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The Microcanonical Partition Function of Elementary Particles

A new concept for the description of elementary particles is presented below. According to this concept, the microcanonical partition function for elementary particles is first redefined. The energies of the elementary particles are then calculated using this partition function. The energy of an elementary particle is proportional to the mass on the one hand and to the microcanonical partition function on the other. The constant of proportionality with respect to the microcanonical partition function is found to be identical to the Rydberg energy in the case of the proton, the electron, and the sigma particle. The relationships found for the proton, the electron and the sigma particle are then generalized to all elementary particles.

Introduction The color force and the strong interaction

The color force is defined as a fundamental property of quarks, characterized by the associations between baryons [START_REF] Robson | A quantum theory of gravity based on a composite model of leptons and quarks[END_REF]. The strong interaction extends beyond neutrons and protons, resulting in extraordinary properties not previously noted between nucleons. The baryons facilitate the strong interaction and a residual force that does not taper off with distance. This process effectively results in the confinement of quarks. Conventionally, naturally occurring energy exists and expedites quark-antiquark pair production [START_REF] Correa | The quark antiquark potential and the cusp anomalous dimension from a TBA equation[END_REF][START_REF] Gromov | Quark-anti-quark potential in N $$\mathcal {N} $$= 4 SYM[END_REF][START_REF] Kaczmarek | Static quark anti-quark interactions at zero and finite temperature QCD. II. Quark antiquark internal energy and entropy[END_REF]. Due to the strong nature of the color force carried by the exchange of gluons, the quarks do not undergo separation.

Previous studies report that within the confines of a given space, the quarks behave as free particles, as the color force exerts minimum pressure at short distances [START_REF] Nakamura | QCD color interactions between two quarks[END_REF]. Stronger forces begin to be realized as further separation occurs. This concept is analogous to the widely held scientific understanding that ordinary mesons composed of conventional quarks are bound closely by the color force. This construct has immense scientific importance, especially in providing an in-depth understanding of atomic nuclei and defining the associations and interactions between neutrons, quarks, and protons [START_REF] Nakamura | QCD color interactions between two quarks[END_REF][START_REF] Bala | Static quark antiquark interactions at a non-zero temperature from lattice QCD[END_REF][START_REF] Saito | Flavour asymmetry of antiquarks in nuclei[END_REF]. The mediation of these relationships by gluons forms the foundation of quantum chromodynamics and is commonly used to discuss complex physical phenomena, including chiral symmetry breaking, asymptomatic freedom, and head collar confinement [START_REF] Blaizot | Quantum and classical dynamics of heavy quarks in a quark-gluon plasma[END_REF][START_REF] Campbell | Photon production from gluon-mediated quark-antiquark annihilation at confinement[END_REF].

Gluons act as gauge bosons or exchange particles that facilitate interaction between quarks via the strong force. Essentially, they enable the exchange of photons between charged particles via the electromagnetic force in addition to binding them together to form hadrons. Bosons are carrier particles with full-integer spin numbers, while fermions have odd half-integer spin numbers. Both types of particles act as force carriers, with the latter obeying the Pauli exclusion principle [START_REF] Blaizot | Quantum and classical dynamics of heavy quarks in a quark-gluon plasma[END_REF][START_REF] Campbell | Photon production from gluon-mediated quark-antiquark annihilation at confinement[END_REF][START_REF] Liang | On Quarks and Gluons[END_REF]. Conventionally, the color charge depends on the configuration of the particles. For instance, when mixed together, red, blue, and green result in white, with a net charge of zero. Additionally, the force may be negative, resulting in the emergence of cyan, magenta, and yellow. Fundamentally, the color charges exhibit a force that tends to remain constant despite separation but results in a corresponding increase in energy and subsequent spontaneous production of a quark-antiquark pair [START_REF] Hubeny | Holographic accelerated heavy quark-anti-quark pair[END_REF].

The concept of the color force is believed to have been introduced by Oscar Greenberg, who first theorized the existence of quarks in 1964 [START_REF] Jacobi | First test of the performance of CMS muon chambers inside the barrel yoke[END_REF]. This theoretical physicist documented the phenomenon after an extensive analysis of the Pauli exclusion principle and its relation to the construct. Greenberg believed that his theory explained the coexistence of quarks within select hadrons despite exhibiting identical quantum states [START_REF] Harari | The structure of quarks and leptons[END_REF], a situation that would otherwise have constituted a theoretical impossibility due to its violation of the Pauli exclusion principle [START_REF] Greenberg | Spin and unitary-spin independence in a paraquark model of baryons and mesons[END_REF][START_REF] Ross | Flavour symmetry breaking in antiquark distributions[END_REF][START_REF] Magnin | d¯-ū asymmetry of the proton in a pion cloud model approach[END_REF].

Greenberg proposed in 1964 that quarks were parafermions of order 3, the corresponding implicit degree of freedom was soon perceived by Han and Nambu and called color [START_REF] Harari | The structure of quarks and leptons[END_REF].

