Images et profils d'un acier polycristallin implanté oxygène

Marie-Amandine PINAULT-THAURY, François JOMARD

Chenwei HE, Marie-France BARTH

Plan de l'exposé

Contexte

NanoSIMS50L versus IMS7f

Analyses avec notre IMS7f

Conclusions

Centrales nucléaires à fission

Une attention particulière est portée au choix des matériaux composants le réacteur. (gaines, cibles et autres structures du cœur ou du combustible)

Gen IV : prochaine génération de réacteurs

dans une cuve Température de fonctionnement (°C) 1200 1000 Réacteurs **GENIV** 800 600 400 200 GENII 100 50 150 200 250 0 Displacement damage (dpa)

Haute température de fonctionnement Fort endommagement par irradiation

La stabilité microstructurale et les propriétés mécaniques des matériaux de structure sont affectées.

→ Besoin de développer des matériaux adaptés

Aciers ODS (nanorenforcés par dispersion d'oxydes)

Gonflement négligeable sous irradiation + Propriétés de fluage exceptionnelles

Mécanisme de regroupement à l'échelle atomique

non élucidé

&

Manque de données expérimentales sur les propriétés fondamentales de la constitution des grains (lacune, Y, Ti, O) ↓↓

Besoin de déterminer les paramètres physiques qui seront implémentés en simulation pour mieux comprendre la nucléation

Diffraction (EBSD)

001

101

Plan de l'exposé

Contexte

NanoSIMS50L versus IMS7f

Analyses avec notre IMS7f

Conclusions

NanoSIMS50L versus IMS 7f

Pour imager des petits objets et mesurer

Mode microsonde

Analyseur de masse à secteur magnétique avec multi-collection

NanoSIMS50L versus IMS 7f

NanoSIMS50L versus IMS 7f

lons 2^{aires} collectés de la zone d'analyse

Imagerie

lons 2^{aires} collectés de la zone d'analyse

Imagerie

Imagerie

Profil

lons 2^{aires} collectés de la zone d'analyse par FC (> 10⁶ cps) et/ou EM (< 10⁶ cps)

JUSF – septembre 2023

Profil

Ions 2^{aires} collectés de la zone d'analyse par FC (> 10⁶ cps) et/ou EM (< 10⁶ cps)

Ions 2^{aires} collectés sur toute la zone balayée by l'EM (< 10⁶ cps)

Imagerie

Mode transfert dynamique

JUSF - septembre 2023

Mode d'analyse « Checker board »

Une image ionique de toute la surface balayée est enregistrée pour chaque élément en chaque point d'analyse. A la fin de l'analyse, pour chaque élément enregistré, un ensemble d'images est obtenu à différentes profondeurs.

Multicouches (ZnO:Ga/ZnO) sur substrat ZnO avec différents niveaux de dopage Ga

Plan de l'exposé

Context

NanoSIMS50L versus IMS7f

Analyse avec notre IMS7f

Conclusions

Fond de cratère rugueux après analyse

Grain haut

1

150 µm

1 0

Profil « conventionel »

Acier polycristallin implanté en oxygène (¹⁶O: 90 keV et 2.2x10¹⁵ /cm²)

Profil « conventionel »

Checker board avec un ensemble de 300 images

Durée totale de l'analyse ~ 35 min

Estimation de la résolution latérale

Image n° : 50

Suffisante pour visualiser les grains à fort courant 1^{aire} (40 nA) avec le plus petit diaphragme de champ (100 μm) du spectromètre de masse

Image n° : 81

Image n°: 42

Balayage de 150 µm

Image du cratère après analyse, obtenue par profilométrie

Image n°: 42

Balayage de 150 μm

Image n°:68

Image n°:81

Superposition des pics

Grâce à l'étude de cet échantillon de référence, il est maintenant possible de quantifier la concentration d'oxygène dans des échantillons d'acier ODS traités (e.g. après traitement thermique).

Conclusions

Acier polycristallin implanté oxygène

- → référence pour les prochains échantillons d'acier traité
- \rightarrow grains de grande taille (>5-10 µm)
- IMS7f → mode checker board essentiel
 → sensibilité adéquate pour l'analyse de ¹⁶O
 → ensemble important de données pour la post-analyse

Combiné avec d'autres techniques d'analyse, cette méthode participe à la compréhension des propriétés physiques et mécaniques des aciers.

Chenwei HE est maintenant docteur en Physique des matériaux.

"Experimental study of the interaction of vacancy defects with Y, O and Ti solutes to better understand their roles in the nanoparticles formation in ODS steels"