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THE PARABOLIC-PARABOLIC KELLER-SEGEL MODEL IN R
2∗

VINCENT CALVEZ† AND LUCILLA CORRIAS‡

Abstract. This paper is devoted mainly to the global existence problem for the two-dimensional
parabolic-parabolic Keller-Segel system in the full space. We derive a critical mass threshold below
which global existence is ensured. Carefully using energy methods and ad hoc functional inequalities,
we improve and extend previous results in this direction. The given threshold is thought to be the
optimal criterion, but this question is still open. This global existence result is accompanied by a
detailed discussion on the duality between the Onofri and the logarithmic Hardy-Littlewood-Sobolev
inequalities that underlie the following approach.
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1. Introduction
Within living organisms, cells may communicate and therefore interact through

chemical signals. This signaling pathway is of crucial importance for cell particles to
move in the right direction or to organize themselves spatially. Biological challenges
involving this phenomenon are numerous. It is known to be so actually in immunology
and inflammatory processes, in bacterial growth colonies and at some key stages
of embryonic development, for instance. Among mathematical models describing
spatial organization of biological population through chemical signals ([27, 10, 15]),
we highlight the following Patlak-Keller-Segel (PKS) model for chemotaxis ([21, 26]:)















∂n

∂t
= κ∆n−χ∇·(n∇c), t>0, x∈Ω,

ε
∂c

∂t
= η∆c+βn−αc, t>0, x∈Ω,

(PKS)

where n denotes the density of a cell population and c is the concentration of a
chemical signal attracting the cells. The parameters κ, χ and β are given positive
constants, while ε, η and α are given non-negative constants determining the type of
evolution undergone by c. The set Ω is either a bounded domain in R

d or the whole
space R

d. In any case, boundary conditions or decay conditions at infinity have to
be given for the densities n and c together with the initial conditions n(·,0)=n0 and
c(·,0)= c0 if ε>0.

The modeling interest of such a system is to exhibit a phenomenon of “critical
mass” at least in dimension d=2. In a system like (PKS), the coupling between
the cell equation and the chemical equation is a positive feedback: the more cells
are aggregated, the more they produce a signal attracting other cells. This process
is counter-balanced by pure diffusion of the cells, but if the amount of cells is suf-
ficient, this non-local chemical interaction dominates and cells attract themselves.
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Thus model (PKS) provides a simple phenomenological description of an instability
broadly encountered in biology. The starvation stage of the slime mold amoebae Dic-
tyostelium discoideum for instance is governed by this process, driving the population
of unicellular organisms into a multicellular one ([28, 18]). More recently, a (PKS)-
type model has been suggested to solve a remarkable pattern formation issue in the
human brain [20].

It is not overemphasizing to say that system (PKS) has been the subject of a
huge quantity of mathematical analysis over the last thirty years. The results of all
these investigations can be simply summarized by saying that the global existence
or the blow-up of solutions of (PKS) is a space dimension dependent phenomenon.
In particular, in dimension d=2, the above biological instability has been precisely
described mathematically at least when ε=α=0. Indeed, for the parabolic-elliptic
system it has been shown that there exists a threshold for the initial mass M =
∫

Ω
n0(x) dx. For values of M under this threshold the solution exists globally in time,

while above this threshold the solution blows up in finite time ([2, 6], [16, 24]). The
modality of the blow-up has also been analyzed [17], as well as the critical case, i.e.
when the initial mass M equals the threshold value ([5, 3]).

Let us mention that in dimension d≥3 a similar critical phenomenon has been in-
vestigated. In this case, the L

d
2 -norm of the initial density n0 plays the same role as the

initial mass M in dimension d=2. Indeed, in [11, 12, 13] the authors proved the global
existence of weak solution of system (PKS) of parabolic-parabolic, parabolic-elliptic
and parabolic degenerate type under a smallness condition on ‖n0‖Ld/2 . However, up
to our knowledge, blow-up for large ‖n0‖Ld/2 is still open, and we conjecture that no
critical threshold exists as in dimension 2.

Despite all these results, mathematical open problems around (PKS) still persist,
especially for the full parabolic-parabolic system (PKS) (ε>0). Let us observe that,
whenever ε=0 (quasi-stationary hypothesis for the chemical c), the system reduces to
a single parabolic equation with a quadratic nonlocal nonlinearity, c being expressed
as a convolution between n and a kernel. On the other hand, when ε>0 the full
parabolic-parabolic system is more difficult to handle, since the equations are strongly
coupled. However, we will see that in this case the densities n and c play dual roles
in some sense (as is highlighted by the dual inequalities used throughout this paper),
providing some interesting features and structure to the system (PKS).

The goal of this paper is to tackle the global existence problem for the full
parabolic-parabolic system (PKS) with ε>0, η >0, α≥0 in dimension d=2 and in
the whole space R

2. Indeed, for this problem the optimal threshold of M for the
global existence of solutions has not been found yet. A result exists in this direction
in [23], but it does not give the exact critical mass. Here we obtain the optimal critical
mass value using the energy method ([16, 2, 6]) and ad hoc functional inequalities on
R

2. Once again, the free energy functional

E(t)=

∫

R2

n(x,t)logn(x,t) dx−
∫

R2

n(x,t)c(x,t) dx

+
1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

comes out to be the key ingredient leading to the global existence of solutions under
the optimal smallness condition for the mass. Indeed, E(t) together with its evolution
equation provide a gallery of a priori estimates on the solutions (n,c) and we shall
make use of each of them. For instance, they allow to prove that the cellular flux
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in (1.1) is n
(

∇(logn−c)
)

∈L1(R+
loc×R

2). Therefore, the equation on n holds in the
distribution sense. Surprisingly, no specific restrictions on c0 are required even for the
fully parabolic-parabolic case under consideration, except of course suitable regularity
of the initial data.

It is convenient to nondimensionalize system (PKS) through the following change
of variables:

t→ τ =κt, n(x,t)→ ñ(x,τ)=
βχ

ηκ
n

(

x,
τ

κ

)

, c(x,t)→ c̃(x,τ)=
χ

κ
c
(

x,
τ

κ

)

.

Therefore, the system under consideration will be














∂tñ = ∆ñ−∇·(ñ∇c̃), t>0, x∈R
2,

ε̃∂tc̃ = ∆c̃+ ñ− α̃c̃, t>0, x∈R
2,

ñ(·,0) = ñ0(·)= βχ
ηκ n0(·), c̃(·,0)= c̃0(·)= χ

κ c0(·), x∈R
2.

(1.1)

with ε̃= εκ
η >0 and α̃= α

η ≥0. The tilde sign will be removed, for clarity. More-

over, fast decay conditions at infinity for n and c have to be associated with (1.1).
Concerning the cell density, this decay will be expressed in terms of moments of n.

After this change of variables, the only parameters of the system to deal with are
the total mass of cells M =

∫

R2 n0(x) dx, which is conserved over time, the inverse
diffusion rate of the chemical ε and the chemical degradation rate α≥0. The latter
seems to play no essential role, unless it induces slightly technical difficulties in the
estimates.

Our main results are the followings.

Theorem 1.1 (Global existence). Assume ε>0 and α≥0. Let (n0,c0) be non-
negative initial conditions for the parabolic-parabolic system (1.1) such that

(H1) n0∈L1(R2)∩L1(R2,log(1+ |x|2)dx) and n0 logn0∈L1(R2);

(H2) c0∈H1(R2) if α>0 while c0∈L1(R2) and |∇c0|∈L2(R2) if α=0;

(H3) n0c0∈L1(R2).
Assume in addition that the mass is sub-critical, i.e., M <8π. Then there exists a
global weak non-negative solution (n,c) of (1.1) such that

n∈L∞((0,∞);L1(R2))∩L∞
loc((0,∞);L1(R2,log(1+ |x|2)dx))

and nlogn∈L∞
loc((0,∞);L1(R2));

c∈L∞
loc((0,∞);H1(R2)) if α>0;

c∈L∞
loc((0,∞);L1(R2)) and |∇c|∈L∞

loc((0,∞);L2(R2)) if α=0;

∂tc∈L2
loc((0,∞);L2(R2)) and nc∈L∞

loc((0,∞);L1(R2));

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds<∞ ∀t>0;

E(t)+

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds+ε

∫ t

0

∫

R2

|∂tc(x,s)|2 dxds≤E(0).
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Moreover, n∈L∞
loc((0,∞);Lp(R2)) for any 1<p<∞ (regularizing effect).

Let us observe that the global existence result given in Theorem 1.1 holds true
under the optimal condition n0∈L1(R2,log(1+ |x|2)dx). This is weaker than the
hypothesis n0∈L1(R2,|x|2dx) used in [6] for the global existence result in the case ε=
α=0. As a matter of fact, we can adapt Theorem 1.1 to the case ε=α=0 and slightly
improve the result in [6], (see Appendix A.3). On the other hand, the hypothesis
n0∈L1(R2,|x|2dx) remains still necessary to obtain a blow-up result for the parabolic-
elliptic system (1.1). Nevertheless, we can extend the blow-up result in [6] to the case
α≥0 as follows. The same blow-up result for the full parabolic-parabolic system is
still, to our knowledge, an open problem.

Theorem 1.2 (Blow-up). Assume ε=0 and α≥0. Let n0 be a non-negative
L1(R2) function with super-critical mass, i.e. M >8π and finite second momentum
I0. Let n be a non-negative smooth solution of (1.1) with c=Bα ∗n and Bα the
Bessel kernel, and let [0,T ∗) be the maximal interval of existence. Then, there exists
a positive universal constant C such that if

α

∫

R2

|x|2n0(x) dx≤ 1

4C2M
(M −8π)2, (1.2)

the solution blows up and T ∗≤ 2πI0

M(M−8π−2C
√

αMI0)
.

The paper is organized as follows. In Section 2 we give a set of technical tools to
be used in the sequel and we describe briefly the dual strategies that give the required
a priori estimates. In Section 3 we derive the a priori estimates both in cases α>0 and
α=0 (among which is the key equi-integrability estimate) from the so-called Onofri’s
inequality on the whole space R

2. In Section 4 we re-derive those estimates using the
dual strategy based on the logarithmic Hardy-Littlewood-Sobolev inequality. Section
5 is devoted to the proof of the regularizing effect acting on the solutions. Section 6 is
a short description of the regularization procedure which leads to the rigorous proof
of global existence when combined with the a priori estimates derived in Sections 3
and 4. Blow-up of the solutions in the special case ε=0 is shown for a super-critical
mass in Section 7, under a smallness condition on α

∫

R2 |x|2n0(x) dx. Finally, several
complementary results are given for the sake of completeness in Section A.

