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Abstract. Computing the reachability probability in infinite state prob-
abilistic models has been the topic of numerous works. Here we introduce
a new property called divergence that when satisfied allows to compute
reachability probabilities up to an arbitrary precision. One of the main
interest of divergence is that our algorithm does not require the reachabil-
ity problem to be decidable. Then we study the decidability of divergence
for probabilistic versions of pushdown automata and Petri nets where the
weights associated with transitions may also depend on the current state.
This should be contrasted with most of the existing works that assume
weights independent of the state. Such an extended framework is moti-
vated by the modeling of real case studies. Moreover, we exhibit some
divergent subclasses of channel systems and pushdown automata, partic-
ularly suited for specifying open distributed systems and networks prone
to performance collapsing in order to compute the probabilities related
to service requirements.

Keywords: Reachability probability · Infinite state probabilistic
models · Divergence

1 Introduction

Probabilistic Models. In the 1980’s, finite-state Markov chains have been
considered for the modeling and analysis of probabilistic concurrent finite-state
programs [19]. Since the 2000’s, many works have been done to verify the infinite-
state Markov chains obtained from probabilistic versions of automata extended
with unbounded data (like stacks, channels, counters and clocks)1. The (qual-
itative and quantitative) model checking of probabilistic pushdown automata
(pPDA) is studied in many papers, for example in [6,10–12,17] (see [5] for a
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1 Surprisingly, in 1972, to the best of our knowledge, Santos gave the first definition
of probabilistic pushdown automata [18] that did not open up a new field of research
at the time.
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survey). In 1997, Iyer and Narasimha [15] started the study of probabilistic lossy
channel systems (pLCS) and later both some qualitative and quantitative prop-
erties were shown decidable for pLCS [1]. Probabilistic counter machines (pCM)
have also been studied [7–9].

Computing the Reachability Probability. In finite Markov chains, there is
a well-known algorithm for computing exactly the reachability probabilities in
polynomial time [3]. Here we focus on the problem of Computing the Reachability
Probability up to an arbitrary precision (CRP) in infinite Markov chains. There
are (at least) two possible research directions:

The first one is to consider theMarkov chains associated with a particular class
of probabilistic models (like pPDA or probabilistic Petri nets (pPN)) and some
specific target sets and to exploit the properties of these models to design a CRP-
algorithm. For instance in [5], the authors exhibit a PSPACE algorithm for pPDA
and PTIME algorithms for single-state pPDA and for one-counter automata.

The second one consists in exhibiting a property of Markov chains that yields
a generic algorithm for solving the CRP problem and then looking for models
that generate Markov chains that fulfill this property. Decisiveness of Markov
chains is such a property. Intuitively, decisiveness w.r.t. s0 and A means that
almost surely the random path σ starting from s0 will reach A or some state s′

from which A is unreachable. It has been shown that pPDA are not (in general)
decisive but both pLCS and probabilistic Petri nets (pPN) are decisive (for pPN:
when the target set is upward-closed [2]).

Two Limits of the Previous Approaches. The generic approach based on
the decisiveness property has numerous applications but suffers the restriction
that the reachability problem must be decidable in the corresponding non deter-
ministic model. To the best of our knowledge, all generic approaches rely on a
decidable reachability problem.

In most of the works, the probabilistic models associate a constant weight for
transitions and get transition probabilities by normalizing these weights among
the enabled transitions in the current state. This forbids to model phenomena
like congestion in networks (resp. performance collapsing in distributed systems)
when the number of messages (resp. processes) exceeds some threshold leading
to an increasing probability of message arrivals (resp. process creations) before
message departures (resp. process terminations).

Our Contributions

– In order to handle realistic phenomena (like congestion in networks), we con-
sider dynamic weights i.e., weights depending on the current state.

– We introduce the new divergence property of Markov chains w.r.t. s0 and A:
given some precision θ, one can discard a set of states with either a small prob-
ability to be reached from s0 or a small probability to reach A such that the
remaining subset of states is finite and thus allows for an approximate compu-
tation of the reachability probability up to θ. For divergent Markov chains, we
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provide a generic algorithm for the CRP-problem that does not require the
decidability of the reachability problem. While decisiveness and divergence
are not exclusive (both hold for finite Markov chains), they are complemen-
tary. In fact, divergence is somehow related to transience of Markov chains
while decisiveness is somehow related to recurrence [13].

– In order to check divergence, we provide several simpler sufficient conditions
based on existing and new results of martingale theory.

– We study for different models the decidability of divergence. Our first unde-
cidability result implies that whatever the infinite models, one must restrict
the kind of dynamics weights. Here we limit to polynomial weights, i.e. where
a weight is defined by a polynomial whose variables are characteristics of the
current state (e.g. the marking of a place in a Petri net).

– We prove, by a case study analysis, that divergence is decidable for a subclass
of polynomial pPDA (i.e. pPDA with polynomial weights). We show that
divergence is undecidable for polynomial pPNs w.r.t. an upward closed set.

