62.14 mm (–2.35%)

Table 1 Values of the scores for the different experiments.



38Van Hyfte et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.95

which is well adapted here as the analysis after the bias 
correction is slightly biased compared to the analysis 
transformed back into physical space. It should be noted 
that the use of Eq. (24) causes less precipitation than 
the use of Eq. (21), even if the RMSE of the experiment 
is slightly better. An important impact can be seen on 
June 2018, where the underestimation of the reference 
is higher while the dry bias of the Box-Cox experiment 
after the bias correction is lower. Therefore, the analysis 
is useful as it well reduces the RMSE of the background 
which is relatively high. The Box-Cox transformation is 
efficient since it reduces the RMSE values compared to 
the reference. On the other hand, an important result 
shown here is the slightly higher value of the RMSE after 
the bias correction compared to the value of transformed 
back in physical space, meaning that even if the bias 
induced by the Box-Cox transformation is well corrected, 
more random errors are made.

The spatial coverage of the bias is plotted in the 
Figure 8 which highlights that the dry bias of the 
reference, previously discussed is a result of a general 
dry bias over the France even if the reference tends to 
overestimate precipitation in the north-west of France. 
The comparison of the background to the observations 
shows an overestimation of the precipitation in northern 
France, and an underestimation in southern France. Thus, 
the background brings too much precipitation in the 
plains compared to mountainous regions. The dry bias 
induced by the Box-Cox transformation in the analysis 
process is also shown in this figure. Indeed, as was the 
case for the reference, the Box-Cox analysis tends to 

underestimate the precipitation over the majority of the 
evaluation stations. The lower value of the bias of the 
Box-Cox analysis in Table 1 is explained by lower values 
of the underestimation at evaluation stations in general. 
The impact of the bias correction is largely visible because 
there are more stations where the analysis after correction 
overestimates the precipitation. Analysis done with the 
Box-Cox transformation does not reduce the humid 
bias in the north-west of France nor the dry bias in the 
Massif Central, but it corrects well the dry bias in Corsica. 
It is interesting to note here that the bias values of the 
analysis after correction are, in general, higher than values 
computed with a transformed back into physical space.

The spatial coverage of the RMSE is shown in Figure 9 
for the reference along with the percent improvement for 
the other experiments compared to the reference. It can 
be seen that the RMSE values are low over the majority 
of France, even if there are high values at some stations 
in western France. Higher values can be seen in southern 
France, especially where the “cevenol” episodes occur. The 
background RMSE is better only at three stations : where 
the RMSE of the reference is high and in the Alps (around 
the Mont Blanc), where there are fewer observations 
available to integrate in the MESCAN analysis. The Box-
Cox transformation generally improves the RMSE values 
over the whole country, especially in the north-western 
part of France. The analyses after the transformed back 
into physical space and after the bias correction have 
almost the same RMSE. The global improvement of RMSE 
values thanks to the Box-Cox transformation is consistent 
with the RMSE values in Table 1.

Figure 7 Differences of the accumulated daily precipitation averaged over France between the observations and the different experiments.
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If the bias and the RMSE reveal general information, 
it is of interest to know the behavior of the analyses 
per precipitation class. The HSS and the FBI are used 
for that purpose and shown in Figure 10. It can be 
seen that the AROME-1.3 km HSS decreases with the 
precipitation classes, except for the first class (RR24h ⩾ 
0.2 mm). As for the RMSE, every analyses increases the 

background scores. Thus, the Box-Cox transformation 
increases the scores for light values of precipitation 
(up to 5 mm). For higher values, the scores are very 
close to the reference values. As a result, the Box-Cox 
transformation associated with the bias correction 
allows a better representation of light and moderate rain 
than the reference. Moreover, it must be noted that HSS 

Figure 8 Bias over the whole period for the reference (a), the background (b), the Box-Cox experiment with a simple back in physical 
space (c) and after bias correction (d). Blue points mean an overestimation while red ones mean an underestimation.