Since that time, there have been extensive developments in quantum chromodynamics toward an improved understanding of quarks and the theory of the color force. Other notable personalities have made immense contributions, including Murray Gell-Mann, Heinrich Leutwyler, and Harald Fritsch. The concept has been revolutionary in enhancing the understanding of quantum electrodynamics due to the many similarities between the two fields. The strong force has been determined to have minimal behavioral autonomy over the basic subatomic particles constituting atomic nuclei.

The theories of the strong force and other associated aspects of quantum chromodynamics (QCD) were developed to provide an improved understanding of the roles of each aspect of the three-value color charge. Fundamental QCD concepts, including gluons, antiquarks, and quarks, remained relatively obscure prior to the discovery of the color force. Related analyses have been fundamental to the furthering of scholarly discourse as well as inspiring a plethora of other industrial applications, including specialist lighting such as in theatres and outdoors.

Starting from the well-known connection between the Rydberg constant and the electron mass, we start with:

𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 2 𝑚𝑚 𝑅𝑅 𝑐𝑐 2 𝛼𝛼 2 (1)
where alpha is the Sommerfeld fine structure constant. Now, there are several methods and formulas for calculating the Sommerfeld fine structure constant, which is equal to approximately 1/137, by using the mathematical constant pi.

We use the following formula for the Sommerfeld fine structure constant alpha:

𝛼𝛼 = 2•��(1- 1 3𝜋𝜋 ) 27𝜋𝜋 2 (2)
Next, we calculate the smallest quantum of mass and/or energy according to the Rydberg energy:

𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 2 𝑚𝑚 𝑅𝑅 𝑐𝑐 2 𝛼𝛼 2
(1) in [eV], this gets

𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 13.60569 𝑒𝑒𝑒𝑒 (3) 
𝑚𝑚 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 13.60569 𝑒𝑒𝑒𝑒/𝑐𝑐 2 (4) 
This number is postulated here to be the smallest possible amount of mass and/or energy involved in crystallization of energy towards mass and in mass formation. It is the smallest amount of binding energy.

From both equations above, we obtain a formula for the electron mass, as follows:

𝑚𝑚 𝑅𝑅 = 1 2 3 2 (3𝜋𝜋) 4 ⎝ ⎜ ⎜ ⎛ 1 �� ��1- 1 3𝜋𝜋 � ⎠ ⎟ ⎟ ⎞ 4 𝑚𝑚 𝑅𝑅𝑅𝑅𝑅𝑅 (5) 
We now consider this equation to be a special case of the following generalization of this formula to get the following generalized equation.

𝑚𝑚 𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅 = 2 𝑝𝑝 3 𝑅𝑅 (3𝜋𝜋) 𝑝𝑝 � 1 ��1- 1 3𝜋𝜋 � 8 � 𝑅𝑅 𝑚𝑚 𝑅𝑅𝑅𝑅𝑅𝑅 , (6) 
with a=-1, b=2, c=4, and d=4 for the electron e

We now postulate that we can obtain all other particle masses through different combinations of (a,b,c,d)-tuples. But the question keeps how to interpret this last equation.

The Feynman-like ensemble of binding states within a single particle is related to the particle's partition function

A single particle can be formulated as a series of different binding states. This series of different formulations of binding states forms an ensemble comparable to the statistical microcanonical ensembles used in statistical thermodynamics and/or statistical quantum mechanics.

In statistical quantum mechanics, if a system can be subdivided into N subsystems, then the total partition function is given by the product of the partition functions for the individual subsystems. Z and/or Omega is the microcanonical partition function (which is depending on the multiplicity, or number of possible configurations of the system/particle) [START_REF] Hill | Statistical Mechanics[END_REF]:

1 N j j Z ζ = = ∏ or 1 N j j ω = Ω = ∏ (7a+7b)
Accordingly, the probability P is as follows [START_REF] Hill | Statistical Mechanics[END_REF]:

1 1 1 N j j P ω = = = Ω ∏ (8)
Starting from the Feynman-like ensemble for a complex particle, a single binding form is regarded as such a microcanonical subsystem here. There are four possible binding forms: two-quark binding (color and anticolor), three-quark binding (three colors), 3-vertex gluon interaction, and 4-vertex gluon interaction.

Within each of these binding-type subsystems, all the remaining sub-subseries elements represent different subforms of the corresponding binding type. The elements of these subforms all have the same physical properties. Thus, their partition function, in turn, has a power-function form:

n j jj ζ ζ = or n j jj ω ω = (9a+9b)
Here, n is the number of sub-subseries present in the particle, meaning the number of two-quark interactions, three-quark interactions, 3-vertex gluon interactions, or 4-vertex gluon interactions. jj ζ is the energy of each of the basal binding states, i.e., the basal energy of the two-quark binding state, the three quark binding state, the 3-vertex state, or the 4-vertex state.

