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There is a non-unital ring I of order 4 defined by generators and relations as I = a, b | 2a = 2b = 0, a 2 = b, ab = 0 . In this paper, we present special constructions of linear codes over I from the adjacency matrices of two class association schemes. These consist of either Strongly Regular Graphs (SRGs) or Doubly Regular Tournaments (DRTs). We investigate the conditions under which these codes are self-orthogonal, quasi self-dual, or Type IV. As a byproduct of this study, some diophantine relations on the weight of sum of vectors with coefficients in I are derived. Some examples of codes with minimum distance better than that of Type IV codes over unital rings of the same order in modest lengths are given.

Introduction

Self-dual codes over an alphabet of size 4 with even Hamming weights have been studied since the 1960s over finite fields [START_REF] Macwilliams | The theory of Error Correcting Codes[END_REF], and since the 1990s over finite rings [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF] under the name of Type IV codes. This terminology refers to the Gleason-Pierce Turyn Theorem [START_REF] Macwilliams | The theory of Error Correcting Codes[END_REF]Chap. 19,Th. 1], which classifies self-dual divisible codes over finite fields. Recall that a code is divisible if all its codewords have weights divisible by a fixed integer. More recently, self-orthogonal codes of length n with 2 n codewords over non-unital rings of size 4 have been studied in [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF][START_REF] Alahmadi | Type IV codes over a non-unital ring[END_REF] under the name of Quasi Self-Dual codes (QSD for short). This object plays the role over non-unital rings of self-dual codes over fields and unital rings. If a QSD code has all its Hamming weights even it is called Type IV by analogy with the classical situation of [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF][START_REF] Macwilliams | The theory of Error Correcting Codes[END_REF]. If a QSD code has an even torsion code, it is called quasi Type IV. This class of codes was introduced in [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF] as it enjoys a mass formula. In particular, the ring I in the list of Fine [START_REF] Fine | Classification of finite rings of order p 2[END_REF] has received some low length classification of QSD codes [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF]. Since the codes in that classification had minimum distance at most 2, it makes sense to look for general constructions in higher lengths leading to better minimum distances. It is the purpose of this paper to accomplish this goal, by using combinatorial matrices following the trend of [START_REF] Dougherty | Double circulant codes from two class association schemes[END_REF] for self-dual codes over fields. These matrices occur as adjacency matrices of two class association schemes, that is to say either Strongly Regular Graphs (SRGs) or Doubly Regular Tournaments (DRTs). This allows us to tap on the rich literature on small class number association schemes [12,17]. A similar approach for the ring E in the classification of [START_REF] Fine | Classification of finite rings of order p 2[END_REF] is [START_REF] Shi | Correction: Self-orthogonal codes over a non-unital ring and combinatorial matrices[END_REF][START_REF] Shi | Self-orthogonal codes over a non-unital ring and combinatorial matrices[END_REF]. As a byproduct of these constructions, some new results of independent interest on the Hamming weights of sums of vectors over I are derived. The Type IV codes thus constructed are sometimes better than that constructed over the quaternary rings of [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF].

The material is arranged as follows. Section 2 collects the basic notions and notations needed to follow the rest of the paper, and also derives the results on weights of sum of vectors. Section 3 derives necessary and sufficient conditions on generator matrices of a special form to span QSD or Type IV codes. Section 4 recalls basic notions on two class association schemes and proceeds to study the codes obtained from their first adjacency matrices by the construction of Section 3. In particular, many numerical values are compiled. Section 5 concludes the article.

Definitions and Notations

Rings

Following [START_REF] Fine | Classification of finite rings of order p 2[END_REF], the ring I defined by I = a, b | 2a = 2b = 0, a2 = b, ab = 0 has characteristic two and consists of the four elements {0, a, b, c} where c = a + b. Its multiplication table is given in Table 1.
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× 0 a b c 0 0 0 0 0 a 0 b 0 b b 0 0 0 0 c 0 b 0 b
From Table 1, we see that I is a commutative ring without a multiplicative identity.

For a positive integer n, I n is an I-module whose elements are n-tuples over the ring I. We will term these elements vectors even though I n is not a vector space. The (Hamming) weight wt(x) of x ∈ I n is the number of nonzero coordinates in x. If x = (x 1 , x 2 , . . . , x n ) is a vector in I n , then wt(x) = n i=1 wt(x i ) where wt(x i ) = 1 when x i is nonzero and wt(x i ) = 0 when x i is zero.

To prepare for the upcoming lemmas we require the following definitions. For x, y ∈ I n ,

• x ∩ = y is the vector in I n which has a nonzero element x ∈ I precisely in those positions where both x and y have x, and 0 elsewhere. That is, x ∩ = y = (u 1 , u 2 , . . . , u n ) such that

u i = x i if x i = y i = 0 0 otherwise
• x ∩ = y is the vector in I n which has a nonzero element x + y ∈ I precisely in those positions where x has a nonzero x and y has a different nonzero y, and 0 elsewhere. That is, x ∩ = y = (u 1 , u 2 , . . . , u n ) such that

u i = x i + y i if x i = y i and x i , y i = 0 0 otherwise Example 2.1. Let x, y ∈ I 6 such that x = (0, a, c, a, b, c) and y = (a, a, b, b, b, c).
Then, x ∩ = y = (0, a, 0, 0, b, c) and x ∩ = y = (0, 0, a, c, 0, 0).

Lemma 2.1. If x, y ∈ I n , then wt(x + y) = wt(x) + wt(y) -2wt(x ∩ = y) -wt(x ∩ = y).
Proof. Let x i and y i be the ith components of x and y, respectively. Evaluating all the possible cases for x i , y i ∈ I, we obtain Table 2.

Table 2. Results of applying operations on x i , y i ∈ I and their weights.

x i y i x i + y i x i ∩= y i x i ∩ = y i wt(x i ) wt(y i ) -2wt(x i ∩= y i ) -wt(x i ∩ = y i ) wt(x i + y i ) 0 0 0 0 0 0 0 0 0 0 a a 0 0 0 1 0 0 0 b b 0 0 0 1 0 0 0 c c 0 0 0 1 0 0 a 0 a 0 0 1 0 0 0 a a 0 a 0 1 1 -2 0 a b c 0 c 1 1 0 -1 a c b 0 b 1 1 0 -1 b 0 b 0 0 1 0 0 0 b a c 0 c 1 1 0 -1 b b 0 b 0 1 1 -2 0 b c a 0 a 1 1 0 -1 c 0 c 0 0 1 0 0 0 c a b 0 b 1 1 0 -1 c b a 0 a 1 1 0 -1 c c 0 c 0 1 1 -2 0 It now follows that wt(x i + y i ) = wt(x i ) + wt(y i ) -2wt(x i ∩ = y i ) -wt(x i ∩ = y i ) n i=1 wt(x i + y i ) = n i=1 wt(x i ) + n i=1 wt(y i ) -2 n i=1 wt(x i ∩ = y i ) - n i=1 wt(x i ∩ = y i ) wt(x + y) = wt(x) + wt(y) -2wt(x ∩ = y) -wt(x ∩ = y).
as desired.

