
HAL Id: hal-04271341
https://hal.science/hal-04271341

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Token Games and History-Deterministic
Quantitative-Automata
Udi Boker, Karoliina Lehtinen

To cite this version:
Udi Boker, Karoliina Lehtinen. Token Games and History-Deterministic Quantitative-Automata.
Logical Methods in Computer Science, 2023, Volume19,Issue4, �10.46298/lmcs-19(4:8)2023�. �hal-
04271341�

https://hal.science/hal-04271341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 8:1–8:27
https://lmcs.episciences.org/

Submitted Aug. 16, 2022
Published Nov. 03, 2023

TOKEN GAMES AND HISTORY-DETERMINISTIC

QUANTITATIVE AUTOMATA

UDI BOKER a AND KAROLIINA LEHTINEN b

a Reichman University, Herzliya, Israel

b CNRS, Marseille-Aix Université, LIS, Marseille, France

Abstract. A nondeterministic automaton is history-deterministic if its nondeterminism
can be resolved by only considering the prefix of the word read so far. Due to their good
compositional properties, history-deterministic automata are useful in solving games and
synthesis problems. Deciding whether a given nondeterministic automaton is history-
deterministic (the HDness problem) is generally a difficult task, which can involve an
exponential procedure, or even be undecidable, as is the case for example with pushdown
automata. Token games provide a PTime solution to the HDness problem of Büchi and
coBüchi automata, and it is conjectured that 2-token games characterise HDness for all
ω-regular automata.

We extend token games to the quantitative setting and analyse their potential to help
deciding HDness of quantitative automata. In particular, we show that 1-token games
characterise HDness for all quantitative (and Boolean) automata on finite words, as well
as discounted-sum (DSum), Inf and Reachability automata on infinite words, and that 2-
token games characterise HDness of LimInf and LimSup automata, as well as Sup automata
on infinite words. Using these characterisations, we provide solutions to the HDness
problem of Safety, Reachability, Inf and Sup automata on finite and infinite words in PTime,
of DSum automata on finite and infinite words in NP∩co-NP, of LimSup automata in
quasipolynomial time, and of LimInf automata in exponential time, where the latter two
are only polynomial for automata with a logarithmic number of weights.

1. Introduction

History-determinism. A nondeterministic (quantitative) automaton is called history-
deterministic (HD) [Col09, BL21] if its nondeterministic choices can be resolved by only
considering the word read so far, uniformly across possible suffixes (see Fig. 5 for examples of
HD and non-HD automata). More precisely, there should be a function (strategy), sometimes
called a resolver, that maps the finite prefixes of a word to the transition to be taken at the
last letter. The run built in this way must, in the Boolean setting, be accepting whenever

Key words and phrases: Quantitative Automata, History-determinism, Token games.
∗ The present article extends [BL22] with additional results on Inf, Sup and Reachability automata on infinite

words as well as some additional discussion throughout.
Research supported by the Israel Science Foundation grant 2410/22.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:8)2023
© U. Boker and K. Lehtinen
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-4322-8892
https://orcid.org/0000-0003-1171-8790
http://creativecommons.org/about/licenses

8:2 U. Boker and K. Lehtinen Vol. 19:4

the word is in the language of the automaton and, in the more general quantitative setting,
attain the value of the automaton on the word (i.e., the supremum of all its runs’ values).

History-determinism lies in between determinism and nondeterminism, enjoying in some
aspects the best of both worlds: HD automata are, like deterministic ones, useful for solving
games and reactive synthesis [HP06, Col09, HPR16, HPR17, CF19, GJLZ21, BL21], yet
can sometimes be more expressive and/or succinct. For example, HD coBüchi and LimInf
automata can be exponentially more succinct than deterministic ones [KS15], and HD
pushdown automata are both more expressive and at least exponentially more succinct than
deterministic ones [LZ22, GJLZ21]. In the (ω-)regular setting, history-determinism coincides
with good-for-gameness [BL19], a notion characterised by the compositional properties of
the automaton [HP06], while in the quantitative setting it is stronger [BL21]. The problem
of deciding whether a nondeterministic automaton is HD is interreducible with deciding the
best-value synthesis problem of a deterministic automaton of the same type [FLW20, BL21].
In this quantitative version of the reactive synthesis problem, the system must guarantee a
behaviour that matches the value of any global behaviour compatible with the environment’s
actions. The witness of HDness corresponds exactly to the solution system of this synthesis
problem, providing another motivation for this line of research.

Deciding history-determinism – a difficult task. History-determinism is formally
defined by a letter game played on the automaton A between Adam and Eve, where Adam
produces an input word w, letter by letter, and Eve tries to resolve the nondeterminism in
A so that the resulting run attains A’s value on w. Then A is HD if Eve has a winning
strategy in the letter game on it. The difficulty of deciding who wins the letter game stems
from its complicated winning condition – Eve wins if her run has the value of the supremum
over all runs of A on w.

The naive solution is to determinise A into an automaton D, and consider a game
equivalent to the letter game that has a simpler winning condition and whose arena is the
product of A and D [HP06]. The downside with this approach, however, is that it requires
the determinisation of A, which often involves a procedure exponential in the size of A and
sometimes is even impossible due to an expressiveness gap. Note that deciding whether an
automaton is good-for-games, which is closely related to whether it is HD [BL19, BL21], is
also difficult, as it requires reasoning about composition with all possible games.

Token games – a possible aid. The one-token-game, which is closely related to the
letter game but easier to solve, was introduced by Löding in an algorithm for deciding
determinisability-by-pruning of a regular automaton, and was formally defined in [LR13,
Definition 5]. It was later generalised by Bagnol and Kuperberg [BK18] to a k-token-game
on ω-regular automata, for a given k ∈ N, in the course of seeking an easier to decide
characterisation of history-determinism.

In a k-token game on an automaton A, denoted by Gk(A), like in the letter game,
Adam generates a word w letter by letter, and Eve builds a run on w by resolving the
nondeterminism. In addition, Adam also has to resolve the nondeterminism of A to build
k runs letter-by-letter over w. The winning condition for Eve in these games on Boolean
automata is that either all runs built by Adam are rejecting, or Eve’s run is accepting. Such
games, as they compare a finite number of pairs of runs, are easier to solve than the letter
game.

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:3

Then, to decide HDness of a class of automata, one can attempt to show that the letter
game always has the same winner as a k-token game, for some k, and solve the k-token
game. (If Eve wins the letter game then she wins the k-token game, for every k, by using
the same strategy, ignoring Adam’s runs. However, it might be that she wins a k-token
game, taking advantage of her knowledge of how Adam resolves the nondeterminism, but
loses the letter game.)

Bagnol and Kuperberg showed in [BK18] that on Büchi automata, the letter game
and the 2-token game always have the same winner, and in [BKLS20], Boker, Kuperberg,
Lehtinen and Skrzypczak extended this result to coBüchi automata. In both cases, this
allows for a PTime procedure for deciding HDness. Furthermore, Bagnol and Kuperberg
suggested in [BK18, Conclusion] that 2-token games might characterise HDness also for
parity automata (and therefore for all ω-regular automata); a conjecture (termed later the
G2 conjecture) that is still open.

Our contribution. We extend token games to the quantitative setting, and use them
to decide the HDness of some quantitative automata. We define a k-token game on a
quantitative automaton exactly as on a Boolean one, except that Eve wins if her run has a
value at least as high as all of Adam’s runs.

We show first, in Section 4, that the 1-token game, in which Adam just has one run
to build, characterises HDness for all quantitative (and Boolean) automata on finite words,
and for Safety, Reachability, Inf and discounted-sum (DSum) automata on infinite words.
This results in a PTime decision procedure for checking HDness of Safety, Reachability,
and Inf automata, and an NP∩coNP procedure for DSum automata, both on finite and
infinite words. Note that the complexity for DSum automata on finite words was already
known [FLW20], but on infinite words it was erroneously believed to be NP-hard [HPR16,
Theorem 6].

Towards getting the above results, we analyse key properties of value functions of
quantitative automata, and show that the 1-token game characterises HDness for every Val
automaton, such that Val is present-focused (Definition 2.3), which is in particular the case
for all Val automata on finite words [BL21, Lemma 16], as well as DSum [BL21, Lemma 22]
and Inf automata on infinite words.

We then show, in Section 5, that the 2-token game, in which Adam builds two runs,
characterises HDness for both LimSup and LimInf automata. The approach here is more
involved: it decomposes the quantitative automaton into a collection of Büchi or coBüchi
automata such that if Eve wins the 2-token game on the original automaton, she also wins in
the component automata. Since the 2-token game characterises HD for Büchi and coBüchi
automata, the component automata are then HD and the witness strategies can be combined
with the 2-token strategy of the original automaton to build a letter-game strategy for Eve.

The general flow of our approach is illustrated in Fig. 4. As a corollary, we obtain that
G2 also characterises HDness for Sup automata on infinite words.

We further present, in Section 5.2, algorithms to decide the winner of the 2-token games
on LimInf and LimSup automata via reductions to solving parity games, and on Sup automata
on infinite words via reduction to coBüchi games. The complexity of the procedure for a
LimSup automaton A is the same as that of solving a parity game of size polynomial in the
size of A with twice as many priorities as there are weights in A, which is in quasipolynomial
time. For LimInf automata the procedure is in exponential time. In both cases, it is in

8:4 U. Boker and K. Lehtinen Vol. 19:4

polynomial time if the number of weights is logarithmic in the automaton size. For Sup
automata, the procedure is always polynomial. These results are summarised in Table 1.

For some variants of the synthesis problem, the complexity of the witness of history-
determinism is also of interest (for other variants it is not), as it corresponds to the complexity
of the implementation of the solution system [BL21, Section 5]. We give an exponential
upper bound to the complexity of the witness for LimSup, LimInf and Sup automata, which,
for LimInf, is tight. As a corollary, we obtain that HD LimSup automata are exactly as
expressive as deterministic LimSup automata and at most exponentially more succinct.

Related work. In the ω-regular setting (where HDness coincides with good-for-gameness),
[HP06, Section 4] provides an exponential scheme for checking HDness of all ω-regular
automata, based on determinisation and checking fair simulation. HDness of Büchi automata
is resolved, as mentioned above, in PTime, using 2-token games [BK18]. The coBüchi case
is also resolved in PTime, originally via an indirect usage of “joker games” [KS15], and later
by using 2-token games [BKLS20].