In the sequel, we will denote by C every positive constant that may vary from
line to line in the computations. Only the dependence on crucial parameters will be
written explicitly. Moreover, (u)+ and (u)− will denote the positive and negative part
of u as usual, while L1

+(R2) :={f ∈L1(R2), f ≥0}.
2. The free energy and the moments control
It is well known that system (1.1) is equipped with the following free energy

functional:

E(t)=

∫

R2

n(x,t)logn(x,t) dx−
∫

R2

n(x,t)c(x,t) dx

+
1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx. (2.1)

In the kinetic equation literature, the first term
∫

R2 n(x,t)logn(x,t)dx is usually re-
ferred to as the physical entropy. However, here it will be more convenient and natural
to define the entropy in the line of [9] as

E(n;c)(t)=

∫

R2

(n(x,t)logn(x,t)−n(x,t)c(x,t)) dx, (2.2)
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including also the potential energy term
∫

R2 n(x,t)c(x,t)dx. On the other hand, the
potential energy term has also to be included in the chemical energy associated to the
elliptic equation −∆c+αc=n, i.e.

Fα(c;n)(t)=
1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx−
∫

R2

n(x,t)c(x,t) dx, α≥0.

(2.3)
Thereby, the free energy E(t) is a superposition of (2.2) and (2.3), thus reflecting the
strongly coupled property of system (1.1). The quantity E(t) will play a fondamental
role in the research of a priori estimates starting from the following proposition.

Proposition 2.1. Let (n,c) be any non-negative and sufficiently smooth solution of
(1.1) with finite free energy (2.1). Then E(t) decreases along the trajectories of the
dynamical system associated to (1.1), since

d

dt
E(t)=−

∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx−ε

∫

R2

|∂tc(x,t)|2 dx≤0. (2.4)

Proof. The equation in n can be written as ∂tn=∇·
(

n∇(logn−c)
)

. Then, using
mass conservation, we obtain

∫

R2

∂tn(x,t) (logn(x,t)−c(x,t)) dx=
d

dt

∫

R2

n(x,t)logn(x,t) dx

−
∫

R2

∂tn(x,t) c(x,t) dx

−
∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx. (2.5)

On the other hand, testing the equation in c against ∂tc, we have

ε

∫

R2

|∂tc(x,t)|2 dx=− d

dt

∫

R2

|∇c(x,t)|2
2

dx+

∫

R2

n(x,t) ∂tc(x,t) dx

−α
d

dt

∫

R2

c2(x,t)

2
dx.

(2.6)

We conclude by summing (2.5) and (2.6).

Equation (2.4) measures the dissipation of the free energy due to the entropy

production term

I(t)=

∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx (2.7)

and to the chemical production term ε
∫

R2 |∂tc(x,t)|2 dx. Let us observe, however,
that any weak solution of (1.1) is not expected to satisfy (2.4) but the inequality

E(t)+

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds+ε

∫ t

0

∫

R2

|∂tc(x,s)|2 dxds≤E(0),

(2.8)
as under the quasi-stationary hypothesis ε=α=0 (see [6]).

The time-monotonicity of E(t) given by (2.4) provides us with an upper control
of the entropy (2.2). But a control from below of the entropy is also needed in order
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to obtain a priori estimates on the solution and then the global existence result. In
the case of the parabolic-parabolic system (1.1) on a bounded domain Ω⊂R

2, the
strategy usually followed uses essentially two primary tools: a minimization principle
with respect to n of the entropy E(n;c) and the Moser-Trudinger inequality. Moreover,
their combination gives the a priori estimates under the exact critical mass value for
M (see [2, 7], [16, 24]).

Concerning system (1.1) in the whole space R
2 under interest, the first result we

give here is that the same method above can be followed. However, in order to do so,
one has firstly to reinforce the space decay of c as |x|→+∞ in order to minimize the
entropy E(n;c) with respect to n and secondly to employ an ad hoc Moser-Trudinger
type inequality, i.e. Onofri’s inequality [25].

The second result is that an alternative strategy, dual in some sense to the previous
one, can be also adopted. The technical tools to be employed are: the minimization
with respect to c of the chemical energy Fα(c;n) (2.3) and the logarithmic Hardy-
Littlewood-Sobolev inequality (HLS in the sequel, see Lemma 4.1 and [8]) if α=0, or
a modified version of this inequality if α>0 (see Lemma 4.2). This method is new,
and it is somewhat the extension to the parabolic-parabolic system (1.1) of what was
done in [6] for the parabolic-elliptic system (1.1) with ε=α=0. Indeed, in this case
the free energy reads as

E(t)=

∫

R2

n(x,t)logn(x,t) dx− 1

2

∫

R2

n(x,t)c(x,t) dx, (2.9)

with the concentration of the chemical given by c(x,t)=− 1
2π

∫

R2 log |x−y|n(y,t) dy,
and hence it is well adapted for applying the HLS inequality.

No matter the method followed to obtain the necessary a priori estimates, we are
in any case lead to consider the following modified free energy functional:

EH(t)=E(t)−
∫

R2

n(x,t)logH(x) dx

=E(n;c+logH)+
1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx,

where

H(x)=
1

π

1

(1+ |x|2)2 (2.10)

has been chosen so that JS :=4πH is the Jacobian of the usual stereographic projec-
tion on the sphere S : R

2∪{∞}→S
2 and

∫

R2 H(x)dx=1, (see [22]).

The introduction of the function H will appear to the reader more natural in
Sections 3 and 4 where the two methods will be developed respectively. Here, let
us observe that, by opposition to E(t), the functional EH(t) is not time decreasing.
However, we can control its time-growth by the following computation. We have

d

dt

∫

R2

n(x,t)logH(x) dx=−
∫

R2

n(x,t)∇logH(x) ·∇(logn(x,t)−c(x,t)) dx

=2

∫

R2

n(x,t)∇log(1+ |x|2) ·∇(logn(x,t)−c(x,t)) dx
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and using equation (2.4), we obtain

d

dt
EH(t)=−

∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx−ε

∫

R2

|∂tc(x,t)|2 dx

−2

∫

R2

n(x,t)∇log(1+ |x|2) ·∇(logn(x,t)−c(x,t))

=−
∫

R2

n(x,t)|∇(logn(x,t)−c(x,t)+log(1+ |x|2))|2 dx−ε

∫

R2

|∂tc(x,t)|2 dx

+

∫

R2

n(x,t)|∇log(1+ |x|2))|2 dx,

where

∫

R2

n(x,t)
∣

∣∇log(1+ |x|2)
∣

∣

2
dx=

∫

R2

4|x|2
(1+ |x|2)2 n(x,t) dx≤M.

As a consequence, EH(t) grows at most linearly in time.

Before concluding this preliminary section, we state the minimization lemmas
for the entropy and the chemical energy respectively. Moreover, we derive also some
bounds for the moments of the density n in term of the entropy production (2.7) that
is shown to be locally integrable in time in the sequel (see Theorem 3.2).

Lemma 2.1 (The entropy minimization). Let ψ be any function such that eψ ∈
L1(R2) and denote n=Meψ

(

∫

R2 eψ dx
)−1

, with M a positive arbitrary constant. Let

E : L1
+(R2)→R∪{∞} be the entropy functional

E(n;ψ)=

∫

R2

(n(x)logn(x)−n(x)ψ(x)) dx

and let RE : L1
+(R2)→R∪{∞} defined by

RE(n|n)=

∫

R2

n(x)log
(

n(x)/n(x)
)

dx

be the relative (to n) entropy. Then E(n;ψ) and RE(n|n) are finite or infinite in the
same time and for all n in the set U ={n∈L1

+(R2),
∫

R2 n(x) dx=M} and it holds
true that

E(n;ψ)−E(n;ψ)=RE(n|n)≥0. (2.11)

The entropy minimization Lemma 2.1 is now a classical lemma, and the proof
can be found for example in [9], where a more general class of entropy functionals
including E(n;ψ) is considered. Anyway, this lemma being of primary importance
and for the sake of completeness, we will give the proof in Appendix A.1.

Lemma 2.2 (The chemical energy minimization). Assume α≥0, and let f be an
L1(R2) function such that

(A1) if α>0 then f ≥0 and f logf ∈L1(R2);
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(A2) if α=0 then f ∈L1(R2,log(1+ |x|2)dx),
∫

R2 f(x) dx=0 and f can be decom-
posed as f =f1 +f2 with f1≥0, f1∈L1

loc(R
2), f1 logf1∈L1(R2) and f2∈

L2(R2).
Finally, let us denote

c(x)=

{

(Bα ∗f)(x) if α>0,
(E2 ∗f)(x) if α=0,

(2.12)

where ∗ denotes space convolution, Bα denotes the Bessel kernel Bα(z)=
1
4π

∫ +∞
0

1
t e−

|z|2

4t −αt dt and E2(z)=− 1
2π log |z| is the fundamental solution of the

Laplace’s equation in R
2. Then, c∈H1(R2) when α>0, while |∇c|∈L2(R2) when

α=0, with

∇c(x)=

{

(∇Bα ∗f)(x) if α>0,
(∇E2 ∗f)(x) if α=0.

(2.13)

Moreover, if α>0 then for all c∈H1(R2), the chemical energy Fα(c;f) is finite and
satisfies

Fα(c;f)−Fα(c;f)=
1

2

∫

R2

|∇(c−c)(x)|2 dx+
α

2

∫

R2

(c−c)2(x) dx≥0, (2.14)

while if α=0 then for all c such that |∇c|∈L2(R2), the chemical energy F0(c;f) is
finite and satisfies

F0(c;f)−F0(c;f)=
1

2

∫

R2

|∇(c−c)(x)|2 dx≥0. (2.15)

Let us observe that whenever f ∈L2(R2) in (2.12) the chemical energy minimiza-
tion Lemma 2.2 can be obtained easily by applying the variational method, at least
for α>0. However, we want to use here minimal hypotheses on f , and therefore the
proof becomes a little more technical, expecially when α=0. Again, for the sake of
completeness, the proof is given in Appendix A.2.