Figure 9 RMSE over the whole period for the reference (a) and percent of improvement for the background (b), the Box-Cox experiment 
with a simple back in physical space (c) and after bias correction (d). Blue points mean worse RMSE while red ones mean better ones.
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values of the analysis transformed back into physical 
space are very close than HSS values of the analysis 
after bias correction. The FBI shows that the global 
underestimation of the analyses (see last paragraph) is a 
result of an underestimation for each precipitation class. 
AROME-1.3 km is slightly biased for each precipitation 
class, but again, this low bias is a result of a seasonal 
bias. It appears that for low and moderate precipitation 
classes (up to 5 mm), the reference is less biased than the 
Box-Cox experiment, but for high precipitation amounts, 
the reference significantly underestimates precipitation 
while the Box-Cox experiment is slightly more biased 
than the background. FBI scores show the efficiency of 
Eq. (21) to correct the dry bias induced by the Box-Cox 
transformation in the MESCAN analysis. Finally, even if 
the Box-Cox transformation produces better results in 
terms of HSS, it is slightly more biased than the reference 
for light and moderate rain. For higher precipitation 
amounts, the Box-Cox transformation is equivalent to the 
reference, but it is less biased. The improvement made by 
the Box-Cox transformation for light rain is coherent with 
results obtained by (Lespinas et al., 2015).

Another important aspect of the meteorological 
data used in hydrological studies is the number of dry 
days. In Table 2, the total number of dry days over the 
whole period and for every station is shown for each 
experiment. The definition of a dry day is done based 
on the precipitation measurement resolution : it includes 
the stations where RR24h < 0.1 mm. The correlation is 
obtained by comparing the number of dry days for each 
evaluation station. The background AROME-1.3 km is 
close to the observations and the number of dry days is 
relatively well correlated with the observations. On the 
other hand, the reference underestimates the number 
of dry days, which is one of the common drawbacks 
of the analysis procedure. Analysis with the Box-Cox 
transformation increases the number of dry days 
and improves the correlation too. The bias correction 
removes some dry days, which is an expected result as 
the bias correction aims to add precipitation. Therefore, 

it is important to note that even if the bias correction 
underestimates the number of dry days, the correlation 
with the observations is the same as for the experiment 
transformed back into physical space.

The spatial coverage of the difference between the 
number of dry days for the different experiments and 
between the number of dry days for the observations is 
represented in Figure 11. The reference underestimates 
the number of dry days over the entire country since 
there are only some stations in the Pyrenees, in the 
center of France and in the north where the reference 
overestimates the number of dry days. The background 
AROME-1.3 km also tends to underestimate the number 
of dry days over the majority of France, but there are 
more stations where it overestimates the number of 
dry days compared to the reference. In general, the 
magnitude of the overestimation or the underestimation 
of the number of dry days is lower for AROME-1.3 km 
than the reference. Even if the Box-Cox transformation 
generally underestimates the number of dry days over 
France, this underestimation is generally lower than the 
reference. Thus, there are more stations where the Box-
Cox transformation overestimates the number of dry 
days. As a consequence of the goal of the bias correction, 
the analysis after bias correction underestimates the 
number of dry days over France with a greater amplitude. 
Moreover, in terms of the number of dry days, the analysis 
after bias correction and the reference are very close.

Figure 10 HSS (a) and FBI (b) for the different experiments.

EXPERIMENT DRY DAYS R

Observations 491 155 1.00

AROME-1.3 km 416 145 0.64

Reference 386 309 0.60

Box-Cox Back in physical space 445 145 0.66

Correction 373 206 0.66

Table 2 Number of dry days for the observations, the 
experiments and their correlation R.
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3.3 SEASONAL RESULTS
Since the experiments were done over the period from 
01/01/2016 to 31/12/2018, it is possible to compute 
seasonal scores by considering 3 winters (DJF), springs 
(MAM), summers (JJA) and autumns (SON). The bias 
and the RMSE for each season are shown in Table 3 and 
Table 4, respectively. It can be seen that the low bias of 
AROME-1.3 km over the whole period is the result of a wet 
bias in winter and spring and a dry bias in summer and 
autumn. The reference underestimates the precipitation 
at each season with the largest amplitude in summer 
and spring meaning that the analysis underestimates 
the convective precipitation. The Box-Cox transformation 
also introduces a bias compared to observations during 
winter and spring, but it is not biased during summer and 
autumn. This bias is corrected owing to Eq. (21) in spring 
but not during winter. Thus, each analysis improves 
the RMSE value of the background with higher values 
during the summer. It can be seen that the Box-Cox 
transformation improves the reference RMSE values with 

