
Fundamenta Informaticae 183(1-2) : 33–66 (2021) 33
DOI 10.3233/FI-2021-2081
IOS Press

Coverability, Termination, and Finiteness in Recursive Petri Nets

Alain Finkel∗

LSV, ENS Paris-Saclay, CNRS, IUF, ORCID

Université Paris-Saclay, Gif-sur-Yvette, France

alain.finkel@ens-paris-saclay.fr

Serge Haddad†, Igor Khmelnitsky
LSV, ENS Paris-Saclay, CNRS, INRIA

Université Paris-Saclay, Gif-sur-Yvette, France

{serge.haddad, igor.khmelnitsky}@ens-paris-saclay.fr

Abstract. In the early two-thousands, Recursive Petri nets have been introduced in order to
model distributed planning of multi-agent systems for which counters and recursivity were nec-
essary. Although Recursive Petri nets strictly extend Petri nets and context-free grammars, most
of the usual problems (reachability, coverability, finiteness, boundedness and termination) were
known to be solvable by using non-primitive recursive algorithms. For almost all other extended
Petri nets models containing a stack, the complexity of coverability and termination are unknown
or strictly larger than EXPSPACE. In contrast, we establish here that for Recursive Petri nets, the
coverability, termination, boundedness and finiteness problems are EXPSPACE-complete as for
Petri nets. From an expressiveness point of view, we show that coverability languages of Recur-
sive Petri nets strictly include the union of coverability languages of Petri nets and context-free
languages. Thus we get a more powerful model than Petri net for free.

Keywords: Recursive Petri nets, Expressiveness, Complexity, Coverability, Termination, Finite-
ness.

Address for correspondence: I. Khmelnitsky, LSV, ENS Paris-Saclay
∗The work of this author was carried out in the framework of ReLaX, UMI2000 and also supported by ANR-17-CE40-0028
project BRAVAS.
†The work of this author was partly supported by ERC project EQualIS (FP7-308087)

https://orcid.org/0000-0003-2482-6141

34 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

1. Introduction

Verification problems for Petri nets. Petri net is a useful formalism for the analysis of concurrent
programs for several reasons. From a modeling point of view (1) due to the locality of the firing rule,
one easily models concurrent activities and (2) the (a priori) unbounded marking of places allows to
represent a dynamic number of activities. From a verification point of view, most of the usual prop-
erties are decidable. However, Petri nets suffer two main limitations: they cannot model recursive
features and the computational cost of verification may be very high. More precisely, all the known
algorithms solving reachability are nonprimitive recursive (see for instance [1]) and it has been proved
recently that the reachability problem is non elementary [2] but primitive recursive when the dimen-
sion is fixed [3]. Fortunately some interesting properties like coverability, termination, finiteness,
and boundedness are EXPSPACE-complete [4] and thus still manageable by a tool. So an impor-
tant research direction consists of extending Petri nets to support new modeling features while still
preserving decidability of properties checking and if possible with a ”reasonable” complexity.
Extended Petri nets. Such extensions may be partitioned between those whose states are still mark-
ings and the other ones. The simplest extension consists of adding inhibitor arcs which yields unde-
cidability of most of the verification problems. However adding a single inhibitor arc preserves the
decidability of the reachability, coverability, and boundedness problems [5, 6, 7]. When adding reset
arcs, the coverability problem becomes Ackermann-complete [8] and boundedness undecidable [9]

In ν-Petri nets, the tokens are colored where colors are picked in an infinite domain: their cover-
ability problem is double-Ackermann time complete [10]. In Petri nets with a stack, the reachability
problem may be reduced to the coverability problem and both are at least not elementary [2, 11]
while their decidability status is still unknown [11]. In branching vector addition systems with states
(BVASS) a state is a set of threads with associated markings. A thread either fires a transition as in
Petri nets or forks, transferring a part of its marking to the new thread. For BVASS, the reachability
problem is also TOWER-hard [12] and its decidability is still an open problem while the coverability
and the boundedness problems are 2-EXPTIME-complete [13]. The analysis of subclasses of Petri
nets with a stack is an active field of research [14, 15, 16, 17]. However, for none of the above exten-
sions, the coverability and termination problems belong to EXPSPACE.
Recursive Petri nets (RPN). This formalism has been introduced to model distributed planning of
multi-agent systems for which counters and recursivity were necessary for specifying resources and
delegation of subtasks [18]. Roughly speaking, a state of an RPN consists of a tree of threads where
the local state of each thread is a marking. Any thread fires an elementary, abstract or cut transition.
When the transition is elementary, the firing updates its marking as in Petri nets; when it is abstract,
this only consumes the tokens specified by the input arcs of the transition and creates a child thread
initialized with the initial marking of the transition. When a cut transition is fired, the thread and
its subtree are pruned, producing in its parent the tokens specified by the output arcs of the abstract
transition that created it. In RPN, reachability, boundedness and termination are decidable [19, 20] by
reducing these properties to reachability problems of Petri nets. So the corresponding algorithms are
nonelementary. LTL model checking is undecidable for RPN but becomes decidable for the subclass of
sequential RPN [21]. In [22], several modeling features are proposed while preserving the decidability
of the verification problems.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 35