The basal energy jj ζ of each individual binding state can be visualized by an arrow in a Feynman-like diagram and corresponds to one single gluon. The basal energy of two-quark binding is represented by two arrows and so by two gluons, one colorless and one colored. The basal energy of three-quark binding is represented by three arrows and so by three gluons (r, g, and b). The basal energy of a 3vertex gluon interaction can be visualized by three half-circles (the Dyson-Schwinger equations and the swordfish diagram) and is given by an arrow of length 3pi, and the basal energy of a 4-vertex gluon interaction is given by

8 1 1 1
3π -and will be explained below.

Dyson-Schwinger equations, also named Schwinger-Dyson equations, are relations between various Green's functions of a quantum field theory found by Freeman Dyson and Julian S. Schwinger. Since they represent the equations of motion for the Green's functions, they are also often called the Euler-Lagrange equations of a quantum field theory. There are infinitely many functional differential equations, all of which are directly or indirectly coupled to one another. That is why one often speaks of the infinite tower of the Dyson-Schwinger equations.

The Dyson equations were originally derived by Dyson by summing up an infinite number of Feynman diagrams and were extended by Schwinger in his quantum action principle to all Green's functions of any quantum field theory. Graphically in Feynman diagrams sword fish diagrams result if Dyson-Schwinger equations are applied to the 3 gluon vertices, which are virtual particles. Summing-up these three half circles the way-length within the 3 gluon vertex is 3 pi in length. If we associate the length of virtual particles with energy, then the energy needed for the 3 gluon vertices are 3 pi as the amount of a normal interaction. In the following, considerations will be presented on partition functions in the context of particles at the elementary level. These particles consist either of quarks and gluons or only of gluons.

Both quarks and leptons are thought to consist of even smaller particles the rishons. There are two fundamental rishons: the T-rishon and the V-rishon. All this is in-line with the H. Harari preon model described e.g. in "A schematic model of quarks and leptons" Physics Letters 1997 [START_REF] Harari | A schematic model of quarks and leptons[END_REF].

An important initial hypothesis is that these particles cannot be broken down into even smaller particles.

And another important hypotheses is that fundamental particles (as V and T) do not possess energy and/or mass. All energy and/or mass is the result from intra-particular interactions.

From these basic assumptions it follows that even leptons like the electron need to be composed particles and that there need to be some sort of interaction inside leptons like the electron.

The total partition function of a particle can be seen as an ensemble of subsystems and can be expressed as a product of the individual partition functions for these subsystems:

2 3 3 4 2 3 3 , 4 , 1 1 N N n a b c d j jj vertex vertex j j vertex j vertex j j j Z ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ - - - - = = = = = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ∏ ∏ (10) 
2 3 3 4 2 3 3 , 4 , 1 1 N N n a b c d j jj vertex vertex j j vertex j vertex j j j ω ω ω ω ω ω ω ω ω ω - - - - = = Ω = = = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ∏ ∏ (11) 
Consequently, at the elementary level, the total partition function must result from a product of individual partial partition functions.

Considering the quark color interactions

The task of these individual partial partition functions is to describe the individual interactions in an elementary particle and capture them mathematically. The following question therefore arises: What interactions exist at the elementary level? The answer is the color interactions among three quarks (i.e., rgb and rgb). In interactions of this form, three quarks and three standard gluons are always involved simultaneously. The number of standard gluons or interactions is thus three to the power of n. The partial partition function for this kind of interaction is consequently three to the power of b, where b is the number of three-gluon interactions that exist per particle. for n=b three-color interactions per particle [START_REF] Jacobi | First test of the performance of CMS muon chambers inside the barrel yoke[END_REF] Another elementary interaction is the color-anticolor interaction between two quarks (e.g., in qq ̅ ). Two quarks (a colored quark and an anticolored quark) and two standard gluons (a neutral and a colored gluon) are always involved in this interaction. The number of gluons or interactions is therefore two to the power of a. The corresponding partial partition function is similarly two to the power of a.

Here, a denotes the number of two-gluon interactions per particle. For quantum mechanical reasons, this bond is always mediated by two gluons that are exchanged between the quarks one after the other: first, a neutral gluon is exchanged, and then, a color gluon is exchanged.

2 2 2 a ζ ω = =
for n=a color-anticolor interactions per particle (13)

Considering the gluon vertices

According to the Dyson-Schwinger equation (DSE), the 3-vertex interaction of a gluon can be described as the sum of three semicircles.

The 3-gluon vertex can be converted into a circular structure using a DSE on-loop correction. Doing so creates three circles with an entrance and with a 3-vertex, all facing each other at 180° [START_REF] Alkofer | On propagators and three-point functions in Landau gauge QCD and QCD-like theories[END_REF]. This corresponds to a path length between entry and 3-vertex of 3 times 1 pi. When using the Dyson-Schwinger equations, three such swordfish-diagrams arise, each of it with a weighting of ½, so that the loop correction leads to a total path length of 3 pi for the 3-gluon vertex [START_REF] Alkofer | On propagators and three-point functions in Landau gauge QCD and QCD-like theories[END_REF], [START_REF] Blum | Three-point vertex in Yang-Mills Theory and QCD in Landau gauge[END_REF].