– We provide two classes of divergent polynomial models. The first one is a
probabilistic version of channel systems particularly suited for the model-
ing of open queuing networks. The second one is the probabilistic version of
pushdown automata restricted to some typical behaviors of dynamic systems.

Organisation. Section. 2 recalls Markov chains, introduces divergent Markov
chains, presents an algorithm for solving the CRP-problem. In Sect. 3, we study
the decidability status of divergence for pPDA and pPN. Finally Sect. 4 presents
two divergent subclasses of probabilistic channel systems and pPDA. All missing
proofs and a second CRP-algorithm when reachability is decidable can be found
in [14].

2 Divergence of Markov Chains

2.1 Markov Chains: Definitions and Properties

Notations. A set S is countable if there exists an injective function from S to
the set of natural numbers: hence it could be finite or countably infinite. Let S
be a countable set of elements called states. Then Dist(S) = {∆ : S → R≥0 |∑

s∈S ∆(s) = 1} is the set of distributions over S. Let ∆ ∈ Dist(S), then the
support of ∆ is defined by Supp(∆) = ∆−1(R>0). Let T ⊆ S, then S \ T will
also be denoted T .

Definition 1 (Effective Markov chain). A Markov chain M = (S, p) is a
tuple where:

– S is a countable set of states,
– p is the transition function from S to Dist(S);

When for all s ∈ S, Supp(p(s)) is finite and computable and the function p is
computable, one says that M is effective.
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Notations. The function pmay be viewed as a S×S matrix defined by p(s, s′) =
p(s)(s′). Let p(d) denote the dth power of the transition matrix p. When S is
countably infinite, we say that M is infinite and we sometimes identify S with

N. We also denote p(s, s′) > 0 by s
p(s,s′)−−−−→ s′. A Markov chain is also viewed as a

transition system whose transition relation → is defined by s → s′ if p(s, s′) > 0.
Let A ⊆ S, one denotes Post∗M(A), the set of states that can be reached from
some state of A and Pre∗

M(A), the set of states that can reach A. As usual,
we denote →∗, the transitive closure of → and we say that s′ is reachable from
s if s →∗ s′. We say that a subset A ⊆ S is reachable from s if some s′ ∈ A
is reachable from s. Note that every finite path of M can be extended into (at
least) one infinite path.

Example 1. Let M1 be the Markov chain of Fig. 1. In any state i > 0, the
probability for going to the “right”, p(i, i + 1), is equal to 0 < pi < 1 and for
going to the “left” p(i, i − 1) is equal to 1 − pi. In state 0, one goes to 1 with
probability 1. M1 is effective if the function n &→ pn is computable.

0 1 2 3 · · ·

1

1 − p1

p1

1 − p2

p2

1 − p3

p3

1 − p4

Fig. 1. A random walk M1

Given an initial state s0, the sampling of a Markov chain M is an infinite
random sequence of states (i.e., a path) σ = s0s1 . . . such that for all i ≥ 0,
si → si+1. As usual, the corresponding σ-algebra whose items are called events
is generated by the finite prefixes of infinite paths and the probability of an
event Ev given an initial state s0 is denoted PrM,s0(Ev). In case of a finite path
s0 . . . sn, PrM,s0(s0 . . . sn) =

∏
0≤i<n p(si, si+1).

Notations. From now on, G (resp. F, X) denotes the always (resp. eventual,
next) operator of LTL.

Let A ⊆ S. We say that σ reaches A if ∃i ∈ N si ∈ A and that σ visits A if
∃i > 0 si ∈ A. The probability that starting from s0, the path σ reaches (resp.
visits) A will be denoted by PrM,s0(FA) (resp. PrM,s0(XFA)).

We now state qualitative and quantitative properties of a Markov chain.

Definition 2 (Irreducibility, recurrence, transience). Let M = (S, p) be
a Markov chain and s ∈ S. Then M is irreducible if for all s, s′ ∈ S, s →∗ s′.
s is recurrent if PrM,s(XF{s}) = 1 otherwise s is transient.

In an irreducible Markov chain, all states are in the same category, either
recurrent or transient [16]. Thus an irreducible Markov chain will be said tran-
sient or recurrent depending on the category of its states. In the remainder of this
section, we will relate this category with techniques for computing reachability
probabilities.
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Example 2. ClearlyM1 is irreducible. Moreover (see [14]),M1 is recurrent if and
only if

∑
n∈N

∏
1≤m<n ρm = ∞ with ρm = 1−pm

pm
, and when transient, the prob-

ability that starting from i the random path visits 0 is equal to
∑

i≤n

∏
1≤m<n ρm∑

n∈N
∏

1≤m<n ρm
.

One of our goals is to approximately compute reachability probabilities in
infinite Markov chains. Let us formalize it. Given a finite representation of a
subset A ⊆ S, one says that this representation is effective if one can decide the
membership problem for A. With a slight abuse of language, we identify A with
any effective representation of A. The Computing of Reachability Probability
(CRP) problem is defined by:

– Input: an effective Markov chain M, an (initial) state s0, an effective subset
of states A, and a rational number θ > 0.