Lemma 2.3 (Moment Lemma). Let c be a given smooth function. Let n be any
non-negative and sufficiently smooth solution of ∂tn=∆n−∇·(n∇c), with fast decay
at infinity and total mass M . Then, for any δ >0, we have the following bounds for
the evolution of the moments of n:

∫

R2

n(x,t)log(1+ |x|2) dx≤
∫

R2

n0(x)log(1+ |x|2) dx+
M

2δ
t

+
δ

2

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds; (2.16)

∫

R2

|x|n(x,t) dx≤
∫

R2

|x|n0(x) dx+
M

2δ
t

+
δ

2

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds; (2.17)

∫

R2

|x|2n(x,t) dx≤2

∫

R2

|x|2n0(x) dx+2 t

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds.

(2.18)
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Proof. Writing the equation in n as ∂tn=∇·
(

n∇(logn−c)
)

, it follows that

d

dt

∫

R2

n(x,t)φ(x) dx=−
∫

R2

n(x,t)∇φ(x) ·∇(logn(x,t)−c(x,t)) dx

≤ 1

2δ

∫

R2

∣

∣∇φ(x)
∣

∣

2
n(x,t) dx+

δ

2

∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx,

with δ >0 arbitrary. Taking successively φ(x)= log(1+ |x|2) and φ(x)= |x|, observing
that with the first choice of φ we have

|∇φ(x)|=
∣

∣

∣

∣

2x

1+ |x|2
∣

∣

∣

∣

≤1,

and using the mass conservation property, we proved inequalities (2.16) and (2.17).
Inequality (2.18) follows in a similar way, since for φ(x)= |x|2 it holds true that

d

dt

∫

R2

|x|2n(x,t) dx

=−2

∫

R2

n(x,t) x ·∇(logn(x,t)−c(x,t)) dx

≤2

(
∫

R2

|x|2n(x,t) dx

)1/2(
∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx

)1/2

. (2.19)

Thereby, integrating (2.19), we obtain

∫

R2

|x|2n(x,t) dx

≤
[

(
∫

R2

|x|2n0(x) dx

)1/2

+

∫ t

0

(
∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dx

)1/2

ds

]2

≤2

∫

R2

|x|2n0(x) dx+2 t

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dx ds,

and the lemma is proved.

The proof of the previous lemma is based uniquely on the equation in n and
on the specific expression of the weight function defining the moment. The evolution
followed by c doesn’t play any role, and the lemma holds true also for the (PKS) system
with non-negative coefficients ε, η and α. Of course, one can estimate the evolution
of other moments than those considered in the lemma. Here we have considered
that which is most useful and used. In particular, the local-in-time bound of the
weighted L1(R2,log(1+ |x|2)dx) norm of n, together with the following lemma, will
be of primary importance in obtaining the key a priori bounds and the key equi-
integrability of n, giving the global existence with a regularizing effect.

Lemma 2.4. Let ψ be any function such that eψ ∈L1(R2), and let f be a non-negative
function such that (f 1{f≤1})∈L1(R2)∩L1(R2,|ψ(x)|dx). Then there exists a con-
stant C such that

∫

R2

f(x)(logf(x))− dx≤C−
∫

{f≤1}
f(x)ψ(x) dx. (2.20)
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Proof. Let us denote v =f 1{f≤1}, m=
∫

R2 v(x) dx<∞ and v(x)=

meψ(x)(
∫

R2 eψ(x) dx)−1. Then, by the entropy minimization Lemma 2.1 we have

∫

R2

(v(x)logv(x)−v(x)ψ(x)) dx≥
∫

R2

(v(x)logv(x)−v(x)ψ(x)) dx

=mlogm−mlog

(
∫

R2

eψ(x) dx

)

=C,

which gives (2.20) thanks to the identity
∫

R2 f(x)(logf(x))− dx=−
∫

R2 v(x)logv(x) dx.

3. A priori estimates from the Moser-Trudinger-Onofri inequality
In [25] Onofri obtained the following sharp inequality on the sphere S

2,

∫

S2

ev(s) ds≤ exp

{
∫

S2

(

v(s)+
1

4
|∇0v(s)|2

)

ds

}

, (3.1)

for all functions v∈L1(S2,ds) such that |∇0v|∈L2(S2,ds). Here, ds is the uniform
normalized surface measure on S

2 so that
∫

S2 ds=1. Moreover ∇0 is the covari-

ant gradient with respect to the metric ds2
0 =dθ2 +sin2θ dφ2, (θ,φ) being the polar

coordinates, i.e.

|∇0v|2 =

(

∂v

∂θ

)2

+(sinθ)−2

(

∂v

∂φ

)2

.

With the help of the stereographic projection S, the same inequality can be stated
equivalently on R

2 as follows

Lemma 3.1 (Onofri’s inequality in R
2). Let H be defined as in (2.10). Then

∫

R2

eu(x)H(x) dx≤ exp

{
∫

R2

u(x)H(x) dx+
1

16π

∫

R2

|∇u(x)|2 dx

}

, (3.2)

for all functions u∈L1(R2,H(x)dx) such that |∇u(x)|∈L2(R2,dx).

Proof. It is sufficient to apply the Onofri’s inequality (3.1) to the function eũ with
ũ=u◦S−1; we get

∫

R2

eu(x)H(x) dx=

∫

S2

eũ(s) ds≤ exp

{
∫

S2

(

ũ(s)+
1

4
|∇0ũ(s)|2

)

ds

}

=exp

{
∫

R2

u(x)H(x) dx+
1

16π

∫

R2

|∇u(x)|2 dx

}

,

since |∇0ũ(s)|2 =(4πH(x))−1|∇u(x)|2 and ds=H(x)dx.

Thanks to inequality (3.2), we are now able to follow the first strategy giving a
priori estimates, namely the minimization of E(t) with respect to n. More precisely,
first we apply the entropy minimization Lemma 2.1 with ψ =(1+δ)c+logH and then
we make use of the Onofri’s inequality (3.2) with u=(1+δ)c. Working in this way, we
are able to obtain the optimal threshold value, namely 8π, for the mass M . Observe
that this is the same threshold as the one obtained in [6] for the parabolic-elliptic
(PKS) system with ε=α=0 over R

2, as would be expected. Moreover, we optimize
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the result given in [23], where the author obtained the global existence of non-negative
solutions (n,c) of (1.1) over R

2 under the smallness condition M <4π. This is due to
the fact that in [23] the author used Brezis-Merle type inequality for the heat equation
on R

2 instead of a Moser-Trudinger type inequality as (3.2).

We give the announced estimates first formally in the following theorem. The
procedure leading to the rigorous existence result will be given later in Section 6.

Theorem 3.2 (A priori estimates). Assume ε>0 and α≥0. Under the same
hypotheses (H1)-(H2)-(H3) as in Theorem 1.1 and for sub-critical mass M <8π, let
(n,c) be a non-negative solution of (1.1), supposed sufficiently smooth with fast decay
as |x|→+∞. Then, nlogn∈L∞(0,T ;L1(R2)), n∈L∞(0,T ;L1(R2,log(1+ |x|2)dx)),
for any T >0, and the following a priori estimates hold true for all t>0:

(i)
∫

R2 n(x,t)(logn(x,t))+ dx≤C(1+ t);

(ii)
∫

R2 n(x,t)c(x,t) dx≤C(1+ t);

(iii) ‖c(t)‖2
H1(R2)≤C(1+ t) if α>0 , and ‖∇c(t)‖2

L2(R2)≤C(1+ t) if α=0;

(iv) E(t)≥−C(1+ t);

(v) EH(t)≥−C(M,α) if α>0 , and EH(t)≥−C(1+ t) if α=0;

(vi)
∫ t

0

∫

R2 n(x,s)|∇(logn(x,s)−c(x,s))|2dxds≤E(0)+2
∫

R2 n0(x)log(1+ |x|2)dx+
C(1+ t);

(vii) ε
∫ t

0

∫

R2 |∂tc(x,s)|2 ds≤C(1+ t).

Proof. Let us consider first the case α>0. Later we will re-
quire δ >0 and δ̃ >0 to be sufficiently small, and let us define

n = Me(1+δ)c(x,t)H(x)

(
∫

R2

e(1+δ)c(x,t)H(x) dx

)−1

. We observe that, thanks

to the Onofri’s inequality (3.2), c(t)∈H1(R2) is sufficient in order to have n well
defined and n(t)∈L1(R2). Then, we can apply the Entropy Lemma 2.1 with
ψ =(1+δ)c+logH to obtain

E(n;(1+δ)c+logH)≥E(n;(1+δ)c+logH)

=M logM −M log

(
∫

R2

e(1+δ)c(x,t)H(x) dx

)

. (3.3)

Furthermore, applying Lemma 3.1 with u=(1+δ)c to the last term in the right hand
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side of (3.3), we have for the modified free energy functional EH(t) (2.10),

EH(t)=E(n;(1+δ)c+logH)+δ

∫

R2

n(x,t)c(x,t) dx

+
1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

≥M logM +
1

2

(

1−M
(1+δ)2

8π

)
∫

R2

|∇c(x,t)|2 dx−M(1+δ)

∫

R2

c(x,t)H(x) dx

+δ

∫

R2

n(x,t)c(x,t) dx+
α

2

∫

R2

c2(x,t) dx(3.4)

≥ 1

2

(

1−M
(1+δ)2

8π

)
∫

R2

|∇c(x,t)|2 dx

+

(

α

2
−M(1+δ)

δ̃

2

)

∫

R2

c2(x,t) dx+M logM

+δ

∫

R2

n(x,t)c(x,t) dx−M(1+δ)
1

2δ̃

∫

R2

H2(x) dx.(3.5)

Next, we choose δ >0 small enough such that M <
8π

(1+δ)2
and δ̃ >0 such that α>

M(1+δ)δ̃. This is possible because M is less than the critical mass value 8π. As a
consequence, since EH(t) grows at most linearly, (3.5) gives us (ii), (iii) and (v).

When α=0, we have to estimate differently the term
∫

R2 c(x,t)H(x) dx in (3.4).
That can be done using the following identity,

∫

R2

c(x,t) dx=
1

ε
Mt+

∫

R2

c0(x) dx, (3.6)

and the fact that H is bounded. Again, whenever |∇c(·,t)|∈L2(R2), we have that n
is well defined, n(·,t)∈L1(R2), and we can obtain (ii), (iii) and (v) as before.

From now on, let α≥0. Proposition 2.1, the Moment Lemma 2.3 and the defini-
tion (2.10) of H give us the following estimate:

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds

≤E(0)−E(t)=E(0)−EH(t)−
∫

R2

n(x,t)logH(x) dx

=E(0)−EH(t)+M logπ+2

∫

R2

n(x,t)log(1+ |x|2) dx

≤E(0)−EH(t)+M logπ+2

∫

R2

n0(x)log(1+ |x|2) dx+
1

δ
Mt

+δ

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds.