Our contribution. We first study the expressive power of RPN from the point of view of coverability
languages (reachability languages were studied in [19]). We first introduce a quasi-order on states
of RPN compatible with the firing rule and establish that it is not a well quasi-order. Moreover, we
show that there cannot exist a transition-preserving compatible well quasi-order, preventing us to use
the framework of Well Structured Transition Systems to prove that coverability is decidable. We
show that the RPN languages are quite close to recursively enumerable languages since the closure
under homomorphism and intersection with a regular language is the family of recursively enumerable
languages. More precisely, we show that RPN coverability (as reachability) languages strictly include
the union of context-free languages and Petri net coverability languages. Moreover, we prove that RPN
coverability languages and reachability languages of Petri nets are incomparable. We prove that RPN
coverability languages are a strict subclass of RPN reachability languages. In addition, we establish
that the family of RPN languages is closed under union, homomorphism but neither under intersection
with a regular language nor under complementation.

From an algorithmic point of view, we show that, as for Petri nets, coverability, termination,
boundedness, and finiteness are EXPSPACE-complete. Thus the increase of expressive power does
not entail a corresponding increase in complexity. In order to solve the coverability problem, we
show that if there exists a covering sequence there exists a ‘short’ one (i.e. with a length at most
doubly exponential w.r.t. the size of the input). In order to solve the termination problem, we consider
two cases for an infinite sequence depending (informally speaking) whether the depth of the trees
corresponding to states are bounded or not along the sequence. For the unbounded case, we introduce
the abstract graph that expresses the ability to create threads from some initial state. The decidability
of the finiteness and boundedness problems are also mainly based on this abstract graph.

Let us mention that this paper is an extended version of [23] that contains new results about ex-
pressiveness like the characterization of the RPN coverability languages, decidability and complexity
of finiteness and boundedness and we greatly simplified the proofs of coverability, termination, and
finiteness. We also provided a more elegant definition of the (now inductive) syntax and the semantics
of RPN.
Outline. In section 2, we introduce RPNs and state ordering and establish basic results related to
these notions. In section 3, we introduce decision problems and some reductions between them. In
section 4, we study the expressiveness of coverability languages. Then in sections 5, 6, and 7 we show
that the coverability, termination, boundedness, and finiteness problems are EXPSPACE-complete.
In section 8, we conclude and give some perspectives to this work.

2. Recursive Petri nets

2.1. Presentation

The state of an RPN has a structure akin to a ‘directed rooted tree’ of Petri nets. Each vertex of the
tree, hereafter thread, is an instance of the RPN and possessing some marking on it. Each of these
threads can fire three types of transitions. An elementary transition updates its own marking according
to the usual Petri net firing rule. An abstract transition consumes tokens from the thread firing it and
creates a new child (thread) for it. The marking of the new thread is determined according to the fired

36 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

abstract transition. A cut transition can be fired by a thread if its marking is greater or equal than some
marking. Firing a cut transition, the thread erases itself and all of its descendants. Moreover, it creates
tokens in its parent, which are specified by the abstract transition that created it.