– Output: an interval [low, up] such that up − low ≤ θ and PrM,s0(FA) ∈
[low, up].

2.2 Divergent Markov Chains

Let us first discuss two examples before introducing the notion of divergent
Markov chains.

Example 3. Consider again the Markov chain M1 of Fig. 1 with for all n > 0,
pn = p > 1

2 . In this case, for m ≥ 0, PrM1,m(F{0}) = ρm with ρ = 1−p
p . Thus

here the key point is that not only this reachability probability is less than 1
but it goes to 0 when m goes to ∞. This means that given some precision θ, one
could “prune” states n ≥ n0 and compute the reachability probabilities of A in
a finite Markov chain.
Consider the Markov chain of Fig. 2, where PrM,0(F{m,m+1, . . .}) =

∏
n<m pn

goes to 0 when m goes to ∞. As in the precedent example, computing the
reachability probabilities of A can be also done in a finite Markov chain after
pruning states n ≥ n0, given some precision θ.

0 1 2 3 · · ·

A finite Markov chain containing A

∏
n∈N pn = 0

p0

1 − p0 1 − p1

p1

1 − p2

p2

1 − p3

p3

Fig. 2. An infinite (divergent) Markov chain

Intuitively, a divergent Markov chain w.r.t. s0 and A generalizes these exam-
ples: given some precision θ, one can discard a set of states with either a small
probability to be reached from s0 (f−1

0 ([0, θ]) in the next definition) or a small
probability to reach A (from any state of the set f−1

1 ([0, θ]) in the next defini-
tion), such that the remaining subset of states is finite and thus allows for an
approximate computation of the reachability probability up to θ.
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Definition 3 (divergent Markov chain). Let M be a Markov chain, s0 ∈ S
and A ⊆ S. We say that M is divergent w.r.t. s0 and A if there exist two
computable functions f0 and f1 from S to R≥0 such that:

– For all 0 < θ < 1, PrM,s0(Ff
−1
0 ([0, θ])) ≤ θ;

– For all s ∈ S, PrM,s(FA) ≤ f1(s);
– For all 0 < θ < 1, {s | f0(s) ≥ θ ∧ f1(s) ≥ θ} ∩ Post∗M({s0}) is finite.

Observation and Illustration. Let us remark that there may not exist, for
general Markov chains, an algorithm to decide the existence of such functions
f0, f1 and if there exist, to find them. Indeed as for decisiveness, divergence
is a semantical property. But there exist some simpler sufficient conditions for
divergence.

A finite Markov chain is divergent (letting f0 = f1 = 1) w.r.t. any s0 and
any A. In the first Markov chain of Example 3, f0 = 1 and f1(m) = ρm and
in the second Markov chain, f1 = 1, f0(m) =

∏
0≤n<m pn and f0(s) = 1 for

all s in the finite Markov chain containing A. Generalizing these two examples,
the next proposition introduces a sufficient condition for divergence. Its proof is
immediate by choosing (f = f0 and f1 = 1) or (f = f1 and f0 = 1).

Proposition 1. Let M be a Markov chain, s0 ∈ S, A ⊆ S, and a computable
function f from S to R≥0 such that:

– For all 0 < θ < 1, PrM,s0(Ff−1([0, θ])) ≤ θ
or for all s ∈ S, PrM,s(FA) ≤ f(s);

– For all 0 < θ < 1, {s | f(s) ≥ θ} ∩ Post∗M({s0}) is finite.

Then M is divergent w.r.t. s0 and A.

2.3 An Algorithm for Divergent Markov Chains

We now design an algorithm for accurately framing the reachability probability
for a divergent (effective) Markov chain w.r.t. s0 and an effective A.

Let us describe this algorithm. It performs an exploration of reachable states
from s0 maintaining S′, the set of visited states, and stopping an exploration
when the current state s fulfills: either (1) for some i ∈ {0, 1}, fi(s) ≤ θ

2 in
which case s is inserted in the AlmostLoosei set (initially empty), or (2) s ∈ A
in which case s is inserted in A′ (initially empty). When the exploration is
ended, if A′ is empty, the algorithm returns the interval [0, θ]. Otherwise it
builds M′ = (S′, p′) a finite Markov chain over S′ whose transition probabilities
are the ones of M except for the states of AlmostLoose0 ∪ AlmostLoose1 ∪ A′,
which are made absorbing. Finally it computes the vector of reachability proba-
bilities starting from s0 in M′ (function CompFinProb) and returns the interval
[preach(A′), preach(A′) + preach(AlmostLoose0) + θ

2 · preach(AlmostLoose1)].
The next proposition establishes the correctness of the algorithm.

