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Velocity-aided IMU-based Tilt and Attitude
Estimation

Mehdi Benallegue, Abdelaziz Benallegue, Rafael Cisneros, Yacine Chitour

Abstract—This paper addresses the problem of estimating
the tilt and more generally the attitude of a rigid body that
is subject to high accelerations and equipped with inertial
measurement units (IMU) and a sensor providing the body
velocity (expressed in the reference frame attached to the
body). In the absence of a magnetometer, tilt estimation is
proposed through a two-step observer: a global-exponentially
stable pre-estimation given to a manifold-constrained com-
plementary filter. In the presence of a magnetometer, the
presented observer allows to reconstruct the full attitude and
tune how much the estimation of the tilt is influenced by the
magnetometer, depending on the level of confidence given to
the measurements of the magnetometer. All state estimators
are proposed with proofs of almost global asymptotic stability
and local exponential convergence. Finally, these estimators
are compared with state-of-the-art solutions in clean and
noisy simulations, allowing recommended solutions to be
drawn for each case.

I. INTRODUCTION

The orientation, or attitude, of a mechanical system in
the world, is often an important part of its dynamical state.
More specifically, the orientations on Earth can be split
into two components: first, the “tilt”, lying in a 2D man-
ifold, representing the deviation of the local vertical axis
of the robot with regard to the world’s global gravitational
field direction, and second the remaining variable lying
in a 1D manifold that represents the heading around the
world’s gravitational field and that is often called “yaw”,
though this definition is local and singularity-prone. This
decomposition is relevant because in the majority of
robotic systems the dynamics are invariant about yaw
but are tied closely to tilt. For instance, tilt constitutes
sometimes the most important variable determining the
dynamics such as in the case of drones [10] or legged
robots [28], because it deeply determines balance and
stability. Thus, tilt references usually need to be tightly
tracked and their estimation is required at high frequency
and precision and is used in high gain feedback control
loops. In these cases, yaw is often used only for navigation
and does not require the same level of frequency and
precision as those needed for tilt estimation.
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While it is possible for fixed-based robots to reconstruct
the orientation of any link using the joint position, this
is not possible for mobile robots, specifically floating-
base ones. These robots often resort to state observation
techniques relying on the measurements obtained using
various kinds of sensors. The most prominently used
set of sensors is called the inertial measurement unit
(IMU), which measures the linear acceleration, including
the gravitational one, the angular velocity, and sometimes
the magnetic field measurement, all expressed in the frame
of the sensor. The measurements of the magnetic field
are usually intended to exploit the Earth’s magnetic field
to contribute to the attitude estimation, however, they
are likely to suffer from the presence of noise and are
often considered less reliable than the two other measure-
ments [21]. Nevertheless, in several cases, the magnetic
field measurements are unnecessary to estimate the tilt
alone. In these cases, yaw estimation is used mostly for
navigation and exploits lower performance sensors such as
GPS, and computer vision, or is even absent in the case
of teleoperated robots. Nonetheless, if the magnetic field
measurements are available and reliable, they provide a
better estimation, including for tilt.

Using only this set of two or three measurements, an
efficient estimation for the tilt or attitude can be built,
but under the assumption that the system has negligible
linear accelerations compared to gravity [16], [18]. This
assumption limits the motions to low dynamics trajectories
or is simply impossible to hold, especially when the
system is subject to impacts such as during the case of
bipedal walking. A dynamical model of the system can
be used to predict the accelerations and compensate for
them. This prediction can be based on the forces models,
either in the case of unmanned aerial vehicles [19], [20] or
legged robots [8], [22]. However, this solution is specific
to every dynamical system and requires identifying many
dynamical parameters.

Another solution is to “aid” the inertial measurement
unit (IMU) with independent measurements able to clear
the acceleration ambiguity, such as the position in the
world frame provided by GPS [13], [24] or linear velocity,
either expressed in the world frame [17], [11], the local
frame of the sensor [15], [2], [4], or a mixture of both [14],
sometimes while reconstructing the velocity itself [1].

It is important to note that there is a deep difference
between the cases where the velocities are expressed in
the local frame and the case where they are expressed
in the global frame: in terms of system dynamics and in
terms of observable states and observability conditions. In
this work, we assume that the velocity in the sensor local
frame is available.
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II. PROBLEM STATEMENT

A. Context

When the velocity in the local frame is available in
addition to the IMU one can reconstruct the attitude effi-
ciently with proven Lyapunov convergence. This velocity
can be provided by a sensor such as Doppler effect radars.
It can be provided also by the measurements of the angular
rate in the presence of a known anchor in the environment.
This is for example the case of humanoid robots in contact
with the environment because the contact point position
and velocity in the sensor frame are known [27], [5].
There are a few estimators considering the same case.
In [27] an extended Kalman filter is used to perform the
fusion between an estimation of the linear velocity of
the IMU and its measurements to produce tilt (roll and
pitch angles) estimation of a small-size humanoid robot,
however, no proof of global convergence was provided.
In [2] a velocity-aided estimator with proof of convergence
has been presented, but there were possible cases of
singularities if the scaling factor reaches zero. In [15] two
estimators with proof of convergence have been presented,
including one without gain condition, but we presented
in [4] a slight improvement to the estimator proposed
in [15] where better performance and simpler convergence
analysis are obtained. In [21], a global exponential es-
timator has been presented but the globality has been
reached at the cost of breaking the normality constraint
of the gravity and magnetic field direction vectors. In that
work, this has been fixed by projecting the rotation matrix
on SO(3). However, this solution becomes discontinuous
and even undefined in the vicinity of singularities. Indeed,
the topology of SO(3) implies that an estimator with
continuous dynamics cannot be globally stable [7]. Indeed,
globality is a desirable feature [3], [11], [6] but sometimes
the continuity of the estimation and its dynamics are more
important, for example when the continuity of the control
is required.

We presented in [5] a simple two-steps tilt estimator
dedicated to humanoid robots, but there was only a
shallow analysis of the dynamics, no generalization of
the estimator to higher-order filtering, and no extension
to full attitude. We propose here to extend that work
and at the same time the work of [15] and [21] with a
set of improved estimators with the same guarantees of
almost global convergence. Let us denote R ∈ SO(3) the
attitude we want to reconstruct, and the tilt x2 = RT ez
where ez is a unit vector aligned with the gravitational
field. We first introduce a new tilt observer called a "two-
step state observer" which operates in two steps: the first
one provides an intermediate estimate x̂′2 ∈ R3 of x2
while the second step furnishes the recommended estimate
x̂2 ∈ S2 of x2 based on x̂′2. The expected efficiency
of this estimator comes from the decoupling of the two
constitutive steps: the first one ensures global exponential
convergence of x̂′2 towards x2 while the second one is an
S2-constrained complementary-filter estimation providing
continuous dynamics and better robustness to disturbances.
We present then an estimator for the full attitude that can
be adapted to our confidence in the magnetometer. All the
estimators have a simple structure, proof of asymptotic

convergence, and good overall performance. The quality
of the estimate is evaluated by the comparative simulation
with state-of-the-art solutions.