Lemma 2.2. Let m be an integer with m ≥ 2.

If x i , y ∈ I n for each 1 ≤ i ≤ m, then wt m i=1 x i ∩ = y ≡ m i=1 wt(x i ∩ = y) (mod 2).
Proof. We proceed by induction on m. For m = 2, we will prove

wt (x + z) ∩ = y ≡ wt(x ∩ = y) + wt(z ∩ = y) (mod 2). (2.1)
Let x, y and z denote the jth components of x, y and z, respectively. We will show that

wt (x + z) ∩ = y ≡ wt(x ∩ = y) + wt(z ∩ = y) (mod 2). (2.2)
If y = 0, then Eq. (2.2) holds. Suppose now that y = 0. We have four cases: Assume inductively that for a positive integer with 2 < < m,

wt i=1 x i ∩ = y ≡ i=1 wt(x i ∩ = y) (mod 2).
Observe that

wt +1 i=1 x i ∩ = y = wt i=1 x i + x +1 ∩ = y ≡ wt i=1 x i ∩ = y + wt x +1 ∩ = y ≡ i=1 wt(x i ∩ = y) + wt x +1 ∩ = y ≡ +1 i=1 wt(x i ∩ = y) (mod 2).
This completes the proof.

Lemma 2.3. Let m be an integer with m ≥ 2.

If x i ∈ I n for each 1 ≤ i ≤ m, then wt m i=1 x i ≡ m i=1 wt (x i ) + m-1 j=1 j i=1 wt x i ∩ = x j+1 (mod 2) .
Proof. By Lemma 2.1 and induction on m, we see that

wt m i=1 x i = m i=1 wt (x i )-2 m-1 j=1 wt j i=1 x i ∩ = x j+1 - m-1 j=1 wt j i=1 x i ∩ = x j+1 .
By Lemma 2.2, the result follows.

Linear codes

A linear code of length n over I is an I-submodule of I n . If C is a linear code over I with a k × n generator matrix G, then

C = k i=1 α i g i + β i ag i α i , β i ∈ F 2
where g i is the ith row of G for each 1 ≤ i ≤ k.

With every linear code C over I, we attach an additive code φ(C) over F 4 defined by the alphabet substitution

0 → 0, a → ω, b → 1, c → ω 2 ,
where F 4 = F 2 [ω], extended naturally to F n 4 . There are two binary linear codes of length n associated canonically with every linear code C of length n over I: An inner product on I n is defined by x • y = n i=1 x i y i . A code C over I is self-orthogonal if for any x, y ∈ C, x • y = 0. A code of length n is quasi selfdual (QSD) if it is self-orthogonal and of size 2 n . A QSD code with all weights even is called a Type IV code. A QSD code with an even torsion code is called a quasi Type IV code.

Throughout the paper, O denotes the zero matrix of appropriate dimensions and I k denotes the identity matrix of size k for any positive integer k. 

G 1 = I k1 X α(Y ) = I k1 X Y 1 .
Let r be the jth row of G 1 where 1 ≤ j ≤ k 1 . Then r = (i, x, y 1 ) where i, x, and y 1 are rows of I k1 , X, and Y 1 , respectively. Observe that

wt(r) ≡ r • r ≡ (i, x, y 1 ) • (i, x, y 1 ) ≡ i • i + x • x + y 1 • y 1 (mod 2).
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Also note that g = (ai, ax, ay

1 +by 2 ) is the jth row of G. Since C is self-orthogonal, 0 = g • g = (ai, ax, ay 1 + by 2 ) • (ai, ax, ay 1 + by 2 ) = a 2 i • i + a 2 x • x + a 2 y 1 • y 1 = b( i • i + x • x + y 1 • y 1 ).
Hence, wt(r

) ≡ i • i + x • x + y 1 • y 1 ≡ 0 (mod 2)
. This proves that every row of G 1 has even weight and so res(C) is even.

Special Construction

Consider the code C(M ) of length 2n with generator matrix of the form

G = (xI n , yM )
where x, y ∈ I, I n is the identity matrix of size n, J is the all-one square matrix of size n, and M is a binary matrix satisfying

M M T = γI n + δJ + εM where γ, δ, ε ∈ F 2 .
The results in this section give necessary and sufficient conditions for the code C(M ) to be self-orthogonal, QSD, or Type IV.

Theorem 3.1. The code C(M ) is self-orthogonal if and only if one of the following holds:

1. x, y ∈ {0, b}, 2. x ∈ {0, b}, y ∈ {a, c}, and M M T = O, 3. x, y ∈ {a, c} and M M T = I n . Proof. The code C(M ) is self-orthogonal if and only if GG T = O. Since G = (xI n , yM ), GG T = x 2 I n + y 2 M M T . Suppose C(M ) is self-orthogonal. Then x 2 I n + y 2 M M T = O.
We have the following two cases: Case 1: y ∈ {0, b}. Then y 2 = 0 and so

x 2 I n = O which gives x 2 = 0. From the multiplication table of I, it follows that x ∈ {0, b}. Case 2: y ∈ {a, c}. If x ∈ {0, b}, then x 2 = 0 and y 2 = b. Therefore, bM M T = O and thus M M T = O. If x ∈ {a, c}, then x 2 = y 2 = b. Therefore, b(I n +M M T ) = O and thus M M T = I n .
This proves the first direction of the theorem. For the reverse direction, observe that if either (1), (2), or (3) holds, then

GG T = O. Hence, C(M ) is self-orthogonal.
The following corollaries give further characterization of the conditions in Theorem 3.1 in terms of the parameters γ, δ and ε.

Corollary 3.1. If C(M ) is self-orthogonal, then either x, y ∈ {0, b}, or y ∈ {a, c} and the three parameters γ, δ, ε are as in Table 3. 

)I n + δJ. If ε = 0, then (1 + γ)I n = δJ which implies that 1 + γ = δ = 0. If ε = 1, then I n = M M T = ((1+γ)I n +δJ)((1+γ)I n +δJ) T = (1+γ)I n +δJJ T = (1 + γ)I n + nδJ.
Therefore, 1 + γ = 1 and nδ = 0 which implies that γ = 0 and either n is even or δ = 0. Thus γ, δ, and ε are as in Table 3. This shows that M has all the rows of odd weights. Since G = (xI n , yM ), it is clear that G has all the rows of even weights. Now we prove that any codeword of C(M ) has an even weight.

Let c be a codeword of C(M ). Then c has one of the following forms:

g i , ag i , g i , ag i , or (g i + ag j )
where g i and g j are rows of G for 1 ≤ i, j ≤ n.

If c = g i , then c has an even weight by the above discussion.