Proposition 2. Let M be a divergent Markov chain with s0 ∈ S, A ⊆ S and
θ > 0. Then Algorithm 1 solves the CRP problem.
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Algorithm 1: Framing the reachability probability
CompProb(M, s0, A, θ)
AlmostLoose0 ← ∅; AlmostLoose1 ← ∅; S′ ← ∅
A′ ← ∅; Front ← ∅; Insert(Front, s0)
while Front #= ∅ do

s ← Extract(Front); S′ ← S′ ∪ {s}
if f0(s) ≤ θ

2 then AlmostLoose0 ← AlmostLoose0 ∪ {s}
else if f1(s) ≤ θ

2 then AlmostLoose1 ← AlmostLoose1 ∪ {s}
else if s ∈ A then A′ ← A′ ∪ {s}
else for s → s′ ∧ s′ /∈ S′ do Insert(Front, s′)

end
if A′ = ∅ then return (0, θ)
Abs ← AlmostLoose0 ∪ AlmostLoose1 ∪ A′

for s ∈ Abs do p′(s, s) ← 1
for s ∈ S′ \Abs ∧ s′ ∈ S′ do p′(s, s′) ← p(s, s′)
preach ← CompFinProb(M′, s0) // M′ = (S′, p′): a finite Markov chain
return (preach(A′), preach(A′) + preach(AlmostLoose0) + θ

2 · preach(AlmostLoose1))

We also provide an algorithm for models with a decidable reachability prob-
lem that returns [0, 0] when A is unreachable and [%, u] with % > 0 otherwise.
This algorithm and the proof of its correctness are both presented in [14].

3 (Un)Decidability Results

We now study probabilistic versions of well-known models like Pushdown
Automaton (PDA) and Petri nets (PN), for which we analyse the decidability
of the divergence property.

3.1 Probabilistic Pushdown Automata

Let Γ be a finite alphabet. Γ≤k is the set of words over Γ with length at most
k. Let w ∈ Γ ∗, then |w| denotes its length. ε denotes the empty word.

Definition 4 (pPDA). A (dynamic-)probabilistic pushdown automaton
(pPDA) is a tuple A = (Q,Γ,∆,W ) where:

– Q is a finite set of control states;
– Γ is a finite stack alphabet with Q ∩ Γ = ∅;
– ∆ is a subset of Q×Γ≤1×Q×Γ≤2 such that for all (q, ε, q′, w) ∈ ∆, |w| ≤ 1;
– W is a computable function from ∆ × Σ∗ to Q>0.

In the version of pPDA presented in [12], the weight function W goes from ∆
to Q>0. In order to emphasize this restriction here and later we say that, in this
case, the weight function is static and the corresponding models will be called
static pPDA. In what follows, pPDA denotes the dynamic version.
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An item (q, a, q′, w) of ∆ is also denoted q
?a!w−−−→ q′ and ?a!ε is also simply

denoted by ?a. A configuration of A is a pair (q, w) ∈ Q×Γ ∗. We use the letters
a, b, c, x, y for elements in Γ and w for a word in Γ ∗.

Definition 5. Let A be a pPDA. Then the Markov chain MA = (SA, pA) is
defined by:

– SA = Q × Γ ∗ is the set of configurations;
– For all (q, ε) ∈ SA s.t. {t = q

?ε!wt−−−→ q′}t∈∆ = ∅, pA((q, ε), (q, ε)) = 1;
– For all (q, ε) ∈SA s.t. {t = q

?ε!wt−−−→ q′}t∈∆ /= ∅, let W (q, ε) =
∑

t=q
?ε!wt−−−→q′

W (t, ε).

Then: for all t=q
?ε!wt−−−→ q′∈∆, pA((q, ε), (q′, wt))=

W (t,ε)
W (q,ε)

– For all (q, wa) ∈SA s.t. {t = q
?a!wt−−−→ q′}t∈∆ = ∅, pA((q, wa), (q, wa)) = 1;

– For all (q, wa) ∈SA s.t. {t = q
?a!wt−−−→ q′}t∈∆ /= ∅,

let W (q, wa) =
∑

t=q
?a!wt−−−→q′

W (t, wa). Then:

for all t=q
?a!wt−−−→ q′∈∆, pA((q, wa), (q′, wwt))=

W (t,wa)
W (q,wa)

We now show that even for pPDA with a single state and with a stack
alphabet reduced to a singleton, divergence is undecidable.

Theorem 1. The divergence problem for pPDA is undecidable even with a single
state and stack alphabet {a}.

Due to this negative result on such a basic model, it is clear that one must
restrict the possible weight functions. A pPDA A is said polynomial if for all
t ∈ ∆, W (t, w) is a positive integer polynomial (i.e. whose coefficients are non
negative and the constant one is positive) whose single variable is |w|.

Theorem 2. The divergence problem w.r.t. s0 and finite A for polynomial
pPDA with a single state and stack alphabet {a} is decidable (in linear time).

3.2 Probabilistic Petri Nets

A probabilistic Petri net (resp. a probabilistic VASS) is a Petri net (resp. a
VASS) with a computable weight function W . In previous works [2,4], the weight
function W is a static one: i.e., a function from T , the finite set of transitions
of the Petri net, to N>0. As above, we call these models static probabilistic
Petri nets. We introduce here a more powerful function where the weight of a
transition depends on the current marking.