( ) ( ) ( )

3 , 3 , 1 1 1 2 2 2 3 2 2 2 vertex j vertex j ζ ω π π π π - - = = + + = (14) 
The distance that a gluon travels in this form of interaction is thus 3pi times as long as the ordinary gluon distance in one of the two interactions mentioned above. Consequently, the partial partition function for this form of interaction can be described as the term 3pi to the power of c. Here, c is again the number of interactions of this type per particle.

3 3 (3 ) c vertex vertex ζ ω π - - = =
for n=c 3-vertex interactions per particle [START_REF] Ross | Flavour symmetry breaking in antiquark distributions[END_REF] Now, the 4-vertex interaction between two gluons is considered. The probability of this interaction occurring is proportional to the total probability (100%) minus the probability of the 3-vertex interaction occurring. This probability of the 3-vertex interaction occurring is the reciprocal of the partition function of the 3-vertex interaction. Therefore, the probability of the 4-vertex interaction occurring is proportional to 1-1/(3pi). Since this interaction corresponds to a collision event involving two of the eight possible gluons, the 8th root of the term 1-1/(3pi) must be taken. The partial partition function of the 4-vertex interaction is then the reciprocal of this probability and thus proportional to 1/(8th root(1-1/(3pi))) to the power of d. Again, d denotes the number of interactions of this type per particle.

4 4 8 1 1 1 3 d vertex vertex ζ ω π - -       = =   -    
for n=d 4-vertex interactions per particle (16)

A closer look at the quark color interactions a and b: Binding and nonbinding events

When looking at the partial partition functions 2

ζ and 3 ζ , we need to differentiate between events that have a binding nature, which should be considered negative, and events that have a nonbinding nature, which should be considered positive. This leads us to quotients for 2 ζ and 3 ζ , which are defined as follows: 

( ) 2 2 ( ) 2 2 

Calculation of all possible combinations of interaction possibilities for the nucleon (proton or neutron)

To calculate the number of interaction possibilities for the proton, a hypothesis must first be formulated:

In the following, the hypothesis is formulated that in the ground state, only two gluon-gluon interactions can follow one another. More than two interactions can follow one another only in higher or excited energy states of the nucleon. Such higher excitation states are realized in the sigma baryon, for example.

Based on this premise, the number of possible interaction combinations can be counted graphically as illustrated in figure 1. The following numbers of possible combinations result for a nucleon in the ground state:

The total partition function for the nucleon ((a,b,c,d)=(0,-2,9,4)) is as follows: (3 ) 6.8953127 10 1 1 3

p p Z π π -       = Ω = ⋅ ⋅ ⋅ = ⋅   -     (19) 
or, in logarithmic form:

4 1 ln ln 0 ln(2) 2 ln(3) 9 ln(3 ) ln 1 8 3 p p Z π π   = Ω = ⋅ -⋅ + ⋅ - -     (20) 
The total partition function for the neutral pion ((a,b,c,d)=(-1,1,7,0)) is as follows:

0 1 1 7 6 8 1 2 3 (3 ) 9.908071 10 1 1 3 pion pion Z π π -       = Ω = ⋅ ⋅ ⋅ = ⋅   -     (21) 
or, in logarithmic form:

0 1 ln ln ln(2) ln(3) 7 ln(3 ) ln 1 8 3 pion pion Z π π   =Ω = - + + ⋅ - -     (22) 
The total partition function for the neutral sigma baryon ((a,b,c,d)=(-3,2,8,16)) is as follows: 3

Sigma Sigma Z π π -       = Ω =⋅ ⋅ ⋅ = ⋅   -     (23) 
or, in logarithmic from:

16 1 ln ln 3ln(2) 2 ln(3) 8 ln(3 ) ln 1 83

Sigma Sigma Z π π   =Ω = - + + ⋅ - -     (24) 
For the electron, the following total partition function Z e is obtained: 

4 1 2 4 8 1 2 3 (3 ) 37553 1 1 3 e e Z π π -       =Ω = ⋅ ⋅ ⋅ =   -     (25) 
  =Ω = -⋅ + ⋅ + ⋅ - -     (26) 
At a first sight the electron seems to have nothing to do with gluon interactions. However,-according to the rishons-model (or pre-on model, or Harari model) also the leptons as the electrons are composed from even smaller particles. According to Harari these are the T-and V-particles. The rishons-composition of the electron is anti-T; anti-T; anti-T. So it is composed from three identical anti-T particles. In a later variant Harari and Seiberg have differentiated the electron to be composed from anti-T-R, anti-T-R, and anti-T-L [START_REF] Harari | The Rishon Model Nuclear Physics[END_REF]. They talk about the electron being an e -=(T R T R )T L particle (table 8, page 156 in [START_REF] Harari | The Rishon Model Nuclear Physics[END_REF]).