Definition 2.1. (Recursive Petri Net)
A Recursive Petri Net is a 6-tuple N = 〈P, T,W+,W−,Ω〉 where:

• P is a finite set of places;

• T = Tel] Tab] Tτ is a finite set of transitions with P ∩ T = ∅, and Tel (respectively Tab, Tτ)
is the subset of elementary (respectively abstract, cut) transitions;

• W− is the NP×T backward incidence matrix;

• W+ are the NP×(Tel]Tab) forward incidence matrix;

• Ω : Tab → NP is a function that labels every abstract transition with a initial marking;

Figure 1 graphically describes an example of an RPN with:

P = {pini, pfin, pbeg, pend} ∪ {pbi , pai : i ≤ 2};
Tel = {tb1 , tb3 , ta1 , ta3 , tsa, tsb} ; Tab = {tbeg, tb2 , ta2};
Tτ = {tτ1 , tτ2}.

and for instance W−(pini, tbeg) = 1 and Ω(tb2) = pbeg (where pbeg denotes the marking with one
token in place pbeg and zero elsewhere).

pbeg

pa1

pa2

pend

pb1

pb2

pini

pfin

tτ1

tτ2

ta1

ta2pbeg

ta3

tb1

tb2 pbeg

tb3

tsb

tsa

tbeg pbeg

0 (the root rs)

0

pend

pfin

pb2

s - A state of N
RPN N

Figure 1. An example of a marked RPN.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 37

For brevity reasons, we denote by W+(t) a vector in NP , where for all p ∈ P , W+(t)(p) =
W+(p, t), and we do the same for W−(t).

A concrete state s of an RPN is a labeled tree representing relations between threads and their
associated markings. Every vertex of s is a thread and edges are labeled by abstract transitions. We
introduce a countable set V of vertices in order to pick new vertices when necessary.

Definition 2.2. (State of an RPN)
A concrete state (in short, a state) s of an RPN is a tree over the finite set of vertices Vs ⊆ V ,
inductively defined as follows:

• either Vs = ∅ and thus s = ∅ is the empty tree;

• or Vs = {rs}] V1] . . .] Vk with 0 ≤ k and s = (rs,m0, {(mi, si)}1≤i≤k) is defined as
follows:

– rs is the root of s labelled by a marking m0 ∈ NP ;

– For all i ≤ k, si is a state over Vi 6= ∅
and there is an edge rs

mi−−→s rsi with mi ∈ {W+(t)}t∈Tab .

For all u, v ∈ Vs, one denotesMs(u) the marking labelling u and when u m−→s v, one writes Λ(u, v) :=
m. State sv is the (maximal) subtree of s rooted in v.

While the set of vertices Vs will be important for analyzing the behavior of a firing sequence in
an RPN, one can omit it and get a more abstract representation of the state. Note that contrary to the
previous definition where {(mi, si)}1≤i≤k was a set, in the following definition we need a multiset
Childs.

Definition 2.3. (Abstract state of an RPN)
An abstract state s of an RPN is inductively defined as follows:

• either s = ∅ is the empty set ;

• or s = (ms, Childs) where ms ∈ NP and Childs is a finite multiset of pairs (m′, s′)

where m′ ∈ {W+(t)}t∈Tab and s′ is an abstract state different from ∅.

Given a concrete state s, we denote by [s] its abstract state. Except if explicitly stated, a state is a
concrete state.

In the other direction, given an abstract state s, one recovers its set of concrete states by picking
an arbitrary set of vertices Vs ⊆ V of appropriate cardinality and, inductively, arbitrarily splitting Vs
between the root and the pairs (m, s′).

For example, on the right side of Figure 1, there is a (concrete) state of the RPN N . This state
consists of three threads with markings 0,0, and pend (where 0 is the null marking) and two edges
with the labels W+(tbeg) and W+(tb2).

Let s be a state of some RPN. Every thread u different from the root has an unique parent, denoted
by prd(u). The descendants of a thread u consists of threads in the subtree rooted in u including
u itself. We denote this set by Dess(u). For m ∈ NP , denote by s[r,m] := (r,m, ∅), the state

38 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

consisting of a single vertex r whose marking is m. As usual, two markings m,m′ ∈ NP , over a set
of places P , are partially ordered as follows: m ≤ m′ if for all places p ∈ P , m(p) ≤ m′(p).