a greater amplitude during spring. Therefore, in summer, 
the Box-Cox transformation shows a lower improvement, 
and it can be seen that it is during this season that the 
correction is not well adapted since it increases the RMSE 
value. An explanation can come from the role of BC

bs  in 
the bias correction. Indeed, this parameter is obtained 
thanks to the semi-variograms which represent an 
approximate distribution of precipitations.

The HSS for each season is plotted in Figure 12. For 
each season, every analysis has a better HSS scores than 

Figure 11 Difference of the number of dry days between observations and the analyses during the whole period for the reference 
(a), the background (b), the Box-Cox experiment with a simple back in physical space (c) and after bias correction (d). Blue (resp. red) 
points represent an underestimation (resp. overestimation) of the number of dry days.

EXPERIMENT DJF MAM JJA SON

AROME1-3 km 0.17 0.19 –0.15 –0.14

Reference –0.14 –0.19 –0.21 –0.12

Box-Cox Back in physical space –0.13 –0.13 –9.97 10–2 –7.15 10–2

Correction –0.11 –9.20 10–2 8.62 10–2 –2.44 10–2

Table 3 Seasonal bias for the different experiments (mm).

EXPERIMENT DJF MAM JJA SON

AROME1-3 km 3.18 3.95 4.37 3.79

Reference 2.06 2.81 2.93 2.24

Box-
Cox

Back in physical space 1.94 2.43 2.88 2.15

Correction 1.94 2.43 2.91 2.16

Table 4 Seasonal RMSE for the different experiments (mm).
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the background. Thus, the Box-Cox transformation always 
has a better HSS for light precipitation (up to 5 mm) and 
similar HSS values for greater precipitation amounts. The 
improvement of the HSS from the analysis calculated 
in the Box-Cox space for light rain is higher during 
summer and spring. Since convective events often occur 
during summer, the HSS is lower this season for each 

experiment, especially for high precipitation. FBI values 
for the different seasons are plotted in Figure 13. For 
every season, every analysis underestimates each class 
of precipitation. On the other hand, the bias correction 
works well, especially during the summer when the 
bias correction introduces considerable amounts of 
precipitation compared to the analysis transformed back 

Figure 12 HSS for the different experiments during winter (a), spring (b), summer (c) and autumn (d).

Figure 13 FBI for the different experiments during winter (a), spring (b), summer (c) and autumn (d).
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in physical space. For every season, the analysis in the 
Box-Cox space is more biased than the reference for light 
rain (up to around 5 mm in general) and is less biased for 
heavy precipitation.

The total number of dry days for each season and for 
every station for each experiment are shown in Table 5. 
The reference underestimates the number of dry days 
for every season. On the other hand, AROME-1.3 km also 
underestimates the number of dry days every season, but 
this underestimation is lower during summer and autumn. 
The Box-Cox transformation improves the number of dry 
days, but the bias correction is worse than the reference in 
summer and autumn. Therefore, the correlation between 
the number of dry days at each station is better for the 
Box-Cox transformation than for the reference, and it is 
better than the background in winter and in autumn.