In the quantitative setting, deciding HDness coincides with best-value partial domain
synthesis [FLW20], 0-regret synthesis [HPR17] and, for some value functions, 0-regret
determinisation [FJL+17, BL21]. There are procedures to decide HDness (which is sometimes
called good-for-gameness due to erroneously assuming them equivalent) of Sum, Avg, and
DSum automata on finite words, as follows. For Sum and Avg automata on finite words, a
PTime solution combines [AKL10, Theorem 4.1], which provides a PTime algorithm for
checking whether such an automaton is “determinisable by pruning”, and [BL21, Theorem
21], which shows that such an automaton is HD if and only if it is determinisable by pruning.

Proposition 1.1. Deciding whether a Sum or Avg automaton on finite words is history-
deterministic is in PTime.

For DSum automata on finite words, [FLW20, Theorem 23] provides an NP∩co-NP
solution, using a game that is quite similar to the 1-token game, differing from it in a few
aspects – for example, Adam is asked to either copy Eve with his token or move into a
second phase where he plays transitions first – and uses a characterisation of HD strategies
resembling our notion of cautious strategies (Definition 2.2) specialised to DSum automata.

2. Preliminaries

Words. An alphabet Σ is a finite nonempty set of letters. A finite (resp. infinite) word
u = σ0 . . . σk ∈ Σ∗ (resp. w = σ0σ1 . . . ∈ Σω) is a finite (resp. infinite) sequence of letters
from Σ; ε is the empty word. We write Σ∞ for Σ∗ ∪ Σω. We use [i..j] to denote a set
{i, . . . , j} of integers, [i] for [i..i], [..j] for [0..j], and [i..] for integers equal to or larger than
i. We write w[i..j], w[..j], and w[i..] for the infix σi . . . σj , prefix σ0 . . . σj , and suffix σi . . . of
w. A language is a set of words.

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:5

Automata Type
HD is characterised by HDness Complexity

G1 G2 Finite words Infinite words

All automata on ✓ Varies
finite words Corrolary 4.2

All automata on Not all Open
Varies

infinite words [BK18, Lemma 8] [BK18]

Safety ✓ PTIME

Theorem 4.5 Theorem 4.10 Theorem 4.11

Reachability ✓ PTIME

Theorem 4.8 Theorem 4.10 Theorem 4.11

Inf ✓ PTIME

Theorem 4.5 Theorem 4.13

Sup ✗ ✓ PTIME

Proposition 4.9 Corrolary 5.7 Theorem 4.12 Theorem 5.9

DSum ✓ NP∩co-NP

Corrolary 4.3 Theorem 4.14

LimInf ✗ ✓ -
Quasipoly.

[BK18, Lemma 8] Theorem 5.6 Theorem 5.11

LimSup ✗ ✓ -
Quasipoly.

[BK18, Lemma 8] Theorem 5.6 Theorem 5.10

Table 1: Characterisation of history-determinism by 1- and 2-token games (the characterisa-
tion of the specific automata types refers to automata on infinite words), and the
complexity of checking whether an automaton is history-deterministic.

Games. We consider a variety of turn-based zero-sum games between Adam (A) and Eve
(E). Formally, a game is played on an arena of which the positions are partitioned between the
two players. A play is a maximal (finite or infinite) path. The winning condition partitions
plays into those that are winning for each player. In some of the technical developments we
use parity games, in which moves are coloured with integer priorities and a play is winning
for Eve if the maximal priority that occurs infinitely often along the play is even. A coBüchi
game is the special case of a parity game with priorities 1 and 0. A weak game is the special
case of a coBüchi game in which priorities 0 and 1 do not both occur within a single cycle.

A strategy for a player P ∈ {A,E} maps partial plays ending in a position belonging to
P to a successor position. A (partial) play π agrees with a strategy sP of P , written π ∈ sP ,
if whenever its prefix p ends in a position of P , the next move is sP (p). A strategy of P is
winning from a position v if all plays starting at v that agree with it are winning for P . A
strategy is positional if it maps all plays that end in the same position to the same successor.

Quantitative Automata. A nondeterministic quantitative1 automaton (or just automaton
from here on) on words is a tuple A = (Σ, Q, ι, δ), where Σ is an alphabet; Q is a finite

1We speak of “quantitative” rather than “weighted” automata, following the distinction made in [Bok21]
between the two.

8:6 U. Boker and K. Lehtinen Vol. 19:4

nonempty set of states; ι ∈ Q is an initial state; and δ : Q × Σ → 2(Q×Q) is a transition
function over weight-state pairs.

A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×Q×Q, also written q
σ:x−−→ q′. (There might

be several transitions with different weights over the same letter between the same states.)
We write γ(t) = x for the weight of a transition t = (q, σ, x, q′). A is deterministic if for all
q ∈ Q and a ∈ Σ, δ(q, a) is a singleton. We require that the automaton A is total, namely
that for every state q ∈ Q and letter σ ∈ Σ, there is at least one state q′ and a transition

q
σ:x−−→ q′.

A run of A on a word w is a sequence ρ = q0
w[0]:x0−−−−→ q1

w[1]:x1−−−−→ q2 . . . of transitions
where q0 = ι and (xi, qi+1) ∈ δ(qi, w[i]). As each transition ti carries a weight γ(ti) ∈ Q, the
sequence ρ provides a weight sequence γ(ρ) = γ(t0)γ(t1) . . . A Val (e.g., Sum) automaton
is one equipped with a value function Val : Q∗ → R or Val : Qω → R, which assigns real
values to runs of A. The value of a run ρ is Val(γ(ρ)). The value of A on a word w is the
supremum of Val(ρ) over all runs ρ of A on w. Two automata A and A′ are equivalent, if
they realise the same function from words to reals. The size of an automaton consists of the
maximum among the size of its alphabet, state-space, and transition-space.

Value functions. We list below the value functions that we will consider in the sequel.

For finite sequences v0v1 . . . vn−1 of rational weights:

• Sum(v) =
n−1∑
i=0

vi • Avg(v) =
1

n

n−1∑
i=0

vi

For finite and infinite sequences v0v1 . . . of rational weights:

• Inf(v) = inf{vn | n ≥ 0} • Sup(v) = sup{vn | n ≥ 0}

• For a discount factor λ ∈ Q ∩ (0, 1), λ-DSum(v) =
∑
i≥0

λivi

For infinite sequences v0v1 . . . of rational weights:

• LimInf(v) = lim
n→∞

inf{vi | i ≥ n} • LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

Regular and ω-regular automata (with acceptance on transitions) can be viewed as special
cases of quantitative automata with weights in {0, 1}, where the language of the automaton
consists of words with value 1. In particular, considering only weights in {0, 1}, Büchi
coincides with LimSup, coBüchi with LimInf, Reachability with Sup and Safety with Inf. With
this in mind, Reachability and Safety automata on finite and infinite words, are defined as
A = (Σ, Q, ι, δ) as above, with weights 0 and 1 on transitions, and we assume that for
Reachability automata every accepting transition, that is a transition with weight 1, leads to
a sink with self-loops of weight 1, called the target (we use this assumption in Section 4.1),
and for Safety automata, every rejecting transition, that is a transition with weight 0, leads
to a sink with self-loops of weight 0. We call the rest of the automaton its safe region. We
say that the automaton accepts a word if its value is 1: A Reachability automaton accepts
words with runs that reach the target, while a Safety automaton accepts words with runs
that remain in the safe region. See more on ω-regular automata, e.g., in [Bok18].

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:7

History-determinism. Intuitively, an automaton is history-deterministic if there is a
strategy to resolve its nondeterminism according to the word read so far such that for every
word, the value of the resulting run is the value of the word.

Definition 2.1 (History-determinism [Col09, BL21]). A Val automaton A is history-
deterministic (HD) if Eve wins the following win-lose letter game, in which Adam chooses
the next letter and Eve resolves the nondeterminism, aiming to construct a run whose value
is equivalent to the generated word’s value.

Letter game: A play begins in q0 = ι (the initial state of A) and at the ith turn, from
state qi, it progresses to a next state qi+1 as follows:
• Adam picks a letter σi from Σ and then

• Eve chooses a transition ti = qi
σi:xi−−−→ qi+1.

In the limit, a play consists of an infinite word w that is derived from the concatenation
of σ0, σ1, . . ., as well as an infinite sequence π = t0, t1, . . . of transitions. For A on
infinite words, Eve wins a play in the letter-game if Val(π) ≥ A(w). For A on finite
words, Eve wins if for all i ∈ N, Val(π[0..i]) ≥ A(w[0..i]).

Consider for example the LimSup automaton A in Fig. 5. Eve loses the letter game on
A: Adam can start with the letter a; then if Eve goes from s0 to s1, Adam continues to
choose a forever, generating the word aω, where A(aω) = 3, while Eve’s run has the value 2.
If, on the other hand, Eve chooses on her first move to go from s0 to s2, Adam continues
with choosing b forever, generating the word abω, where A(abω) = 2, while Eve’s run has
the value 1.

Families of value functions. We will provide some of our results with respect to a family
of Val automata based on properties of the value function Val.

We first define cautious strategies for Eve in both the letter game and token games
(Section 3), which we use to define present-focused value functions. Intuitively, a strategy is
cautious if it avoids mistakes: it only builds run prefixes that can achieve the maximal value
of any continuation of the current word prefix.

Definition 2.2 (Cautious strategies [BL21]). Consider the letter game on a Val automaton

A, in which Eve builds a run of A transition by transition. A move (transition) t = q
σ:x−−→ q′

of Eve, played after some run ρ ending in a state q, is non-cautious if for some word w, there
is a run π′ from q over σw such that Val(ρπ′) is strictly greater than the value of Val(ρπ)
for any π starting with t. A strategy is cautious if it makes no non-cautious moves.

A winning strategy for Eve in the letter game must of course be cautious; Whether
all cautious strategies are winning depends on the value function. For example, a cautious
strategy in a Safety automaton is obviously winning, as it inevitably remains in the safe
region while Adam plays prefixes of words in the language, while a cautious strategy in
a Reachability automaton might not be winning as cautiousness does not require Eve to
ever reach the target with her run. We call a value function present-focused if, morally, it
depends on the prefixes of the value sequence, formalised by winning the letter game via
cautious strategies.

Definition 2.3 (Present-focused value functions [BL21]). A value function Val, on finite or
infinite sequences, is present-focused if for all automata A with value function Val, every
cautious strategy for Eve in the letter game on A is also a winning strategy in that game.

8:8 U. Boker and K. Lehtinen Vol. 19:4

Value functions on finite sequences are present-focused, as they can only depend on
prefixes, while value functions on infinite sequences are not necessarily present-focused [BL21,
Remark 17], for example LimInf and LimSup.