The meaning of the electrons n-tupel (-1;2;4;4) could be interpreted as follows: the electron inside itself has 1 binding 2-particle interaction (the so called In case of the electron these four 3-vertices and four 4-vertices interactions might be substantially different from the 3 and 4 gluon-vertices in case of the more complex particles. Most likely in case of the electron these both interactions (3-vertex and 4-vertex) are combined to each other and form four combined (3-vertex/4-vertex)-interactions. The easiest way to realize this structure is a linear formation. In this linear formation we start with the first anti-T, followed the first 3-vertex, next two 4-vertices, a second 3-vertex, the second anti-t, the third 3-vertex, two more 4-vertices, the forth 3-vertex and the last anti-T-L. Counted all together we used the (-1;2;4;4) elements to form the structure.

Elements of the Higher Lepton Generations

Elbaz et al expanded the Harari Preon model towards higher generation of leptons [START_REF] Elbaz | Lepton and Quark Generations in the Geometrical Rishon Model[END_REF], [START_REF] Elbaz | Quark and lepton generation in the geometrical rishons model[END_REF], [START_REF] Elbaz | Lepton and quark internal quantum numbers[END_REF]. To do so they interpreted the higher lepton generations as excited states of the electron.

If we look at the exponent tuples for the muon (-3;2;7;3) and the tauon (1;2;7;7) we see a further analogy. Also in the present theory they are both excited states with an increased number of intraparticular interactions. We here now have the interactions, which make the excited states of the leptons and quarks, for which Elbaz and others were looking for.

It can be realized that by comparing complex particles and leptons, even if different in nature, there seems to be some kind of repetition of the fundamental rules and laws between leptons and the more complex particles. Analogously the interactions and vertices seem to be some kind repeated.

Weak and Strong Interaction

If we associate the n-tuple of compound particles (as baryons and mesons) with their strong interaction (color interaction) and the n-tuple of leptons and quarks with their weak interaction we easily can see, that there are a lot of analogy between strong and weak interaction. Both types of interaction can be divided into 4 more basal interactions (which are the 2-particle, 3-particle, 3vertex and the 4-vertex interactions).

However there are also some differences between the strong and the weak interaction. First of all we do not see negative a and/or b-exponents within the weak interaction for quarks but only for leptons.

However if we transfer this to the beta decay, which is in most cases the decay of a neutron, we get.

Beta-Decay

d -0.3  u +0.67 + W -  u +0.67 + e - + v (27) Rishons: 
VVT -0.3  TTV +0.67 + (TT)TVV(V)  TTV +0.67 + TTT -+ VVV Interactions:

(2;2;4;8)  (1;2;4;8) + (0;0;10;5)  (1;2;4;8) + (-1;2;4;4) + (-1;-2;0;0)

Myon-Decay

µ -  W - + v µ  e - + v e + v µ (28) Rishon: [TTT -+3VV]  (TT)TVV(V) -+ VVV  TTT - + VVV + VVV Interactions:
(-3;2;7;3)  (0;0;10;5) + (-1;-0;0;0)  (-1;2;4;4) + (-1;-2;0;0) + (-1;-0;0;0)

Pion-Decay π -(u,d)  W -  µ - + v µ (29) 
Rishon:

TTV -0.67 + VVT -0.3  (TT)TVV(V) -  TTT - + VVV Interactions:

(1;2;4;8) + (2;2;4;8)  (0;0;10;5)  (-3;2;7;3) + (-1;0;0;0)

Strange-Quark-Decay s +0.33  W + + u -0.67  u -0.6 + π + (u,d) (30) 
from K + (s,u) from π 0 (u,u)

Rishon:

[2TT + VV + VVT +0.3 ]  (TT)TVV(V) + + TTV -0.67  TTV +0.66 + VVT +0.33 + TTV -0.66 Interactions:

(3;2;5;17)  (0;0;10;5) + (1;2;4;8)  (1;2;4;8) + (2;2;4;8) + (1;2;4;8)

Thereby the Rishon-contend of the strange-quark and myon are written according to Elbaz [START_REF] Elbaz | Quark and lepton generation in the geometrical rishons model[END_REF][START_REF] Elbaz | Lepton and quark internal quantum numbers[END_REF].

According to the Elbaz-notation [START_REF] Elbaz | Lepton and quark internal quantum numbers[END_REF], which is slightly modified here, of the elementary particles the intra-particular interactions are as follows:

Electron: a=-1[TTT(VV)] Myon: a=-3 [TTT(VV) 3 ] strange-Quark: a=3 [VVT(TT) 2 (VV)] a=4-1=3 [ V V .…T (-1,2,4,4) [V V…T (-3.2.7.3) [V V …V (3,2,5,17) T V V… T T T… ..T T ] V V…T] V ….T T ]

binding 3 binding 4 non-binding, binding

It can be recognized that a binding 2-particle interaction (a<0) occurs between an antimatter T and a matter V, and/or a matter T and an anti-matter V. It seems that both need to change T to V and matter to antimatter in order to form a binding interaction.