Choosing δ <1 and using the lower bound (v) on EH(t), we obtain (vi). As
a consequence of (vi) and of the Moment Lemma 2.3 again, we have that n∈
L∞(0,T ;L1(R2,log(1+ |x|2)dx)).

In the same way, we obtain (vii) and the lower bound (iv) for the free energy E(t),

since ε
∫ t

0

∫

R2 |∂tc(s)|2 ds≤E(0)−E(t) and E(t)=EH(t)+
∫

R2 n(x,t)logH(x) dx.
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To conclude, it remains to prove (i) and that nlogn∈L∞(0,T ;L1(R2)). This is
a straightforward consequence of Lemma 2.4. Indeed, from the free energy definition
(2.1) and the previous estimates it follows that

−C(1+ t)≤
∫

R2

n(x,t)logn(x,t) dx≤C(1+ t).

Next, applying Lemma 2.4 to n with ψ(x)=−(1+δ)log(1+ |x|2) and arbitrary δ >0
in order to have eψ ∈L1(R2), we have

∫

R2

n(x,t)(logn(x,t))+ dx=

∫

R2

n(x,t)logn(x,t) dx+

∫

R2

n(x,t)(logn(x,t))− dx

≤C(1+ t)+(1+δ)

∫

R2

n(x,t)log(1+ |x|2) dx+C ≤C(1+ t),

and we have obtained (i). Finally, the identity

∫

R2

|nlogn| dx=

∫

R2

nlogn dx+2

∫

R2

n(x,t)(logn(x,t))− dx

gives us that nlogn∈L∞(0,T ;L1(R2)).

Remark 3.3 (The critical case M =8π). We cannot afford the critical mass
value M =8π in the previous Theorem. Indeed this necessarily leads to δ =0 in (3.5).
Then one can prove successively estimates (v), ‖c(t)‖2

L2(R2)≤C(1+ t) if α>0, (vi),

n∈L∞(0,T ;L1(R2,log(1+ |x|2)dx)), (iv), (vii), but we can’t obtain the fundamental
estimates (i), (ii) and (iii).

Remark 3.4 (The case α=0). When α=0, in Theorem 3.2 we can use the
necessary and sufficient hypothesis on c0 to apply the Onofri’s inequality (3.2), i.e. c0∈
L1(R2,H(x)dx) instead of c0∈L1(R2) and |∇c0|∈L2(R2). However, we can obtain
only estimates exponentially increasing in time. Indeed, using the identity

ε
d

dt

∫

R2

c(x,t)H(x) dx=

∫

R2

c(x,t)∆H(x) dx+

∫

R2

n(x,t)H(x) dx

and the computation ∆H(x)= 8
π

[

2|x|2−1
(1+|x|2)4

]

, we have

ε
d

dt

∫

R2

c(x,t)H(x) dx≤4

∫

R2

c(x,t)H(x) dx+
M

π
.

Then,

∫

R2

c(x,t)H(x) dx≤e
4
ε t

(
∫

R2

c0(x)H(x) dx+
M

4π

)

. (3.7)

Plugging (3.7) into (3.4) instead of (3.6), we obtain the assertion.
On the other hand, under the stronger hypothesis c0∈H1(R2), Theorem 3.2 holds

true in the case α=0 with the additional estimate
∫

R2 c2(x,t) dx≤C(1+ t+ t2) that
follows from

ε

2

∫

R2

c2(x,t) dx≤ ε

2

∫

R2

c2
0(x) dx+

∫ t

0

∫

R2

n(x,t)c(x,t) dx.
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Remark 3.5 (The case α=0, corrected solutions). In the peculiar case α=0,
one can develop another sort of solution based on the following chemical deviation

u(x,t) := c(x,t)− M

8π
logH(x),

with M <8π. With this change of variable, it is sufficient to assume initially
c0∈L1(R2,H(x)dx) and ∇

(

c0 + M
4π log(1+ |x|2)

)

∈L2(R2). The second hypothesis is
hardly biologically relevant, because it breaks the non-negativity assumption on c0.
However, it allows us to solve the technical difficulty arising from evaluating the in-
tegral

∫

R2 c(x,t)H(x) dx in (3.4) and to obtain the same estimates as in Theorem 3.2
(except for (iii), where ∇u has to be read instead for ∇c) in the following way.

The function logH satisfies the remarkable equation

−∆logH(x)=2∆log(1+ |x|2)=8πH(x). (3.8)

Therefore, the pair (n,u) satisfies the system

{

∂tn = ∆n−∇·(n∇(u+ M
8π logH)),

ε∂tu = ∆u+n−MH,
(3.9)

which admits the following free energy

Ẽ(t)=

∫

R2

n(x,t)logn(x,t) dx−
∫

R2

n(x,t)u(x,t) dx+
1

2

∫

R2

|∇u(x,t)|2 dx

−M

8π

∫

R2

n(x,t)logH(x) dx+M

∫

R2

u(x,t)H(x) dx. (3.10)

It is worth noticing that the free energy Ẽ(t), up to an additional constant, is exactly
the original free energy E(t) corresponding to the variables (n,c) and that

d

dt
Ẽ(t)=−

∫

R2

n(x,t)|∇(logn(x,t)−c(x,t))|2 dx−ε

∫

R2

|∂tc(x,t)|2 dx. (3.11)

Then, reasoning as before, we write

Ẽ(t)= δ

∫

R2

n(x,t)logn(x,t)dx+(1−δ)E

(

n;
u

(1−δ)
+logH

)

+

(

1−δ− M

8π

)
∫

R2

n(x,t)logH(x)dx+
1

2

∫

R2

|∇u(x,t)|2 dx+M

∫

R2

u(x,t)H(x) dx,

(3.12)

with some degree of freedom 0<δ <1 to be chosen later. We next apply the Entropy
Lemma 2.1 and the Onofri’s inequality (3.2) to obtain

E

(

n;
u

(1−δ)
+logH

)

≥M logM −M log

(
∫

R2

eu(x,t)/(1−δ)H(x)dx

)

≥M logM − M

(1−δ)

∫

R2

u(x,t)H(x) dx− M

16π(1−δ)2

∫

R2

|∇u(x,t)|2 dx.
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Plugging this estimate into the corrected free energy (3.12), we deduce

Ẽ(t)≥ δ

∫

R2

n(x,t)logn(x,t) dx+

(

1−δ− M

8π

)
∫

R2

n(x,t)logH(x) dx

+
1

2

(

1− M

8π(1−δ)

)
∫

R2

|∇u(x,t)|2 dx+(1−δ)M logM.

Choosing 0<δ <1 small enough to ensure

(

1− M

8π(1−δ)

)

>0, the bootstrap argu-

ment goes as previously. From the definition of H, the Moment Lemma 2.3 and the
evolution Equation (3.11) of Ẽ(t), we obtain

δ

∫

R2

n(x,t)logn(x,t) dx+
1

2

(

1− M

8π(1−δ)

)
∫

R2

|∇u(x,t)|2 dx

+(
M

8π
+δ)

∫ t

0

∫

R2

n(x,s)|∇(logn(x,s)−c(x,s))|2 dxds

≤Ẽ(0)+2(1−δ− M

8π
)

∫

R2

n0(x)log(1+ |x|2) dx+(1−δ− M

8π
)Mt.

Finally, it remains to apply Lemma 2.4 as done in Theorem 3.2 to control the contri-
bution

∫

R2 n(logn)− dx.

4. A priori estimates from the logarithmic HLS inequality
In this section we follow the strategy dual to the previous one, starting from the

minimization of the modified free energy functional EH(t) with respect to c and giving
the same a priori estimates. The role of the Onofri’s inequality (3.2) will be played
by the logarithmic HLS inequality below when α=0 and by its generalization to the
Bessel kernel Bα when α>0 (see Lemma 4.2). Therefore, the cases α>0 and α=0
have to be treated separately again.

Lemma 4.1 (Logarithmic Hardy-Littlewood-Sobolev inequality in R
2). For

all non-negative functions f ∈L1(R2) such that
∫

R2 f(x) dx=M ,
∫

R2 f(x)log(1+
|x|2) dx<∞ and

∫

R2 f(x)logf(x) dx is finite, the following inequality holds true:

−
∫

R2

∫

R2

f(x)log |x−y|f(y)dxdy≤ M

2

∫

R2

f(x)logf(x)dx+C(M). (4.1)

The proof of Lemma 4.1 can be found for example in [8]. Let us observe here that
the logarithmic HLS inequality (4.1) written equivalently on S

2 is dual to the Onofri’s
inequality (3.1) in the sense that extremal functions for one inequality determine
extremal functions for the other inequality (see [4], [8]). As an example of this kind of
duality result, we show in Appendix A.4 how one can directly obtain inequality (4.2)
from the Onofri’s inequality on R

2 (3.2).
The generalization of inequality (4.1) to the Bessel kernel Bα (whose definition is

given in Lemma 2.2) is the following Lemma 4.2. One possible interpretation why an
additional “logarithmic” momentum appears in (4.2) is that the homogeneity of the
logarithmic kernel −log |z| has been broken in the Bessel potential Bα (consider for
instance the dilation fλ(x)=λf(λx)). It shares indeed the same singularity for small
|z|, but for large |z|, Bα is a positive exponentially decreasing function. For other
extensions of Lemma 4.1, see [4].
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Lemma 4.2. For all non-negative functions f ∈L1(R2) such that
∫

R2 f(x)dx=M ,
∫

R2 f(x)logf(x)dx is finite and
∫

R2 f(x)log(1+ |x|2) dx<∞, the following inequality
holds true:

∫

R2

∫

R2

f(x)Bα(x−y)f(y)dxdy≤ M

4π

∫

R2

f(x)logf(x)dx

+
M

2π

∫

R2

f(x)log(1+ |x|2)dx+C(M). (4.2)

Proof. The Bessel kernel Bα is a positive radial decreasing function such that

Bα(z)→+∞ when |z|→0 as 1
2π log

(

1
|z|

)

+O(1). We only prove below the upper side

of this asymptotic estimate, which is sufficient for our purpose. Indeed, following [14],

Bα can be written as the sum of the three integrals
∫ r2

0
+

∫ 1

r2 +
∫ +∞
1

, with r= |z|<1.
For the first and third integrals we have, respectively,

1

4π

∫ r2

0

1

t
e−

r2

4t −αt dt≤ 1

4π

∫ r2

0

1

t
e−

r2

4t dt=
1

4π

∫ +∞

1
4

e−y

y
dy <∞

and

1

4π

∫ +∞

1

1

t
e−

r2

4t −αt dt≤ 1

4π

∫ +∞

1

e−αt dt<∞.