If c = ag i , then as x, y ∈ {a, c}, wt(ag i ) = wt(g i ) and thus c has an even weight. Let c = g i or c = ag i . Observe that wt(g i ∩ = g j ) = wt(ag i ∩ = ag j ) = 0. By Lemma 2.3, it follows that c has an even weight. Now suppose c = (g i + ag j ). If i = j, then since x, y ∈ {a, c}, wt(g i ∩ = ag j ) = wt(g i ) which is even. Suppose now that i = j. Since C(M ) is self-orthogonal and x, y ∈ {a, c}, the support of the rows g i and g j must be either disjoint or intersect in an even number of coordinates. Consequently, the support of the rows g i and ag j must also be either disjoint or intersect in an even number of coordinates. Hence, since wt(g i ∩ = ag j ) = 0, wt(g i ∩ = ag j ) is even. Since wt(g i ), wt(ag i ), wt(g i ∩ = g j ), wt(ag i ∩ = ag j ), and wt(g i ∩ = ag j ) are even, by Lemma 2.3, it follows that c has an even weight. This proves that C(M ) is Type IV.

Example 3.1. Let M =     1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1     .
Then M M T = I 4 . The following codes are consistent with the results in this section. For any positive integer m, an association scheme with m classes is a set together with m + 1 relations defined on it satisfying certain conditions [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF]. In this section, we consider association schemes with two classes.

Definition 4.1. Let X be a set of size n ≥ 2. Let R = {R 0 , R 1 , R 2 } be a family of three relations R i on X. The pair (X, R) is called a two class association scheme on X if the following conditions are satisfied:

1. The set R is a partition of X × X and R 0 = {(x, x) | x ∈ X}. 2. R -1 i
= R j for some j = 0, 1, 2 and for all i. 3. For any triple of integers i, j, k = 0, 1, 2 the number of z ∈ X such that (x, z) ∈ R i and (z, y) ∈ R j is a constant p k ij which does not depend on the choice of x and y that satisfy (x, y) ∈ R k .

Following [START_REF] Dougherty | Double circulant codes from two class association schemes[END_REF], we describe these relations by their adjacency matrices A 0 = I n , A 1 , and A 2 . Two cases may occur: Case 1: A T 1 = A 1 and A T 2 = A 2 . Then the undirected graph (X, R 1 ) is a strongly regular graph (SRG) with parameters (n, κ := p 0 11 , λ := p 1 11 , µ := p 2 11 ). Case 2: A T 1 = A 2 and A T 2 = A 1 . Then the directed graph (X, R 1 ) is a doubly regular tournament (DRT) with parameters (n, κ, λ := p 1 11 , µ := p 2 11 ) where κ is the out-degree of any vertex.

In both cases, A 2 = J -I n -A 1 := A 1 , and the matrix A := A 1 satisfies the equation

AJ = JA = κJ. (4.1)
In the SRG case,

A 2 = κI n + λA + µA. (4.2)
In the DRT case,

A 2 = λA + µA. (4.3) 
Lemma 4.1. Let A be the adjacency matrix of a DRT with parameters (n, κ, λ, µ). Then

A 2 = µA + λA.
Proof. Using A = A T and applying Eq. (4.3) yield

A 2 = (A T ) 2 = (A 2 ) T = (λA + µA) T = λA T + µA T = λA + µA.
Lemma 4.2.

[9] Let A be the adjacency matrix of a graph Γ with parameters (n, κ, λ, µ). If Γ is an SRG, then we have

AA T = A 2 = κI n + λA + µA.
If Γ is a DRT, then we have

AA T = κI n + (κ -1 -λ)A + (κ -µ)A.
In the following lemmas, we list relations and restrictions on the parameters of SRGs and DRTs. 

4.4. [6] If Γ is an SRG with parameters (n, κ, λ, µ), then κ(κ -1 -λ) = µ(n -1 -k).
Lemma 4.5. [START_REF] Cameron | Designs, Graphs, Codes and their Links (London Mathematical Society Student Texts[END_REF] If Γ is an SRG with parameters (n, κ, λ, µ), then the numbers

1 2 n -1 ± (n -1)(µ -λ) -2κ (µ -λ) 2 + 4(κ -µ)
are non-negative integers.

Lemma 4.6. Let Γ be an SRG with parameters (n, κ, λ, µ). If n is odd, then κ is even.

Proof. Suppose that n and κ are odd. By Lemma 4.4, it follows that λ ≡ µ (mod 2). Therefore (n -1) and (µ -λ) are even, and so (n -1)(µ -λ) -2κ = 2m 1 = 0 for some odd integer m 1 . Since, by Lemma 4.5,

f := 1 2 n -1 + (n -1)(µ -λ) -2κ (µ -λ) 2 + 4(κ -µ) (4.4)
is an integer, (µ -λ) 2 + 4(κ -µ) = m 2 2 for some integer m 2 . As (µ -λ) is even, it follows that m 2 2 = 4m 3 for some integer m 3 . Substituting these results into Eq. (4.4) gives

f = 1 2 n -1 + m 1 √ m 3 .
Since f is an integer and n is odd, m 1 √ m 3 must be even. But this implies that m 1 is even; which is a contradiction. Hence, κ is even.

We now relate the parameters (n, κ, λ, µ) of Γ to those of the matrix M of the preceding section. Theorem 4.1. If M is the adjacency matrix of Γ, then the parameters of M satisfy the following:
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• in the SRG case, γ ≡ κ -µ (mod 2), δ ≡ µ (mod 2), and ε ≡ λ -µ (mod 2),

• in the DRT case, γ ≡ µ (mod 2), δ ≡ λ (mod 2), and ε ≡ 0 (mod 2).

Proof. We have M M T = γI n + δJ + εM where γ, δ, ε ∈ F 2 . If M is the adjacency matrix of Γ, then M = J -I n -M . In the SRG case,

M M T = κI n + λM + µM = κI n + λM + µ(J -I n -M ) = (κ -µ)I n + µJ + (λ -µ)M.
In the DRT case,

M M T = κI n + (κ -1 -λ)M + (κ -µ)M = κI n + (κ -1 -λ)M + (κ -µ)(J -I n -M ) = µI n + (κ -µ)J + (µ -1 -λ)M = µI n + λJ
where the last equality is obtained from Lemma 4.3. The result now follows.

Codes constructed from two class association schemes

Let Q I (r, s, t) = rI n + sA + tA, where r, s, t ∈ I and A is the adjacency matrix of either an SRG or a DRT. We describe two constructions:

• The pure construction is

P = (aI n , Q I (r, s, t)) = (aI n , rI n + sA + tA).
The linear code over I of length 2n and generator matrix P is denoted by C P (r, s, t).

• The bordered construction is

B =      a 0 • • • 0 0 a • • • a 0 a . . . aI n . . . Q I (r, s, t) 0 a      .
The linear code over I of length 2n + 2 and generator matrix B is denoted by C B (r, s, t).

Now we investigate the residue and torsion codes of C P (r, s, t) and C B (r, s, t). Let α : I → F 2 be the map defined by α(0) = α(b) = 0 and α(a) = α(c) = 1.