Proposition 2.4 [BL21, Lemma 16]. Every value function Val on finite sequences of rational
values is present focused.

Proposition 2.5 [BL21, Lemma 22]. For every λ ∈ Q∩ (0, 1), λ-DSum on infinite sequences
of rational values is a present-focused value function.

3. Token Games

The one-token-game was introduced by Löding and was then formally defined in [LR13,
Definition 5]. It was later generalised by Bagnol and Kuperberg [BK18] to a k-token-game,
for a given k ∈ N, in the scope of resolving the HDness problem of Büchi automata.

In the k-token game, known as Gk, the players proceed as in the letter game, except that
now Adam has k tokens that he must move after Eve has made her move, thus building k
runs. For Adam to win, at least one of these must be better than Eve’s run. In the Boolean
setting, this run must be accepting, thus witnessing that the word is in the language of the
automaton. Intuitively, the more tokens Adam has, the less information he is giving Eve
about the future of the word he is building.

We generalise token games to the quantitative setting, defining that the maximal value
produced by Adam’s runs witnesses a lower bound on the value of the word, and Eve’s task
is to match or surpass this value on her run.

In the Boolean setting, G2 has the same winner as the letter game for Büchi [BK18,
Corollary 21] and coBüchi [BKLS20, Theorem 28] automata (the case of parity and more
powerful automata is open). Since G2 is solvable in polynomial time for Büchi and coBüchi
acceptance conditions, this gives a PTime algorithm for deciding HDness, which avoids the
determinisation used to solve the letter game directly. In the following sections we study
how different token games can be used to decide HDness for different quantitative automata.

Definition 3.1 (k-token games). Consider a Val automaton A = (Σ, Q, ι, δ). A configuration
of the game Gk(A) for k ≥ 1 is a tuple (q, p1, . . . pk) ∈ Qk+1 of states, and the initial
configuration is ιk+1. In a configuration (qi, p1,i, . . . , pk,i), the game proceeds to the next
configuration (qi+1, p1,i+1, . . . , pk,i+1) as follows.

• Adam picks a letter σi from Σ,

• Eve picks a transition qi
σi:x0,i−−−−→ qi+1, and

• Adam picks transitions, p1,i
σi:x1,i−−−−→ p1,i+1, . . . , pk,i

σi:xk,i−−−−→ pk,i+1.

In the limit, a play consists of an infinite word w that is derived from the concatena-
tion of σ0, σ1, . . ., as well as k + 1 infinite sequences π, π1, π2, . . . , πk of transitions over
w, where π is picked by Eve and π1, . . . , πk by Adam. Eve wins the play if Val(π) ≥
max(Val(π1), . . . ,Val(πk)).

On finite words, Gk is defined as above, except that the winning condition is a safety
condition for Eve: for all finite prefixes of a play, it must be the case that the value of Eve’s
run is at least the value of each of Adam’s runs.

Cautious strategies (Definition 2.2) immediately extend to Eve’s strategies in Gk(A).
Unlike in the letter game, a winning strategy in Gk(A) must not necessarily be cautious: a

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:9

non-cautious move does not necessarily allow Adam to win, since Adam might not have a
token available to build an optimal run on the word witnessing Eve’s lack of caution.

4. Deciding History-Determinism via One-Token Games

Bagnol and Kuperberg showed that the one-token game G1 does not suffice to characterise
HDness for Büchi automata [BK18, Lemma 8]. However, it turns out thatG1 does characterise
HDness for all quantitative (and Boolean) automata on finite words and some quantitative
automata on infinite words.

We can then use G1 to decide history-determinism of some of these automata, over
which the G1 game is simple to decide. In particular, this is the case for Sup automata on
finite words and Reachability, Safety, Inf and DSum automata on finite and infinite words.

4.1. G1 Characterises HDness for some automata.

Theorem 4.1. Given a nondeterministic automaton A with a present-focused value function
Val on finite or infinite words, Eve wins G1(A) if and only if A is HD. Furthermore, a
winning strategy for Eve in G1(A) induces an HD strategy with the same memory.

Proof. One direction is easy: if A is HD, Eve can use her HD strategy to win G1 by ignoring
Adam’s token. For the other direction, assume that Eve wins G1.

We consider the following family of copycat strategies for Adam in G1: a copycat strategy
is one where Adam moves his token in the same way as Eve until she makes a non-cautious

move t = q
σ:x−−→ q′ after building a run ρ; that is, there is some word w and run π′ from q on

σw, such that for every run π on σw starting with t, we have Val(ρπ′) > Val(ρπ). Then the
copycat strategy stops copying and directs Adam’s token along the run π′ and plays the
word w. If Eve plays a non-cautious move in G1 against a copycat strategy, she loses. Then,
if Eve wins G1 with a strategy s, she wins in particular against all copycat strategies and
therefore s never makes a non-cautious move against such a strategy.

Eve can then play in the letter game over A with a strategy s′ that moves her token
as s would in G1(A) assuming Adam uses a copycat strategy. Then, s′ never makes a
non-cautious move and is therefore a cautious strategy. Since Val is present-focused, any
cautious strategy, and in particular s′, is winning in the letter game, so A is HD. Note that
s′ requires no more memory than s.

Notice that the converse of the above does not hold, namely there are value functions
Val that are not present-focused, while G1 still characterises HD for all Val-automata, as will
be shown for Reachability automata.

An immediate corollary of Theorem 4.1 is that G1 characterises history-determinism for
all automata on finite words, as all value functions on finite words are present focused.

Corollary 4.2. Given a nondeterministic automaton A on finite words, Eve wins G1(A)
if and only if A is HD, and winning strategies in G1(A) induce HD strategies for A of the
same memory size.

Proof. A direct consequence of Proposition 2.4 and Theorem 4.1.

Corollary 4.3. Given a nondeterministic DSum automaton A on finite or infinite words,
Eve wins G1(A) if and only if A is HD, and winning strategies in G1(A) induce HD strategies
for A of the same memory size.

8:10 U. Boker and K. Lehtinen Vol. 19:4

Proof. A direct consequence of Propositions 2.4 and 2.5 and Theorem 4.1.

Considering the memory size of the HD strategy, notice that for DSum automata on
finite and infinite words, positional strategies suffice; that is these automata are HD if and
only if they are determinisable by pruning [BL21, Theorem 23] and [HPR16, Section 5].

Lemma 4.4. The value function Inf on infinite sequences of rational values is present-
focused.

Proof. Consider a cautious strategy s of Eve in the letter game on an Inf automaton A, and
assume toward contradiction that there exists a play in which Adam wins playing against s.

Let w be the word generated along this play. Then, the run of A on w that Eve generated
along the play has some value x < A(w). Let u be the shortest prefix of w, after which Eve

chose a transition t = q
σ:x−−→ q′ with value x, and let ρ be the corresponding prefix of the run

generated by Eve. Clearly, every continuation of ρ on the suffix of w from u will generate a
run whose value is at most x, thus strictly smaller than A(w).

Let ρ′ be the longest prefix of ρ, for which there is a continuation on the corresponding
suffix v of w, generating a run with value A(w). Notice that such a run prefix ρ′ exists, since
it is bounded by above by ρ and below by the empty run, whose continuation on the suffix
v of w is an arbitrary run on w.

Then, the move t0 = q0
σ0:x0−−−→ q′0 of Eve, played after ρ′ is a non-cautious transition: for

the suffix v of w, there is a run π′ from q over σv such that Inf(ρ′π′) is strictly greater than
the value of Inf(ρ′π) for any π starting with t0. Thus, we reached a contradiction to the
cautiousness of s.

Theorem 4.5. Given a nondeterministic Inf (or Safety) automaton A on infinite words, Eve
wins G1(A) if and only if A is HD, and winning strategies in G1(A) induce HD strategies
for A of the same memory size.

Proof. A direct consequence of Theorem 4.1 and Lemma 4.4.

We move to Reachability automata on infinite words.
Observe that the Reachability value function with respect to infinite words is not present-

focused (see the automatonA in Fig. 1), causing also a difference between history-determinism
of a Reachability automaton when considered with respect to finite and infinite words (see
the automaton B in Fig. 1).

Nevertheless, there is a close connection between reachability with respect to finite and
infinite words, as shown below, allowing us to show that 1-token games do characterise
history-determinism also for Reachability automata on infinite words.

Recall that we assume that all accepting transitions in a Reachability lead to a sink state
that has an accepting self loop on all the alphabet letters – once an accepting transition
has been reached, nothing else matters. Hence, Reachability automata with acceptance
on transitions and on states are very similar; the only difference is whether this “heaven”
state is marked accepting or the transition leading to it is. For simplicity, we will consider
automata with acceptance on states in the proof that G1 characterises history-determinism
in Reachability automata.

Define a state q of a Reachability automaton A “almost accepting” if there exists a
strategy s in the letter game on Aq on infinite words, such that for every infinite word w,
the run that s entails on w is accepting. (Notice that every accepting state is also almost

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:11

A

s0 s1

Σ

Σ

Σ

B
s0s1 s2

s3

Σ Σ

a b

b a
Σ

Figure 1: An automaton A, demonstrating that the Reachability value function on infinite
words is not present-focused: the strategy of Eve that remains forever in s0 is
cautious, but does not win the letter game on A. The Reachability automaton B
demonstrates another difference between reachability on finite and infinite words:
It is HD on infinite words, but not HD on finite words.

accepting.) Given a Reachability automaton A, we define Polish(A) to be the Reachability
automaton that is derived from A, by making every almost accepting state of A accepting.

Proposition 4.6. Given a Reachability automaton A over an alphabet Σ with states Q and
transitions δ, computing Polish(A) is in O(|δ| · |Σ|), and the corresponding strategies that
witness almost-acceptance are positional with respect to the product of Q and Σ.

Proof. The “almost acceptance game”, used to find the almost accepting states, is an
adaptation of the letter game: Eve wins a play if her run on the word generated by Adam
reaches an accepting state. Thus, it is a reachability game over an arena that is the product
of the alphabet Σ (for Adam’s moves that choose the next letter) and A (for Eve’s moves
that choose her next transition). As computing the winning region of reachability games is
linear in the number of the arena’s transitions, and winning strategies in these games are
positional, the claim directly follows.

Lemma 4.7. Consider a Reachability automaton A. Then: i) If Eve wins G1(A) on infinite
words then Eve wins G1(Polish(A)) on finite words; and ii) If Polish(A) on finite words
is HD then A on infinite words is HD.