3.4 CASE STUDY
In this section, the case of a convective event which 
occurred on 16/09/2016 is studied. The background 
AROME-1.3 km simulation of the event is shown in 
Figure 14(a), where the rectangle plotted in black 
defines the area in which bias and RMSE of the different 
experiments were calculated. In this area, 172 independent 
observations were used for the calculation of the scores. 
A zoom over the study area is shown in Figure 14(b), 
where the observations used for the evaluation are 
plotted as stars, and the observations used as input for 
the MESCAN analysis are represented by triangles. All the 

available observations (observations used for evaluation 
and input observations) are also shown in Figure 14(c). 
The event is well represented by AROME-1.3 km but the 
location of the maximum precipitation of AROME-1.3 km 
is to the north of the observed maximum. This is caused 
by the fact that AROME-1.3 km does not simulate two 
convective precipitation bands but only one.

The impact of the precipitation analysis is shown in 
Figure 15, in which the difference between the reference 
analysis (cf section 3.1) and the background AROME-1.3 
km is plotted (a). Red (resp. blue) on the map indicates 
that the reference produces more (resp. less) precipitation 
than the background. In Figure 15(b) is plotted the percent 
of added precipitation by the reference compared to the 
background. As for Figure 15(a), red (resp. blue) on the 
map indicates that the reference produces more (resp. 
less) precipitation than the background. On both figures, 
the observations used for the evaluation are plotted as 
stars, and the observations used as input for the MESCAN 
analysis are represented by triangles. The reference gives 
a more local representation of the convective event and 
cuts some areas where there is no precipitation compared 
to the background. As a consequence, there are two clear 
precipitation bands generated by the reference. On the 
other hand, the precipitation maximum is lower for the 
reference (145.85 mm) than for the background (155.09 
mm). Comparison between the two figures show that the 
percent of added precipitation of the reference compared 
to the background is higher in regions where observed 

EXPERIMENT DJF MAM JJA SON

DRY DAYS R DRY DAYS R DRY DAYS R DRY DAYS R

Observations 92855 1.00 120889 1.00 156684 1.00 120727 1.00

AROME-1.3 km 66946 0.64 95485 0.61 143439 0.69 110275 0.55

Reference 69617 0.60 96545 0.54 127395 0.64 92752 0.51

Box-
Cox

Back in phys.space 80973 0.70 109431 0.61 144184 0.69 110557 0.59

Correction 73000 0.70 98434 0.60 113290 0.67 88482 0.59

Table 5 Number of seasonal dry days for the observations, the experiments and their correlation R.

Figure 14 Convective event of the 16/09/2016 modelled by AROME-1.3 km over the whole domain (a) and over the study area (b). 
Stars corresponds to evaluation observations and triangles for observations used as input of the MESCAN analysis. All the available 
observations over the study area (c).
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precipitation are, in general, relatively low. This result 
exhibits the positive impact of the precipitation analysis, as 
it produces more precipitation than the reference in areas 
where the background underestimates precipitation.

The percent of added precipitation of the reference 
compared to the transformed back into physical space 
analysis (resp. the analysis after the bias correction) 
is shown in Figure 16(a) (resp. Figure 16(b)). Red (resp. 
blue) on the map indicates that the reference produces 
more (resp. less) precipitation than the transformed 
back into physical space analysis or the analysis after 
the bias correction. The percent of added precipitation 
of the analysis after bias correction compared to the 
transformed back into physical space analysis is shown 
in Figure 16(c). Red (resp. blue) on the map indicates 
that the analysis after the bias correction produces more 
(resp. less) precipitation than the transformed back into 
physical space analysis. The reference, the transformed 
back into physical space analysis and the analysis after 
the bias correction are very close. Major differences 
are visible at the north eastern part and at the south 
western part of the domain. The Box-Cox transformation 
adds more precipitation than the reference in the high 
precipitation areas and less precipitation in the bands 
where there is less precipitation. By considering the 
difference between the analysis after bias correction 

and the transformed back into physical space analysis, 
it can be seen that the bias correction does not add a lot 
of precipitation compared to the transformed back into 
physical space analysis except locally. Therefore, it can be 
noticed that the bias correction adds more precipitation, 
especially in the precipitation band in the western part of 
the domain, whereas adding precipitation at the location 
of the convection has little effect.