On the other hand a matter V-to antimatter V interaction and/or an matter T-to antimatter T interaction as in the strange quark is non-binding (a>0). Also a T to V and or anti-T to anti-V binding as in the u-quark, d-quark, and s-quark are non-binding. Homomorphic bindings as TT, TT and/or VV and/or VV bindings in the particles do not count. [ -------V V .…T [START_REF] Robson | A quantum theory of gravity based on a composite model of leptons and quarks[END_REF][START_REF] Correa | The quark antiquark potential and the cusp anomalous dimension from a TBA equation[END_REF][START_REF] Saito | Flavour asymmetry of antiquarks in nuclei[END_REF][START_REF] Saito | Flavour asymmetry of antiquarks in nuclei[END_REF] [ V…T (0,0,10,5) [ V … V (0,0,10,14) Modifications of the Elbaz notations were made in order to meet the particle decays.

u-quark a=1 [TTV] u-quark a=1 [TTV] d-quark a=2 [VTV] [ T (1,2,4,8) [T (1,2,4,8) [ V (2,2,4,8) T T T V ] V ] V ] 1 
V V … T V… T V…. V V V….. T V…T] V….V ] (V V) 3----------- 1 
For the proportionality factor between the value of the partition function and the rest energy (equivalent to the rest mass) of the particle, the following values are obtained for the nucleon, the electron and the sigma baryon:

for the proton:

0, 6 7 
0, / 938.272 10 / 6.8953127 10 13.6074137

p p p p p E f E Z eV eV = = = ⋅ ⋅ = Ω (31)
for the electron: 

Rydberg proportionality factor

This factor is almost identical to the Rydberg energy (E Ryd =13.605693122 eV). At first glance, this result seems astonishing. Since the 1s electron in the hydrogen atom is (as far as we know today) thought to be almost electrostatically and/or QED-bound to the proton, and we might expect that the Rydberg energy would be related to electrostatic and/or QED-binding. If we assume, however, that the Rydberg energy does not merely represent the binding energy of the electron to the proton but rather should be considered the smallest energy quantum for all binding then the problem is solved. This smallest amount of binding represents binding in general and the binding energy in every particle. Additionally, it gets clear that the more interactions are present in a particle and the more binding-quants are therefore needed and present in the particle, the more binding energy must consequently result and be present in the respective particle. This binding energy now seems to exist in a quantized form only, and the smallest quantum of this binding-energy seems to be identical to the Rydberg energy. Hence, the Rydberg energy is not only the ionization energy of the hydrogen atom but also has a much more general meaning and importance.

If we consider the zero-tupel (0,0,0,0) then this zero-tupel has a value of 1 Rydberg. So for a binding mediated through zero gluons, and with zero vertices involved, too, we still have a binding energy of 1 Rydberg left.

It could also well be that, in a to be developed new theory, and not within the well-established theories of QCD and/or QED, the binding of the 1s electron to the proton in hydrogen and helium is mediated through a new quantum represented by the zero-tupel (0,0,0,0); at least, this here called (0,0,0,0)-binding and the other particular binding energies seem to have a common origin, as they are similar in nature and energy level. They all represent an intra-particular quantum-mechanical binding state. In this newly to be developed theory the binding of the 1s electron would not only be of electrostatic and/or QED nature but also of this novel general quantum-mechanical nature and would probably be mediated by a new quantum particle. This could be the case because of the close distance between the 1s electron and the proton and should then be related to the 1s electron only.

For quantum-mechanical reasons, the 1s electron can approach extremely near to the proton in the density distribution.

The Rydberg energy seems to be the amount of energy of one microstate of the microcanonical ensemble that is formed by the binding states of an elementary particle. The partition function Z given here yields the number of microstates realized in one elementary particle, which can be visualized as an ensemble of Feynman-like structures describing the elementary particle in question.

However the neutrino should have negative exponents. This would allow smaller binding energies than Rydberg's energy. As the experimental results suggest a mass for the neutrino smaller than <1 eV/c2. We draw the following conclusions, which are valid for particles only:

microstates m E Z N Ω     or m E Ω   (34a+34b) Rydberg E E Z = or Rydberg E E = Ω (35a+35b) Rydberg E E Z = ⋅ or Rydberg E E = ⋅Ω (36a+36b) ln Z Rydberg E E e = ⋅ or ln Rydberg E E e Ω = ⋅ (37a+37b) 

Generalization of the partition function and generalization of the energy (mass) relation

A generalization of the partition function results in the following general formulation of the partition function of a particle.

The mass of an elementary particle can also be expressed in general using the following relationship.

2 8 1 2 3 (3 ) 1 1 3 d a b c particle particle Ryd E m c E π π       = = ⋅ ⋅ ⋅ ⋅   -     (38) similar to (6)
Here, the exponents a, b, c, and d are related to the numbers of interactions present in the particle.

This formulation yields the following hypotheses:

1.) The constant of proportionality between the partition function of a particle and the energy (mass) of that particle is always the Rydberg energy (energy per microstate).