Proof. Let A be the automaton on infinite words and A′ stand for Polish(A) on finite
words.

i) Let s be a winning strategy for Eve in G1(A). We define a strategy s′ for Eve in G1(A′)
and show that it is winning: The strategy s′ follows s until it reaches an almost accepting
state.

If s′ eventually reaches an almost accepting state then Eve obviously wins, reaching an
accepting state of A′ with her strategy witnessing almost acceptance.

Otherwise, we are guaranteed that Adam’s run also never reaches an accepting state of
A′ (which is an almost accepting state of A): Assume toward contradiction that Adam
does reach such an almost accepting state qA when Eve is at a state qE that is not almost
accepting. Then, we claim that Adam can win G1(A), by generating some infinite suffix
w, over which he can reach an accepting state of A, using the strategy sA that witnesses
the almost acceptance of qA, while Eve’s strategy s cannot.

Indeed, assume toward contradiction that for every word w, the strategy s can reach
an accepting state, using the knowledge that Adam starts in qA and follows sA. Then, we
can define a strategy sE for Eve in the letter game on AqE that also reaches an accepting

8:12 U. Boker and K. Lehtinen Vol. 19:4

state on every word w: It follows s, providing it in every step with the required knowledge
about sA, which is possible, since sA is fixed for the state qA. This however implies that
qE is almost accepting, leading to a contradiction.

ii) Let s′ be Eve’s winning strategy in the letter game on A′. We define a strategy s for Eve
in the letter game on A and show that it is winning: In every play, the strategy s starts
just like s′, and continues according to the following two disjoint cases:
– If Adam generates a prefix u, such that u ∈ L(A′) then, since s′ is winning in the

letter game on A′, Eve, following s′, is guaranteed to reach a state q that is almost
accepting in A. Then, after the prefix u, the strategy s continues like the strategy that
witnesses the almost acceptance of q, which guarantees to reach an accepting state in A
for whatever infinite suffix that Adam generates, making Eve win.

– Otherwise, s continues forever like s′: the word that Adam generates is rejecting and
Eve wins.

Theorem 4.8. Given a nondeterministic Reachability automaton A on infinite words, Eve
wins G1(A) if and only if A is HD, and winning strategies in G1(A) induce HD strategies
for A of the same memory size.

Proof. If A is HD then Eve obviously wins G1(A), by using the same strategy as in the
letter game, ignoring Adam’s token.

If Eve wins G1(A) then by Lemma 4.7.i she also wins G1(Polish(A)) on finite words,
thus by Corrolary 4.2 Polish(A) on finite words is HD, implying by Lemma 4.7.ii that A is
HD.

Regarding the memory of the HD strategy, observe that Eve’s strategy s inG1(Polish(A))
is the same as her strategy in G1(A) (see the proof of Lemma 4.7); her strategy s′ in the
letter game on Polish(A) needs memory of the same size as s (Corrolary 4.2), and her
strategy in the letter game on A either follows s′ or diverts to a strategy that witnesses
almost-acceptance, which is positional in the arena of the letter game (Proposition 4.6).

Considering the memory size of the HD strategy, notice that for reachability (and safety)
automata, positional strategies suffice; that is these automata are HD if and only if they are
determinisable by pruning [BKS17, Theorem 17].

So far, we have shown that the 1-token game characterises history-determinism for
various quantitative automata, and in particular for Reachability and Inf on infinite words.
The Sup value function can be seen both as a generalisation of Reachability to more than
two weights, and as a dual of Inf. However, it turns out that Sup automata behave rather
differently, as demonstrated in Fig. 2.

Proposition 4.9. G1 does not characterise history-determinism for Sup automata on infinite
words.

Proof. The automaton A depicted in Fig. 2 is not HD, while Eve wins G1 on it.

4.2. Solving G1 and Deciding HDness.

We continue with solving the HDness problem of some of the automata types discussed in
Section 4.1, for which it is easy to solve the G1 game.

We start with Reachability and Safety automata on finite words, for which solving G1

reduces to solving a safety game.

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:13

A

s0 s1

a :0 b :3

a :0

b :3

a :1 b :2

Figure 2: A Sup automaton A, demonstrating that G1 does not characterise history-
determinism for Sup automata on infinite words: A is not HD as Adam can
play a when Eve’s run is in s0 and b when Eve’s run is in s1. If Eve stays in s0,
then the word has value 1 and Eve’s run has value 0; if Eve goes to s1, then the
word has value 3 but Eve’s run has value 2. Eve wins G1 by moving to s1 once
Adam’s token is in s1. If Adam stays in s0, they have the same run; if Adam
moves and plays b before Eve moves, she gets value 3 and wins; if he doesn’t, then
Eve gets the same value as Adam.

Theorem 4.10. Deciding whether a Reachability or Safety automaton on finite words is HD
can be done in time cubic in the size of A.

Proof. By Corrolary 4.2, it is enough to solve G1(A).
Given a Safety or Reachability automaton A = (Σ, Q, ι, δ) on finite words, G1(A) reduces

to a safety game, whose positions (σ, q, q′, t) ∈ Σ∪{ε}×Q2 ×{L,E,A} consist of a possibly
empty letter σ representing the last letter played, a pair of states (q, q′), one for Eve and one
for Adam, which keep track of the end of the current run built by each player, and a turn
variable t ∈ {L,E,A} indicating whether it is Adam’s turn to give a letter (L), Eve’s turn
to choose a transition (E), or Adam’s turn to choose a transition (A). The initial position is
(ε, ι, ι, L). The moves and position ownership encode the permitted moves in G1(A).

In both cases G1(A) is a safety game: in the Reachability case, Eve wins if the play
remains in positions where either neither player’s token has reached the target, or she has
reached the target; in the Safety cases, Eve wins if the play remains in positions where either
her token is in the safe region, or Adam’s token has left the safe region. In both cases, the
game can be represented by a cubic-sized arena, which can then be solved in linear time by
computing Adam’s attractor to the non-safe region.

While G1(A) is a safety game if A operates on finite words, this is no longer the case for
A on infinite words, as, for example in the Reachability case, Eve could reach the target any
time after Adam, turning a potentially losing play prefix into a winning one. Nevertheless,
solving G1 is still simple, reducing it to solving weak games.

Theorem 4.11. Deciding whether a Reachability or Safety automaton A on infinite words
is HD can be done in time cubic in the size of A.

Proof. By Theorems 4.5 and 4.8, it is enough to solve G1(A).
We can encode G1(A) as a weak game on an arena that consists, as in the proof

of Theorem 4.10, of the product of two copies of A to keep track of each player’s token, the
alphabet to indicate Adam’s last choice of letter, and a variable to indicate whose turn it is
to play. For the Safety case, a move is good for Eve, encoded with priority 0, if after the
move either Adam’s token is out of the safe region, or her token is within the safe region.
Other moves are bad for Eve, encoded with priority 1. Eve wins plays that eventually remain
within the good region. Similarly, in the Reachability case, a move is good for Eve, encoded
with priority 0 if either her token has reached the target or Adam’s token has not reached

8:14 U. Boker and K. Lehtinen Vol. 19:4

the target. In both cases, the winning condition is a weak condition since there are no plays
alternating good and bad moves infinitely often. In both cases, the resulting game can then
be solved in linear time [HMS].

Note that alternatively, for a Safety automaton A, one can encode G1(A) as a safety
game. Indeed, positions in which Eve’s token has left the safe region while Adam’s token is
in a state with a non-empty language are winning for Adam, and can be marked unsafe for
Eve, while positions in which Adam’s token is in a state with empty language are winning
for Eve, and can be marked safe for Eve. Then Eve wins if and only if the play remains in
safe positions, that is, either her token is in the safe region of A or Adam’s token is in a
state with empty language.

Analogously, there is an alternative solution also for a Reachability automaton A, whereby
G1(A) is encoded as a reachability game, in which the target positions are the almost
accepting ones (which, by Proposition 4.6, can be computed in time cubic in the size of A):
Positions in which Eve’s token is in an almost accepting state are the ones she needs to
reach.

Solving G1 for Sup automata reduces, as in some of the previous cases, to solving safety
games.

Theorem 4.12. Deciding whether a Sup automaton on finite words is HD is in PTime,
namely in O(|Σ|n2k), where Σ is the automaton’s alphabet, k the number of weights and n
the number of states.

Proof. By Corrolary 4.2, it is enough to solve G1.
Given a Sup automaton A = (Σ, Q, ι, δ) with weights W , G1(A) reduces to a safety

game, by taking, as in the previous proofs, the product of two copies of A, Σ, and a variable
to keep track of whose turn it is to play. In addition, we use an additional variable xE to
keep track of the maximal weight on Eve’s run so far.

The winning condition for Eve is a safety condition: Adam wins if he picks a move with
a weight higher than xE , the maximal weight on Eve’s run. Then plays in this game are in
bijection with plays of G1(A), and Eve wins if and only if she can avoid Adam choosing a
transition with a larger weight than xE , that is, if she can win G1(A).

Then, solving G1(A) reduces to solving this safety game, which can be done in time
linear in the number of positions of the arena, which is 3|Σ|n2k.

Solving G1 for Inf automata reduces to solving safety games, when the automata operate
on finite words, and to solving weak games, when the automata operate on infinite words.

Theorem 4.13. Deciding whether an Inf automaton on finite or infinite words is HD is
in PTime, namely in O(|Σ|n2k2), where Σ is the automaton’s alphabet, k the number of
weights and n the number of states.

Proof. By Theorem 4.5 and Corrolary 4.2, it is enough to solve G1 on the Inf automaton A.
Analogously to the previous proofs, we can encode G1(A) as a product of two copies of

A to keep track of each player’s token, the alphabet to keep track of the last letter chosen
by Adam, a variable to keep track of whose turn it is to play, and a pair of variables to
remember the least value read so far by each player’s token. (Notice that as opposed to the
Sup case, proved in Theorem 4.12, the encoding in this case needs to keep the least value
read so far by both players, and cannot do with only one of them.)

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:15

In the case of finite words, the winning condition for Eve is a safety condition: the least
value seen so far by Eve’s token must always be at least as high as the one seen by Adam’s
token.

In the case of infinite words, the winning condition for Eve is that eventually the value
seen by Adam’s token must remain at least as high as the one seen by Eve’s token. Since
there are only finitely many possible values and the least value for each token can only
decrease along the run, this is a weak condition.

In both cases the resulting game, of size O(|Σ|n2k2), can be solved in linear time [HMS].

Next, we show that solving G1 is in NP∩co-NP for DSum automata.