B. Frames, measurements and definitions

We denote W as the world frame and L as the local
frame of the sensor. This attitude estimation has to rely
on an IMU consisting of a three-axial accelerometer,
gyrometer (also called gyroscope), and magnetometer, and
using a measurement of the velocity of the sensor. The
accelerometer gets a measurement of the inertial linear
inertial forces exerted on the sensor, which can be seen
as an indistinct sum of the gravitational field and the
linear acceleration of the sensor, the gyrometer provides a
measurement of the angular velocity ω of the IMU and
the magnetometer provides a measurement of the unit
vector along the Earth’s magnetic field. All these signals,
respectively denoted ya, yg and ym, are expressed in the
sensor frame L [23]. The velocity sensor provides the
linear velocity v of the local frame L with respect to the
world W but expressed in L, we denote this measurement
yv . That is

yv =v, (1)
yg =ω, (2)

ya =S(ω)v + v̇ + g0R
T ez, (3)

ym =RTm, (4)

R, g0, ez and m are respectively the 3×3 matrix in SO(3)
representing the orientation of the IMU with respect to
the world W , the standard gravity constant, a unit vector
collinear with the gravitational field, expressed in W and
directed upward, and a unit vector aligned with the earth’s
magnetic field expressed in W . Note that we consider a flat
earth model where the gravitational and magnetic fields
are constant with translations. Finally, ω is the angular
velocity of the sensor expressed in L such that

Ṙ = RS(ω), (5)

where the function S is the skew-symmetric matrix op-
erator allowing to perform cross-product. Some common
properties of this operator, used for the developments in
this paper, are provided in Appendix VII-A.

We introduce then some notations. For n ≥ 1, define
Υn

∆
= R3n × Sez and Υ ∗

n
∆
= R3n × S∗ez with Sez

∆
={

z ∈ R3| (ez − z) ∈ S2
}

and S∗ez
∆
= Sez \ {2ez}.

Also, we will say that a dynamical system (D) ẋ =
f(x) defined on a differential manifold X is almost glob-
ally asymptotically stable with respect to an equilibrium
point x0 of f if (D) is (Lyapunov) locally stable with
respect to x0 and there exists an open and dense subset X1

of X such that every trajectory starting in X1 converges
asymptotically to x0.

We define the tilt as the image of ez , the global gravity
field expressed in L, the local frame of the sensor and we
note it x2, formally defined as

x2
∆
= RT ez. (6)

This variable lies in the unit sphere S2 centered at the
origin, which is a 2D manifold and is then insufficient to
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rebuild the whole attitude R. We call the remaining degree
of freedom "yaw". Despite the similar name and meaning,
note that this yaw is different from the yaw angle defined
by the roll, pitch, and yaw Euler angles because it is not
properly an angle and we do not specify the order among
the horizontal vectors.

There is no formal definition of the yaw angle that is
singularity-free. Nonetheless, the yaw may contribute for
example to complement the tilt estimation with the value
of RTm such as measured by ym, and then we can obtain
the full attitude R [25].

As explained in the introduction, there are many cases
where the magnetometer provides unreliable measure-
ments or is completely unavailable. Nonetheless, we show
in Section III that, in this case, the tilt is still observable
with good convergence guarantees.

In Section IV we show the case where the magne-
tometer is available and the full rotation matrix R can be
reconstructed. In fact, the presence of the magnetometer
provides us with some redundancy also for tilt observa-
tion and may improve it. However, if the quality of the
magnetometer’s measurements is too poor it may instead
downgrade the quality of the tilt estimation. We show then
how to explicitly consider the level of confidence given
to the magnetometer. This would define how much the
magnetometer interferes with the estimation of tilt while
keeping good convergence guarantees for the full attitude.

III. TILT ESTIMATION

In this section, we ignore the signals of the magnetome-
ter, either because it is unavailable or because the magnetic
field is not steady. In this case, the whole orientation
cannot be observed. Nevertheless, we show hereinafter
how we can have an efficient estimation of tilt x2

∆
= RT ez .

We present a novel observer called “Two-steps state
observer” which is designed in two steps: the first step
provides x̂′2 ∈ R3, which is an intermediate estimate
of x2; and the second provides x̂2 ∈ S2, which is the
recommended estimate of x2 based on x̂′2. The expected
efficiency of this estimator is that it relies on two stages,
the first independent one is given by x̂′2 which is glob-
ally exponentially converging to x2 in an efficient way,
and the second is a S2-constrained complementary-filter
estimation providing continuity and better robustness to
disturbances. Indeed, the global exponential convergence
of the error of the first stage actually leads to the violation
of the normality constraint of RT ez . Furthermore, the
simple normalization of this estimation may lead to an
undefined output and unbounded time-derivatives when the
norm is close to zero. This can cause a problem when the
continuity of the estimation is required. A simple solution
is to add the second stage to maintain the constraint of the
tilt estimation in S2 while keeping bounded velocities.

A. State definition and dynamics

Let us define the following state variables:

x1
∆
= v, (7)

x2
∆
= RT ez, (8)

where x1 ∈ R3 and x2 ∈ S2, with the set S2 ⊂ R3 being
the unit sphere centered at the origin, and defined as

S2 ∆
=
{
x ∈ R3| ∥x∥ = 1

}
. (9)

The variable x1 is measured using yv , even if it is noisy.
On the contrary, x2 is the tilt that cannot be obtained
algebraically from the measurements.

From equations (3) and (7) we get

ẋ1 =− S(ω)x1 + ya − g0R
T ez. (10)

This, together with the time-differentiation of x2 using
equation (5), provides us with the following state dynamic
equations {

ẋ1 = −S(ω)x1 + ya − g0x2,

ẋ2 = −S(ω)x2,
(11)

The system (11) is suitable for observer synthesis.

B. Two-steps first order estimator designed in R3 × S2

The simplest two-steps estimator can be described as
follows, 

˙̂x1 = −S(yg)x̂1 + ya − g0x̂
′
2,

x̂′2 = −α1

g0
(yv − x̂1) ,

˙̂x2 = −S (yg − γS(x̂2)x̂
′
2) x̂2,

(12)

where α1 and γ are positive scalar gains, and x̂1 an
intermediate variable. Note that x̂1 is not an estimator for
x1, we use this symbol for better consistency with higher
order estimators presented in the next sections.

If the initial value of x̂2 is in S2, then the dynamics
of the last equation ensure that the norm of this vector
remains in time constantly equal to one. The initial value
for x̂1 on the other side could be anywhere in R3.

Using the estimation errors defined as x̃′2
∆
= x2 − x̂′2 =

x2 +
α1

g0
(x1 − x̂1) = p1 and x̃2

∆
= x2 − x̂2, and equation

(11) we get the error dynamics as{
ṗ1 = −S(ω)p1 − α1p1,
˙̃x2 = −S(ω)x̃2 + γS2 (x̂2) (x̃2 − p1) .

(13)

To run the analysis of errors, we set zp1 = Rp1 and
z2 = Rx̃2. Noticing Rx̂2 = ez − z2, one gets{

żp1
= −α1zp1

,

ż2 = γS2 (ez − z2) (z2 − zp1
) .

(14)

These new error dynamics are autonomous and define
a time-invariant ordinary differential equation (ODE). If
one defines the state ξ1

∆
= (zp1

, z2) ∈ Υ1 one can write
(14) as ξ̇1 = F1 (ξ1) where F1 gathers the right-hand side
of (14) and defines a smooth vector field on Υ1.

We now turn to the convergence analysis of (14) and
we get the following.

Theorem 1. The time-invariant ODE defined by (14)
verifies the following

1) The state space is equal to Υ1, it admits two equi-
librium points namely the origin (0, 0) and (0, 2ez)
and all trajectories of (14) converge to one of the
two equilibrium points.
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2) The system (14) is almost globally asymptotically
stable with respect to the origin.

3) For every compact set K of Υ ∗
1 and positive number

ϱ > 0, there exists (α1, γ) such that trajectories
of (14) starting in K converge exponentially to the
origin with an exponential rate larger than or equal
to ϱ.

The proof of the theorem is given in Section VII-B.