The second integral satisfies

1

4π
e−(α+ 1

4 ) log

(

1

r2

)

≤ 1

4π

∫ 1

r2

1

t
e−

r2

4t −αt dt≤ 1

4π
e−r2(α+ 1

4 ) log

(

1

r2

)

. (4.3)

As a consequence of (4.3), lim|z|→0Bα(z)=+∞, and

∫

R2

∫

R2

f(x)Bα(x−y)f(y)dxdy≤
∫

R2

∫

|x−y|≤1

f(x)

(

C− 1

2π
log |x−y|

)

f(y)dxdy

+

∫

R2

∫

|x−y|>1

f(x)Bα(x−y)f(y)dxdy

≤CM2− 1

2π

∫

R2

∫

R2

f(x)log |x−y|f(y)dxdy

+
1

2π

∫

R2

∫

|x−y|>1

f(x)log |x−y|f(y)dxdy.

Using the inequality

log |x−y|≤ 1

2
log2+

1

2
log(1+ |x|2)+

1

2
log(1+ |y|2), (4.4)

it follows that

1

2π

∫

R2

∫

|x−y|>1

f(x)log |x−y|f(y)dxdy≤CM2 +
M

2π

∫

R2

f(x)log(1+ |x|2) dx.

Applying the logarithmic HLS inequality (4.1), we obtain (4.2).
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Proof. [Proof of Theorem 3.2.] We first consider the case α>0. Let 0<δ <1,
to be chosen later, and let c be the quasi-stationary state (2.12) corresponding to
(1−δ)−1n, i.e., c(x,t)= 1

(1−δ) (Bα ∗n(t))(x). Then, by the minimization Lemma 2.2,

the chemical energy (2.3) satisfies

Fα

(

c;
n

1−δ

)

≥Fα

(

c;
n

1−δ

)

=− 1

2(1−δ)

∫

R2

n(x,t)c(x,t) dx, α>0. (4.5)

This is possible as soon as n(t)∈L1(R2) and n(t)logn(t)∈L1(R2). Next, from (4.5)
and Lemma 4.2 we obtain

E(t)=

∫

R2

n(x,t)logn(x,t) dx+(1−δ)Fα

(

c;
n

1−δ

)

+δ

(

1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

)

≥
∫

R2

n(x,t)logn(x,t) dx− 1

2(1−δ)

∫∫

R2×R2

n(x,t)Bα(x−y)n(y,t) dx dy

+δ

(

1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

)

≥
(

1− M

8π(1−δ)

)
∫

R2

n(x,t)logn(x,t) dx− M

4π(1−δ)

∫

R2

n(x,t)log(1+ |x|2) dx

− 1

1−δ
C(M)+δ

(

1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

)

.

Moreover, using the definition (2.10) of H it follows that

E(t)≥
(

1− M

8π(1−δ)

)
∫

R2

n(x,t)logn(x,t) dx+
M

8π(1−δ)

∫

R2

n(x,t)logH(x) dx

+δ

(

1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

)

− 1

1−δ
C(M).

Therefore, the modified free energy EH(t) verifies

EH(t)≥
(

1− M

8π(1−δ)

)
∫

R2

n(x,t)log

(

n(x,t)

H(x)

)

dx

+δ

(

1

2

∫

R2

|∇c(x,t)|2 dx+
α

2

∫

R2

c2(x,t) dx

)

− 1

1−δ
C(M),

and the theorem follows from the above estimate. Indeed, since

∫

R2

n(x,t)log

(

n(x,t)

H(x)

)

dx=

∫

R2

(

n(x,t)

H(x)

)

log

(

n(x,t)

H(x)

)

H(x) dx≥−e−1,

choosing 0<δ <1 such that M <8π(1−δ) and using the facts that EH(t) grows at
most linearly, estimates (iii) and (v) with α>0 of Theorem 3.2 follow. The remaining
estimates of Theorem 3.2 follow as in Section 3.

To conclude, let us consider the case α=0. In this case, the minimization principle
(4.5) does not hold true, since ∇c(t)=∇E2 ∗n(t) does not lie in L2(R2) in general.
Nevertheless we can obtain the required estimates by considering the corrected quasi-
stationary state c(x,t)= 1

(1−δ) (E2 ∗(n(t)−MH))(x), whose gradient does belong to
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L2(R2) by Lemma 2.2. Indeed, choosing f1 =n and f2 =−MH, the hypotheses of
Lemma 2.2 are satisfied as soon as n(t)∈L1(R2), n(t)logn(t)∈L1(R2) and n(t)∈
L1(R2,log(1+ |x|2)dx). Hence,

F0

(

c;
1

1−δ
(n−MH)

)

≥F0

(

c;
1

1−δ
(n−MH)

)

=− 1

2(1−δ)

∫

R2

(n(x,t)−MH(x))c(x,t) dx.

Then, acting as before, we obtain

E(t)=

∫

R2

n(x,t)logn(x,t) dx+(1−δ)F0

(

c;(1−δ)−1(n−MH)
)

+
δ

2

∫

R2

|∇c(x,t)|2 dx−M

∫

R2

c(x,t)H(x) dx

≥
∫

R2

n(x,t)logn(x,t) dx

+
1

4π(1−δ)

∫∫

R2×R2

(n(x,t)−MH(x))log |x−y|(n(y,t)−MH(y)) dxdy

+
δ

2

∫

R2

|∇c(x,t)|2 dx−M

∫

R2

c(x,t)H(x) dx

=

∫

R2

n(x,t)logn(x,t) dx+
1

4π(1−δ)

∫∫

R2×R2

n(x,t)log |x−y|n(y,t) dxdy

− M

2π(1−δ)

∫∫

R2×R2

H(x)log |x−y|n(y,t) dxdy

+
M2

4π(1−δ)

∫∫

R2×R2

H(x)log |x−y|H(y) dxdy

+
δ

2

∫

R2

|∇c(x,t)|2 dx−M

∫

R2

c(x,t)H(x) dx.

Using inequality (4.4), it is straightforward to prove that

− M

2π(1−δ)

∫∫

R2×R2

H(x)log |x−y|n(y,t) dxdy

≥− M

4π(1−δ)

∫

R2

n(x,t)log(1+ |x|2) dx− 1

1−δ
C(M).

Finally, applying the logarithmic HLS inequality (4.1) to n, we arrive exactly at the
estimate

E(t)≥
(

1− M

8π(1−δ)

)
∫

R2

n(x,t)logn(x,t) dx+
M

8π(1−δ)

∫

R2

n(x,t)logH(x) dx

+
1

2
δ

∫

R2

|∇c(x,t)|2 dx−M

∫

R2

c(x,t)H(x) dx− 1

1−δ
C(M),

and the proof follows as in Section 3.

Remark 4.3. Again, we see here that the mass M cannot equal the critical value 8π
(see Remark 3.3).
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5. Regularizing effect
In the previous section it has been proved implicitly that under the hypothesis of

Theorem 3.2; in particular, for sub-critical mass M , the solution n of system (1.1) is
locally in time equi-integrable, i.e., there exists a modulus of equi-integrability ω(T ;k),
T >0 and k >0 such that

sup
0≤t≤T

∫

R2

(

n(x,t)−k
)

+
dx≤ω(T ;k) and lim

k→+∞
ω(T ;k)=0. (5.1)

Indeed, obviously
∫

R2

(

n(x,t)−k
)

+
dx≤M for any k >0, while for k >1 we have

∫

R2

(

n(x,t)−k
)

+
dx≤ 1

logk

∫

R2

(

n(x,t)−k
)

+
logn(x,t) dx

≤ 1

logk

∫

R2

n(x,t)
(

logn(x,t)
)

+
dx≤ C(1+ t)

logk
.

In this section, following a now classical idea initiated in [19], we will obtain a
priori estimates for the Lp-norm of n, with the help of the equi-integrability property
(5.1) and of the fact proved in Theorem 3.2 that ∂tc∈L2(0,T ;L2(R2)). Since the hy-
pothesis ‖n0‖Lp(R2) <∞ is not required, the following result is an hypercontractivity-
type result.

Theorem 5.1. Let T >0 and 1<p<∞. Under the hypothesis of Theorem 3.2, there
exists a constant C(T ) not depending on ‖n0‖Lp(R2) such that

∫

R2

np(x,t) dx≤C(T )
(

1+ t1−p
)

, ∀ 0<t≤T, (5.2)

i.e., the cell density n(·,t) belongs to Lp(R2) for any positive time t.

Proof. Let k >0, to be chosen later. We derive a non-linear differential inequality,
for the quantity Yp(t) :=

∫

R2(n(x,t)−k)p
+ dx, which guarantees that the Lp-norm of

n remains finite whatever ‖n0‖Lp(R2) is (possibly infinite).

First step: the differential inequality. Multiplying the equation in n in (1.1) by
p(n−k)p−1

+ yields, after integration by parts,

d

dt

∫

R2

(n−k)p
+dx=−4

(p−1)

p

∫

R2

∣

∣∇(n−k)
p/2
+

∣

∣

2
dx−(p−1)

∫

R2

(n−k)p
+∆cdx

−pk

∫

R2

(n−k)p−1
+ ∆cdx. (5.3)

There is some subtlety hidden, here because we cannot directly use −∆c=n−αc as
for the parabolic-elliptic system (ε=0). However, using the equation in c, one obtains

d

dt

∫

R2

(n−k)p
+dx

≤−4
(p−1)

p

∫

R2

|∇(n−k)
p/2
+ |2dx

+(p−1)

∫

R2

(n−k)p+1
+ dx+(2p−1)k

∫

R2

(n−k)p
+dx+pk2

∫

R2

(n−k)p−1
+ dx

−ε(p−1)

∫

R2

(n−k)p
+∂tc dx−εpk

∫

R2

(n−k)p−1
+ ∂tc dx, (5.4)
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and the additional non-linear terms
∫

R2(n−k)p
+∂tc dx and

∫

R2(n−k)p−1
+ ∂tc dx can

be estimated in the following way. Using the Gagliardo-Nirenberg-Sobolev inequality
∫

R2

u4(x) dx≤C

∫

R2

u2(x) dx

∫

R2

|∇u(x)|2 dx,

with u=(n−k)
p/2
+ , we obtain

∣

∣

∣

∫

R2

(n−k)p
+∂tc dx

∣

∣

∣
≤

(

∫

R2

(n−k)2p
+ dx

)1/2

‖∂tc‖L2(R2)

≤C
(

∫

R2

(n−k)p
+ dx

)1/2(
∫

R2

∣

∣∇(n−k)
p/2
+

∣

∣

2
dx

)1/2

‖∂tc‖L2(R2)

≤εC(p)‖∂tc‖2
L2(R2)

∫

R2

(n−k)p
+ dx+

2

εp

∫

R2

∣

∣∇(n−k)
p/2
+

∣

∣

2
dx.