The area in which bias and RMSE are calculated and 
shown in Table 6 is plotted in Figure 14. Scores over the 
whole domain for the day are also calculated. Every 
analysis exhibits an important dry bias over the whole 
domain. The Box-Cox transformation decreases this bias 
over the whole domain compared to the reference. Over 
the study area, every experiment is more biased than 

Figure 15 Difference of the reference precipitation analysis and the background AROME-1.3 km during the convective event of the 
16/09/2016 over the study area (a) and percent of added precipitation of the reference compared to the background AROME-1.3 km 
over the study area (b).

Figure 16 Percent of added precipitation of the transformed back into physical space analysis (a) and analysis after bias correction (b) 
compared to the reference and percent of added precipitation of the analysis after bias correction compared to the transformed back 
into physical space analysis (c).

EXPERIMENT BIAS (mm) RMSE (mm)

AROME-1.3 km –0.08 (–1.61) 13.71 (20.61)

Reference –0.91 (–3.32) 7.49 (13.85)

Box-
Cox

Back in physical space –0.55 (–2.36) 7.56 (14.09)

Correction (Eq. (21)) –0.41 (–2.18) 7.56 (14.05)

Table 6 Bias and RMSE values for the different experiments on 
16/09/2016 over the whole domain and over the study area 
(between parenthesis).
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over all of France. The analysis calculated in the Box-Cox 
space is less biased than the reference and it appears 
that the bias correction is effective in this case. Over all 
of France or over the study area, AROME-1.3 km is less 
biased than every analysis. In addition, the AROME-1.3 
km RMSE is greater than every analysis RMSE values. 
Over all of France, the reference has a lower RMSE value 
and RMSE values are the same for transformed back 
into physical space analysis and for the analysis after 
bias correction. Over the study area, the RMSE value 
for the analysis after bias correction is lower than the 
RMSE value for the transformed back into physical space 
analysis. These results prove that the RMSE values of the 
Box-Cox transformation for convective events are very 
close to the reference but the significant bias exhibited 
by the reference is well-reduced by the transformation.

4 CONCLUSION AND DISCUSSION

In this article, a method for precipitation analysis included 
within a reanalysis project is presented. The non-linear 
Box-Cox transformation is used to calculate the analysis. 
Such a transformation allows us to work with Gaussian 
variables. A study about the optimal parameters of the 
Box-Cox transformation l = (l1, l2) highlights that 1

3( ,0) 
or 1

4( ,0) are the best tuned parameter values to use. By 
comparing scores of the two experiments using these 
two configurations, 1

3( ,0)l=  has been chosen to run the 
analysis. This study assesses the use of this configuration 
of the Box-Cox transformation, which is also used in the 
CaPA system. Background and observation standard 
deviation errors are daily determined thanks to the 
semi-variograms technique, which is found to be a real 
improvement compared to the other configurations 
where those parameters are fixed. The use of the Box-
Cox transformation introduces a dry bias compared to 
observations, especially for high precipitation amounts, 
which is in agreement with the results obtained by 
(Carrera et al., 2010). A bias correction is applied in 
this study (Eq. (21)) which is derived from the equation 
purposed in (Evans, 2013). Precipitation added at the daily 
scale is, in general, low (section 3.4), but over the whole 
period, the bias correction has a significant role as the 
important dry bias over the entire period is well-reduced. 
Therefore, the use of this bias correction slightly increases 
the errors made by the analysis, especially in summer. An 
important result shown here is that such a configuration 
improves the HSS for light rain compared to the reference, 
and it has the same results for high precipitation but is 
less biased. A study of a convective event has shown 
the efficiency of the Box-Cox transformation over high-
precipitation events as the very dry bias of the reference 
is well corrected by the Box-Cox transformation.

In this study, precipitation forecasts using AROME-1.3 
km accumulations over 24h are used but as the quality of 

the background is an important element of the analysis 
scheme, the use of accumulations from 3h forecasts 
could be used to define the background.