Remark 2. The estimator for the tilt x2 operates in two
decoupled steps: the first one shows that the artificial state
x̂′2 estimates x2 (the dynamics of the error term zp1

are
independent of the rest of the system dynamics) and then,
in the second step, one brings back x̂′2 on S2 through x̂2.

C. Two-steps nth order estimator designed in R3n × S2

An interesting way to comprehend the estimator (12)
is by noting that the dynamics of x̂′2 have a first-order
exponential convergence to x2 and that the dynamics of x̂2
are a complementary filter of x̂′2. Therefore, we can extend
this feature to a higher order of exponential convergence
while keeping the same two-step structure tilt estimator.
Let n ≥ 2 be an integer. The n-th order observer is
designed on R3n×S2, where n is the order of the filter for
the first step of the estimator. Since increasing the order of
the linear filtering decreases the gain at higher frequencies,
it reduces the effect of the noises on the signals of the
accelerometer ya and the linear velocity yv .

Define pn
∆
= yv − x̂1 = x1 − x̂1. Then the two-steps

n-th order observer is given by
˙̂x′2 = −S (yg) x̂

′
2 − α1

g0
p2,

ṗi = −S (yg) pi + pi+1, (i = 2, · · · , n− 1)
˙̂x1 = −S (yg) x̂1 + ya − g0x̂

′
2 +

∑n
i=2 αipi,

˙̂x2 = −S (yg − γS (x̂2) x̂
′
2) x̂2.

(15)

Here, the gains αi, (i = 1, . . . , n) are positive and chosen
so that the polynomial sn + αns

n−1 + αn−1s
n−2 +

αn−2s
n−3 + ...+α2s+α1 is Hurwitz. Moreover, x̂1 and

x̂2 are estimations of x1 and x2 respectively and x̂′2 is an
intermediate estimation of x2. Using the estimation errors
defined as x̃1

∆
= x1 − x̂1 = pn, x̃′2

∆
= x2 − x̂′2

∆
= p1 and

x̃2
∆
= x2 − x̂2, we get the error dynamics as
ṗ1 = −S (ω) p1 +

α1

g0
p2,

ṗi = −S (ω) pi + pi+1, (i = 2, · · · , n− 1)

ṗn = −S (ω) pn − g0p1 −
∑n

i=2 αipi
˙̃x2 = −S (ω) x̃2 + γS2 (x̂2) x̃2 − γS2 (x̂2) p1.

(16)

To run the error analysis, we set zp1

∆
= Rp1 , zpi

∆
= α1

g0
Rpi

(i = 2, · · · , n) and z2
∆
= Rx̃2. Then one gets

żpi
= zpi+1

, (i = 1, · · · , n− 1)

żpn
= −

∑n
i=1 αizpi

,

ż2 = γS2 (ez − z2) (z2 − zp1
) .

(17)

These new dynamics are autonomous as for the first order
case and define a time-invariant ordinary differential equa-
tion (ODE) on Υn. Similarly to the previous state estima-
tor, if one defines the state ξn

∆
= (zp1

, · · · , zpn
, z2) ∈ Υn,

one can write (17) as ξ̇n = Fn (ξn) where Fn gathers the
right-hand side of (17) and defines a smooth vector field
on Υn.

Note that the first n lines of (17) constitute a separate
tilt estimator defined in R3n, which is similar in the case
n = 2 to the one provided in [21]. We show hereinafter
the convergence and the performance of this estimation
which is similar to the two-steps first-order tilt estimator.

Theorem 3. The time-invariant ODE defined by (17)
verifies the same statements as in Theorem 1 up to
changing Υ1 and Υ ∗

1 by Υn and Υ ∗
n , the first zero in the

equilibrium points now belonging to R3n and α1 changed
by (α1, . . . , αn).

The proof of the theorem is given in Section VII-C.
The higher order of the convergence of x̂′2 allows one

to improve the robustness of the estimation to noise by
increasing the order n, as shown in the simulations of
Section V.

Remark 4. In the above construction, it is worth notic-
ing that the gain-coefficients αi, 1 ≤ i ≤ n can be
chosen to be time-varying and the above construction
remains unchanged till (17). One can, therefore, use the
observer given in [9] which improves the performance
of the complementary filter regarding a possible peaking
phenomenon and noise. However, in the simulations of this
paper, we will take them constant to keep the estimators
simple and to make the comparison between them easier.

Note also that if we express the dynamics in the world
frame by defining the following change of variable v′2 =
Rx̂′2, vpi

= Rpi with (i = 2, · · · , n− 1) and v1 = Rx̂1,
we can see that the dynamics become the following

v̇′2 = −α1

g0
vp2

,

v̇pi
= vpi+1

, (i = 2, · · · , n− 2)

v̇pn−1
= Ryv − v1

v̇1 = −αnv1 +
∑n−1

i=2 αivpi

−g0v′2 +Rya + αnRyv

(18)

So the dynamics of this observer are linear with regard
to the world-frame expressions of the accelerometer ya
and the velocity sensor yv . Using Laplace transform we
get that

L (v′2) =
α1

g0 (sn +
∑n

i=1 αisi−1)
L (Rya)

− α1s

g0 (sn +
∑n

i=1 αisi−1)
L (Ryv) (19)

where s is the Laplace complex variable and L (·) is
the Laplace transform operator. The analysis of the con-
vergence resorts then to classic linear control theory.
Nevertheless, hints on gain tuning are presented at the end
of Section IV.

We present the advantages that we associate to these
two-step observers over classic ones in Section III-D. But
before, we wish to report, hereinafter, the improvements
of the estimator presented in [15] that we proposed in [4].
This estimator’s design is constituted with an estimate of
x1 used directly to produce the estimate of x2, so we call
it a one-step estimator.
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D. Two-steps vs one-step state observers
We present here a comparison of the proposed two-step

observers with the classic one-step observers. Therefore
we start by reminding the reader about these observers
and then discussing the differences and advantages of
the newly proposed method. So, first, we present a tilt
observer that we proposed initially in [4], and which is a
slight improvement of the estimator proposed in [15]. It
is designed in R3 × S2 in one step by using the available
measures yg , ya and yv and is given by{

˙̂x1 = −S(yg)x̂1 − g0x̂2 + ya + αx̃1,
˙̂x2 = −S(yg + γS(x̂2)x̃1)x̂2,

(20)

where α and γ are positive scalar gains which verify the
condition γg0 ≤ α2 and x̂1, x̂2 are the estimations of x1
and x2, and x̃1

∆
= x1 − x̂1.

The observer proposed in [15] is recalled as{
˙̂x1 = −S(yg)x̂1 − g0x̂2 + ya + kv1 x̃1 − kv2S

2 (x̂2) x̃1,
˙̂x2 = −S(yg + kr1S(x̂2)x̃1)x̂2,

(21)
where kv1 , kv2 and kr1 are positive scalar gains which verify
the condition kr1g0 ≤ kv1k

v
2 .

Our proposed observer of (20) could be seen as a special
case of (21) since it can be obtained by taking kv2 = 0,
kv1 = α, kr1 = γ and the condition on the gains becomes
kr1g0 ≤ (kv1)

2 instead of kr1g0 ≤ kv1k
v
2 . However, in [15],

the gains are required to be positive for their proof of
convergence to hold, and this is not respected with (20).