Theorem 4.14. For every λ ∈ Q ∩ (0, 1), deciding whether a λ-DSum automaton A, on
finite or infinite words, is HD is in NP∩co-NP2.

Proof. Consider a λ-DSum automaton A = (Σ, Q, ι, δ), where the weight of a transition t is
denoted by γ(t). By Corrolary 4.3, it suffices to show that solving G1(A) is NP∩co-NP. We
achieve this by reducing solving G1(A) to solving a discounted-sum threshold game, which
Eve wins if the DSum of a play is non-negative. It is enough to consider infinite games, as
they also encode finite games, by allowing Adam to move to a forever-zero-position in each
of his turns.

The reduction follows the same pattern as that in the proof of Theorem 4.12: we represent
the arena of the game G1(A) as a finite arena, and encode its winning condition, which
requires the difference between the DSum of two runs to be non-negative, as a threshold
DSum winning condition. Note first that the difference between the λ-DSum of the two
sequences x0x1... and x′0x

′
1... of weights is equal to the λ-DSum of the sequence of differences

d0 = (x0 − x′0), d1 = (x1 − x′1), . . ., as follows: (
∑∞

i=0 λ
ixi)−

∑∞
i=0 λ

ix′i =
∑∞

i=0 λ
i(xi − x′i).

We now describe the DSum arena G in which Eve wins with a non-strict 0-threshold
objective if and only if she wins G1(A). (See an example in Fig. 3.) The arena has positions
in (m,σ, t, q, q′) ∈ {L,E,A}×Σ∪{ε}× δ∪{ε}×Q2 where m denotes the move type, having
L for Adam choosing a letter, E for Eve choosing a transition and A for Adam choosing a
transition; σ is the last played letter if m = E or m = A and ε otherwise; t is the transition
just played by Eve if m = A and ε otherwise; and the states q, q′ represent the positions of
Eve and Adam’s tokens.

A move of Adam that chooses a transition t′ = q′
σ:x−−→ q′′, namely a move (A, σ, t, q, q′) →

(L, ε, ε, q, q′′), is given weight γ(t)− γ(t′), that is, the difference between the weights of the
transitions chosen by both players. Other transitions are given weight 0. Observe that
we need to compensate for the fact that only one edge in three is weighted. One option

to do it is to take a discount factor λ′ = λ
1
3 for the DSum game G. Yet, λ′ can then be

irrational, which somewhat complicates things. Another option is to consider discounted-sum
games with multiple discount factors [And06] and choose three rational discount factors
λ′, λ′′, λ′′′ ∈ Q ∩ (0, 1), such that λ′ · λ′′ · λ′′′ = λ. Since the first two weights in every triple
are 0, only the multiplication of the three discount factors toward the third weight is what
matters. For λ = p

q , where p < q are positive integers, one can choose λ′ = 4p
4p+1 , λ

′′ = 4p+1
4p+2 ,

and λ′′′ = 2p+1
2q .

2It was already known for finite words [FLW20]. It is perhaps surprising for infinite words, given the
NP-hardness result in [HPR16, Theorem 6]. In consultation with the authors, we have confirmed that there
is an error in the hardness proof.

8:16 U. Boker and K. Lehtinen Vol. 19:4

Plays in G1(A) and in G are in bijection. It now suffices to argue that the winning
condition of G, namely that the (λ′, λ′′, λ′′′)-DSum of the play is non-negative, correctly
encodes the winning condition of G1(A), meaning that the difference between the λ-DSum
of Eve’s run and of Adam’s run is non-negative.

Let d0d1 . . . be the sequence of weight differences between the transitions played by
both players in G1(A), and let λ0, λ1, . . . and w0, w1, . . . be the corresponding sequences of
discount factors and weights in the (λ′, λ′′, λ′′′)-DSum game, respectively, where for every
i = (0 mod 3), we have wi = 0 and λi = λ′, for every i = (1 mod 3), we have wi = 0 and
λi = λ′′, and for every i = (2 mod 3), we have wi = di and λi = λ′′′. Then the value of the
(λ′, λ′′, λ′′′)-DSum sequence is equal to the required DSum sequence multiplied by λ′ · λ′′:

(λ′, λ′′, λ′′′)-DSum =

∞∑
i=0

(0 ·
3i−1∏
j=0

λj + 0 ·
3i∏
j=0

λj + w3i+2 ·
3i+1∏
j=0

λj) = λ′ · λ′′ ·
∞∑
i=0

λidi

Hence Eve wins the game G1(A) if and only if she wins the 0-threshold (λ′, λ′′, λ′′′)-
DSum game over G. As G has a state-space polynomial in the state-space of A and solving
DSum-games is in NP∩coNP [And06], solving G1(A), and therefore deciding whether A is
HD, is also in NP∩coNP.

DSum games are positionally determined [Sha53, ZP95, And06] so this algorithm also
computes a finite-memory witness of HDness for A that is of polynomial size in the state-space
of A. However, a positional witness also exists [HPR16, Section 5].

One might be tempted to think that the proof of Theorem 4.14 generalises to discounted-
sum automata with multiple discount factors [BH21]. Yet, this is not the case: While the
value function of discounted-summation with multiple discount factors is indeed present-
focused, using an argument analogous to the one in [BL21, Lemma 22], and the proof of
Theorem 4.14 indeed uses discounted-sum games with multiple discount factors, the issue
is that the value difference between the discounted-summation of two weight sequences
is much more involved with multiple discount factors than with a single one. Hence, the
representation that we use in the proof of Theorem 4.14 to capture this value difference
no longer holds in the case of multiple discount factors. We leave open the question of the
complexity (and decidability) of HDness of discounted-sum automata with multiple discount
factors.

5. Deciding History-Determinism via Two Token Games

In this section we solve the HDness problem of Sup, LimSup and LimInf automata on infinite
words via two-token games. As is the case with Büchi and coBüchi automata [BK18, Lemma
8]3, one-token games do not characterise HDness of LimSup and LimInf automata. We showed
in Section 4 that this is also the case for Sup automata on infinite words (unlike on finite
words where one token does suffice).

For Sup and LimInf, a possible approach is to solve the letter game directly: an equivalent
deterministic automaton can track the value of a word, and the winning condition of the
letter game corresponds to comparing Eve’s run to the one of the deterministic automaton.
Unfortunately, determinising both Sup and LimInf automata is exponential in the number of

3The Büchi automaton presented in [BK18, Lemma 8] is a weak one, so it can also be viewed as a coBüchi
one.

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:17

states [CDH10, Theorem 13], so the new game is large. In addition, for LimInf automata,
its winning condition, which compares the LimInf value of two runs, is non-standard and

A DSum automaton A with a discount factor λ = 5
7

q0 q1q2

t0 b :0

t1 a :1t2 a :2

t3 a :4

t4 b :1

t5 a :1
t6 b :3

A DSum game G with discount factors λ′ = 20
21 , λ

′′ = 21
22 , and λ′′′ = 11

14

L, ε, ε
q0, q0

E, a, ε
q0, q0

E, b, ε
q0, q0

A, a, t1
q1, q0

A, a, t1
q2, q0

A, b, t0
q0, q0

L, ε, ε
q1, q1

L, ε, ε
q1, q2

L, ε, ε
q2, q1

L, ε, ε
q2, q2

E, a, ε
q1, q1

E, b, ε
q1, q1

E, a, ε
q1, q2

E, b, ε
q1, q2

E, a, ε
q2, q1

E, b, ε
q2, q1

E, a, ε
q2, q2

E, b, ε
q2, q2

A, a, t3
q0, q1

A, b, t4
q0, q1

A, a, t3
q0, q2

A, b, t4
q0, q2

A, a, t5
q0, q1

A, b, t6
q0, q1

A, a, t5
q0, q2

A, b, t6
q0, q2

λ′, 0

λ′, 0
λ′′, 0

λ′′, 0

λ′′, 0 λ
′′′ , (1

−1=
) 0

λ ′′′, (1−2=)−1

λ
′′′ , (2

−1=
) 1

λ ′′′, (2−2=) 0

λ
′′′
,(
1−

1
=
)
0

λ
′ , 0

λ ′, 0

λ
′ , 0

λ ′, 0

λ
′ , 0

λ ′, 0

λ
′ , 0

λ ′, 0

λ′′, 0

λ′′, 0

λ′′, 0

λ′′, 0

λ′′, 0

λ′′, 0

λ′′, 0

λ′′, 0

λ′′′, 0

λ′′′, 0

λ′′′, 3

λ′′′,−2

λ′′′,−3

λ′′′, 2

λ′′′, 0

λ′′′, 0

Figure 3: An example of a DSum automaton A and the corresponding DSum game G
with multiple discount factors, as per the proof of Theorem 4.14, such that Eve
wins G1(A) if and only if she wins G with respect to the non-strict 0-threshold.
Rectangular positions in G are of Adam and ellipses of Eve.

8:18 U. Boker and K. Lehtinen Vol. 19:4

needs additional work to be encoded into a parity game. For LimSup automata the situation
is even worse, as they are not necessarily equivalent to deterministic LimSup automata, so it
is not obvious whether the winner of the letter game is decidable at all.

Here we first show, in Section 5.1, that the 2-token-game approach, used to resolve
HDness of Büchi and coBüchi automata, can be generalised to Sup, LimSup and LimInf
automata. Our proofs for the LimSup and LimInf cases follow the same structure, while
relying on the G2 characterisation of HDness for Büchi and coBüchi automata respectively.
We then show that G2 also characterises the HDness of Sup automata on infinite words, via
reduction to the LimSup case.

We then analyse the complexity of solving G2 for these three automata classes, in
Section 5.2. Perhaps surprisingly (since the naive approach to solving the letter game seems
harder for LimSup), we show that G2 is solvable in quasipolynomial time for LimSup while
for LimInf our algorithm is exponential in the number of weights (but not in the number of
states). For Sup automata on infinite words, solving G2 can be done in polynomial time, as
it reduces to solving a coBüchi game of cubic size.

Without loss of generality, we assume the weights to be {1, 2, . . .}.

5.1. G2 Characterises HDness for some automata.

This section is dedicated to proving that a LimSup, LimInf or Sup automaton on infinite
words is HD if and only if Eve wins the 2-token game on it. In both the LimSup and the
LimInf cases, the structure of the argument is similar. One direction is immediate: if an
automaton A is HD, then Eve can use the letter-game strategy to win in G2(A), ignoring
Adam’s tokens. The other direction requires more work. We use an additional notion, that
of k-HDness, which generalises HDness, in the sense that Eve maintains k runs, rather than
only one, and needs at least one of them to be optimal. We will then show that if Eve
wins G2(A), then A is k-HD for a finite k (namely, the number of weights in A minus one);
this is where the argument differs slightly according to the value function. Finally, we will
show that for automata that are k-HD, for any finite k, a strategy for Eve in G2(A) can be
combined with the k-HD strategy to obtain a strategy for her in the letter game.