In the pure case, observe that the code C P (r, s, t) is of type (n, 0). Hence, the residue and torsion codes are equal and have generator matrix

P 1 = I n , Q F2 (α(r), α(s), α(t)) .
In the bordered case, observe that the code C B (r, s, t) is of type (n+1, 0). Hence, the residue and torsion codes are equal and have generator matrix

B 1 =      1 0 • • • 0 0 1 • • • 1 0 1 . . . I n . . . Q F2 (α(r), α(s), α(t)) 0 1     
.

The torsion codes of C P (r, s, t) and C B (r, s, t) have the same construction as the binary codes P F2 (α(r), α(s), α(t)) and B F2 (α(r), α(s), α(t)) in [START_REF] Dougherty | Double circulant codes from two class association schemes[END_REF], respectively.

To study self-orthogonality of the codes C P (r, s, t) and C B (r, s, t), we need to calculate Q I (r, s, t)Q I (r, s, t) T . Lemma 4.7. Let A be the adjacency matrix of a graph with parameters (n, κ, λ, µ).

• For SRGs, we have

Q I (r, s, t)Q I (r, s, t) T = (r 2 +t 2 +s 2 κ+t 2 κ+t 2 n)I n +(s 2 λ+t 2 λ+t 2 n)A+(s 2 µ+t 2 µ+t 2 n)A
• For DRTs, we have

Q I (r, s, t)Q I (r, s, t) T = (r 2 + s 2 κ + t 2 κ)I n + (rt + sr + stκ + s 2 λ + t 2 λ)(A + A)
Proof. In the SRG case,

Q I (r, s, t)Q I (r, s, t) T = (rI n + sA + tA)(rI n + sA + tA) T = (rI n + sA + tA)(rI n + sA T + tA T ) = (rI n + sA + tA)(rI n + sA + tA) = r 2 I n + rsA + rtA + srA + s 2 A 2 + stAA + trA + tsAA + t 2 A 2 = r 2 I n + s 2 A 2 + t 2 A 2 = r 2 I n + s 2 A 2 + t 2 (J -I n -A) 2 = r 2 I n + s 2 A 2 + t 2 J 2 + t 2 I n + t 2 A 2 = (r 2 + t 2 )I n + (s 2 + t 2 )A 2 + t 2 nJ = (r 2 + t 2 )I n + (s 2 + t 2 )(κI n + λA + µA) + t 2 n(A + A + I n ) = (r 2 + t 2 + s 2 κ + t 2 κ + t 2 n)I n + (s 2 λ + t 2 λ + t 2 n)A + (s 2 µ + t 2 µ + t 2 n)A.
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In the DRT case,

Q I (r, s, t)Q I (r, s, t) T = (rI n + sA + tA)(rI n + sA + tA) T = (rI n + sA + tA)(rI n + sA T + tA T ) = (rI n + sA + tA)(rI n + sA + tA) = r 2 I n + rsA + rtA + srA + s 2 AA + stA 2 + trA + tsA 2 + t 2 AA = r 2 I n + (rs + tr)A + (rt + sr)A + st(A 2 + A 2 ) + (s 2 + t 2 )AA = r 2 I n + (rs + tr)A + (rt + sr)A + st(λA + µA + µA + λA) + (s 2 + t 2 )(κI n + (κ -1 -λ)A + (κ -µ)A) = (r 2 + (s 2 + t 2 )κ)I n + (rt + sr + st(λ + µ) + (s 2 + t 2 )(κ -1 -λ))A + (rs + tr + st(λ + µ) + (s 2 + t 2 )(κ -µ))A = (r 2 + (s 2 + t 2 )κ)I n + (rt + sr + stκ + (s 2 + t 2 )λ)A + (rs + tr + stκ + (s 2 + t 2 )λ)A = (r 2 + (s 2 + t 2 )κ)I n + (rt + sr + stκ + (s 2 + t 2 )λ)(A + A).
In the next theorem, all congruences are modulo 2.

Theorem 4.2.

• The codes C P (r, s, t) and C B (r, s, t) constructed from SRGs are QSD if and only if the parameters are as in Table 4.

Table 4. Conditions for QSD codes constructed from SRGs.

r s t C P (r, s, t) is QSD C B (r, s, t) is QSD {0, b} {0, b} {0, b} never never {0, b} {0, b} {a, c} n ≡ κ ≡ λ ≡ µ ≡ 0 n + 1 ≡ κ ≡ λ ≡ µ ≡ 0 {0, b} {a, c} {0, b} κ ≡ 1, λ ≡ µ ≡ 0 κ ≡ n + 1 ≡ 0, λ ≡ µ ≡ 1 {0, b} {a, c} {a, c} n ≡ 0 n ≡ 1 {a, c} {0, b} {0, b} always never {a, c} {0, b} {a, c} n ≡ λ ≡ µ ≡ κ + 1 never {a, c} {a, c} {0, b} λ ≡ µ ≡ κ ≡ 0 never {a, c} {a, c} {a, c}
never never

• The codes C P (r, s, t) and C B (r, s, t) constructed from DRTs are QSD if and only if the parameters are as in Table 5.

Proof. Since

P = P aP = aI n Q I (r, s, t) bI n aQ I (r, s, t)
is an additive generator matrix for the code C P (r, s, t) with F 2 -linearly independent rows, C P (r, s, t) has 2 2n codewords. The code C P (r, s, t) constructed from an SRG is self-orthogonal if and only if

r 2 + t 2 + s 2 κ + t 2 κ + t 2 n = b, s 2 λ + t 2 λ + t 2 n = 0, s 2 µ + t 2 µ + t 2 n = 0.
The code C P (r, s, t) constructed from a DRT is self-orthogonal if and only if

r 2 + s 2 κ + t 2 κ = b, rt + sr + stκ + s 2 λ + t 2 λ = 0.
Similarly, the code C B (r, s, t) is self-orthogonal if and only if BB T = O which occurs if and only if the following are satisfied

(n + 1)b = 0, a(r + sκ + t(n -1 -κ)) = 0, Q I (r, s, t)Q I (r, s, t) T = b(I n + J).
The first equation is the inner product of the top row with itself. The second equation is the inner product of the top row with any other row using the fact that A is the adjacency matrix of a κ-regular graph. The third equation ensures that the other rows are orthogonal to each other. The first equation requires n to be odd. The remaining two equations then satisfy a(r + sκ -tκ) = 0,

Q I (r, s, t)Q I (r, s, t) T = b(A + A).
By Lemma 4.7, we have the following:

The code C B (r, s, t) constructed from an SRG is self-orthogonal if and only if n is Self-orthogonal codes from two class association schemes 17 odd and a(r + sκ -tκ) = 0,

r 2 + s 2 κ + t 2 κ = 0, s 2 λ + t 2 λ + t 2 = b, s 2 µ + t 2 µ + t 2 = b.
The code C B (r, s, t) constructed from a DRT is self-orthogonal if and only if n is odd and a(r + sκ -tκ) = 0,

r 2 + s 2 κ + t 2 κ = 0, rt + sr + stκ + s 2 λ + t 2 λ = b.
The tables then follow by straightforward computations. • For SRGs, the codes C P (r, s, t) where r, s ∈ {0, b} and t ∈ {a, c} satisfy the congruence n ≡ κ ≡ λ ≡ µ (mod 2). Lemma 4.6 guarantees that n ≡ κ ≡ λ ≡ µ ≡ 0 (mod 2). • For SRGs, the codes C B (r, s, t) where r, t ∈ {a, c} and s ∈ {0, b}, or r, s ∈ {a, c} and t ∈ {0, b} are never self-orthogonal since in both cases the equations in the proof of Theorem 4.2 imply that n and κ are odd; contradicting Lemma 4.6. • For DRTs, the codes C P (r, s, t) where r ∈ {a, c} and either s ∈ {a, c}, t ∈ {a, c}, or s, t ∈ {a, c} are never self-orthogonal since in these cases the equations in the proof of Theorem 4.2 imply that κ is even which contradicts Lemma 4.3. By the same reasoning, the codes C B (r, s, t) where r, s ∈ {0, b} and t ∈ {a, c}, or r, t ∈ {0, b} and s ∈ {a, c} are never self-orthogonal. To determine the conditions for the codes C P (r, s, t) and C B (r, s, t) to be Type IV, we state the following two lemmas. Lemma 4.8. Let C P (r, s, t) and C B (r, s, t) be QSD codes constructed from an SRG. If C P (r, s, t) or C B (r, s, t) are Type IV, then r = b.

Proof. Suppose to the contrary r = b. By Theorem 4.2, s and t cannot be both from {0, b}. Consider a Type IV code C P (r, s, t). Let g denote an arbitrary row of the generator matrix P . Then, by regularity of SRGs, wt(g) = 1 + wt(r) + wt(s)κ + wt(t)(n -κ -1).

Since r = b, wt(r) = 1 and 

wt(g) =        n + 1 if s, t = 0 κ + 2 if s ∈
(g) =        n if r = 0 n -κ + 1 if s = 0 κ + 2 if t = 0
where g i and g j are rows of

B =      a 0 • • • 0 0 a • • • a 0 a . . . aI n . . . Q I (r, s, t) 0 a      for 1 ≤ i, j ≤ n + 1.
We will use Lemma 2.3 to prove that wt(c) is even. To do this we will show that wt (g i ) , wt (ag i ) , wt(g i ∩ = g j ) , wt(g i ∩ = ag j ) , and wt(ag i ∩ = ag j ) are even.

Observe that wt (g 1 ) = n + 1. Since, from Theorem 4.2, n is always odd in the bordered construction, wt (g 1 ) is even. For 2 ≤ i ≤ n + 1, wt (g i ) = 2 + wt(r) + wt(s)κ + wt(t)(n -κ -1). In the SRG case, if r = 0 , then wt(r) = 0 and wt(g In SRGs, κ is even by Lemma 4.6. In DRTs, κ is odd by Lemma 4.3. Hence, wt (g i ) is even. Now observe that in the SRG and the DRT cases, wt (ag i ) is the number of coordinates with an entry equals b in ag i which equals the number of coordinates with an entry from {a, c} in g i . The latter is even by self-orthogonality. Hence, wt (ag i ) is even. Also note, by definition, wt(ag i ∩ = ag j ) is always zero. Hence, wt(ag i ∩ = ag j ) is even. Finally, we study wt(g i ∩ = g j ) and wt(g i ∩ = ag j ). If i = j, then wt(g i ∩ = g j ) = 0 and wt(g i ∩ = ag j ) equals the number of coordinates in g i with an entry from {a, c} which is an even number, by self-orthogonality. Hence, wt(g i ∩ = g i ) and wt(g i ∩ = ag i ) are even. Now suppose i = j. Observe that wt(g i ∩ = ag j ) equals the number of coordinates where both g i and g j have entries from {a, c}, which is an even number by selforthogonality. Hence, wt(g i ∩ = ag j ) is even. Next we prove that wt(g i ∩ = g j ) is even. Let q i be the ith row of the matrix Q I (r, s, t). Then for 2 ≤ i, j ≤ n + 1, wt(g 1 ∩ = g j ) = wt(a ∩ = q j-1 ), wt(g i ∩ = g j ) = wt(q i-1 ∩ = q j-1 )

i ) =        n + 1 if s, t = 0 κ + 2 if s ∈ {a, c} and t = 0 n -κ + 1 if t ∈ {a,
where a = aa • • • a of length n. unital rings F 4 , Z 4 or F 2 + uF 2 with u 2 = 0. To compare d with the minimum distance d R of optimal Type IV codes over R or Type II additive codes over F 4 , we refer to the classification tables of such codes in [START_REF] Calderbank | Quantum error correction via codes over GF(4)[END_REF][START_REF] Dougherty | Type IV self-dual codes over rings[END_REF]11]. Tables 7 and8 show that there exist codes over I with minimum distance better than those of Type IV codes over unital rings of the same order in some lengths. 1. The Type IV [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF][START_REF] Bosma | The Magma algebra system I: The user language[END_REF] code C B (a, a, 0) has a torsion code B F2 (1, 1, 0) as denoted in [START_REF] Dougherty | Double circulant codes from two class association schemes[END_REF] which is equivalent to the extended binary Hamming code of length 8. 2. The Type IV (24, 8) code C B (a, 0, a) has a torsion code B F2 (1, 0, 1) as denoted in [START_REF] Dougherty | Double circulant codes from two class association schemes[END_REF] which is equivalent to the extended binary Golay code of length 24.

Conclusion

In the present contribution, we have strived to construct QSD codes with large minimum distance over the ring I, a non-unital ring of order 4. The construction technique is based on small class number association schemes. This study can be

Case 1 :

 1 x = z = 0. Then x + z = 0 and Eq. (2.2) holds. Case 2: x = z = 0. Then x + z = 0. If y = x, then Eq. (2.2) holds as all weights equal zero. If y = x, Self-orthogonal codes from two class association schemes 5 then wt(x ∩ = y) + wt(z ∩ = y) ≡ 2 ≡ 0 ≡ wt (x + z) ∩ = y (mod 2). Case 3: x = 0 and z = 0. (similarly x = 0 and z = 0) Then x + z = z and Eq. (2.2) holds since wt(x ∩ = y) = 0 and wt(z ∩ = y) = wt (x + z) ∩ = y . Case 4: x = z and x, z are nonzero. Then x + z = 0. If y = x + z, then x = y = z and so wt(x ∩ = y) + wt(z ∩ = y) ≡ 2 ≡ 0 ≡ wt (x + z) ∩ = y (mod 2). If y = x + z, then either y = x or y = z, and so wt(x ∩ = y) + wt(z ∩ = y) = 1 = wt (x + z) ∩ = y . Hence, Eq. (2.2) holds in all cases and thus Eq. (2.1) follows.

1 .

 1 the residue code res(C) defined by res(C) = {α(y) | y ∈ C} where α : I → F 2 is the map defined by α(0) = α(b) = 0 and α(a) = α(c) = 1, extended componentwise from C to F n 2 , 2. the torsion code tor(C) defined by tor(C) = {x ∈ F n 2 | bx ∈ C}. For any linear code C over I, we let k 1 = dim(res(C)) and k 1 +k 2 = dim(tor(C)), and we say that C is of type (k 1 , k 2 ).