Using the errors x̃1 and x̃2
∆
= x2−x̂2 as well as ω = yg ,

a time-differentiation of these expressions provides us with
the following error dynamics (for the observer (20)):{

˙̃x1 = −S(ω)x̃1 − αx̃1 − g0x̃2,
˙̃x2 = −S(ω)x̃2 − γS2(x̂2)x̃1,

(22)

The error dynamics of the observer of (21) are given by{
˙̃x1 = −S(ω)x̃1 − αx̃1 − g0x̃2 + kv2S

2 (x̂2) x̃1,
˙̃x2 = −S(ω)x̃2 − γS2(x̂2)x̃1,

(23)

To run the analysis of errors, we define zi
∆
= Rx̃i. We

notice also that R(x̃2 + x̂2) = ez which leads to Rx̂2 =
ez−z2. Thus, for (20), we obtain these new error dynamics
of our proposed observer{

ż1 = −αz1 − g0z2,

ż2 = −γS2(ez − z2)z1,
(24)

We do the same for the observer (21), getting the error
dynamics as{

ż1 = −αz1 − g0z2 + kv2S
2 (ez − z2) z1,

ż2 = −γS2 (ez − z2) z1.
(25)

These new error dynamics are autonomous. Moreover,
for observer (20), almost global asymptotic stability with
respect to the origin (0, 0) is obtained with the gain
condition γg0 ≤ α2 and the proof is conducted in the
same way as in [15] by considering the Lyapunov function
candidate given by

V
∆
=

∥αz1 + g0z2∥2

2
+ g20

∥z2∥2

2
. (26)

The time derivative of (26) in view of (24) yields

V̇ = −α (1−G0) ∥αz1 + g0z2∥2

+ αg20G0z
T
2 S

2(ez)z2

− αG0

(
(αz1 + g0z2)

T
(ez − z2)

)2
, (27)

where G0 = γg0
α2 ≤ 1. This Lyapunov function makes the

convergence analysis easier than the one given in [15].
The estimators of (20) and (21) are “one-step” ob-

servers, as opposed to the two-step observers of the
previous developments. It means that they directly track a
normalized estimate x̂2 using the estimation error on x̂1.
This is why they are structurally different. Nevertheless,
there are similarities with the second-order version of (15):
the dynamics of x̂1 are identical if we replace x̂′2 by x̂2,
and the dynamics of x̂2 in (20) are the projection of the
dynamics of x̂′2 in (15) on the normality constraint. Let
us discuss now the core differences between our new two-
step tilt estimator and one-step ones. Compared to one-
step estimators, the price we pay with two-step ones is
the intermediate estimate x̂′2, making the observer slightly
more complex. But this intermediate estimate has the
advantage of not being constrained to S2 anymore. This is
clearly put forward when one compares the error dynamics
given by (14) and (23). The decoupling in (14) between
the errors zp1 and z2 not only allows one to have better
convergence than (21) (much simpler convergence analy-
sis, simple stability conditions on the gains and arbitrary
rate of exponential convergence) but also to improve the
robustness of the estimation to noise.

The second major reference for tilt estimation is that
of [21] where the authors provide an estimator in R3×R3

instead of R3×S2 (cf. the variables v̂ and γ̂). The error sys-
tem turns out to be (essentially) linear and time-invariant
with, therefore, the best convergence properties. They
extended this method to full attitude R estimation with
the help of magnetometers using the TRIAD method [25].
However, the tilt estimator γ̂ does not belong to S2 and
that may create singularity issues, for example when γ̂ is
close to zero.

The design of our tilt estimator x̂2 aims at combin-
ing the good convergence properties of the tilt estimator
of [21] with the fact that it remains on S2, similarly to the
tilt estimator of [15] providing good behavior and better
noise filtering. This effect will be presented in Section V.

Finally, it is interesting to relate our two-step solution
to one estimator presented in [13] where a GPS-aided
attitude estimation features an intermediate rotation matrix
that is not constrained to be orthogonal. Besides the
different nature of the problem treated in that paper, one
big difference is that their intermediate estimate does not
converge to the desired state to observe. Therefore, the
tracking has to take into account additional inputs to
compensate for these biases.

IV. ATTITUDE ESTIMATION OBSERVER

The measurements of the magnetometer provide the
direction of the magnetic field expressed in the local
frame of the sensor. Usually, most of the measurement is
constituted with the Earth’s natural magnetic field, which
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provides bi-dimensional data on the attitude of the sensor.
This gives us enough inputs to reconstruct the full attitude
and having then some redundancy with the accelerom-
eter for tilt estimation. However, sometimes due to the
proximity of sources of interference, the magnetometer’s
measurements could lack the necessary reliability to let
it influence the critical tilt estimation, but remains the
best measurement available to reconstruct the orientation
around the vertical direction. To deal with this issue we
propose an estimator that allows us to tune how much we
wish the magnetometer to interfere with tilt estimation.

A. Design of the attitude observer

Let R̂ ∈ SO(3) denote the estimate of R. In order
to take advantage of the estimator of x2 designed into
R3 given by (15) and the attitude estimator proposed by
Mahony et. al [16], we propose the following non-linear
attitude observer

˙̂
R = R̂S(yg − σ),

σ = ρ1S(R̂
T ez)x̂

′
2 + ρ2S(R̂

Tm)ym

+µR̂T ez

(
R̂T ez

)T
S
(
R̂Tm

)
ym.

(28)

where ρ1, ρ2 and µ are positive scalar gains and x̂′2 is
given by the first stage of any order of the two-step tilt
estimator from Section III, for example with (12).

In the case where ρ2 = 0, we recover an estimate
of the total rotation with decoupled tilt in an essentially
similar way as that of [15] where the magnetometer does
not influence the tilt. On the contrary, if µ = 0, the
corresponding estimator is closer to that of [16] and the
estimator fully uses the redundancy.

Let R̃ = RR̂T be the attitude estimation error. A
time-differentiation of the expression of (28) and the use
of equation (14) provides us with the following error
dynamics: {

żp1
= −α1zp1

,
˙̃R = R̃S (σ̃) ,

(29)

where σ̃ is given by

σ̃ =

(
I +

µ

ρ2
eze

T
z

)(
ρ1S (ez) R̃

T ez + ρ2S (m) R̃Tm
)

− ρ1S(ez)R̃
T zp1 . (30)

Using unit-quaternions instead of elements of SO(3),
one associates Q and Q̂ with the rotations R and R̂
respectively, and similarly the unit-quaternion error Q̃ =
(q̃0, q̃) = Q ⊙ Q̂−1 with the attitude estimation error R̃.
Here, q̃0 ∈ R and q̃ ∈ R3 are the scalar and the vector
components of Q̃ respectively. We can, therefore, write

R̃ = I + 2q̃0S (q̃) + 2S2 (q̃) ,

ρ1S (ez) R̃
T ez + ρ2S (m) R̃Tm = −2 (q̃0I − S (q̃))Wρq̃,

(31)

with Wρ
∆
= −ρ1S2 (ez) − ρ2S

2 (m) being a positive-
definite symmetric matrix ([26], Lemma 2). From the
expression of Wρ, it is easy to show that for each ρ1 > 0
and ρ2 > 0, the three eigenvalues λ1ρ, λ2ρ and λ3ρ of
Wρ are distinct due to the fact that eTzm ̸= 0. It is

also easy to show that λ3ρ, the largest eigenvalue of Wρ

verifies λ3ρ = λ1ρ + λ2ρ and that the corresponding unit
eigenvector is v3ρ = S(ez)m

∥S(ez)m∥ .

Set ϖ ∆
= (q̃0I − S (q̃))Wρq̃. The error dynamics writ-

ten as quaternion error dynamics are now given by

żp1 = −α1zp1 ,

˙̃q0 = q̃T
(
I + µ

ρ2
eze

T
z

)
ϖ

+ 1
2
ρ1q̃

TS(ez)
(
I − 2q̃0S (q̃) + 2S2 (q̃)

)
zp1 ,

˙̃q = − (q̃0I + S (q̃))
(
I + µ

ρ2
eze

T
z

)
ϖ

− 1
2
ρ1 (q̃0I + S (q̃))S(ez)

(
I − 2q̃0S (q̃) + 2S2 (q̃)

)
zp1 .