(5.5)

On the other hand, by interpolation and the same Gagliardo-Nirenberg-Sobolev in-
equality as above, we have for p≥ 3

2 that
∣

∣

∣

∫

R2

(n−k)p−1
+ ∂tc dx

∣

∣

∣
≤

(

∫

R2

(n−k)
2(p−1)
+ dx

)1/2

‖∂tc‖L2(R2)

≤
(

C(M,p)+C(p)

∫

R2

(n−k)2p
+ dx

)1/2

‖∂tc‖L2(R2)

≤C(M,p)‖∂tc‖L2(R2) +εC(p,k)‖∂tc‖2
L2(R2)

∫

R2

(n−k)p
+ dx

+
(p−1)

εp2k

∫

R2

∣

∣∇(n−k)
p/2
+

∣

∣

2
dx. (5.6)

Inserting (5.5) and (5.6) in (5.4) gives for p≥ 3
2 that

d

dt

∫

R2

(n−k)p
+dx

≤− (p−1)

p

∫

R2

|∇(n−k)
p/2
+ |2dx

+(p−1)

∫

R2

(n−k)p+1
+ dx+(2p−1)k

∫

R2

(n−k)p
+dx+pk2

∫

R2

(n−k)p−1
+ dx

+εC‖∂tc‖2
L2(R2)

∫

R2

(n−k)p
+ dx+C‖∂tc‖L2(R2). (5.7)

Next, we estimate the nonlinear and negative contribution − (p−1)
p

∫

R2 |∇(n−k)
p/2
+ |2dx

in terms of
∫

R2(n−k)p+1
+ dx and of the modulus of equi-integrability ω(T ;k), with the

help of the Sobolev’s inequality. Indeed,
∫

R2

(n−k)p+1
+ dx=

∫

R2

(

(n−k)
(p+1)

2
+

)2

dx≤C

(
∫

R2

∣

∣

∣

∣

∇(n−k)
(p+1)

2
+

∣

∣

∣

∣

dx

)2

=C(p)

(
∫

R2

(n−k)
1
2
+|∇(n−k)

p
2
+|dx

)2

≤C(p)

∫

R2

(n−k)+ dx

∫

R2

|∇(n−k)
p/2
+ |2dx

≤C(p)ω(T ;k)

∫

R2

|∇(n−k)
p/2
+ |2dx, ∀ 0<t≤T. (5.8)
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Moreover, since for p≥2 it holds true that

∫

R2

(n−k)p−1
+ dx≤

∫

R2

(n−k)+dx+

∫

R2

(n−k)p
+dx, (5.9)

inserting (5.8) and (5.9) in (5.7) gives for p≥2 and 0<t≤T that

d

dt

∫

R2

(n−k)p
+dx≤ (p−1)

(

1− 1

pC(p)ω(T ;k)

)
∫

R2

(n−k)p+1
+ dx

+C(1+ε‖∂tc‖2
L2(R2))

∫

R2

(n−k)p
+dx+C‖∂tc‖L2(R2) +pk2M.

(5.10)

Finally, for any fixed p we choose k =k(p,T ) sufficiently large such that

δ :=
1

pC(p)ω(T ;k(p,T ))
−1>0. (5.11)

This is clearly possible because ω(T ;k)→0 as k→+∞. For such a k, using the
interpolation

∫

R2

(n−k)p
+dx≤

(
∫

R2

(n−k)+dx

)
1
p
(

∫

R2

(n−k)p+1
+ dx

)(1− 1
p )

≤M
1
p

(
∫

R2

(n−k)p+1
+ dx

)(1− 1
p )

,

we end up with the following differential inequality for Yp(t), p≥2 fixed and 0<t≤T :

d

dt
Yp(t)≤−(p−1)M− 1

p−1 δ Y β
p (t)+C1

(

1+ε‖∂tc(t)‖2
L2(R2)

)

Yp(t)

+C2

(

1+ε‖∂tc(t)‖2
L2(R2)

)

, (5.12)

where β = p
p−1 >1.

Second step: estimate on Yp, p≥2. Let us write the differential inequality (5.12)
as follows for simplicity:

d

dt
Yp(t)≤−γ Y β

p (t)+f(t)Yp(t)+f(t), 0<t≤T, (5.13)

where γ =(p−1)M− 1
p−1 δ >0 and f(t)=C

(

1+ε‖∂tc(t)‖2
L2(R2)

)

with C =

max{C1,C2}. Next we show that there exists a constant C(T ) not depending
on Yp(0) such that

Yp(t)≤C(T )
1

tp−1
, 0<t≤T, (5.14)

by comparison of Yp(t) with positive solutions of the differential equation

d

dt
Zp(t)=−γ Zβ

p (t)+f(t)Zp(t)+f(t), 0<t≤T. (5.15)
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To do that, let Zp be a positive solution of (5.15) with Zp(0)≥
(

C
γ

)1/(β−1)

(such

a solution exists from Carathéodory regularity of ordinary differential equations).
Because f(t) is positive, Zp satisfies the differential inequality

d

dt
Zp(t)≥−γ Zβ

p (t)+CZp(t), 0<t≤T. (5.16)

Therefore, since
(

C
γ

)1/(β−1)

is a constant solution of Z ′(t)=−γ Zβ(t)+CZ(t), by

comparison in (5.16) we get Zp(t)≥
(

C
γ

)1/(β−1)

, ∀ 0≤ t≤T . As a consequence, from

(5.15) Zp satisfies also the differential inequality

d

dt
Zp(t)≤−γ Zβ

p (t)+h(t)Zp(t), 0≤ t≤T, (5.17)

where h(t)=

(

1+
(

γC
−1

)1/(β−1)
)

f(t). Integrating (5.17) over (0,t), it is straight-

forward to prove that

Z1−β
p (t)≥Z1−β

p (0)e(1−β)
R t
0

h(τ)dτ +γ(β−1)

∫ t

0

e(1−β)
R t

s
h(τ)dτds, 0≤ t≤T.

Then, thanks to the estimate (vi) in Theorem 3.2 and by the definition of h(t), it
holds true that

Z1−β
p (t)≥Z1−β

p (0)e
C(1−β)ε

R T
0

‖∂tc(s)‖2
L2(R2)

ds
eC(1−β)t

+
γ

C
e
C(1−β)ε

R T
0

‖∂tc(s)‖2
L2(R2)

ds
(1−eC(1−β)t)

≥γ(β−1) eC(1−β)(1+T )eC(1−β)T t=C(T ) t, 0≤ t≤T,

and therefore

Zp(t)≤C(T )
1

tp−1
, 0≤ t≤T, (5.18)

where C(T ) does not depend on Zp(0).
Finally, let Zp be a positive solution of (5.15) with Zp(0)=

max

{

(

C
γ

)1/(β−1)

,Yp(0)

}

. Again by comparison, Yp(t)≤Zp(t) ∀ 0<t≤T , and

(5.14) follows by (5.18).

Third step: Lp regularity of n. To conclude, it is sufficient to observe that for
any k >0 we have

∫

R2

np(x,t) dx=

∫

{n≤2k}
np(x,t) dx+

∫

{n>2k}
np(x,t) dx

≤ (2k)p−1M +2p

∫

{n>2k}
(n(x,t)−k)p dx

≤ (2k)p−1M +2p

∫

R2

(n(x,t)−k)p
+ dx, (5.19)

where the inequality xp ≤2p(x−k)p, for x≥2k, has been used. Therefore, estimate
(5.2) follows for any p≥2 by (5.14) and (5.19) choosing k =k(p,T ) sufficiently large
such that (5.11) holds true. For 1<p<2, the theorem follows by interpolation.
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6. Global existence

We are now able to prove Theorem 1.1 collecting all the estimates proved in the
previous sections. In order to do that, we need first to regularize the chemotaxis
system (1.1) and then to prove that the a priori estimates hold true and pass to the
limit. Since this procedure is quite technical and usual, we just sketch the proof.
For the parabolic-elliptic case with α=0 one can consult for example [6], where the
regularizing procedure has been written in full detail.

The regularized system that we consider is























∂nσ

∂t
= ∆nσ −∇·(nσ∇cσ), t>0, x∈R

2,

ε
∂cσ

∂t
= ∆cσ +nσ ∗ρσ −αcσ, t>0, x∈R

2,

nσ(·,0) = n0 ∗ρσ, cσ(·,0)= c0 ∗ρσ, x∈R
2,

(6.1)

for some regularizing kernel ρσ(x)= 1
σ2 ρ( x

σ ) with ρ∈D+(R2) and
∫

R2 ρ(x) dx=1. The
first step is to prove the global existence of a smooth solution (nσ,cσ) of (6.1). This
result can be obtained through a Picard fixed-point method, writing (nσ,cσ) as

nσ(t)=G(t)∗(n0 ∗ρσ)−
∫ t

0

∇G(t−s)∗(nσ(s)∇cσ(s)) ds,

cσ(t)=e−αt/εG(t/ε)∗(c0 ∗ρσ)+
1

ε

∫ t/ε

0

eα(s−t)/εG((t−s)/ε)∗(nσ(s/ε)∗ρσ) ds,

with G(x,t)= 1
4πte

−|x|2/(4t) the heat kernel in R
2, because the nonlinearity is Lips-

chitz (see [2]). The smoothness of (nσ,cσ) follows by the regularizing property of
the heat equation and by the smoothness of the initial data. The non-negativity of
(nσ,cσ) follows by the maximum principle. As a consequence, the a priori estimates
in Theorem 3.2 hold true for the regularized solution (nσ,cσ). These a priori bounds
give a global in time control of the energy and energy dissipation, still uniform in σ.
This gives space compactness on c and ∇n. The Lions-Aubin compactness method
gives the required time compactness.