Definition 2.4. (Operational semantics)
Let s = (r,m0, {(mi, si)}1≤i≤k) be a state. Then the firing rule s

(v,t)−−→ s′ where v ∈ Vs and t ∈ T is
inductively defined as follows:

• Let t ∈ Tel such thatW−(t) ≤ m0, then one has s
r,t−→ (r,m0−W−(t)+W+(t), {(mi, si)}i≤k)

• Let t ∈ Tab such that W−(t) ≤ m0, then one has s
r,t−→ (r,m0 −W−(t), {(mi, si)}i≤k+1))

where mk+1 = W+(t), sk+1 = s[v,Ω(t)] with v ∈ V \ Vs

• Let t ∈ Tτ such that W−(t) ≤ m0, then one has s
r,t−→ ∅

• Let i ≤ k such that si
v,t−→ s′i

if s′i = ∅ then s
v,t−→ (m0 +mi, {(mj , sj)}1≤j 6=i≤k)

else s
v,t−→ (m0, {mj , sj}1≤j 6=i≤k ∪ {mi, s

′
i})

Figure 2 illustrates a sequence of transition firings in the RPN described by Figure 1. The first
transition tbeg ∈ Tab is fired by the root. Its firing results in a state for which the root has a new child
(denoted by v) and a new outgoing edge with label pfin. The marking of the root is decreased to
0 and v is initially marked by Ω(tbeg) = pbeg. The second firing is due to an elementary transition
tb1 ∈ Tel which is fired by v. Its firing results in a state for which the marking of v is changed to
M ′s(v) = Ms(v) +W+(tb1)−W−(tb1) = pb1 . The fifth transition to be fired is the cut transition tτ2 ,
fired by the thread with the marking pend (denoted by w). Its firing results in a state where the thread
w is erased, and the marking of its parent is increased by W+(tb2) = pb2 .

pini 0

pbeg v

pfin

0

pb1

pfin

0

0

pbeg

pfin

pb2 0

0

pend w

pfin

pb2

0

pb2

pfin

0

pend

pfin

pfin

tbeg tb1 tb2
tsa

tτ2tb3tτ2

Figure 2. Firing sequence for the RPN in Figure 1

A firing sequence is a sequence of transition firings, written in a detailed way: s0
(v1,t1)−−−−→ s1

(v2,t2)−−−−→
· · · (vn,tn)−−−−→ sn, or when the context allows it, in a more concise way like s0

σ−→ sn for σ =
(v1, t1)(v2, t2) . . . (vn, tn).Let σ ∈ T ∗ with σ= t1 . . . tn and v be a vertex, (v, σ) is an abbreviation

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 39

for (v, t1) . . . (v, tn). When we deal with several nets, we indicate by a subscript in which net, sayN ,
the firing sequence takes place: s0

σ−→N sn. Infinite firing sequences are similarly defined. In a firing
sequence, a thread v that has been deleted is never reused (which is possible since V is countable).
A thread is final (respectively initial) w.r.t. σ if it occurs in the final (respectively initial) state of σ.
We say that v ∈ Desσ(u) if there exists i ≤ n such that v ∈ Dessi(u). We call σ′ a subsequence of
σ, denoted by σ′ v σ, if there exists k indexes i1, i2 . . . ik such that 1 ≤ i1 < i2 < . . . ik ≤ n and
σ′ = (vi1 , ti1)(vi2 , ti2) . . . (vik , tik).

Remark 2.5. In the sequel, when we write “RPNN ”, we meanN = 〈P, T,W+,W−,Ω〉, unless we
explicitly write differently. An RPN N equipped with an initial state s is a marked RPN and denoted
(N , s). Similarly a marked Petri net (N ,m) is a Petri net N equipped with an initial marking m.

For a marked RPN (N , s0), let Reach(N , s0) = {[s] | ∃σ ∈ T ∗ s.t. s0
σ−→ s} be its reachability set,

i.e. the set of all the reachable abstract states.

2.2. An order for Recursive Petri Nets

We now define a quasi-order � on the states of an RPN. Given two states s, s′ of an RPN N , we say
that s is smaller or equal than s′, denoted by s � s′, if there exists a subtree in s′, which is isomorphic
to s, where markings are greater or equal on all vertices and edges.

Definition 2.6. Let s 6= ∅ and s′ be states of an RPN N . Then s � s′ if there exists an injective
mapping f from Vs to Vs′ such that for all v ∈ Vs:

1. Ms(v) ≤Ms′(f(v)), and,

2. for all v m−→s w, there exists an edge f(v)
m′−→s′ f(w) with m ≤ m′.