Theorem 2 . 1 .F 2 ,

 212 [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF] Assume C is a linear code over I of length n and type (k 1 , k 2 ). Then, up to a permutation of columns, a generator matrix G of C is of the formG = aI k1 aX Y O bI k2 bZwhere I ki is the identity matrix of size k i , X and Z are matrices with entries from Y is a matrix with entries from I, and O is the k 2 × k 1 zero matrix.

Lemma 2 . 4 .

 24 If C is a self-orthogonal code over I, then res(C) is even. Proof. Let G = aI k1 aX Y O bI k2 bZ be a generator matrix for the self-orthogonal code C. Since Y is a matrix over I, we can write Y = aY 1 + bY 2 where Y 1 and Y 2 are binary matrices. Then res(C) has generator matrix

  Proof. Let C(M ) be self-orthogonal. If y ∈ {0, b}, then by Theorem 3.1, x ∈ {0, b}. Now suppose y ∈ {a, c}. We have two cases: Case 1: x ∈ {0, b}. By Theorem 3.1, M M T = O and so εM = γI n + δJ. If ε = 0, then γI n = δJ which implies that γ = δ = 0. If ε = 1, then O = M M T = (γI n + δJ)(γI n + δJ) T = γI n + δJJ T = γI n + nδJ which implies that γ = nδ = 0. Therefore, γ = 0 and either n is even or δ = 0. Case 2: x ∈ {a, c}. By Theorem 3.1, M M T = I n and so εM = (1 + γ

Corollary 3 . 2 .

 32 The code C(M ) is self-orthogonal if and only if one of the following holds:1. x, y ∈ {0, b}, 2. x ∈ {0, b}, y ∈ {a, c}, and either γ = δ = ε = 0, M = O, or n is even and M = J, 3. x, y ∈ {a, c}, and either γ+1 = δ = ε = 0, M = I n , or n is even and M = I n +J.Proof. If y ∈ {0, b}, then from Theorem 3.1, C(M ) is self-orthogonal if and only if x ∈ {0, b}.

Theorem 3 . 3 .

 33 Self-orthogonal codes from two class association schemes 9If y ∈ {a, c} and C(M ) is self-orthogonal, then we have two cases: Case 1: x ∈ {0, b} By Theorem 3.1 and Corollary 3.1, either γ = δ = ε = 0, M = O, or n is even and M = J. Case 2: x ∈ {a, c} By Theorem 3.1 and Corollary 3.1, either γ + 1 = δ = ε = 0, M = I n , or n is even and M = I n + J The proof of the reverse direction is straightforward. Theorem 3.2. A self-orthogonal code C(M ) is QSD if and only if x ∈ {a, c}. Proof. If C(M ) is self-orthogonal and x ∈ {a, c}, then by Theorem 3.1, y ∈ {a, c}. The matrix G = G aG = xI n yM bI n bM is an additive generator matrix for C(M ) with F 2 -linearly independent rows. Therefore, C(M ) has size 2 2n and so C(M ) is QSD. Now we show that any self-orthogonal code C(M ) such that x ∈ {0, b} is never QSD. We have two cases: Case 1: y ∈ {0, b} Then G satisfies one of the following forms: G = (O, O), G = (O, bM ), G = (bI n , O) or G = (bI n , bM ). Note that aG = (O, O) for all of the above forms of G as rb = 0 for any r ∈ I. Hence, C(M ) consists of the F 2 -span of the rows of G and |C(M )| ≤ 2 n < 2 2n where |C(M )| is the size of C(M ). Case 2: y ∈ {a, c} Due to the symmetry between a and c as elements of I, we can choose y = a and thus G has one of the following forms: G = (O, aM ) or G = (bI n , aM ). If G = (O, aM ), then the matrix G = G aG = O aM O bM is a 2n × 2n additive generator matrix for C(M ). If G = (bI n , aM ), then the matrix G = G aG = bI n aM O bM is a 2n × 2n additive generator matrix for C(M ). By Theorem 3.1, M M T = O and since M is a binary square matrix, rank (M ) < n. Hence, the rows of aG are not F 2 -linearly independent and |C(M )| < 2 2n . This proves that if x ∈ {0, b}, then C(M ) is not QSD. Every QSD code C(M ) is Type IV. Proof. Let C(M ) be QSD. By Theorems 3.1 and 3.2, x, y ∈ {a, c} and M M T = I n .

•• 1 .

 1 The code C(M ) with generator matrix G = (bI 4 , cM ) is not self-orthogonal as the inner product of the first row with itself is (b, 0, 0, 0, c, c, c, 0) • (b, 0, 0, 0, c, c, c, 0) = b = 0. The code C(M ) with generator matrix G = (bI 4 , bM ) is self-orthogonal but not QSD as GG T = O and the size of C(M ) is 16. • The code C(M ) with generator matrix G = (aI 4 , cM ) is QSD as GG T = O and the size of C(M ) is 256. This code is also Type IV since every codeword of C(M ) Self-orthogonal codes from two class association schemes 11 has an even weight. The weight distribution, following the notation of Magma [4], of C(M ) is [< 0, 1 >, < 4, 42 >, < 6, 168 >, < 8, 45 >]. 4. General Constructions From Two Class Association Schemes 4.Two class association schemes

Lemma 4 . 3 .

 43 [START_REF] Dougherty | Double circulant codes from two class association schemes[END_REF] If Γ is a DRT with parameters (n, κ, λ, µ), then n = 4λ + 3, κ = 2λ + 1, and µ = λ + 1.

Lemma

  

Remark 4 . 1 .

 41 Due to the feasibility conditions on the parameters of SRGs in Lemma 4.6 and DRTs in Lemma 4.3, we made the following assertions in Theorem 4.2:

Theorem 4 . 3 .

 43 Every QSD code constructed from an SRG or a DRT by either the pure or the bordered construction is quasi Type IV.Proof. Let C denote a QSD code constructed from either an SRG or a DRT by either the pure or the bordered construction. Then res(C) = tor(C), as previously shown. Since C is self-orthogonal, by Lemma 2.4, tor(C) is even. This proves that C is quasi Type IV.

c} and s = 0

 0 In the DRT case, if one scalar is zero and the remaining two are equal, then wt(g i ) = r = 0 and s = t ∈ {a, c} n -κ + 2 if s = 0 and r = t ∈ {a, c} κ + 3 if t = 0 and r = s ∈ {a, c}

Table 3 .

 3 Necessary conditions for self-orthogonality of C(M ) when y ∈ {a, c}.

Table 5 .