7. Blow-up

In this section we shall prove Theorem 1.2, which states a blow-up result for the
parabolic-elliptic system (1.1) and for super-critical mass, i.e. M >8π. Since the same
result in the case ε=α=0 has been given in [6], we assume α>0 so that c=Bα ∗n.
The result in [6] will be recovered in the limit α→0.

Let us denote I(t)=
∫

R2 |x|2n(x,t) dx. Then, I(t) satisfies the differential equation

d

dt
I(t)=4M +2

∫

R2

n(x,t) x ·(∇Bα ∗n(t))(x) dt.

Using the computation

∇Bα(z)=− z

8π

∫ +∞

0

1

t2
e−

|z|2

4t −αt dt=− 1

2π

z

|z|2
∫ +∞

0

e−s−α
|z|2

4s ds
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and denoting gα(z)=
∫ +∞
0

e−s−α
|z|2

4s ds, we obtain

d

dt
I(t)=4M − 1

π

∫∫

R2×R2

n(x,t)
x ·(x−y)

|x−y|2 gα(x−y)n(y,t) dydx

=4M − 1

2π

∫∫

R2×R2

n(x,t)gα(x−y)n(y,t) dydx. (7.1)

Since gα is a positive radial decreasing function such that gα(z)≤1 and gα(z)→1 as
α→0 for all z∈R

2, we recover from (7.1) the result in [6]. For α>0 we have

d

dt
I(t)=4M

(

1− M

8π

)

+
1

2π

∫

R2

∫

R2

n(x,t)[1−gα(x−y)]n(y,t) dydx, (7.2)

and one has to estimate the second term in the right hand side of (7.2) in term of
I(t). Denoting r= |z|, we observe that

d

dr
(1−gα(r))=

α

2
r

∫ +∞

0

1

s
e−s−α r2

4s ds=2παrB1(
√

αr). (7.3)

Then, reasoning as in Lemma 4.2, we deduce from (7.3) that

d

dr
(1−gα(r))≤

√
α K, ∀ 0<r<

1√
α

, (7.4)

where K =2π supρ∈(0,1)ρB1(ρ)<+∞. As a consequence of (7.4) and since 0≤1−
gα(z)≤1 for all z∈R

2, we obtain the estimate

0≤1−gα(z)≤
√

α C|z|, ∀z∈R
2, (7.5)

with C=max{K,1}.
Finally, inserting (7.5) into (7.2), we get

d

dt
I(t)≤4M

(

1− M

8π

)

+

√
α

2π
C

∫∫

R2×R2

n(x,t)|x−y|n(y,t) dydx

≤4M

(

1− M

8π

)

+

√
α

π
CM

∫

R2

|x|n(x,t) dx

≤4M

(

1− M

8π

)

+

√
α

π
CM3/2

√

I(t),

i.e.,

I(t)≤ I(0)+

∫ t

0

f(I(s)) ds, (7.6)

where f(λ)= M
2π (8π−M)+

√
α

π CM3/2λ
1
2 . Since f is a strictly increasing function

such that f(λ∗)=0 for λ∗ = 1
4αC2M (M −8π)2, the hypothesis (1.2) gives us I(0)<λ∗

and f(I(0))<0. Therefore,
∫ t

0
f(I(s)) ds<0 as soon as (7.6) holds true and I(t)≤

I(0)+ tf(I(0)) as soon as (7.6) holds true, i.e., the second momentum becomes nec-

essarily non-positive for t≥− I(0)
f(I(0)) = 2πI0

M(M−8π−2C
√

αMI0)
, expressing in this way the

formation of a singularity before.
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Appendix A.

A.1. The entropy minimization lemma. The entropy minimization
Lemma 2.1 is very classical and several proofs are available. For example, we may use

the Jensen’s inequality with respect to the probability measure
n

M
dx, and we deduce

1

M

∫

R2

(n(x)logn(x)−n(x)ψ(x)) dx=−
∫

R2

log

(

eψ(x)

n(x)

)

n(x)

M
dx

≥−log

(

1

M

∫

R2

eψ(x) dx

)

=
1

M
E(n;ψ).

One can also invoke the Legendre transform of the functional
∫

R2 n(x)logn(x) dx to
obtain (2.11). However, in these ways we lose the identity in (2.11). Therefore, the
following proof, in the line of [9], is more complete.

Proof. [Proof of the entropy minimization Lemma 2.1.] First of all, by the defini-
tion of n we have that n∈U and

logn=ψ+log

(

M
/

∫

R2

eψ dx

)

. (A.1)

Therefore, the entropy functional E is finite in n and it takes the value E(n;ψ)=
M log

(

M/
∫

R2 eψ dx
)

. Next, it is easy to see that for any n in U , E(n;ψ) and RE(n|n)
are finite or infinite in the same time and that (2.11) holds true. Indeed, from
(A.1) we deduce nlog(n/n)=nlogn−nψ−nlog

(

M/
∫

R2 eψ dx
)

. The non-negativity
of RE(n|n) over the set U follows by the computation

RE(n|n)=

∫

R2

(n(x)logn(x)−n(x)logn(x)−(logn(x)+1)(n(x)−n(x))) dx,

and the convexity of the function u 7→u logu.

A.2. The chemical energy minimization lemma.
Proof. [Proof of the chemical energy minimization Lemma 2.2.] Let us start first

with the basic regularity properties of c (see[22]). If α>0, then c∈Lp(R2) for all p∈
[1,∞), since f ∈L1(R2) by hypothesis. On the other hand, when α=0, c∈L1

loc(R
2),

since f ∈L1(R2)∩L1(R2,log(1+ |x|2)dx). Moreover (2.13) holds true in D′(R2) as
well as −∆c+αc=f for α≥0.

Next we aim to justify the integration by parts arising in the computation (2.14).
Let us assume that we know a priori that |∇c|∈L2(R2). Then c∆c∈L1(R2) for all
c∈H1(R2), and the following partial integration holds true:

∫

R2

∇c(x) ·∇c(x) dx=−
∫

R2

c(x)∆c(x) dx=

∫

R2

c(x)(f(x)−αc(x)) dx. (A.2)

Indeed, thanks to the hypothesis and the basic properties of c, we can decompose
−∆c=g1 +g2, with g1≥0 in L1

loc(R
2) defined as

g1 :=f +α(c)− if α>0 and g1 :=f1 if α=0

and g2∈L2(R2) defined as

g2 :=−α(c)+ if α>0 and g2 :=f2 if α=0
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(see [22, Theorem 7.7]). Moreover, Fα(c;f) is finite.
As a consequence of (A.2), we obtain (2.14), since

1

2

∫

R2

|∇c−∇c|2 +
α

2

∫

R2

(c−c)2 dx=Fα(c;f)+
1

2

∫

R2

|∇c|2 dx+
α

2

∫

R2

c2 dx

=Fα(c;f)−Fα(c;f).

It remains to prove that |∇c|∈L2(R2). Let us consider first the case α=0, which
is much more complicated than the case α>0, since the fundamental solution E2

does not lie in any Lp(R2) spaces and ∇c=∇E2 ∗f in general does not lie in L2(R2)
because of the critical fractional Sobolev embedding (see [22]). The case α>0 is
considered subsequently.

In the case α=0, the hypothesis
∫

R2 f(x) dx=0 allows us to subtract any function
of the variable x inside the convolution formulation for ∇c. Let us consider two radii
0<r<1<R with R>e−1, and let us denote CB(0,r)=R

2 \B(0,r). Then we split
∇c in the following way:

∇c(x) = − 1

2π

∫

R2

(

x−y

|x−y|2 −
x

1+ |x|2 1CB(0,R)(x)

)

f(y) dy

= − 1

2π

∫

R2

(

x−y

|x−y|2 −
x

1+ |x|2 1CB(0,R)(x)

)

1B(0,r)(x−y)f(y) dy

− 1

2π

∫

R2

(

x−y

|x−y|2 −
x

1+ |x|2 1CB(0,R)(x)

)

1CB(0,r)(x−y)f(y) dy

=: I1(x)+I2(x), (A.3)

and we will show separately that |I1| and |I2| lie in L2(R2).
Concerning I1, we have for all x∈R

2 that

|I1(x)|≤ 1

2π

∫

R2

1

|x−y| 1B(0,r)(x−y)|f(y)| dy

+
|x|1CB(0,R)(x)

2π(1+ |x|2)

∫

R2

1B(0,r)(x−y)|f(y)| dy. (A.4)

Denoting Ωx =
{

y∈R
2 : f1(y)> 1

|x−y|

}

, the first integral in the right hand side of

(A.4) can be split again in the following way:

∫

R2

1

|x−y| 1B(0,r)(x−y)|f(y)| dy ≤
∫

R2

1

|x−y| 1B(0,r)(x−y)f1(y)1Ωx
(y) dy

+

∫

R2

1

|x−y| 1B(0,r)(x−y)f1(y)1CΩx
(y) dy

+

∫

R2

1

|x−y| 1B(0,r)(x−y)|f2(y)| dy

=: I1,1(x)+I1,2(x)+I1,3(x). (A.5)

Since for y∈B(x,r)∩Ωx it holds true that f1(y)> 1
|x−y| >

1
r >1, we have that

0≤ I1,1(x)≤
∫

R2

1

|x−y|
1

log
(

1
|x−y|

) 1B(0,r)(x−y)f1(y)logf1(y)1Ωx
(y) dy. (A.6)
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Therefore, since the right hand side of (A.6) belongs to L2(R2) thanks to Young’s
inequality, I1,1∈L2(R2) too. On the other hand, since for y∈B(x,r)∩CΩx it holds
true that f1(y)≤ 1

|x−y| , we have

0≤ I1,2(x)≤
∫

R2

1

|x−y|3/2
1B(0,r)(x−y)

√

f1(y)1CΩx
(y) dy. (A.7)

Again by Young’s inequality the right hand side of (A.7) belongs to L2(R2) and so
I1,2 too. The term I1,3 in (A.5) belongs to L2(R2) by Young’s inequality, since f2∈
L2(R2). Finally, since for x∈CB(0,R) and y∈B(x,r) we have |y|≥ |x|−r≥R−r>0,
the second term in the right hand side of (A.4) can be dominated in the following
way:

|x|1CB(0,R)(x)

1+ |x|2
∫

R2

1B(0,r)(x−y)|f(y)| dy

≤ |x|1CB(0,R)(x)

(1+ |x|2)log(1+(|x|−r)2)

∫

R2

|f(y)|log(1+ |y|2) dy. (A.8)

Therefore, it belongs to L2(R2). Collecting (A.4), (A.5), (A.6), (A.7) and (A.8), we
obtain that |I1| belongs to L2(R2).