(32)
The above equation defines a time-invariant ordinary dif-
ferential equation (ODE) and, by considering the state
ξ

∆
=
(
zp1 , Q̃

)
and the state space Υ

∆
= R3 × S3, one

can write this equation as ξ̇ = F (ξ) where F gathers the
right-hand side of (32) and defines a smooth vector field
on Υ . We analyze these dynamics in the next section.

B. Stability analysis

Let us consider the following positive-definite differen-
tiable function

V
∆
=

ρ21
α1

∥zp1∥2 + 2q̃TWρq̃, (33)

which is radially unbounded.

Theorem 5. The time-invariant ODE defined by (32)
verifies the following.

1) Its equilibrium points are

Ω̃1
∆
= {ξ ∈ Υ | ξ = (0, (±1, 0))} ,

Ω̃2
∆
= {ξ ∈ Υ | ξ = (0, (0,±vjρ)), j = 1, 2, 3} ,

where vjρ are unit eigenvectors of Wρ for 1 ≤ j ≤
3.

2) All trajectories of (32) converge to one of the equi-
librium points defined in item 1.

3) The set equilibrium Ω̃1 which corresponds to the
equilibrium point

(
zp1

= 0, R̃ = I
)

is asymptoti-
cally stable with a domain of attraction containing
the domain

Vc
∆
=
{
ξ =

(
zp1

, Q̃
)
∈ Υ | V (ξ) < 2λmin(Wρ)

}
.

(34)
4) The equilibria of the set Ω̃2 are unstable and the

system is almost globally asymptotically stable with
regard to Ω̃1.

The proof is given in Section VII-D.
Remark 6. The magnetic field measurements ym can also
be filtered using an additional unconstrained state on the
unit sphere in the same way as done for the tilt to improve
robustness to noise.
Remark 7. In the above, we have chosen, for the simplicity
of the analysis, to estimate the intermediate state x̂′2 with
the two-steps first-order state observer given by (12). One
can also rely on the two-steps nth order state observer
given in (17). Then the same theorem holds with a similar
proof. Indeed, for the corresponding stability analysis, one
replaces the ∥zp1

∥2 term in the Lyapunov function V given
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in (33) by ψT
nPαψn given in (44). Also, in the linearization

of the error dynamics around equilibria we replace −αI
in the matrix A of (48) with Mα defined in the proof of
Theorem 3 in Section VII-C.

C. Hints on gain tuning

There are five kinds of gains in this observer, and
while higher gains produce faster convergence, finding
appropriate values for real signals may require some skills.
Here we present the theories and experimental feedback
on how we tend to tune them.

1) α1 defines the trust mostly in the measurements yv
of the linear velocity but also in the accelerometer’s
data ya. If these sources are reliable then high
gains will give good performances. If they are not
trustworthy, the observer can still be used since the
estimator will treat these sources through comple-
mentary filtering, but lower gains are recommended.

2) αi (i ∈ 2, ..., n) defines the intermediate level of
filtering. High values give importance to the linear
velocity estimate x̂1 by lowering the related cut-
off frequency of the complementary filter. The gains
would take intermediate values to average between
the gyrometer feedforward and linear-velocity-based
correction, depending on the trust we have in the
corresponding sensor measurements.

3) γ or ρ1 defines the final level of filtering of the tilt
estimator, high values give more trust in the first-
stage estimation x̂′2 and lower ones give more trust in
the integration of the gyrometer, producing smoother
outputs.

4) ρ2 defines the trust we have to let the magnetome-
ter measurements ym influence the tilt estimation.
Therefore, it is usually very low.

5) µ defines the impact of the magnetometer measure-
ments ym on the yaw definition. It is tuned similarly
to any nonlinear complementary filter.

V. SIMULATIONS

We show hereinafter the results of the estimators in a
simulated environment using Mathworks Simulink. This
simulation uses a variable adaptive timestep which may
seem ideal compared to real uses with limited frequencies.
Nevertheless, this kind of observer is shown to produce
stable feedback in a closed-loop balance controller on real
humanoid robots with 500Hz sampling frequency [5].

A. Signal generation and initialization

In this section, we present simulation results showing
the effectiveness of the proposed estimators. We generated
the signal ω and v with trigonometric functions and
generated the trajectory of R by integration (see Figure
1), then we simulated the signals of the accelerometer
ya, the gyrometer yg and the magnetometer ym such that
m = 1√

2
(1, 0, 1)T .

These signals were used in two cases, ideal signals and
noisy ones. For the noisy signals, Gaussian noises were
added to the four measurements, the accelerometer ya, the
gyrometer yg , the velocity sensor yv , and the normalized

plots_realstate.pdf

Figure 1. Plot showing the real state of the system. On the top the
orientation is shown in Euler angles and on the bottom, the velocity x1

is shown in its three components.

Measurement Noise std. Bias
Accelero. ya 0.31 m/s2 (0 0 0)T

Gyro. yg 0.1 rad/s (0 0 0)T

Magneto. ym 0.71 (0.2 0.2 0.2)T

Velocity yv 0.31m/s (0 0 0)T

Table I
DESCRIPTION OF THE NOISE PARAMETERS.

magnetometer ym to which a stronger noise and a bias
have been added to make it unreliable and unsuitable to
influence tilt estimation. The detail of the noise properties
is summarized in Table I.

The same measurement signals are used for all the
simulations hereinafter, but we focus separately on the
estimation of the tilt alone on one hand and com-
plementing it with yaw estimation on the other. For
each tested estimator the initial state was set to R̃3 =

2
(

m×ez
∥m×ez∥

)(
m×ez

∥m×ez∥

)T
− I , which corresponds to an

undesired equilibrium. The velocity estimation was ini-
tialized to the current sensor value (for instance x̂1(0) =
x1(0)).

B. Comparison between two-steps tilt estimators

The first test is to compare the tilt estimators presented
in Section III. Specifically, the first-order, the second-
order, and the third-order tilt estimators were compared for
the perfect and the noisy measurements. The estimators
were designed to have the same (multiple) pole. The
parameters are detailed in Table II.

Order Parameters
1st order γ = 20, α1 = 2

√
γg0

2nd order γ = 20, α1 =
(
2
√
γg0

)2, α2 = 2
(
2
√
γg0

)
3rd order γ = 20, α1 =

(
2
√
γg0

)3,
α2 = 3

(
2
√
γg0

)2, α3 = 3
(
2
√
γg0

)
Table II

PARAMETERS OF TESTED TILT ESTIMATORS
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Figure 2. Plot showing the estimation error of the tilt vector x2 for the
three orders of tilt estimators. For each order we show both the interme-
diate estimation x̂′

2 and the final one x̂2. The three top images show the
three components of the vector difference error z2 = R (x2 − x̂2) and
the bottom plot shows the evolution of the angle between the tilt x2 and
its estimation x̂2.

The result of the simulation with perfect measurements
is shown in Figure 2 where we compare the errors pro-
duced by the estimations x̂2, but also the intermediate
estimations x̂′2. We see that the intermediate estimation
errors converge exponentially to zero while the estimation
itself remains in the undesired equilibrium. Later, because
of integration noise, the estimation x̂2 could leave the
undesired equilibrium and converge quickly to the desired
one. For both the intermediate and the final estimate we
can see that the first-order estimator is the fastest followed
by the other orders.