Definition 6. A (dynamic-)probabilistic Petri net (pPN)
N = (P, T,Pre,Post,W,m0) is defined by:

– P , a finite set of places;
– T , a finite set of transitions;
– Pre,Post ∈ NP×T , resp. the pre and post condition matrices;
– W , a computable function from T × NP to Q>0 the weight function;
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– m0 ∈ NP , the initial marking.

When for all t ∈ T , W (t,−) is a positive polynomial whose variables are the
place markings, we say that N is a polynomial pPN.

A marking m is an item of NP . Let t be a transition. Then t is enabled in
m if for all p ∈ P , m(p) ≥ Pre(p, t). When enabled, the firing of t leads to
marking m′ defined for all p ∈ P by m′(p) = m(p) + Post(p, t) − Pre(p, t)
which is denoted by m t−→ m′. Let σ = t1 . . . tn be a sequence of transitions.
We define the enabling and the firing of σ by induction. The empty sequence
is always enabled in m and its firing leads to m. When n > 0, σ is enabled if
m t1−→ m1 and t2 . . . tn is enabled in m1. The firing of σ leads to the marking
reached by t2 . . . tn from m1. A marking m is reachable from m0 if there is a
firing sequence σ that reaches m from m0.

Definition 7. Let N be a pPN. Then the Markov chain MN = (SN , pN ) asso-
ciated with N is defined by:

– SN is the set of reachable markings from m0;
– Let m ∈ SN and Tm be the set of transitions enabled in m. If Tm = ∅

then pN (m,m) = 1. Otherwise let W (m) =
∑

m
t−→mt

W (t,m). Then for all

m t−→ mt, pN (m,mt) = W (t,m)
W (m) .

Contrary to the previous result, restricting the weight functions to be poly-
nomials does not yield decidability for pPNs.

Theorem 3. The divergence problem of polynomial pPNs w.r.t. an upward
closed set is undecidable.

4 Illustration of Divergence

Due to the undecidability results, we propose syntactical restrictions for standard
models like pushdown automata and channel systems that ensure divergence.
Observing that function f1 of Definition 3 is somewhat related to transience of
Markov chains, we first establish a sufficient condition of transience from which
we derive a sufficient condition of divergence for infinite Markov chains used for
our two illustrations.

Theorem 4. Let M be a Markov chain and f be a function from S to R with
B = {s | f(s) ≤ 0} fulfilling ∅ ! B ! S, ε,K ∈ R>0 and d ∈ N∗ such that:

for all s ∈ S \B
∑

s′∈S

p(d)(s, s′)f(s′) ≥ f(s) + ε and
∑

|f(s′)−f(s)|≤K

p(s, s′) = 1

(1)
Then for all s ∈ S such that f(s) > dK,

PrM,s(FB) ≤ c1e
−c2(f(s)−dK)

where c1 =
∑

n≥1 e
− ε2n

2(ε+K)2 and c2 = ε
(ε+K)2 ,

which implies transience of M when it is irreducible.
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Proposition 3. Let M be a Markov chain and f be a computable function from
S to R with B = {s | f(s) ≤ 0} fulfilling ∅ ! B ! S, and for some ε,K ∈ R>0

and d ∈ N∗, Equation (1). Assume in addition that for all n ∈ N, {s | f(s) ≤ n}
is finite. Then M is divergent w.r.t. any s0 and any finite A.

4.1 Probabilistic Channel Systems

Now we introduce a probabilistic variant of channel systems particularly appro-
priate for the modelling of open queuing networks. Here a special input channel
cin (that works as a counter) only receives the arrivals of anonymous clients
all denoted by $ (item 1 of the next definition). Then the service of a client
corresponds to a message circulating between the other channels with possibly
change of message identity until the message disappears (items 2 and 3).

Definition 8. A probabilistic open channel system (pOCS) S = (Q,Ch,Σ,
∆,W ) is defined by:

– a finite set Q of states;
– a finite set Ch of channels, including cin;
– a finite alphabet Σ including $;
– a transition relation ∆ ⊆ Q × Ch × Σε × Ch × Σε × Q that fulfills:

1. For all q ∈ Q, (q, cin, ε, cin, $, q) ∈ ∆;
2. For all (q, c, a, c′, a′, q′) ∈ ∆, a = ε ⇒ a′ = $ ∧ c = c′ = cin;
3. For all (q, c, a, c′, a′, q′) ∈ ∆, c /= cin ⇒ c′ /= cin;

– W is a function from ∆ × (Σ∗)Ch to Q>0.

Illustration. We consider three types of transitions between configurations:
sending messages to the input channel (i.e., (q, cin, ε, cin, $, q)) representing client
arrivals; transferring messages between different channels (i.e., (q, c, a, c′, a′, q′)
with ε /∈ {a, a′} and c′ /= cin) describing client services; and terminating mes-
sage processing (i.e., (q, c, a, c′, ε, q′) with a /= ε) meaning client departures. All
messages entering cin are anonymous (i.e., denoted by $). The left part of Fig. 3
is a schematic view of such systems. The left channel is cin. All dashed lines
represent message arrivals (to cin) or departures. The solid lines model message
transferrings.