To assess the benefit of the method described in this 
study over a long time period, the use of the Box-Cox 
transformation should be tested with an observation 
data set similar to the one in the mid-19th century (which 
is less dense that the current one). It is assumed here 
that the background errors are isotropic, meaning that 
only the horizontal aspect is considered. Therefore, since 
precipitation is highly variable as a function of the orography, 
a vertical component can be added in Eq. (3). Even if such 
a configuration does not have any impact on the analysis 
in the plains, it has been shown to improve the analysis in 
the mountainous areas. Moreover, the use of a single semi-
variogram over the whole area can be a source of error 
(Wang et al., 2019). An interesting perspective is to calculate 
local semi-variograms over a certain period (monthly for 
example). This can introduce a local information, especially 
in mountainous areas, where the stationary hypothesis 
is not verified by the precipitation. In this study, analyses 
are compared to independent observations which provide 
important information about the efficiency of the method. 
Therefore, such an evaluation does not give enough 
information over the mountainous areas, which are of 
great interest concerning water resource management in 
France. Hydrological model simulations should be run in 
order to have an indirect evaluation to assess the efficiency 
of the method over mountainous areas. It has been shown 
in this study that the optimal values of l1 seem to have a 
seasonal variation. A further study by using variable values 
of l1 would be potentially interesting.

APPENDICES

APPENDIX A – ACRONYMS
AROME: Application de la Recherche à l’Opérationnel à 
Méso-Echelle
CaPA: Canadian Precipitation Analysis
CERRA: Copernicus European Regional ReAnalysis
DA: Data Assimilation
ECMWF: European Center for Medium-range Weather 
Forecasts
ERA: European ReAnalysis
EURO4M: EUropean Reanalysis and Observations for 
Monitoring
FBI: Frequency Bias Index
HSS: Heidke Skill Score
JMA: Japan Meteorological Agency
JRA: Japan ReAnalysis
LBC: Lateral Boundary Conditions
NWP: Numerical Weather Prediction
OI: Optimum Interpolation
QQ-plots: Quantile-Quantile-plots
RMSE: Root-Mean Square Error
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SAFRAN: Système d’Analyse Fournissant des Renseigne-
ments Adaptés à la Nivologie
UERRA: Uncertainties in Ensemble Regional ReAnalyses
UM: Unified Model

APPENDIX B – SCORES
Scores are defined using the following contingency table:

OBSERVATIONS

Yes No

Model Yes a b

No c d

From this table, the total number of events can be defined 
as n = a+b+c+d and ( )( ) ( )( )a b a c b d c d

nR + + + + += .
The Heidke Skill Score (HSS) is calculated compared to 

a persistence (generally the precipitation the next day), 
and its values range between –1 and 1, where negative 
values mean that the model is worse than persistence, 
positive values mean that the model is better than 
persistence, and 0 means that both persistence and 
model are equivalent. The optimal value of this score is 1. 
The HSS is defined by

 
a d R

HSS
n R
+ -

=
-

 (25)

The Frequency Bias Index (FBI) shows the bias of the 
model for the different precipitation classes. Its values 
range between 0 and +∞. A non-biased model gives a 
value of 1 and values under (resp. above) 1 occur when 
the model underestimates (resp. overestimates) the 
precipitation. The FBI is defined by:

 
a b

FBI
a c
+

=
+

 (26)

Noting O as the observation, F the model and N the 
number of observations, the bias and the Root-Mean 
Square Error (RMSE) can be defined by, respectively,
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APPENDIX C – DEMONSTRATION OF THE BIAS 
CORRECTION
The Box-Cox transformation used here which has OI 
conditions (Gaussian distribution of the innovation), it 
can be written:

 ( ) ( )(( ) ( ) ) ~ (0, )a o BC
innx yl l s-   (29)

where BC
inns  stands for the variance of the innovation in the 

Box-Cox space, (xa)(l) and (yo)(l) stand for the analysis and 

the observations in the transformed space, respectively. 
Then, the Taylor decomposition of the inverse Box-Cox 
transformation around (xa)(l) can be made:
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Then, the expectancy can be applied to the Eq. (30) to 
obtain
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