 5 Conditions for QSD codes constructed from DRTs.Similarly, from the form of the generator matrix B for the code C B (r, s, t) and its corresponding additive generator matrix B , it follows that C B (r, s, t) has 2 2n+2 codewords. Hence, to show that C

	r	s	t	C P (r, s, t) is QSD	C B (r, s, t) is QSD
	{0, b}	{0, b}	{0, b}	never	never
	{0, b}	{0, b}	{a, c}	κ ≡ λ + 1 ≡ µ ≡ 1	never
	{0, b}	{a, c}	{0, b}	κ ≡ λ + 1 ≡ µ ≡ 1	never
	{0, b}	{a, c} {a, c}	never	always
	{a, c}	{0, b}	{0, b}	always	never
	{a, c}	{0, b}	{a, c}	never	n ≡ κ ≡ µ ≡ 1
	{a, c} {a, c}	{0, b}	never	n ≡ κ ≡ µ ≡ 1
	{a, c} {a, c} {a, c}	never	never

P (r, s, t) and C B (r, s, t) are QSD, we only need to show that they are self-orthogonal. The code C P (r, s, t) is self-orthogonal if and only if P P T = O which occurs if and only if Q I (r, s, t)Q I (r, s, t) T = bI n . Then, by Lemma 4.7, we have the following:

  Proof. Suppose C P (r, s, t) is a Type IV code constructed from a DRT with distinct r, s, and t. Let g denote an arbitrary row of the generator matrix P .

	Since r = b, wt(r) = 1 and			
	wt(g) =	   	n + 2 κ + 3	if s, t = 0 if s ∈ {a, c} and t = 0
		  		
				Then, by
	regularity of DRTs,			
	wt(g) = 1 + wt(r) + wt(s)κ + wt(t)(n -κ -1).
	By Theorem 4.2, C P (r, s, t) is QSD if and only if exactly two of the scalars r, s, or
	t are from {0, b}. By assumption, this implies that exactly one scalar is zero and
	therefore			
	wt		

{a, c} and t = 0 n -κ + 1 if t ∈ {a, c} and s = 0 By Theorem 4.2 and Lemma 4.6, n is even and κ is even (resp. odd) when s = 0 (resp. t = 0). Hence, wt(g) is odd, contradicting that C P (r, s, t) is Type IV. Now consider a Type IV code C B (r, s, t). Let g denote the second row of the generator matrix B. Then, by regularity of SRGs, wt(g) = 2 + wt(r) + wt(s)κ + wt(t)(n -κ -1).

n -κ + 2 if t ∈ {a, c} and s = 0 By Theorem 4.2, n is odd. By Lemma 4.6, κ is even. Hence, wt(g) is odd, contradicting that C B (r, s, t) is Type IV. This shows that r = b. Lemma 4.9. Let C P (r, s, t) and C B (r, s, t) be QSD codes constructed from a DRT. If C P (r, s, t) or C B (r, s, t) are Type IV, then two of the scalars r, s, or t are equal.

Table 6 .

 6 Existence of self-orthogonal codes obtained from SRGs and DRTs

	r	s	t	C P (r, s, t) SRG	DRT	C B (r, s, t) SRG DRT
	0	0	{a, c}			
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Self-orthogonal codes from two class association schemes 19 By Lemma 4.3, n and κ are odd. Hence, wt(g) is odd, contradicting that C P (r, s, t) is Type IV. This shows that two of the scalars r, s, or t must be equal. Now suppose C B (r, s, t) is a Type IV code constructed from a DRT with distinct r, s, and t. Let g 1 and g 2 denote the first and the second rows of B, respectively. Then wt(g 2 ) = 2 + wt(r) + wt(s)κ + wt(t)(n -κ -1) and wt(g 1 + g 2 ) = 3 + wt(a + q 1 ) where a = aa • • • a of length n, and q 1 is the first row of Q I (r, s, t). By Theorem 4.2, C B (r, s, t) is QSD if and only if exactly two of the scalars r, s, or t are from {a, c}. By Lemma 4.3, n and κ are odd and so wt(g 2 ) is even if and only if the third scalar is zero. Hence, r, s, t = b and wt(a + q 1 ) equals the number of coordinates in q 1 with an entry from {0, c}. Therefore,

Hence, wt(g 1 + g 2 ) is odd, contradicting that C B (r, s, t) is Type IV. This shows that two of the scalars r, s, or t must be equal.

Theorem 4.4. Let C P (r, s, t) be a QSD code.

• In the SRG case, C P (r, s, t) is Type IV if and only if one of the following holds:

(1) r = 0, (2) r ∈ {a, c} and s, t ∈ {0, a, c} with at least one zero, (3) r ∈ {a, c}, s, t ∈ {a, b, c} with at least one b, and n is odd. (4) r ∈ {a, c}, s = 0, t = b, and n + κ is odd.

(5) r ∈ {a, c}, s = b, t = 0, and κ is even.

• In the DRT case, C P (r, s, t) is Type IV if and only if two of the scalars r, s, or t are equal.

Proof. Let c be a codeword of C P (r, s, t). Then c has one of the following forms:

where g i and g j are rows of P = (aI n , Q I (r, s, t)) for 1 ≤ i, j ≤ n. We will use Lemma 2.3 to prove that wt(c) is even. To do this we will show that wt (g i ) , wt (ag i ) , wt(g i ∩ = g j ) , wt(g i ∩ = ag j ) , and wt(ag i ∩ = ag j ) are even. 

κ + 2 in case [START_REF] Calderbank | Quantum error correction via codes over GF(4)[END_REF].

By the assumptions on n and κ in each case, it follows that wt(g i ) is even.

In the DRT case, if two of the scalars r, s, or t are equal, then by Theorem 4.2, these two scalars are either both equal 0 or both equal b. Since wt

By Lemma 4.3, n and κ are odd. Therefore, wt (g i ) is even. Now observe that in the SRG and the DRT cases, wt (ag i ) is the number of coordinates with an entry equals b in ag i which equals the number of coordinates with an entry from {a, c} in g i . The latter is even by self-orthogonality. Hence, wt (ag i ) is even. Also note, by definition, wt(ag i ∩ = ag j ) is always zero. Hence, wt(ag i ∩ = ag j ) is even.

Finally, we study wt(g i ∩ = g j ) and wt(g i ∩ = ag j ). If i = j, then wt(g i ∩ = g j ) = 0 and wt(g i ∩ = ag j ) equals the number of coordinates in g i with an entry from {a, c} which is an even number, by self-orthogonality. Hence, wt(g i ∩ = g i ) and wt(g i ∩ = ag i ) are even. Now suppose i = j. Observe that wt(g i ∩ = ag j ) equals the number of coordinates where both g i and g j have entries from {a, c}, which is an even number by selforthogonality. Hence, wt(g i ∩ = ag j ) is even. Next we prove that wt(g i ∩ = g j ) is even. Let q i be the ith row of the matrix Q I (r, s, t). Since P = (aI n , Q I (r, s, t)), wt(g i ∩ = g j ) = wt(q i ∩ = q j ).

We can view the rows q i and q j of Q I (r, s, t) having the following entries:

where A, B, C, D, E, and F are the numbers of coordinates where q i and q j satisfy the entries in the corresponding column. The jth entry in q i and the ith entry in q j are denoted by q ij and q ji , respectively. Note that A = B = 1 and q ij , q ji ∈ {s, t}.