In addition, ∅ � s for all states s.
When f(rs) is required to be rs′ , one denotes this relation s �r s′ with ∅ �r s if and only if s = ∅.

Figure 3 illustrates these quasi-orders.

0

2p1

p2

p1 + p2

p1

p2

p1
�

6�r

s′s

Figure 3. We have that s � s′, but s 6�r s′ because the marking of the root of s′ is too small.

While this is irrelevant for the results presented here, let us mention that checking whether s � s′
can be done in polynomial time by adapting a standard algorithm for the subtree problem (see for
instance [24]).

Lemma 2.7. The relations � and �r are quasi-orders.

40 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

Proof:
Let, s, s′, s′′ be states of an RPNN with s = (r,m0, {(mi, si)}1≤i≤k), s′ = (r′,m′0, {(m′i, s′i)}1≤i≤k′)
and s′′ = (r′′,m′′0, {(m′′i , s′′i)}1≤i≤k′′). Let us show that the relation � is a quasi-order.

1. Reflexivity: the identity function Id on Vs insures that s � s.
2. Transitivity: Given s � s′ � s′′, there exist two injective functions f : Vs → Vs′ and f ′ :
Vs′ → Vs′′ . Let g : Vs → Vs′′ be defined by g = f ′ ◦ f . Then g is injective. For any

edge v m−→s w, there exists an edge f(v)
m′−→s′ f(w) with m ≤ m′ and there exists an edge

f ′(f(v))
m′′−−→s′′ f

′(f(w)) with m ≤ m′ ≤ m′′. For all v ∈ Vs, one has Ms(v) ≤Ms′(f(v)) ≤
Ms′′(f

′(f(v))) = Ms′′(g(v)). Therefore s � s′′.

The proof for the relation �r is similar. ut

Consider the equivalence relation ':=� ∩ �−1. Given a set of states A, one denotes by A/'
the quotient set by the equivalence relation '. Observe that s ' s′ if and only if their abstract
representations are equal and that '=�r ∩ �−1

r .
A quasi-order ≤ on the states of an RPN is strongly compatible (as in [25]) if for all states s, s′

such that s ≤ s′ and for all transition firings s
(v,t)−−→ s1, there exist a state s′1 and a transition firing

s′
(v′,t′)−−−→ s′1 with s1 ≤ s′1.

Lemma 2.8. The quasi-orders � and �r are strongly compatible.

Proof:
Let s � s′ and let f be the mapping associated with the relation � and s

v,t−→ s1.
Thus sv

v,t−→ s2 for some s2.
We will exhibit some s′1 such that s1 � s′1 with some f ′ as associated mapping.

Since Ms(v) ≤ Ms′(f(v)), one has s′f(v)

f(v),t−−−→ s′2 for some s′2 and by induction s′
f(v),t−−−→ s′1 for

some s′1.

It remains to define f ′.
• If t ∈ Tel then f ′ = f ;
• If t ∈ Tab then for all threads u of s, f ′(u) = f(u) and if v∗ (resp. w∗) is the thread created by

the firing (v, t) (resp. (f(v), t)) then f(v∗) = w∗;
• If t ∈ Tτ then f ′ is equal to f restricted to the remaining vertices.

It is routine to check that the inequalities between corresponding markings of s and s′ are fulfilled.
The proof for �r is similar. ut

These quasi-orders may contain an infinite set of incomparable states (i.e. an infinite antichain).
For example, see Figure 4 where any two states si and sj are incomparable.

Indeed, for any i < j: (1) sj 6� si since |Vsj | > |Vsi | there cannot be any injective function from
Vsj to Vsi , and (2) si 6� sj since for any injective function from Vsi to Vsj , at least one of the edges
with the marking pr would be mapped to an edge with a marking p`. Since s �r s′ implies s � s′,
this is also an antichain for �r.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 41

pr

p`

τr tr

τ` t`

s1

s2

sn

...

v0

0

v1

0

v2

p`

pr p`

v0

0

v1

0

v2

0

v3

p`

pr p` p`

v0

0

v1

0

v2

0

v3

0

vn+1

p`

pr p` p` p`

Figure 4. An RPN with an antichain of states

Observe also that these quasi-orders are not only strongly compatible. They are transition-pre-
serving compatible meaning that for all states s, s′ such that s ≤ s′ and for all transition firings

s
(v,t)−−→ s1, there exist s′1 and a transition firing s′

(v′,t)−−−→ s′1 with s1 ≤ s′1. In Petri net, the standard
order on NP is a well quasi-order which is transition-preserving compatible. The next proposition
establishes that such a quasi-order does not exist in RPN.