8 1 2 3 (3 ) 1 1 3 d a b c Z π π       = Ω = ⋅ ⋅ ⋅   -     and 1 ln ln(2) ln(3) ln(3 ) ln 1 8 3 d Z a b c π π   = ⋅ + ⋅ + ⋅ - -     (39) 8 1 2 3 (3 ) 1 1 3 d a b c Ryd E E π π       = ⋅ ⋅ ⋅   -      (40) 2 
.) The individual exponents a, b, c, and d are always small whole numbers representing numbers of interactions. Z describes the number of possible combinations of such individual interactions. For all known particles, these exponents (a,b,c,d) can be determined through trial and error. Doing so leads us to the exponent series given in table 1. These values result from comparing the masses for wellknown particles resulting from the formula given above with the experimentally known values from the Particle Data Group. Another approach for determining the number of possible combinations consists of the graphic representation of all conceivable combination possibilities, analogous to what has been demonstrated here for the proton or nucleon and the pion.

3.) When we take a closer look at the values in table 1, we see that there are some particles that have no quark-quark interactions at all. These particles seem to exist due to gluons only; examples include the W, Z and H particles. Because these particles are bosons and are known to transmit forces, this finding is well consistent with current knowledge about particles.

4.)

The fact, that experimental determined energy states of excitated sigma-baryons can be described with a qq-model is in line with the description used here (quark-diquark model). The quark-diquark model was developed by Lichtenberg et al 1968 [START_REF] Lichtenberg | Quark-Diquark Model of Baryons and SU(6)[END_REF] and has successfully been used for the description of the hadron spectroscopy (Nagata et al, [START_REF] Nagata | Structure of the Roper Resonance with Diquark Correlations[END_REF]) The model for the sigma-baryon described here is very similar to the quark -diquark model and can potentially be an explanation for why this model is working very well. The exponential series for the delta-resonances (uud, ddu) are (-3;2;8;18). Similarly to the sigma baryon also the delta resonances have an a of -3. Therefore this could be an explanation for the quark di-quark model of Lichtenberg also fitting very good for the delta and nucleon resonances.

Comparison with textbook knowledge

In textbooks [START_REF] Hill | Statistical Mechanics[END_REF], a proportional relation between energies and/or between the potency of energy and the partition function is described for a microcanonical ensemble. This relation is different than that for a canonical or macrocanonical ensemble. For those two types of ensembles, a logarithmic relationship between the energy and the partition function has been described. Because we are instead dealing here with a microcanonical ensemble and the microcanonical partition function, it could be expected that a linear relationship would exist between the appropriate partition function and the binding energy.

Considerations on the accuracy of the calculations presented here

To compare the accuracy of the calculations presented here with that of the previously available formulas, we determine the electron mass or rest energy in two ways.

On the one hand, we calculate the electron rest energy using the new method presented here, and on the other hand, we use the well-known (and similar) relationship between the Rydberg constant and the electron mass (Ry=13.605693122 eV). 

π       = ⋅ ⋅ ⋅ =   -      (41)
By comparing the results of both methods of determining the electron mass, we can see that with the new method, we determine the rest energy of the electron, measured in Rydbergs as the energy unit, to be 37554 Ry (nominal experimental value: 37557 Ry); this value is accurate to four decimal places (1 E Ryd =13.605693122 eV, m Ryd =13.605693122eV/c 2 ). Using the analogous previously well-known common relationship, we determine the electron mass to be 9.112822335674E-31 kg (nominal experimental value 9.109 E-31 kg), corresponding to an accuracy of only two decimal places. The relation between the Rydberg constant and the electron mass presented here is therefore far more precise than the previously known relationship, with an accuracy that is higher by two decimal places (a factor of approximately 100).

There are different kinds of interactions within a nucleon. These are the color -anticolor interactions, which are 2-particle interactions, the normal color interactions which are three-particle interactions, the 3-gluon vertices, and the 4-gluon vertices. All these interactions can also be graphically displayed analogously to the chemical bonding in molecules. Here this is done exemplarily for the nucleon. 

Figure 2

There are different kinds of interactions within a neutral pion. These are the color -anticolor interactions, which are 2-particle interactions, the normal color-interactions which are normaly three-particle interactions, the 3-gluon vertices, and the 4-gluon interactions. Again, all these interactions can be displayed graphically analogously to the chemical binding in molecules. Here this is done for the neutral pion, which turned out to be a pion-pion dimer.

a.) Graphical representation of the number of color-anticolor interactions (a) for the neutral pion. The neutral pion is considered to be a quantum-mechanical state of superposition. This superposition is considered to form a pion-dimer meaning that both pions involved enter into interactions. Since the pion is considered to be a superposition and/or dimer the numbers a,b,c,d need to be divided by two.