Many of the tools used in this proof are familiar from the ω-regular setting [BK18,
BKLS20]. The main novelty in the argument is the decomposition of the LimSup (LimInf)
automaton A with k weights into k − 1 Büchi (coBüchi) automata A2, . . . ,Ak, each Ai of
which recognises the language of words of value at least i, that are HD whenever Eve wins
G2(A). (The converse does not hold, namely A2, . . . ,Ak can be HD even if Eve loses G2(A)
– see Fig. 5.) In both cases, the HD strategies for A2, . . . ,Ak can then be combined to prove
the k-HDness of A.

Fig. 4 illustrates the flow of our arguments.
Finally, we show that G2 also characterises the HDness of Sup automata on infinite

words using the characterisation for LimSup.
We first generalise to quantitative automata Bagnol and Kuperberg’s key insight that if

Eve wins G2, then she also wins Gk for all k [BK18, Thm 14].

Theorem 5.1. Given a quantitative automaton A, if Eve wins G2(A) then she also wins
Gk(A) for any k ∈ N \ {0}. Furthermore, if her winning strategy in G2(A) has memory of
size m and A has n states, then she has a winning strategy in Gk(A) with memory of size
nk−1 ·mk.

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:19

G2(A) ∀k.Gk(A)

G2(A2), . . . , G2(Ak) ∃k.HDk(A)

HD(A)

Theorem 5.1

Lemma 5.4

Lemma 5.5

Proposition 5.3

Figure 4: The flow of arguments for showing that G2(A) =⇒ HD(A) for a LimInf or LimSup
automaton A.

A

s0s1 s2 s3 s4
Σ:1 Σ:1

Σ:2
a :3

b :1

Σ:3 Σ:1

A2

s0s1 s2 s3 s4
Σ Σ

Σ
a

b

Σ Σ

A3

s0s1 s2 s3 s4
Σ Σ

Σ
a

b

Σ Σ

Figure 5: A LimSup automaton A and corresponding Büchi automata A2 and A3, as per
Lemma 5.4. (Accepting transitions in A2 and A3 are marked with double lines.)
Observe that A is not HD and Eve loses the two-token game on A, while both A2

and A3 are HD. (In A, if Eve goes from s0 to s1, Adam goes from s0 to s2 and
continues with an a, and if she goes from s0 to s2, Adam goes from s0 to s1 and
continues with a b. In A2 Eve goes from s0 to s1 and in A3 from s0 to s2.)

Proof. This is the generalisation of [BK18, Thm 14]. The proof is similar to Bagnol and
Kuperberg’s original proof, but without assuming positional strategies for Eve in Gk(A). If
Eve wins G2(A) then she obviously wins G1(A), using her G2 strategy with respect to two
copies of Adam’s single token in G1. We thus consider below Gk(A) for every k ∈ N\{0, 1, 2}.

Let s2 be a winning strategy for Eve in G2(A). We inductively show that Eve has a
winning strategy si in Gi(A) for each finite i. To do so, we assume a winning strategy si−1

in Gi−1(A). The strategy si maintains some additional (not necessarily finite) memory that
maintains the position of one virtual token in A, a position in the (not necessarily finite)
memory structure of si−1, and a position in the (not necessarily finite) memory structure
of s2. The virtual token is initially at the initial state of A. The strategy si then plays as
follows: at each turn, after Adam has moved his i tokens and played a letter (or, at the first
turn, just played a letter), it first updates the si−1 memory structure, by ignoring the last
of Adam’s tokens, and, treating the position of the virtual token as Eve’s token in Gi−1(A),
it updates the position of the virtual token according to the strategy si−1; it then updates

8:20 U. Boker and K. Lehtinen Vol. 19:4

the s2 memory structure by treating Adam’s last token and the virtual token as Adam’s 2
tokens in G2(A), and finally outputs the transition to be played according to s2.

We now argue that this strategy is indeed winning in Gi(A). Since si−1 is a winning
strategy in Gi−1(A), the virtual token traces a run of which the value is at least as large as
the value of any of the runs built by the first i− 1 tokens of Adam. Since s2 is also winning,
the value of the run built by Eve’s token is at least as large as the values of the runs built
by the virtual token and by Adam’s last token. Hence, Eve is guaranteed to achieve at least
the supremum value of Adam’s i runs, making this a winning strategy in Gi(A).

As for the memory size of a winning strategy for Eve in Gk(A), let m be the memory
size of her winning strategy in G2(A) and n the number of states in A. Then, by the
above construction of her strategy in Gk(A), the memory of her strategy in G3(A) is n
for the virtual token times m for the copy of her memory in G2(A) times m for the copy
of her memory in Gi−1(A) = G2(A), namely n · m · m = n · m2. Then for G4(A) it is
n · m · (n · m2) = n2 · m3; for G5(A) it is n · m · (n2 · m3) = n3 · m4, and for Gk(A) it is
nk−1 ·mk.

We proceed with the definition of k-HDness (a related, but different notion is the “width”
of an automaton [MK19]), based on the k-runs letter game (not to be confused with Gk, the
k-token game), which generalises the letter game.

Definition 5.2 (k-HD and k-runs letter game). A configuration of the game on a quantitative
automaton A = (Σ, Q, ι, δ) is a tuple qk ∈ Qk of states of A, initialised to ιk.

In a configuration (qi,1, . . . , qi,k), the game proceeds as follows to the next configuration
(qi+1,1, . . . , qi+1,k).

• Adam picks a letter σi ∈ Σ, then

• Eve chooses for each qi,j , a transition qi,j
σi:xi,j−−−−→ qi+1,j

In the limit, a play consists of an infinite word w that is derived from the concatenation
of σ0, σ1, . . ., as well as of k infinite sequences ρ0, ρ1, . . . of transitions. Eve wins the play if
maxj∈{1...k} Val(ρj) = A(w).

If Eve has a winning strategy, we say that A is k-HD, or that HDk(A) holds.

Notice that the standard letter game (Definition 2.1) is a 1-run letter game and standard
HD (Definition 2.1) is 1-HD.

Next, we use HDk(A) to show that G2 characterises HDness.

Proposition 5.3 [BK18]. Given a quantitative automaton A, if HDk(A) for some k ∈ N,
and Eve wins Gk(A), then A is HD.

Proof. The argument is identical to the one used in [BK18], which we summarise here. The
strategy τ for Eve in HDk(A) provides a way of playing k tokens that guarantees that one
of the k runs formed achieves the automaton’s value on the word w played by Adam. If Eve
moreover wins Gk(A) with some strategy sk, she can, in order to win in the letter game,
play sk against Adam’s letters and k virtual tokens that she moves according to τ . The
winning strategy τ guarantees that one of the k runs built by the k virtual tokens achieves
Val(w); then her strategy sk guarantees that her run also achieves Val(w).

It remains to prove that if Eve wins G2(A), then HDk(A) for some k.
Given a LimSup automaton A, with weights {1, . . . , k}, we define k − 1 auxiliary Büchi

automata A2, . . . ,Ak with acceptance on transitions: each Ax is a copy of A, where a
transition is accepting if its weight i in A is at least x. (See Fig. 5.) Dually, given a LimInf

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:21

automaton A, each Ax is a coBüchi automaton, and consists of a copy of A where transitions
with weights smaller than x are rejecting, while those with weights x or larger are accepting.
Again, in both cases Ax recognises the set of words w such that A(w) ≥ x.

We now use these auxiliary automata to argue that if G2(A) then HDk−1(A).

Lemma 5.4. Given a LimSup or LimInf automaton A with weights {1, . . . , k}, if Eve wins
G2(A), then for all x ∈ {2, . . . , k}, Eve also wins G2(Ax).

Proof. Since Ax is identical to A except for the acceptance condition or value function, Eve
can use in G2(Ax) her winning strategy in G2(A).

For the LimSup case, if one of Adam’s runs sees an accepting transition infinitely often,
the underlying transition of A visited infinitely often has weight at least x. Then, Eve’s
strategy guarantees that her run also sees infinitely often a value at least as large as x,
corresponding to an accepting transition in G2(Ax).

Similarly, for the LimInf case, if one of Adam’s runs avoids seeing a rejecting transition
infinitely often in Ax, then this run’s value in A is at least x, and Eve’s strategy guarantees
that her run’s value in A is at least x, meaning that it avoids seeing a rejecting transition in
Ax infinitely often, and accepts.

Lemma 5.5. Given a LimSup or LimInf automaton A with weights [1..k], if Eve wins G2(Ax)
for all x ∈ [2..k] then HDk−1(A) holds.

Proof. From Lemma 5.4, if Eve wins G2(A), then for all x ∈ [2..k], Eve also wins G2(Ax).
We first argue that each Ax is HD.

Since each Ax is a Büchi or coBüchi automaton, this implies that for all x ∈ [2..k], the
automaton Ax is HD [BK18, BKLS20], witnessed by a winning strategy sx for Eve in the
letter game on each Ax.

Now, in the (k − 1)-run letter game on A, Eve can use each sx to move one token.
Then, if Adam plays a word w with some value Val(w) = i, this word is accepted by Ai, and
therefore the strategy si guarantees that the run of the ith token achieves at least the value
i, corresponding to seeing accepting transitions of Ai infinitely often for the LimSup case, or
eventually avoiding rejecting transitions in the LimInf case.

Finally, we combine the G2 and HDk−1 strategies in A to show that A is HD.

Theorem 5.6. A nondeterministic LimSup or LimInf automaton A is HD if and only if Eve
wins G2(A).

Proof. If A is HD then Eve can use the letter-game strategy to win in G2(A), ignoring
Adam’s moves. If Eve wins G2(A) then by Lemma 5.4 and Lemma 5.5 she wins HDk−1(A),
where k is the number of weights in A. By Theorem 5.1 she also wins Gk−1(A) and, finally,
by Proposition 5.3 we get that A is HD.

We show next that G2 characterises HDness also for Sup automata, by reducing the
problem to the case of LimSup automata.

Corollary 5.7. A nondeterministic Sup automaton A on infinite words is HD if and only
if Eve wins G2(A).

Proof. One direction is direct: if A is HD, then Eve wins G2(A) by using her HD strategy
and ignoring Adam’s tokens.