However, the more interesting case of the noisy one is
displayed in Figure 3. We see then that with higher orders
of the estimator better filtering is provided. We see also
that the sphere constraint of the final estimate x̂2 allows
reducing the noise by removing the components which are
orthogonal to the constraints. Nevertheless, the difference
between the second and third-order versions is small
enough to consider that the second-order estimator could
be seen as an acceptable compromise between complexity
and speed on one side, and filtering quality on the other.
This consideration is because the second-order version has
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Figure 3. Plot showing the estimation error, in the case of noisy
measurements, of the tilt vector x2 for the three orders of tilt estimators.
For each order we show both the intermediate estimation x̂′

2 and the final
one x̂2. The three top images show the three components of the vector
difference error z2 = R (x2 − x̂2)=(X,Y, Z)T , the 4th plot shows the
evolution of the angle between the tilt x2 and its estimation x̂2, and
the bottom part shows an enlarged plot of the second [1, 2] of the angle
error.

a higher sensitivity to high-frequency components of the
accelerometer but it is simpler and has a lower delay than
the third order.

In the following simulations, we will use this second-
order version of x̂′2 in (28) and compare it with state-of-
the-art approaches.

C. Comparison between attitude estimators

In this section, five estimators were compared.

1) The attitude estimator described in Section IV with
ρ2 = 0, which means it is decoupled to avoid any
impact of the magnetometer on the tilt estimation.
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We refer to it as hierarchic because it sets a hierarchy
between the accelerometer and the magnetometer.

2) The estimator described in Section IV with µ = 0,
which means that the magnetometer influences tilt
estimation leading to some data redundancy. We will
call this estimator Invariant.

3) The estimator in R3 × S2 in Section III-D, and
referred to as Benallegue 2017. This one provides
only tilt estimation so it does not appear for yaw
reconstruction.

4) The estimator designed by Hua et al [15], that they
name “Observer 2” in their paper, and that we report
in (21). We simply refer to this estimator as Hua
2016.

5) The estimator described in the preprint [21] by
Martin et al, named Martin 2016, which is based
on two estimators: a tilt estimator equivalent to
2nd order x̂′2 of Sec. III-C and another exponential
estimator of the magnetometer. It uses TRIAD-
like approach [25] to reconstruct the attitude. The
estimation is designed for the tilt to depend only
on the accelerometer and the yaw only on the
magnetometer.

Each attitude estimator provides a specific tilt estimation.
Note that the tilt estimation of the invariant observer is the
only one that requires the magnetometer’s measurements.

The corresponding gains were designed to have the most
equivalent behavior possible, regarding their structure and
the considered errors. These estimators, as well as their
tilt component and the gains used, are summarized in
Table III1.

1) Perfect measurements: Figure 4 shows the evolution
of the tilt error for the five tilt estimators. The first
estimator to converge is the one of R3 ×R3, namely 2nd
order x̂′2 of Sec. III-C which is not constrained to the
unit sphere. This is because the starting position is not an
equilibrium point for this vector. However, the normaliza-
tion of this vector gives a discontinuous trajectory visible
at the bottom plot showing the angle error. This is the
estimation used in [21]. The next estimator to converge is
the invariant one, this is because this estimator uses also
the measurements of the magnetometer to speed up the
convergence. After that, the estimator in R3 ×R3 × S2 of
Section III-C is the next to quickly converge while staying
continuous and constrained on the unit sphere. The other
estimators converge later, especially the estimation of Hua
2016.

As stated before, there is no singularity-free definition
of yaw. Instead, we can study the error in the estima-
tion of the magnetic field direction. Figure 5 shows the
evolution over time of the estimation error of the vector
mp

∆
= ez ×m× ez which is orthogonal to ez but pointing

at the same horizontal direction as m. The error is shown
as an angle which can be interpreted as a “yaw error”
when the tilt error is small. In this figure, we see that the
estimation of Martin 2016 [21], is discontinuous at another
instant than the discontinuity of the tilt, which means that

1The tilt estimation column relates the different estimators to their
tilt estimation component and the gains column gives the gain values
adopting the notation used in each corresponding cited document.
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Figure 4. Plot showing the estimation error of the tilt vector x2 for the
five tilt estimators. The three top images show the three components of
the vector difference error z2 = R (x2 − x̂2) and the bottom plot shows
the evolution of the angle between the tilt x2 and its estimation x̂2. Note
that we use the names of the second column of Table III.
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Figure 5. Plot showing the evolution of the angle between RTmp and
its estimation R̂Tmp for the four full attitude estimators.

the attitude had two discontinuities while converging. The
invariant estimator converges fast, taking full advantage of
the redundancy. The hierarchic was the next estimator to
converge. We see finally that the estimation error of Hua
2016 moved to zero in the second 2. However, this does
not correspond to the convergence of the estimator since
it took the tilt estimation 4 more seconds to converge (see
Figure 4). This means that it only went from an undesired
equilibrium to another one.

Note that some angles increase and then decrease, and
this happens because of the tilt estimation converging
at the same time and the orthogonality constraint being
respected.

2) Noisy Measurements: Figure 6 shows the tilt esti-
mation error with the difference and the angle, similarly
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Estimator Tilt estimation Gains

Hierarchic (Observer (28) with ρ2 = 0) R3 × R3 × S2 (2nd order x̂2 of Sec. III-C) γ = 20, α = 2
√
γg0 = 28.0143,

Invariant (Observer (28) with µ = 0) Invariant (uses magnetometer) µ = 20 (hierarchic) or ρ2 = 20 (invariant)
Benallegue 2017 [4] of Sec. III-D R3 × S2, (provides tilt only) ρ1 = 20, α1 = γg0, α2 = 2

√
γg0

Hua 2016 [15] Hua 2016 (observer of Eq. (21)) kv1 = kv2 = α, kr1 = kr2 = γ
Martin 2016 [21] R3 × R3 (2nd order x̂′

2 of Sec. III-C) L = K = α
2

, M = µ

Table III
SUMMARY OF COMPARED ESTIMATORS IN THE SIMULATIONS.

Tilt estimation Mean tilt error angle
R3 × R3 × S2 0.0442 rad

Invariant 0.1543 rad
R3 × S2 0.0748 rad
Hua 2016 0.1960 rad
R3 × R3 0.0749 rad

Table IV
AVERAGE TILT ERROR ANGLES DURING 8 SECONDS AFTER THE

CONVERGENCE OF THE ESTIMATORS.

Attitude est. Mean mp error angle
Hierarchic 0.2374 rad
Invariant 0.2511 rad
Hua 2016 0.2671 rad

Martin 2016 0.3036 rad
Table V

AVERAGE RTmp ESTIMATION ERROR ANGLES DURING 8 SECONDS
AFTER THE CONVERGENCE OF THE ESTIMATORS.

to Figure 4, with an additional enlarged sample plot of the
behavior after the convergence.

From this plot, we see that the noise allowed the estima-
tors to instantly leave the repulsive undesired equilibrium.
Then, most estimators except for Hua 2016 converge in
less than half a second, the unconstrained R3 ×R3 being
the fastest. After the convergence of all the estimators, we
see in the enlarged plot that the estimator in R3×R3×S2
has the lowest tilt estimation error angle. The dynamics of
the angle error of the estimators in R3 ×R3 and R3 × S2
have identical local behavior near the desired equilibrium
and are almost superimposed in the steady behavior, but
we can see in the z-axis plot that the estimator in R3×R3

is violating the normality constraint. Interestingly the
invariant observer gives worse estimates, that is because
it involved unreliable magnetometer measurements which
downgrade the performances. We see in Table IV the
mean value of the tilt error angle over 8 seconds after
the first two seconds of the simulation. The constrained
R3 × R3 × S2 gives the best estimates and the invariant
and Hua 2016 both give the worst ones.