Figure 3

Again, there are different kinds of interactions within a sigma baryon. These are the color -anticolor interactions, which are 2-particle interactions, the normal color interactions which normally are three-particle interactions, the 3-gluon vertices, and the 4-gluon interactions. Again, all these interactions can be displayed graphically analogously to the chemical bindings in molecules. Here this is done for the sigma baryon. The sigma baryon carries the strange quark and the strange quark has the ability to take part in two particle interactions (=color anticolor interactions).

a.) Graphical representation of the number of color-anticolor interactions (a) for the sigma baryon

The strange-quark seems to have the ability to interact in anticolor interactions. So it seems to have the ability to carry anticolor. 

  binding hypercolor H according to Harari et al, e.g. anti-T-R and anti-T-R), 2-non binding 3-particle interactions (anti-T-R; anti-T-R; anti-T-L and anti-T-L; anti-T-R; anti-T-R), four 3-vertices interactions and four 4-vertices interactions.

  1[TTT(VV) 6 ] W + -particle a=0 [TTT(VVV)] Z-particle: a=0 [VVV(VVV)]

  non-binding zero binding zero bindingν τ =[VVV(VV) 3 ] W --particle a=0 [TTT(VVV)] ν e =[VVV]Forming the W-paticle: Through adding of TTV to d the a and b-interactions get somewhat lost. Only the c and d interaction are possible in the W-particle. Afterwards the W-particle forms two particles with a and b interactions again.

  a.) Graphical representation of the number of color-anticolor interactions (a) for the nucleon b.) Graphical representation of the number of three-color interactions (b) for the nucleon c.) Graphical representation of the number of 3-gluon vertex interactions (c) for the nucleon d.) Graphical representation of the number of 4-gluon vertex interactions (d) for the nucleon. Thereby 3-gluon vertex interactions and 4-gluon vertex interactions are combined.

  b.) Graphical representation of the number of three-color interactions (b) for the pion-dimer c.) Graphical representation of the number of 3-vertex gluon interactions (c) for the pion-dimer d.) Graphical representation of the number of 4-vertex gluon interactions (d) for the pion-dimer Again 3-gluon vertex interactions and 4-gluon vertex interactions are combined.

  b.) Graphical representation of the number of three-color interactions (b) for the sigma baryon c.) Graphical representation of the number of 3-vertex gluon interactions (c) for the sigma baryon d.) Graphical representation of the number of 4-vertex gluon interactions (d) for the sigma baryon Again 3-gluon vertex interactions and 4-gluon vertex interactions are combined. Two 4-gluon interactions seem to occur subsequently in the sigma baryon.

Figure 3

 3 Figure 3 neutral Sigma-baryon (a=-3; b=2; c=8; d=16) Parameters c and d

Table 1 Exponent-series of the mass-formula calculated for the different particles

 1 

	a	b	c	d	mass/[MeV]	particle	composition
	leptons						
	-1	-2	0	0	7E-7	neutrino	(VV)V
	-1	2	4	4	0.5109	electron	(TT)T
	-3	2	7	3	105.44	muon	TTT*
	1	2	7	7	1784.49	tauon	TTT**
	quarks						
	1	2	4	8	2.16	up	u,(tt)v;tvt;ttv
	2	2	4	8	4.67	down	d, (VV)T;VTV;TVV
	2	3	6	15	1270	charm	c ttv*
	3	2	5	17	92	strange	s TVV*
	1	2	9	13	172421	top	t ttv**
	2	3	6	100	4184	bottom	b TVV**
	vector bosons						
	0	0	10	5	80700.0	W	(TT)T(VV)V
	0	0	10	14	91554.0	Z	
	0	0	10	36	124634.0	H	
	mesons						
	-1	1	7	0	134.8	pi 0	(uu-dd)/2
	-1	0	8	11	494.128	K+	us
	-1	-2	9	15	547.299	eta 0	uu+dd-2ss
	0	0	8	9	960.9	eta dash	uu+dd+ss
	1	0	8	7	1868.71	D+	cd
	1	0	8	11	1976.5	Ds+	cs
	-1	0	9	20	5283.0	B meson	ub
	-1	0	9	22	5433.0	strange meson sb
	-1	0	9	33	6339.0	charm meson cb
	vector mesons						
	3	0	7	5	771.0	rho 0	(uu-dd)/2
	0	0	8	4	895872.0	K*0	ds
	3	0	7	6	782.0	omega	(uu+dd)/2
	0	0	8	13	1016	phi	ss
	1	0	8	12	2004.0	D*0	cu
	1	0	8	43	3095.6	J/psi	cc
	baryons						
	0	-2	9	4	938.15	proton	uud
	-3	2	8	11	1111.0	lambda	uds
	-3	2	8	16	1192.5	sigma 0	uds
	-3	2	8	18	1226.4	delta	ddd
	-3	2	8	23	1315.5	xi 0	uss
	-1	-1	9	3	1387.6	sigma-*	dds
	-3	2	8	29	1430.95	N(1440)	udd
	-1	-1	9	10	1530.7	xi 0 reson	uss
	1	0	8	1	1670.0	Omega -	sss

Tables

 Table 1This table gives the exponents series (a,b,c,d) for the most important particles.