For the other direction, given a Sup automaton A with initial state ι and k weights, we
construct a LimSup automaton A′, such that i) if A′ is HD then A is HD, and ii) if Eve wins

8:22 U. Boker and K. Lehtinen Vol. 19:4

G2(A), then she also wins G2(A′). As by Theorem 5.6 Eve wins G2(A′) if and only if A′ is
HD, we conclude that if Eve wins G2(A), then A is HD.

A′ has the same alphabet as A. The state-space of A′ consists of k copies of A, one
for each weight: for each state q of A, we have states qi of A′, for i ∈ [1..k]. In the ith copy
of A, we only keep transitions of weight up to i in A, and all of them have weight i in A′.
Transitions of higher weight x move from the ith copy to the xth copy. More precisely, for
each pair of weights i and x:

• (qi, σ, i, q
′
i) is a transition in A′ if (q, σ, x, q′) is a transition in A and x ≤ i.

• (qi, σ, x, q
′
x) is a transition in A′ if (q, σ, x, q′) is a transition in A and x > i.

The initial state of A′ is ι1.
First note that this LimSup-automaton computes the same function as A: runs of A

and A′ are in value-preserving bijection since in A′ the weight that occurs on each transition
is the largest weight seen so far in the corresponding run of A.

Then, observe that if A′ is HD then A is HD. Indeed, Eve’s winning strategy s′ in the
letter game on A′ can be used in the letter game on A by choosing the transition (q, σ, x, q′)
instead of (qi, σ, x, q

′
x) and the available transition (q, σ, x, q′) maximising x instead of

(qi, σ, i, q
′
i). Again, this strategy achieves a run of the same value as s′ on every word since

whenever s′ moves to the next copy of A, it sees a transition of the corresponding weight,
guaranteeing at least this value. Eve therefore also wins in the letter game on A.

Similarly, we claim that if Eve wins G2(A), she also wins G2(A′). Indeed, given a
winning strategy s in G2(A), she can play according to the strategy s′ that chooses the
available (qi, σ, i, q

′
x) or (qi, σ, x, q

′
x) transition whenever s chooses (q, σ, x, q′), and interprets

Adam’s moves (qi, σ, x, q
′
x) in G2(A′) as (q, σ, x, q′) in G2(A) and Adam’s moves (qi, σ, i, q

′
i)

in G2(A′) as the available transition (q, σ, x, q′) maximising x in G2(A). Then, whatever
values Adam’s tokens achieve in G2(A′), s guarantees that Eve’s token in G2(A) does better,
and s′ guarantees this same value for Eve’s token in G2(A′).

Remark 5.8. An alternative proof for the above corollary can be obtained by following the
same proof schema as for Theorem 5.6, but decomposing the Sup automaton into Reachability
automata instead of Büchi or coBüchi automata.

5.2. Solving G2 and Deciding HDness.

Now that we have established that G2 characterises history-determinism for Sup, LimSup,
and LimInf automata, we study the complexity of solving G2 in each case. We start with the
case of Sup automata on infinite words, which is the simplest, via reduction to polynomially
sized coBüchi game.

Theorem 5.9. Deciding whether a Sup automaton A on infinite words is HD can be done
in time polynomial in the size of A.

Proof. By Corrolary 5.7, it is enough to solve G2(A).
We encode G2(A) for a Sup automaton A = (Σ, Q, ι, δ) as a coBüchi game as follows.

The arena is that of G2(A), represented as the product of the alphabet and three copies
of A, to reflect the current letter and the current position of each of the three runs, and a
variable indicating whose turn it is to move. In addition, a variable xE keeps track of the
greatest value seen by Eve’s run so far, and xA keeps track of the greatest value seen by
either of Adam’s runs so far. The winning condition for Eve is then that eventually xE ≥ xA

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:23

remains true, which is a coBüchi condition. The size of the arena is thus polynomial, and
the complexity of solving coBüchi games is quadratic [CH12].

We proceed with the LimSup and LimInf cases, for which G2 can be solved via a reduction
to a parity game. The G2 winning condition for LimSup automata can be encoded by adding
carefully chosen priorities to the arena of G2(A), while for LimInf the encoding requires
additional positions.

Theorem 5.10. Deciding whether a LimSup automaton A of size n with k weights is HD is
quasipolynomial in n, and if k is in O(log n), in time polynomial in n.

Proof. By Theorem 5.6, it is enough to solve G2(A).
We encode the game G2(A), for a LimSup automaton A = (Σ, Q, ι, δ), into a parity

game as follows. The arena is simply the arena of G2(A), seen as a product of the alphabet
and three copies of A, to reflect the current letter and the current position of each of the
three runs (one for Eve, two for Adam), and a variable to keep track of which turn it is to
play. (Adam’s turn to give a letter, Eve’s turn to choose a transition, Adam’s turn to choose
his first transition, or Adam’s turn to choose his second transition.)

Adam’s letter-picking moves are labelled with priority 0, Eve’s choices of transition

q
σ:x−−→ q′ are labelled with priority 2x and Adam’s choices of transition q

σ:x−−→ q′ are labelled
with priority 2x− 1.

We claim that Eve wins this parity game if and only if she wins G2(A), that is, the
priorities correctly encode the winner of G2(A). Observe that the even priorities seen
infinitely often in a play of the parity game are exactly priorities 2x, where x is a weight
seen infinitely often in Eve’s run in the corresponding play in G2(A). The odd priorities seen
infinitely often on the other hand are 2x− 1, where x > 0 occurs infinitely often on one of
Adam’s runs in the corresponding play of G2(A). Hence, Eve can match the maximal value
of Adam’s runs in G2(A) if and only if she can win the parity game that encodes G2(A).

The number of positions in this game is polynomial in the size n of A; the maximal
priority is linear in the number k of its weights. It can be solved in quasipolynomial time,
or in polynomial time if k is in O(log n), using the reader’s favourite state-of-the-art parity
game algorithm, for instance [CJK+17].

Theorem 5.11. Deciding whether a LimInf automaton A of size n with k weights is HD
can be done in time exponential in k, and if k is in O(log n), in time polynomial in n.

Proof. By Theorem 5.6, it is enough to solve G2(A).
As in the proof of Theorem 5.10, we can represent G2(A) as a game on an arena that is

the product of three copies of A, one for Eve and two for Adam. The winning condition
for Eve is that the smallest weight seen infinitely often on the run built on her copy of A
should be at least as large as both of the minimal weights seen infinitely often on the runs
built on Adam’s copies. We will encode this winning condition as a parity condition, but,
unlike in the LimSup case, we will need to use an additional memory structure, which we
describe now.

The weights on Eve’s run will be encoded by odd priorities, with smaller weights
corresponding to higher priorities, as for LimInf the lowest weight seen infinitely often is the
one that matters, while weights on Adam’s runs will be encoded by even priorities, but only
once both of Adam’s runs have seen the corresponding weight or a lower one. Keeping track
of this last condition requires the following additional memory structure, which encodes
which of Adam’s runs has seen which weight recently.

8:24 U. Boker and K. Lehtinen Vol. 19:4

x5 = 0 x5 = 1x5 = 2
τ1

\{τ1, τ2} \{τ2}

τ2

\{τ1}

τ2

τ1

Figure 6: Memory structure as described in the proof of Theorem 5.11 for keeping track of
when both of Adam’s runs in G2(A) have seen a priority smaller than i = 5. The
labels τ1 and τ2 stand for moves in G2(A) that correspond to Adam choosing a
transition of A with weight w ≤ 5 in his first and second runs, respectively. A
label \{. . .} stands for all moves in G2(A) except for those in {. . .}.

More precisely, let k be the number of weights in A. Moves corresponding to Eve
choosing a transition of A with weight i have priority 2(k− i+1)−1, that is, an odd priority
that is larger the smaller i is. Further, for each weight i ∈ [1..k], we use a three-valued
variable xi ∈ {0, 1, 2}, initiated to 0, which gets updated as follows: if xi = 0 and the game
move corresponds to Adam choosing a transition of A with weight w ≤ i in one of his runs,
xi is updated to 1 or 2 according to which of Adam’s run saw this weight; if xi = 1 (resp.
2) and the game move corresponds to Adam choosing a transition of A with weight w ≤ i
in his second (resp. first) run, then xi is reset to 0. Moves that reset variables to 0 have
priority 2(k − i+ 1) for the minimal i such that the transition resets xi to 0. Other moves
have priority 1.

We now argue that the highest priority seen infinitely often along a play is even if and
only if the LimInf value of Eve’s run is at least as high as that of both of Adam’s runs.
Indeed, the maximal odd priority seen infinitely often on a play is 2(k − i+ 1)− 1 such that
i is the minimal priority seen on Eve’s run infinitely often, and the maximal even priority
seen infinitely often is 2(k − j + 1) where j is the minimal weight such that both of Adam’s
runs see j or a smaller priority infinitely often. In particular, 2(k − i+ 1)− 1 < 2(k − j + 1)
if and only if i ≥ j, that is, if Eve wins G2(A).

This parity game is of size polynomial in n and exponential in k, where the latter is due
to the memory structure ({0, 1, 2}k) and has 2k priorities. As the number of priorities is
logarithmic in the size of the game, it can be solved in polynomial time [CJK+17]. If k is in
O(log n), then the algorithm is polynomial in the size n of A.

These results can be compared to the problem referred to as zero-regret synthesis against
word-strategies in [HPR17]. There, the LimInf and Sup cases are solved in exponential time
in the size of the automaton via determinisation. In contrast, our procedure is polyno-
mial for Sup, quasipolynomial for LimSup and exponential in the number of weights for LimInf.

In contrast to the cases considered in Section 4, where strategies in G1 induce HD
strategies of the same memory size, a winning G2 strategy does not necessarily induce an
HD strategy of the same memory size (even when it implies the existence of such a strategy).
We now analyse the size of the HD strategies which our proofs show exist whenever Eve
wins G2, and discuss the implications for the determinisability of HD LimSup automata.

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:25

Corollary 5.12. Consider an HD Sup, LimSup, or LimInf automaton A of size n with k+1
weights on infinite words. If A is a Sup or LimSup automaton, there is an HD strategy for A
with memory polynomial in n if k is in O(log n), and of memory exponential in k otherwise.
If A is a LimInf automaton, there is an HD strategy for A with memory exponential in n.

Proof. We construct an HD strategy for LimSup or LimInf A, by combining an HDk strategy
and a Gk strategy for it.