The next definitions formalize the semantics of pOCS.

Definition 9. Let S be a pOCS, (q, ν) ∈ Q × (Σ∗)Ch be a configuration and
t = (q, c, a, c′, a′, q′) ∈ ∆. Then t is enabled in (q, ν) if ν(c) = aw for some w.
The firing of t in (q, ν) leads to (q′, ν′) defined by:

– if c = c′ then ν′(c) = wa′ and for all c′′ /= c, ν′(c′′) = ν(c′′);
– if c /= c′ then ν′(c) = w, ν′(c′) = ν(c′)a′

and for all c′′ /∈ {c, c′}, ν′(c′′) = ν(c′′).

As usual one denotes the firing by (q, ν) t−→ (q′, ν′). Observe that from any
configuration at least one transition (a client arrival) is enabled.
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(a)

q0 qf

?x!xy

(b)

Fig. 3. A schematic view of pOCS (left) and a pPDA (right)

Definition 10. Let S be a pOCS. Then the Markov chain MS = (SS , pS) is
defined by:

– SS = Q × (Σ∗)Ch is the set of configurations;
– For all (q, ν) ∈ SS let W (q, ν) =

∑
(q,ν)

t−→(q′,ν′)
W (t, ν). Then:

for all (q, ν) t−→ (q′, ν′), pS((q, ν), (q′, ν′))= W (t,ν)
W (q,ν) .

The restrictions on pOCS w.r.t. standard CS do not change the status of the
reachability problem.

Proposition 4. The reachability problem of pOCS is undecidable.

As discussed in the introduction, when the number of clients exceeds some
threshold, the performances of the system drastically decrease and thus the
ratio of arrivals w.r.t. the achievement of a task increase. We formalize it by
introducing uncontrolled pOCS where the weights of transitions are constant
except the ones of client arrivals which are specified by positive non constant
polynomials. Let ν ∈ (Σ∗)Ch. Then |ν| denotes

∑
c∈Ch |ν(c)|.

Definition 11. Let S be a pOCS. Then S is uncontrolled if:

– For all t = (q, c, a, c′, a′, q′) ∈ ∆ with a /= ε, W (t, ν) only depends on t and
will be denoted W (t);

– For all t = (q, cin, ε, cin, $, q), W (t, ν) is a positive non constant polynomial,
whose single variable is |ν|, and will be denoted Win(q, |ν|).

The next proposition establishes that an uncontrolled pOCS generates a
divergent Markov chain. This model illustrates the interest of divergence: while
reachability of a pOCS is undecidable, we can apply Algorithm 1.

Proposition 5. Let S be a uncontrolled pOCS. Then MS is divergent.

4.2 Probabilistic Pushdown Automata

Increasing pPDA. We introduce the subset of increasing pairs, denoted as
Inc(A), which is a subset of Q × Γ that contains pairs (q, a) such that from
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state (q, wa), the height of the stack can increase without decreasing before.
When some conditions on Inc(A) are satisfied, we obtain a syntactic sufficient
condition for MA to be divergent. This set Inc(A) can be easily computed in
polynomial time by a saturation algorithm.

Definition 12. Let (q, a), (q′, a′) ∈ Q×Γ . Then (q′, a′) is reachable from (q, a)
if either (q, a) = (q′, a′) or there is a sequence of transitions of ∆, (ti)0≤i<d such

that: ti=qi
?ai!ai+1−−−−−→ qi+1, (q0, a0)=(q, a), (qd, ad)=(q′, a′) and for all i, ai /= ε.

The set of increasing pairs Inc(A) ⊆ Q × Γ is the set of pairs (q, a) that can
reach a pair (q′, a′) with some q′ ?a′!bc−−−→ q′′ ∈ ∆.

Definition 13. A pPDA A is increasing if:

– Inc(A) = Q × Γ ;
– for all t = q

?a!w−−−→ q′ ∈ ∆ such that |w| ≤ 1, W (t,−) is an integer constant
denoted Wt;

– for all t = q
?a!bc−−−→ q′ ∈ ∆, W (t,−) is a non constant integer polynomial

where its single variable is the height of the stack denoted Wt;
– for all q ?a−→ q′ ∈ ∆, there exists q

?a!bc−−−→ q′′ ∈ ∆.

Illustration. The right part of Fig. 3 is an abstract view of a pPDA modelling
of a server simultaneously handling multiple requests. The requests may occur
at any time and are stored in the stack. The loop labelled by ?x!xy is a symbolic
representation of several loops: one per triple (q, x, y) with q ∈ Q, x ∈ Γ and
y ∈ Γ . Due to the symbolic loop, the set of increasing pairs of the pPDAserver is
equal to Q×Γ and there is always a transition increasing the height of the stack
outgoing from any (q, a). Assume now that for any other transition, its weight
does not depend on the size of the stack and that a transition t = q

?a!ab−−−→ q
has weight Wt(n) = ct × n. Then A is increasing. The dependance on n means
that due to congestion, the time to execute tasks of the server increases with
the number of requests in the system and thus increase the probability of a
new request that occurs at a constant rate. One is interested in computing the
probability to reach (qf , ε) from (q0, ε) representing the probability that the
server reaches an idle state having served all the incoming requests.