Figure 7 shows the evolution of the estimation of RTmp

together with a zoom on the 6th second of the simulation.
We see that the estimations converge in the first second
except for Hua 2016. The high level of noise in the
magnetometer produces a poor estimation quality, but in
the steady behavior, a difference can be shown between
observers. This can be quantitatively assessed by looking
at Table V showing the average error angle values in the
interval [2s,10s]. Martin 2016 has low-quality estimations
because the estimation of yaw is performed independently
from the measurements of the accelerometer. The other
estimators take profit from the better reliability of the
tilt estimation and provide a relatively similar level of

performance with a slight advantage for the hierarchic
estimator.

Note that an intermediate behavior between the hier-
archic and the invariant estimator can be obtained by
choosing values of µ and ρ2 appropriately, especially that
small values of ρ2 provide better theoretical convergence
guarantees without downgrading excessively the quality of
the estimation.

VI. DISCUSSION AND CONCLUSION

We have presented a set of attitude observers targeted
toward robotic systems requiring this estimation for dy-
namical control, such as humanoids and drones. These
systems depend mostly on the tilt and need it at high levels
of precision and frequency. The solution we propose takes
profit from the measurements of an accelerometer, a gy-
rometer, a magnetometer, and a linear velocity expressed
in the local frame.

Each estimator we present is intended to be used in
specific cases, mostly related to the reliability of the mag-
netometer for tilt estimation. Indeed, the magnetometer
can be either reliable, unreliable, or totally unavailable.
So according to that parameter, we can define how much
impact the magnetometer has on the estimation of the
tilt. For instance, an invariant complementary filter has a
good performance when the magnetometer is reliable but
is disturbed when it is not.

Among the estimators, we developed a two-step com-
plementary filter for the tilt that does not use the mag-
netometer’s measurements. Then we augmented this tilt
estimator to build a full attitude observer with a tunable
magnetometer-to-tilt impact. We have assessed the perfor-
mance of these estimators through simulations of perfect
and noisy measurements.

One additional important contribution of this work lies
in the two-step observer itself. The problem was to find a
solution to the topological obstruction of the tilt manifold
preventing us from stabilizing globally in a “simple” and
efficient manner. Our solution is novel from this point of
view: we violate the constraint in a “simple” and efficient
way, with global exponential stability, then we track this
solution with an estimation constrained in this manifold
and which is continuous and singularity-free.

Moreover, this solution provides better rejection of
disturbances. This is because the topological constraint
algebraically filters the disturbances that would violate it,
and also because it adds to the observer a local supple-
mentary filtering order, which decreases the influence of
high-frequency noises coming from the accelerometer or
the linear velocity sensor.

Indeed, there are still open problems that need to be
explored. The most prominent one is to deal with the
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Figure 6. Plot showing the estimation error of the tilt vector x2 for
the five tilt estimators while the measurements were noisy. The three
top images show the three components of the vector difference error
z2 = R (x2 − x̂2), the 4th plot shows the evolution of the angle between
the tilt x2 and its estimation x̂2, and the bottom part shows an enlarged
plot of the 6th second of the angle error. Note that we use the names of
the second column of Table III.

0 1 2 3 4 5
0

1

2

3

A
n

gl
e 

(r
ad

)

Time (s)

Martin 2016

Hierarchic 
Invariant 
Hua 2016

5 5.2 6
0

0.2

0.4

0.6

Time (s)
5.4 5.6 5.8 6

Figure 7. Plot showing the evolution of the angle between RTmp and
its estimation R̂Tmp for the five full attitude estimators under noisy
measurements.

possible biases in the gyrometer measurements, and that
would not only compromise the proofs of convergence
but it could decrease the performance of the presented
estimators.

Another source of error can be a bias in the mea-
surement of the velocity sensor. If the bias is in the
world frame, which could happen because of a steady
wind or a moving point of reference, etc. the dynamical
equations are similar and the convergence properties of
the tilt and the attitude estimations hold still with this
estimator. However, if the bias is in the local frame, which
can happen because of a defect in the sensor, our proofs
don’t hold anymore, and identifying and correcting for this
bias could be an interesting future development.

VII. APPENDIX

A. Basic properties

We recall basic properties used in the developments
below where v, w and u are vectors and R ∈ SO(3)
is a rotation matrix

S (v)S (w) = wvT −
(
vTw

)
I, (35)

S (v)S (w)S(v) = −
(
vTw

)
S(v), (36)

R

(
n∏

i=1

S (vi)

)
RT =

n∏
i=1

S (Rvi) , (37)

S (S (v)w) = S (v)S (w)− S (w)S (v) , (38)

= wvT − vwT , (39)

S3 (v) = −∥v∥2S (v) , (40)

where I denotes the 3× 3 identity matrix.

B. Proof of Theorem 1

One easily checks that the time-invariant ODE defined
by (14) leaves invariant the set Υ1 = R3 × Sez because,
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along its trajectories, ez − z2 ∈ S2 keeps a constant
norm equal to one. On the other hand, the analysis of
the equilibrium points of (14) shows that these are two
points: (0, 0) and (0, 2ez).
Let us now consider the following positive-definite differ-
entiable function V1 : Υ1 → R+

V1
∆
=

∥zp1∥2

2α1
+

∥z2∥2

2γ
(41)

then the time derivative of V1 is given by

V̇1 = −∥zp1
∥2 + zT2 S

2 (ez − z2) z2 − zT2 S
2 (ez − z2) zp1

If we use w = S(ez)z2, we can write

V̇1 ≤ −
[
∥zp1

∥ ∥w∥
] [ 1 − 1

2
− 1

2 1

] [
∥zp1

∥
∥w∥

]
≤ 0,

and V̇1 < 0 if (zp1 , w) ̸= 0.
On the other hand, V̇1 = 0 if and only if zp1

= w =
0, which is equivalent to (zp1

, z2) being equal to one of
the equilibrium points (0, 0) or (0, 2ez). It immediately
implies that all trajectories of (14) converge to one of the
two equilibria points defined previously.
Recall now that Υ1 is invariant by (14) and then the second
component z2 of the state remains in Sez if it starts there.
In addition, note that for z2 ∈ Sez , one has ∥z2∥ ≤ ∥ez −
z2∥+ ∥ez∥ = 2 and equality holds if and only if ∥z2∥ =
2ez . One deduces that for every compact subset K of Υ ∗

1 ,
there exists a positive constant C1(K) < 1 such that

∥z2∥ ≤ 2C1(K), for (zp1
, z2) ∈ K. (42)

Moreover, for such a compact K, let us prove that there
exists C2(K) > 0 such that

∥w∥ ≥ C2(K)∥z2∥, for (zp1
, z2) ∈ K. (43)

Indeed, since z2 ∈ Sez one has ∥z2∥2 = 2eTz z2 and from
the definition of w it holds ∥w∥2 = ∥z2∥2 − (eTz z2)

2 =
eTz z2(2− eTz z2). It implies that 0 ≤ eTz z2 ≤ 2 and notice
that eTz z2 = 2 if and only if z2 = 2ez . Since K ⊂ Υ ∗

1 and
is compact, one deduces that there exists εK > 0 such that
eTz z2 ≤ 2−εK for (zp1

, z2) ∈ K and hence eTz z2 ≤ ∥w∥2

εK
.

Since ∥w∥2 ≥ εKe
T
z z2 = 0.5εK∥z2∥2, one deduces (43).