The HDk strategy—which, like the HD strategy, is hard to compute directly—combines
the HD strategies of the k auxiliary Büchi or coBüchi automata for A, as constructed in
Lemma 5.4. For HD Büchi automata, which are equivalent to deterministic automata of
quadratic size [KS15], there always exist polynomial resolvers: indeed, the letter game can be
represented as a polynomial parity game, in which a positional strategy for Eve corresponds
to a resolver. For HD coBüchi automata on the other hand, these auxiliary strategies might
have exponential memory in the number of states of A [KS15].

The Gk strategy on the other hand is positional for LimSup, since it can be encoded as
a parity game directly on the Gk(A) arena, similarly to the reduction in Theorem 5.10; the
size of the Gk(A) arena is O(nk+1). The overall HD strategy for LimSup therefore needs
memory exponential in the number of weights.

For LimInf on the other hand, by Theorems 5.1 and 5.11, the Gk strategy can do with

memory of size nk−1 · 3k2 . The overall HD strategy however needs memory exponential in
both n and k, due to strategies in the component coBüchi automata potentially requiring
memory exponential in n.

For the Sup case, recall the LimSup automaton A′, which has k ∗ n states and k weights,
from the proof of Corrolary 5.7, which is HD if and only if A is HD. From the same proof, an
HD strategy in A′ can be interpreted as an HD strategy in A. Since A′ is of polynomial size
in n and has as many weights as A, A′ has an HD strategy that has memory exponential in
k, and therefore so does A. If k is in O(log n), then the memory is polynomial in n.

We leave open whether the memory bounds of Corrolary 5.12 can be improved upon.
Already for coBüchi automata, it is known that deciding whether an automaton is HD is
polynomial despite there being automata for which the optimal HD strategy needs exponential
memory. Hence, at least for the LimInf case, we cannot expect to do much better. However,
for the Sup and LimSup cases, it might be that strategies with polynomial memory suffice.

Our proof does however imply that if a LimSup automaton A is HD, then there is a
finite memory HD strategy, which implies that A is determinisable, without increasing the
number of weights, by taking a product of A with the finite HD strategy. (Recall that every
LimInf automaton can be determinised, while not every LimSup automaton can.)

Corollary 5.13. Every HD LimSup automaton is equivalent to a deterministic one with at
most an exponential number of states and the same set of weights.

6. Conclusions

We have extended the token-game approach to characterising history-determinism from the
Boolean (ω-regular) to the quantitative setting. Already 1-token games turn out to be useful
for characterising history-determinism for some quantitative automata. For LimSup, LimInf
and Sup automata on infinite words, one token is not enough, but the 2-token game does the
trick. Given the correspondence between deciding history-determinism and the best-value

8:26 U. Boker and K. Lehtinen Vol. 19:4

synthesis problem, our results also directly provide algorithms both to decide whether the
synthesis problem is realisable and to compute a solution strategy.

This application further motivates understanding the limits of these techniques. Whether
the 2-token game G2 characterises more general Boolean classes of automata beyond Büchi
and coBüchi automata is already an open question. Similarly, we leave open whether
the G2 game also characterises history-determinism for limit-average automata and other
quantitative automata. At the moment we are not aware of examples of automata of any
kind (quantitative, pushdown, register, timed, . . .) for which Eve could win G2 despite
the automaton not being history-deterministic, yet even for parity automata, a proof of
characterisation remains elusive.

The case of limit average automata is particularly interesting as it is a well-studied
value-function. However, deciding the HDness of these automata presents some additional
difficulties: first, the tokens games are less straight-forward to solve, as their winning
conditions can no longer be encoded into parity conditions, as is the case for LimSup
and LimInf; second, the characterisation of HDness is also likely to be challenging, as the
techniques we have used here (present-focused value functions, decomposition into auxiliary
automata) don’t seem to apply.

Acknowledgment

We thank Guillermo A. Pérez for discussing history-determinism of discounted-sum and
limit-average automata.

References

[AKL10] Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms
with weighted automata. ACM Trans. Algorithms, 6(2):28:1–28:36, 2010. doi:10.1145/1721837.
1721844.

[And06] Daniel Andersson. An improved algorithm for discounted payoff games. In Proc. of ESSLLI Student
Session, pages 91–98, 2006.

[BH21] Udi Boker and Guy Hefetz. Discounted-sum automata with multiple discount factors. In Proceedings
of CSL, pages 12:1–12:23, 2021. doi:10.4230/LIPIcs.CSL.2021.12.

[BK18] Marc Bagnol and Denis Kuperberg. Büchi good-for-games automata are efficiently recognizable.
In Proceedings of FSTTCS, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.16.

[BKLS20] Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Micha l Skrzypczak. On succinctness and
recognisability of alternating good-for-games automata. arXiv preprint arXiv:2002.07278, 2020.

[BKS17] Udi Boker, Orna Kupferman, and Micha l Skrzypczak. How deterministic are good-for-games
automata? In Proceedings of FSTTCS, pages 18:1–18:14, 2017. doi:10.4230/LIPIcs.FSTTCS.
2017.18.

[BL19] Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeterminism to alternation.
volume 140 of LIPIcs, pages 19:1–19:16, 2019. doi:10.4230/LIPIcs.CONCUR.2019.19.

[BL21] Udi Boker and Karoliina Lehtinen. History determinism vs. good for gameness in quantitative
automata. In Proc. of FSTTCS, pages 35:1–35:20, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.38.

[BL22] Udi Boker and Karoliina Lehtinen. Token games and history-deterministic quantitative automata.
In FOSSACS, pages 120–139, 2022. doi:10.1007/978-3-030-99253-8_7.

[Bok18] Udi Boker. Why these automata types? In Proceedings of LPAR, pages 143–163, 2018. doi:
10.29007/c3bj.

[Bok21] Udi Boker. Quantitative vs. weighted automata. In Proc. of Reachbility Problems, pages 1–16,
2021. doi:10.1007/978-3-030-89716-1_1.

[CDH10] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages. ACM
Trans. Comput. Log., 11(4):23:1–23:38, 2010. doi:10.1145/1805950.1805953.

https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-030-99253-8_7
https://doi.org/10.29007/c3bj
https://doi.org/10.29007/c3bj
https://doi.org/10.1007/978-3-030-89716-1_1
https://doi.org/10.1145/1805950.1805953

Vol. 19:4 QUANTITATIVE AUTOMATA TOKEN GAMES 8:27

[CF19] Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games automata: New
tools for infinite duration games. In Proc. of FOSSACS, 2019. doi:10.1007/978-3-030-17127-8\
_1.

[CH12] Krishnendu Chatterjee and Monika Henzinger. An O(n2) time algorithm for alternating Büchi
games. In Proceedings of ACM-SIAM symposium on Discrete Algorithms, pages 1386–1399. SIAM,
2012. doi:10.1137/1.9781611973099.109.

[CJK+17] Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Proceedings of STOC, pages 252–263, 2017. doi:

10.1145/3055399.3055409.
[Col09] Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In Proceedings

of ICALP, pages 139–150, 2009. doi:10.1007/978-3-642-02930-1_12.
[FJL+17] Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François Raskin.

On delay and regret determinization of max-plus automata. In LICS, pages 1–12, 2017. doi:
10.1109/LICS.2017.8005096.

[FLW20] Emmanuel Filiot, Christof Löding, and Sarah Winter. Synthesis from weighted specifications with
partial domains over finite words. In Proceedings of FSTTCS, 2020. doi:10.4230/LIPIcs.FSTTCS.
2020.46.

[GJLZ21] Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A bit of non-
determinism makes pushdown automata expressive and succinct. pages 53:1–53:20, 2021. doi:
10.4230/LIPIcs.MFCS.2021.53.

[HMS] Malte Helmert, Robert Mattmüller, and Sven Schewe. Selective approaches for solving weak games.
In Susanne Graf and Wenhui Zhang, editors, Proceedings of ATVA. doi:10.1007/11901914_17.

[HP06] Thomas Henzinger and Nir Piterman. Solving games without determinization. In Proceedings of
CSL, pages 395–410, 2006. doi:10.1007/11874683_26.

[HPR16] Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Minimizing regret in discounted-sum
games. In Jean-Marc Talbot and Laurent Regnier, editors, CSL, volume 62 of LIPIcs, pages
30:1–30:17, 2016. doi:10.4230/LIPIcs.CSL.2016.30.

[HPR17] Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Reactive synthesis without regret.
Acta Informatica, 54(1):3–39, 2017. doi:10.1007/s00236-021-00410-0.

[KS15] Denis Kuperberg and Micha l Skrzypczak. On determinisation of good-for-games automata. In
Proceedings of ICALP, pages 299–310, 2015.

[LR13] Christof Löding and Stefan Repke. Decidability results on the existence of lookahead delegators for
NFA. In Proc. of FSTTCS 2013, pages 327–338, 2013. doi:10.4230/LIPIcs.FSTTCS.2013.327.

[LZ22] Karoliina Lehtinen and Martin Zimmermann. Good-for-games ω-pushdown automata. volume 18,
2022. doi:10.46298/lmcs-18(1:3)2022.

[MK19] Anirban Majumdar and Denis Kuperberg. Computing the width of non-deterministic automata.
Logical Methods in Computer Science, 15, 2019. doi:10.23638/LMCS-15(4:10)2019.

[Sha53] L. S. Shapley. Stochastic games. In Proc. of Nat. Acad. Sci., volume 39, pages 1095–1100, 1953.
[ZP95] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Electron. Colloquium

Comput. Complex., 2(40), 1995. doi:10.1016/0304-3975(95)00188-3.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1109/LICS.2017.8005096
https://doi.org/10.1109/LICS.2017.8005096
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.4230/LIPIcs.MFCS.2021.53
https://doi.org/10.1007/11901914_17
https://doi.org/10.1007/11874683_26
https://doi.org/10.4230/LIPIcs.CSL.2016.30
https://doi.org/10.1007/s00236-021-00410-0
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.327
https://doi.org/10.46298/lmcs-18(1:3)2022
https://doi.org/10.23638/LMCS-15(4:10)2019
https://doi.org/10.1016/0304-3975(95)00188-3

	1. Introduction
	History-determinism
	Deciding history-determinism – a difficult task
	Token games – a possible aid
	Our contribution
	Related work

	2. Preliminaries
	3. Token Games
	4. Deciding History-Determinism via One-Token Games
	4.1. G1 Characterises HDness for some automata
	4.2. Solving G1 and Deciding HDness

	5. Deciding History-Determinism via Two Token Games
	5.1. G2 Characterises HDness for some automata
	5.2. Solving G2 and Deciding HDness

	6. Conclusions
	Acknowledgment
	References