We establish that an increasing pPDA generates a divergent Markov chain.

Proposition 6. Let A be an increasing pPDA. Then the Markov chain MA is
divergent w.r.t. any s0 and finite A.

5 Conclusion and Perspectives

We have introduced the divergence property of Markov chains and designed two
generic CRP-algorithms depending on the status of the reachability problem.
Then we have studied the decidability of divergence for pPDA and for pPN for
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different kinds of weights and target sets. Finally, we have provided two useful
classes of divergent models within pCS and pPDA.

In the future, we plan to study the model checking of polynomial pPDA (as
a possible extension of [12]) and some heuristics to find functions f0 and f1.
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in probabilistic multi-counter automata. In: Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS 2014, pp. 22:1–22:10. ACM (2014)

10. Esparza, J., Kucera, A., Mayr, R.: Model checking probabilistic pushdown
automata. In: Proceedings of 19th IEEE Symposium on Logic in Computer Science
(LICS), pp. 12–21. IEEE Computer Society (2004)

11. Esparza, J., Kucera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown
automata: expectations and variances. In: Proceedings of the 20th IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 117–126. IEEE Computer Society
(2005)

12. Esparza, J., Kucera, A., Mayr, R.: Model checking probabilistic pushdown
automata. Logical Methods Comput. Sci. 2(1) (2006)

13. Finkel, A., Haddad, S., Ye, L.: About decisiveness of dynamic probabilistic mod-
els. CoRR abs/2305.19564 (2023). https://doi.org/10.48550/arXiv.2305.19564, to
appear in CONCUR’23

14. Finkel, A., Haddad, S., Ye, L.: Introducing divergence for infinite probabilistic
models. CoRR abs/2308.08842 (2023). https://doi.org/10.48550/arXiv.2308.08842

https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.1007/978-3-642-22110-1_18
https://doi.org/10.48550/arXiv.2305.19564
https://doi.org/10.48550/arXiv.2308.08842


140 A. Finkel et al.

15. Iyer, P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M.,
Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 667–681. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0030633

16. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
Heidelberg (1976). https://doi.org/10.1007/978-1-4684-9455-6

17. Kucera, A., Esparza, J., Mayr, R.: Model checking probabilistic pushdown
automata. Log. Methods Comput. Sci. 2(1) (2006). https://doi.org/10.2168/
LMCS-2(1:2)2006

18. Santos, E.S.: Probabilistic grammars and automata. Inf. Control. 21(1), 27–47
(1972). https://doi.org/10.1016/S0019-9958(72)90026-5

19. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of the 26th Annual Symposium on Foundations of Com-
puter Science, pp. 327–338. IEEE Computer Society (1985)

https://doi.org/10.1007/BFb0030633
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.1016/S0019-9958(72)90026-5

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Low Complexity Colorings of the Two-Dimensional Grid
	 How Complex Shapes Can RNA Fold Into?
	 Sleptsov Net Computing Resolves Modern Supercomputing Problems

	Presentation-Only Submissions
	 Sleptsov Nets Are Turing-Complete
	 On Computing Optimal Temporal Branchings
	 Positivity Problems for Reversible Linear Recurrence Sequences
	 Discontinuous IVPs with Unique Solutions
	 Geometry of Reachability Sets of Vector Addition Systems
	 Semënov Arithmetic, Affine VASS, and String Constraints
	 Multiplicity Problems on Algebraic Series and Context-Free Grammars
	 Linear Loop Synthesis for Polynomial Invariants
	 Higher-Dimensional Automata Theory
	 Universality and Forall-Exactness of Cost Register Automata with Few Registers
	 History-Determinism vs. Simulation
	 Energy Büchi Problems
	 Reenterable Colored Petri Net Model of Ebola Virus Dynamics
	 Contents

	Invited Papers
	Randomness Quality and Trade-Offs for CA Random String Generators
	1 Introduction
	2 Definition and Notation
	2.1 Cellular Automata
	2.2 Boolean Functions

	3 Theories of Randomness
	3.1 Martin-Löf Randomness
	3.2 Pseudo-randomness
	3.3 FIPS-140-2 and 140-3 Tests
	3.4 Marsaglia's Tests
	3.5 Knuth's Tests

	4 Pseudo-random Strings Generation
	4.1 Radius One CA Rules
	4.2 Radius Two CA Rules

	References

	Regular Papers
	Complexity of Reachability Problems in Neural Networks
	1 Introduction
	2 Preliminaries and Network Reachability Problems
	2.1 Basics on Constraint Satisfaction Problems CSP

	3 Complexity Results for Reachability
	4 Network Equivalence and Verification of Interval Property
	5 Conclusion and Further Questions
	References