A final important remark is that the set of points of Υ1 for
which V1 has values less than V1(0, 2ez) = 2/γ is clearly
included in the basin of attraction of (0, 0) since V1 is
non-increasing along trajectories of (14), regardless of the
choice of α1, γ > 0.
We next prove the remaining items of Theorem 1. We
claim that the basin of attraction of (0, 2ez) is equal to
R3 × {2ez}, regardless of the choice of α1, γ > 0. It is
clear that the latter set is included in the required basin of
attraction as an instance of the Cauchy-Lipschitz theorem.
Similarly one has, along any trajectory (zp1(·), z2(·))
of (14) starting (z̄p1

, z̄2) ∈ Υ1, with z̄2 ̸= 2ez , that
z2(t) ̸= 2ez for every t ≥ 0. Moreover z2(·) belongs to the
two dimensional manifold Sez and the linearized system
at (0, 2ez) (tangent to the five-dimensional manifold Υ1)
is (−α1)I3×3 ⊗ γI2×2. Together with the fact that zp1(t)
tends to zero as t tends to infinity (and independently of
z2), one deduces that z2(·) cannot tend to 2ez . Using (42),
this implies that V1 takes a value less than 2/γ and hence

the trajectory will tend to (0, 0). The claim is proved.
Let K be a compact set in Υ ∗

1 . By using (43) and the
expression of V̇1, one obtains the existence of C(K) > 0
such that

V̇1 ≤ −C(K)(∥zp1∥2 + ∥z2∥2),

for trajectories starting in K (and staying in a compact
neighborhood of K in the basin of attraction of (0, 0)).
Then V̇1 ≤ −2C(K)min(α1, γ)V1. By taking α1 and γ
large enough, one gets the conclusion.

C. Proof of Theorem 3

The argument is similar to that of Theorem 1. For that
purpose consider the Hurwitz n× n matrix in companion
form Aα = Jn−aeTn , where Jn stands for the n-th Jordan
block, a = (α1, . . . , αn)

T and en = (0, · · · , 0, 1)T . Then
set Mα = Aα ⊗ I3×3 and ψn = (zp1

, . . . , zpn
) ∈ R3n.

Note that the n first equations in (17) can be written
ψ̇n = Mαψn. Let Pα be the positive definite real sym-
metric matrix, unique solution of the Lyapunov equation

MT
α Pα + PαMα = −I3n×3n.

Recall that ∥Pα∥ ≤ C
reα

, where Cn is a universal positive
constant and reα > 0 is the minimum of −Re(λ), where
Re stands for the real part and λ is any eigenvalue of the
Aα, cf. [12].
One now considers the Lyapunov function

Vn = ψT
nPαψn +

1

2γ
zT2 z2. (44)

We now follow exactly the argument of Theorem 1 and
replace ∥zp1

∥ by ∥ψn∥ to get the conclusion.

D. Proof of Theorem 5

Let us prove the four items of the theorem.
1) The equilibria are calculated by solving the equation

ξ̇ = 0. The solutions of this equation system are given by
(zp1

= 0, ϖ = 0). We know from ([26], Lemma 3) that
ϖ = 0 is equivalent to (q̃0 = ±1, q̃ = 0) or (q̃0 = 0, q̃ =
±vρ) where vρ is one of the unit eigenvectors of Wρ. This
completes the proof of item 1.

2) Using the error dynamics given by (32), the time
derivative of V in (33) is then given by

V̇ = −2ρ21∥zp1
∥2 + 4q̃TWρ

˙̃q, (45)

which can be developed into

V̇ =− 2ρ21∥zp1∥2 (46)

− 4q̃TWρ (q̃0I + S (q̃))

(
I +

µ

ρ2
eze

T
z

)
ϖ

+ 2ρ1q̃
TWρ (q̃0I + S (q̃))S(ez)R̃

T zp1
. (47)

Using the definition of the vector ϖ, we obtain

V̇ = −2ρ21∥zp1
∥2 − 4∥ϖ∥2 − 4

µ

ρ2
(eTzϖ)2

+ 2ρ1ϖ
TS(ez)R̃

T zp1

which can be bounded with the following expression

V̇ ≤ −2ρ21 ∥zp1∥
2 − 4 ∥ϖ∥2 + 2ρ1 ∥ϖ∥ ∥zp1∥ . (48)
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The right-hand side of the above inequality is a
quadratic form in (∥zp1

∥, ∥ϖ∥) which is negative definite.
One easily verifies that V̇ < 0 if ξ =

(
zp1

, Q̃
)

is not an
equilibrium. Since (32) is autonomous and V is radially
unbounded, one can use LaSalle’s invariance theorem.
Therefore, every trajectory converges asymptotically to a
trajectory along which V̇ ≡ 0.

Since V is non-increasing, V (ξ) < 2λmin(Wρ) at t =
0, implies that ∥q̃(t)∥ < 1 for every t ≥ 0. Since the
trajectory converges to one of the equilibrium points, it
must be one with (zp1 = 0, q̃ = 0) which corresponds to
Ω̃1 because this is the only one contained in Vc.

4) The undesired equilibria characterized by q̃0 = 0 are
given by X = (0, (0, vρ)). Let us show that X = (zp1 =
0, (q̃0 = 0, q̃ = vρ)) is unstable. The linearized error dy-
namics around the unstable equilibrium X = (0, (0, vρ))
are given by

ξ̇ = Aξ, (49)

where the 7× 7 matrix A is equal to
(
−α1I 03×4

(⋆) F

)
, and

the 4× 4 matrix F is given by

F =

 λρ

(
1 + µ

ρ2
ξ2ρ

)
− µ

ρ2
ξρ

(
v⊥ρ

)T
(λρI −Wρ)

−λρ
µ
ρ2

ξρ
(
v⊥ρ

) (
I + µ

ρ2
v⊥ρ

(
v⊥ρ

)T)
(λρI −Wρ)

 ,

where we have set v⊥ρ = S (vρ) ez and ξρ = eTz vρ.
We next show that the matrix A has at least

one positive eigenvalue for each couple (λρ, vρ) ∈
{(λ1ρ, v1ρ), (λ2ρ, v2ρ), (λ3ρ, v3ρ)} with λ1ρ < λ2ρ <
λ3ρ.

To see that, let U =

(
1 0
0 P

)
, with P =(

v1 v2 vρ
)
, be an orthogonal matrix built from v1,

v2 and vρ, the three unit-eigenvectors of Wρ. Then, an easy

computation yields that UTFU =

(
H 0
0 0

)
, where

the zero eigenvalue of F corresponds to the constraint
on the quaternion and the 3 × 3 matrix H is given
by (50) in the box on the following page. It is then
immediate to notice that H = (I + µ

ρ2
zzT )D where

z = (ξρ vT1 v
⊥
ρ vT2 v

⊥
ρ )

T ∈ R3 is of norm one and
D = diag(λρ, λρ − λ1, λρ − λ2) with λ1 and λ2, the two
other eigenvalues of Wρ. Then H is the product of a real
symmetric positive definite matrix and a diagonal matrix.
Since the positive definite square root of I+ µ

ρ2
zzT is equal

to C := I + bzzT with b =
√
1 + µ

ρ2
− 1, one has that

H is similar to CDC. That matrix is real symmetric with
only real eigenvalues and the largest one, being equal to
max∥x∥=1 x

TCDCx, is positive, yielding that H admits
a positive eigenvalue.

Thus, there exists an unstable manifold of dimension
at least one in the neighborhoods of the set Ω̃2 =
{(0, (0,±vjρ)), j = 1, 2, 3}, and since all trajectories con-
verge to an equilibrium point, then (32) is almost globally
asymptotically stable with respect to the two equilib-
rium points Ω̃1 = {(0, (±1, 0))}, which correspond to(
zp1

= 0, R̃ = I
)

. This completes the proof.
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