Concerning I2, it is enough to prove that |I2|∈L2(CB(0,R)) since |I2|∈L∞(R2).
Let x∈CB(0,R) and let us define Ω′

x =
{

y∈R
2 : |y|< |x|/log(1+ |x|)

}

. Then,

|I2(x)| ≤ 1

2π

∫

R2

∣

∣

∣

∣

x−y

|x−y|2 −
x

1+ |x|2
∣

∣

∣

∣

1CB(0,r)(x−y)|f(y)|1Ω′
x
(y) dy

+
1

2π

∫

R2

∣

∣

∣

∣

x−y

|x−y|2 −
x

1+ |x|2
∣

∣

∣

∣

1CB(0,r)(x−y)|f(y)|1CΩ′
x
(y) dy

=: I2,1(x)+I2,2(x). (A.9)

For x∈CB(0,R) and y∈Ω′
x it holds true that |x|−|y|> |x|

(

1− 1
log(1+|x|)

)

>0 since

R>e−1, and

∣

∣

∣

∣

x−y

|x−y|2 −
x

1+ |x|2
∣

∣

∣

∣

≤ |(x−y)(1+ |x|2)−x(|x|2 + |y|2−2x ·y)|
(|x|−|y|)2(1+ |x|2)

≤ |x|+ |y|+3|y||x|2 + |x||y|2
(1+ |x|2)

log2(1+ |x|)
|x|2(log(1+ |x|)−1)2

≤C
log(1+ |x|)

|x|(log(1+ |x|)−1)2
=:h(x). (A.10)

Therefore, |I2,1(x)|≤ 1
2π‖f‖L1(R2)h(x), which implies that I2,1∈L2(CB(0,R)). Fi-

nally,

0≤ I2,2(x)≤ 1

2π

∫

R2

1

|x−y| 1CB(0,r)(x−y)|f(y)|1CΩ′
x
(y) dy

+
|x|

2π(1+ |x|2)

∫

R2

1CB(0,r)(x−y)|f(y)|1CΩ′
x
(y) dy. (A.11)
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The second integral in the right hand side of (A.11) belongs to L2(CB(0,R)),

because |y|≥ |x|
log(1+|x|) for y∈CΩ′

x so that

|x|
(1+ |x|2)

∫

R2

1CB(0,r)(x−y)|f(y)|1CΩ′
x
(y) dy

≤ |x|
(1+ |x|2)log

(

1+ |x|2
log2(1+|x|)

)

∫

R2

log(1+ |y|2)|f(y)| dy∈L2(CB(0,R)).

(A.12)

In order to control the first integral in the right hand side of (A.11), we observe that
for all x∈CB(0,R) and y∈CΩ′

x it holds true that

log

(

1+
1
2 |x−y|

log(1+ 1
2 |x−y|)

)

≤max

(

log

(

1+
|x|

log(1+ |x|)

)

; log

(

1+
|y|

log(1+ |y|)

))

(A.13)

≤ log
(

1+ |y|2
)

. (A.14)

Indeed, the function ϕ(s)= s
log(1+s) is strictly increasing for s>−1 such that ϕ(e−

1)=e−1. Then using the inequality 1
2 |x−y|≤max(|x|;|y|), the first inequality (A.13)

follows. Moreover, for x∈CB(0,R) and y∈CΩ′
x we have

e−1≤ |x|
log(1+ |x|) ≤|y| and

|y|
log(1+ |y|) ≤|y|≤ |y|2,

and the second inequality (A.14) follows too. Therefore,
∫

R2

1

|x−y| 1CB(0,r)(x−y)|f(y)|1CΩ′
x
(y) dy

≤
∫

R2

1

|x−y|
1

log
(

1+
1
2 |x−y|

log(1+ 1
2 |x−y|)

) 1CB(0,r)(x−y)log
(

1+ |y|2
)

|f(y)|1CΩ′
x
(y) dy.

(A.15)

Collecting (A.9), (A.10), (A.11), (A.12) and (A.15) we have proved that |I2|∈
L2(CB(0,R)), and the case α=0 is solved.

When α>0, we have that |∇Bα(z)|= 1
2π

1
|z|gα(z) with gα(z)=

∫ +∞
0

e−s−α
|z|2

4s ds,

(see Section 7). Therefore, |∇Bα(z)| has the same singularity as |∇E2(z)| in z =0, but
|∇Bα(z)|→0 exponentially as |z|→+∞. As a consequence, we can prove that ∇c=
∇Bα ∗f ∈L2(R2) using the previous technique and without subtracting any function
of the variable x inside the convolution formulation for ∇c.

A.3. A remark on the case ε=α=0. In the case of the parabolic-elliptic
system (1.1) with ε=α=0 and

c(x,t)=− 1

2π

∫

R2

log |x−y|n(y,t)dy,

as far as global existence is concerned, it is sufficient to assume that the cell density
n0 satifies both

∫

R2

n0(x)logn0(x) dx<∞ and

∫

R2

n0(x)log(1+ |x|2) dx<∞. (A.16)
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In fact, assumptions (A.16) are the optimal ones for several viewpoints. First, they
are minimal for applying the logarithmic HLS inequality (4.1). Furthermore, the
combination of these two ensures that the mass does not escape to infinity by Lemma
2.4 and the balance is optimal again. Last but not least, it can be proved using free
energy methods that conditions (A.16) are indeed propagated along the solutions,
with local in time bounds.

Following the lines of computation (3.4) for instance, we have to estimate
∫

R2 c(x,t)H(x) dx from above. This can be done with the following calculation,
∫

R2

c(x,t)H(x) dx=− 1

2π

∫∫

R2×R2

n(y,t)log |x−y|H(x) dydx

=
1

8π

∫

R2

n(y,t)logH(y) dy+C,

which can be viewed as an integration by parts knowing (3.8) (see also [8], where
the Euler-Lagrange equation for H is clearly noticed). The latter is then trivially
bounded from above, because

∫

R2 n(y,t)logH(y) dy is nonpositive.
Concerning the blow-up of solutions, the assumption on the second momentum,

∫

R2 |x|2n0(x) dx<+∞, seems, however, to be crucial. For instance, for the critical
mass value M =8π, there exists a family of stationary states with infinite second
momentum but finite “logarithmic” momentum, for which blow-up obviously does
not occur (see [3, 5]).

A.4. The duality. There is a true duality between the Onofri and the
logarithmic Hardy-Littlewood-Sobolev inequalities (see [8, 4]). We followed this idea
all along this paper. In this appendix we give a formal proof of this duality in the
whole space R

2 for the sake of completeness, and we then derive another proof of
Lemma 4.2.

First of all, we write the Onofri’s inequality as

1

8π
log

(
∫

R2

e8πu(x)H(x) dx

)

≤
∫

R2

u(x)H(x) dx+
1

2

∫

R2

|∇u(x)|2 dx. (A.17)

Let f be a function satisfying the hypotheses of Lemma 4.1 and
∫

R2 f(x) dx=1 without
loss of generality. By the minimization procedure (see Lemma 2.2 and Appendix A.2)
we have

− 1

2

∫

R2

(f −H)(x)(E2 ∗(f −H))(x) dx

=min
u

{

1

2

∫

R2

|∇u(x)|2 dx−
∫

R2

(f −H)(x)u(x) dx

}

≥min
u

{

1

8π
log

(
∫

R2

e8πu(x)H(x) dx

)

−
∫

R2

f(x)u(x) dx

}

≥min
u

{

− 1

8π

∫

R2

f(x)logf(x)−f(x)
(

8πu(x)+logH(x)
)

dx−
∫

R2

f(x)u(x) dx

}

≥− 1

8π

∫

R2

f(x)logf(x) dx+
1

8π

∫

R2

f(x)logH(x) dx,

from the entropy minimization Lemma 2.1 (see Appendix A.1). On the other hand,
the Euler-Lagrange formula for H writes [8]

−
∫

R2

log |x−y|H(y) dy =
1

4
logH(x)+

1

4

∫

R2

H(x)logH(x) dx+C0.
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It is in fact the dual formulation of the cancellation property (3.8). We deduce that

1

4π

∫∫

R2×R2

f(x)log |x−y|f(y) dxdy+
1

4π

∫∫

R2×R2

H(x)log |x−y|H(y) dxdy

≥ 1

2π

∫∫

R2×R2

f(x)log |x−y|H(y) dxdy− 1

8π

∫

R2

f(x)logf(x) dx

+
1

8π

∫

R2

f(x)logH(x) dx

≥− 1

8π

∫

R2

f(x)logf(x) dx− 1

8π

∫

R2

H(x)logH(x) dx+
C0

2π
.

We have recovered the logarithmic Hardy-Littlewood-Sobolev inequality with the
sharp constant.

Following the previous lines there is another way to derive the modified inequality
for the kernel Bα (Lemma 4.2). We proceed as above, more directly because the Bessel
kernel has nicer properties at infinity:

−1

2

∫

R2

f(x)(Bα ∗f)(x) dx

=min
u

{

1

2

∫

R2

|∇u(x)|2 dx+
α

2

∫

R2

u2(x) dx−
∫

R2

f(x)u(x) dx

}

≥min
u

{

1

8π
log

(
∫

R2

e8πu(x)H(x) dx

)

−
∫

R2

f(x)u(x) dx

+
α

2

∫

R2

u2(x) dx−
∫

R2

u(x)H(x) dx

}

≥min
u

{

− 1

8π

∫

R2

f(x)logf(x)−f(x)
(

8πu(x)+logH(x)
)

dx−
∫

R2

f(x)u(x) dx

+
α

2

∫

R2

u2(x) dx−
∫

R2

u(x)H(x) dx

}

≥− 1

8π

∫

R2

f(x)logf(x) dx+
1

8π

∫

R2

f(x)logH(x) dx+C(α),

because we have for α>0:
∫

R2

u(x)H(x) dx≤ α

2

∫

R2

u2(x) dx+
1

2α

∫

R2

H2(x) dx.

To conclude this Appendix let us mention that there exists a third strategy to
prove Lemma 4.2, which is based on a “weak logarithmic HLS inequality” (see [4,
Theorem 3]).
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[28] C.J. Weijer, Dictyostelium morphogenesis, Curr. Opin. Genet. Dev., 14, 392–398, 2004.