	Weakly Synchronous Systems with Three Machines Are Turing Powerful
	1 Introduction
	2 MSCs and Communicating Automata
	3 Treewidth of Weakly Synchronous p2p MSCs
	4 Reachability for Weakly Synchronous p2p Systems with 3 Machines
	5 Conclusion
	References

	On the Identity and Group Problems for Complex Heisenberg Matrices
	1 Introduction
	2 Roadmap
	3 Preliminaries
	4 Properties of Omega-Matrices
	5 The Identity Problem for Subsemigroups of H(n,Q(i))
	6 Future Research
	References

	Reachability Analysis of a Class of Hybrid Gene Regulatory Networks
	1 Introduction
	2 Preliminary Definitions
	3 Reachability Analysis Method
	3.1 Different Classes of Hybrid Trajectories
	3.2 Reachability Analysis Algorithm

	4 Conclusion
	References

	Quantitative Reachability Stackelberg-Pareto Synthesis Is NEXPTIME-Complete
	1 Introduction
	2 Preliminaries and Studied Problem
	2.1 Graph Games
	2.2 Stackelberg-Pareto Synthesis Problem

	3 Bounding Pareto-Optimal Payoffs
	3.1 Improving a Solution
	3.2 Crucial Step

	4 Complexity of the SPS Problem
	5 Conclusion and Future Work
	References

	Multi-weighted Reachability Games
	1 Introduction
	2 Preliminaries
	2.1 Two-Player Multi-weighted Reachability Games
	2.2 Studied Problems

	3 Ensured Values
	3.1 Fixpoint Algorithm
	3.2 Time Complexity
	3.3 Synthesis of Lexico-Optimal and Pareto-Optimal Strategies

	4 Constrained Existence
	References

	On the Complexity of Robust Eventual Inequality Testing for C-Finite Functions
	1 Introduction
	2 Proof Outline
	3 Proof of Theorem 1
	References

	Adaptive Directions for Bernstein-Based Polynomial Set Evolution
	1 Introduction
	2 Notation and Basics
	2.1 Dynamical Systems

	3 Representing Sets
	4 Over-Approximating Parallelotope Images
	4.1 Directions and Approximation

	5 Adaptive Directions
	5.1 Avoiding Coarser Approximations
	5.2 Fitting All the Parallelotope Faces

	6 Examples
	7 Conclusions
	References

	Introducing Divergence for Infinite Probabilistic Models
	1 Introduction
	2 Divergence of Markov Chains
	2.1 Markov Chains: Definitions and Properties
	2.2 Divergent Markov Chains
	2.3 An Algorithm for Divergent Markov Chains

	3 (Un)Decidability Results
	3.1 Probabilistic Pushdown Automata
	3.2 Probabilistic Petri Nets

	4 Illustration of Divergence
	4.1 Probabilistic Channel Systems
	4.2 Probabilistic Pushdown Automata

	5 Conclusion and Perspectives
	References

	A Framework for the Competitive Analysis of Model Predictive Controllers
	1 Introduction
	2 Hybrid Automata and Competitive Analysis
	2.1 The Cost of Control
	2.2 Regret

	3 Reachability and Competitive Analysis
	4 CEGAR-Based Competitive Analysis
	4.1 Initial Abstraction and Analysis
	4.2 Reachability Status
	4.3 Counterexample Analysis and Refinement
	4.4 Human in the Loop

	5 Implementation and Evaluation
	5.1 Competitive Analysis Toolchain
	5.2 Initial Abstraction and Training
	5.3 Reachability Status
	5.4 Counterexample Analysis and Retraining
	5.5 Experiments

	6 Conclusion
	References

	Matching Patterns with Variables Under Simon's Congruence
	1 Introduction
	2 Preliminaries
	3 MatchUniv
	4 MatchSimon
	5 WESimon
	6 Conclusions
	References

	HyperMonitor: A Python Prototype for Hyper Predictive Runtime Verification
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 An Overview of the HPRV Procedure
	4.1 Inductive Process Mining
	4.2 Semantic-Driven Model Transformations
	4.3 Hyper Projection over Additional Threads
	4.4 Verification
	4.5 HPRV Implementation
	4.6 Case-Studies

	5 Conclusions
	References

	Generalized ARRIVAL Problem for Rotor Walks in Path Multigraphs
	1 Introduction
	2 Mechanics and Tools for Rotor Routing in Multigraphs
	2.1 Multigraphs
	2.2 Rotor Structure
	2.3 Configurations
	2.4 Rotor Routing
	2.5 Legal Routing and Arrival
	2.6 Equivalence Classes of Rotors
	2.7 Equivalence Classes of Particles
	2.8 Sandpile Group

	3 Main Results for Path Multigraphs
	3.1 Case x=y=1
	3.2 Case 0 < x < y Coprime

	4 Harmonic and Arcmonic Functions in the Path
	4.1 Definition of h and g
	4.2 Stable Decomposition of Arcmonic Values

	References

	Author Index