In the SRG case, Q I (r, s, t) is symmetric and so q ij = q ji . Observe that wt(q i ∩ = q j ) ∈ {0, A + B, D + E, A + B + D + E}.

Self-orthogonal codes from two class association schemes 21

By regularity of SRGs and symmetry of Q I (r, s, t), C + D = C + E. Hence, D = E and therefore wt(q i ∩ = q j ) is even. This proves that wt(g i ∩ = g j ) is even. Hence, we have shown that if either of the five cases (1)-( 5) holds, then wt (g i ), wt (ag i ), wt(g i ∩ = g j ), wt(g i ∩ = ag j ), and wt(ag i ∩ = ag j ) are even. By Lemma 2.3, all codewords of C P (r, s, t) have even weights. Hence, C P (r, s, t) is Type IV.

The proof of the reverse direction is immediate from Theorem 4.2 and Lemma 4.8. This proves the SRG case.

In the DRT case, we assume that two of the scalars r, s, or t are equal. If r = 0, then either s = 0 and t ∈ {a, c}, or t = 0 and s ∈ {a, c}. In both of these cases we see that either r, s, t ∈ {0, a} or r, s, t ∈ {0, c}. Hence, C P (r, s, t) has the same construction as the code C(M ) from the preceding section. So by Theorem 3.3, it follows that wt(g i ∩ = g j ) is even. If r ∈ {a, c}, then by assumption and Theorem 4.2, s = t ∈ {0, b} and thus Q I (r, s, t) is symmetric. Therefore, wt(q i ∩ = q j ) = 0 or 2 and so wt(g i ∩ = g j ) is even.

Next, we consider r = b. By assumption and Theorem 4.2, either s = b or t = b.

We may assume that s = b and t ∈ {a, c} (the proof of s ∈ {a, c} and t = b is done analogously). Due to the symmetry between a and c as elements of I, we can choose t = a. As r, s, t ∈ {a, b}, we can view the rows q i and q j of Q I (r, s, t) having the following entries:

where A, B, C, and D are the numbers of coordinates where q i and q j satisfy the entries in the corresponding column. Then wt(q i ∩ = q j ) = B + C. By regularity of DRTs, we obtain A + B = A + C. Hence B = C and thus B + C is even. Therefore, wt(g i ∩ = g j ) is even. Hence, we have shown that if two of the scalars r, s, or t are equal, then wt (g i ), wt (ag i ), wt(g i ∩ = g j ), wt(g i ∩ = ag j ), and wt(ag i ∩ = ag j ) are even. By Lemma 2.3, all codewords of C P (r, s, t) have even weights. Hence, C P (r, s, t) is Type IV. The proof of the reverse direction is immediate from Theorem 4.2 and Lemma 4.9. This proves the DRT case.

Theorem 4.5. Let C B (r, s, t) be a QSD code.

• In the SRG case, C B (r, s, t) is Type IV if and only if r = 0.

• In the DRT case, C B (r, s, t) is Type IV if and only if one scalar is zero and the remaining two are equal.

Proof. Let c be a codeword of C B (r, s, t). Then c has one of the following forms:
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We can view the rows q i-1 and q j-1 of Q I (r, s, t) having the following entries:

q i-1 : r q j-1 s s t t q j-1 :

where A, B, C, D, E, and F are the numbers of coordinates where q i-1 and q j-1 satisfy the entries in the corresponding column. The entries q j-1 and q i-1 denote the components in the j -1 and i -1 positions of q i-1 and q j-1 , respectively. Note that q i-1 , q j-1 ∈ {s, t}.

In the SRG case, we assume r = 0. Then by regularity of SRGs,

Hence, D = E and therefore wt(q i-1 ∩ = q j-1 ), which equals either 0 or D + E, is even. This proves that wt(g i ∩ = g j ) is even. By regularity of SRGs and self-orthogonality of C B (r, s, t), wt(a ∩ = q j-1 ) ∈ {0, κ, n -κ -1, n -1} as this weight equals the number of coordinates in q j-1 with entries from {b, c}. Since n is odd and κ is even, wt(a ∩ = q j-1 ) is even. This proves that wt(g 1 ∩ = g j ) is even. Hence, we have shown that wt (g i ), wt (ag i ), wt(g i ∩ = g j ), wt(g i ∩ = ag j ), and wt(ag i ∩ = ag j ) are even. By Lemma 2.3, all codewords of C B (r, s, t) have even weights. Hence, C B (r, s, t) is Type IV. The proof of the reverse direction is immediate from Theorem 4.2 and Lemma 4.8. This proves the SRG case.

In the DRT case, we assume that one scalar is zero and the remaining two are equal. By Theorem 4.2, the two nonzero scalars are from {a, c}. Hence, r, s, t ∈ {0, a} or r, s, t ∈ {0, c}. Therefore, wt(q i-1 ∩ = q j-1 ) = 0. Therefore, wt(g i ∩ = g j ) is even. If r, s, t ∈ {0, a}, then wt(a ∩ = q j-1 ) = 0. If r, s, t ∈ {0, c}, then wt(a ∩ = q j-1 ) is even by self-orthogonality. This proves that wt(g 1 ∩ = g j ) is even. Hence, we have shown that wt (g i ), wt (ag i ), wt(g i ∩ = g j ), wt(g i ∩ = ag j ), and wt(ag i ∩ = ag j ) are even. By Lemma 2.3, all codewords of C B (r, s, t) have even weights. Hence, C B (r, s, t) is Type IV. The proof of the reverse direction is immediate from Theorem 4.2 and the proof of Lemma 4.9. This proves the DRT case.

Table 6 summarizes the possible existence of QSD and Type IV codes obtained from SRGs and DRTs and formed by the pure or the bordered construction. The symbol " -" indicates that no self-orthogonal codes exist.

Examples of Type IV codes

We construct Type IV (N, d) codes over I of length N and minimum distance d satisfying the conditions in Theorems 4.4 and 4.5. The first four columns of Tables 7 and8 summarize these constructions. The graphs with parameters (n, κ, λ, µ) can be found in [12,17] and in the SRGs database in Magma [START_REF] Bosma | The Magma algebra system I: The user language[END_REF]. Let R be one of the Self-orthogonal codes from two class association schemes 25 C B (a, 0, a) (56, 12) ≥ 14 F 4 [11] generalized in four ways. Different systematic construction methods, e.g., constructions similar to those described in [START_REF] Shi | Self-dual codes and orthogonal matrices over large finite fields[END_REF], could be studied. Other classes of combinatorial matrices, e.g., incidence matrices of block designs, could be considered. More algebraic techniques, like double circulant codes, or quasi-cyclic codes for instance should be tried to the same end. Last but not least, this technique could be applied to other non-unital rings of [START_REF] Fine | Classification of finite rings of order p 2[END_REF], or to the non-unital rings of order 6 of [START_REF] Alahmadi | Quasi self-dual codes over non-unital rings of order six[END_REF].