Proposition 2.9. There does not exist a well quasi-order on states of RPN which is transition-pre-
serving compatible.

Proof:
Consider the net of Figure 4 and the family of states {sn}n≥1. By a simple examination one gets that

for all n ≥ 1, sn
(vn+1,τ`)...(v1,τ`)(v0,τr)−−−−−−−−−−−−−−−→ ∅. Moreover for all n′ 6= n, there does not exist a firing

sequence from sn′ labelled by τn+1
` τr. Thus for any transition-preserving compatible quasi-order ≤,

these states are incomparable establishing that ≤ is not a well quasi-order. ut

Since � is not a well quasi-order, RPNs with the relation � are not well structured transition
systems (WSTS) [25] for which coverability is decidable. Therefore to solve coverability, one needs
to find another way.

3. Decision problems and reductions

In this section, we introduce the decision problems that we are going to solve and establish reductions
to simpler problems in order to shorten the proofs of subsequent sections.

Let (N , s0) be a marked RPN and sf be a state of N .

• The cut problem asks whether there exists a firing sequence σ such that s0
σ−→ ∅?

• The coverability problem asks whether there exists a firing sequence σ such that s0
σ−→ s � sf?

• The termination problem asks whether there exists an infinite firing sequence?

42 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

• The finiteness problem asks whether Reach(N , s0) is finite?

• The boundedness problem asks whether there exists B ∈ N such that for all s ∈ Reach(N , s0)
and for all v ∈ Vs, one has max(Ms(v)(p))p∈P ≤ B?

Observe that contrary to Petri nets, the finiteness and boundedness problems are different and not
equivalent. Indeed, an RPN can be bounded while due to the unbounded number of vertices, its
reachability set can be infinite.

We introduce the “rooted” version of the above problems: for these versions, s0 is required to be
some s[r,m0]. In order to establish a reduction from the general problems to their rooted versions,
given a marked RPN (N , s0), we build a marked RPN (N̊ , s[r, m̊0]) that in a way simulates the former
marked RPN. We do this by adding a place pv for every vertex v 6= r of s0 and we add an abstract
transition tv that consumes a token from this place and creates a new vertex with initial marking in
Ms0(v) +

∑
v
mv′−−→s0v

′
. This will allow to create the children of v in s0 (see Figure 5). In order to

similarly proceed in the root, m̊0 = Ms0(r) +
∑

r
mv′−−→s0v

′
.

p1

p2

t2

p1

t1

p1

p1

p2

pv1 pv2 pv3

t1

p1

t2

p1

tv1p1 + pv2 + pv3 tv2p2 tv3 p1

rp1 v1

p1

v2 p2

v3 p1

p1

p2

p2

r p1 + pv1

(N , s0)

(N̊ , s̊0)

Figure 5. From a marked RPN to a rooted one

Definition 3.1. Let (N , s0) be a marked RPN. Then (N̊ , s̊0) is defined by:
• P̊ = P ∪ {pv | v ∈ Vs0 \ {rs0}} ;
• T̊ab = Tab ∪ TV , T̊τ = Tτ , T̊el = Tel with TV = {tv | v ∈ Vs \ {rs}} ;
• for all t ∈ T , one has W̊−(t) = W−(t) and all t ∈ Tab ∪ Tel, W̊+(t) = W+(t) ;
• for all tv ∈ TV and u mv−−→s0 v, W̊−(tv) = pv and W̊+(tv) = mv ;
• for all t ∈ Tab, Ω̊(t) = Ω(t) ;
• for all tv ∈ TV , Ω̊(tv) = Ms0(v) +

∑
v
mv′−−→s0v

′
pv′ ;

• s̊0 = s[r,Ms0(rs) +
∑

rs0
mv−−→s0v

pv].

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 43

Let m ∈ NP̊ , we denote by m|P ∈ NP the projection of m on P . Let s be a state of N̊ , we denote
s|P a state of N obtained by projecting every marking of s on P .

Observations.
1. The encoding size of (N , s0) is linear w.r.t. the encoding size of (N̊ , s̊0).
2. Let e := (vi)0≤i≤k be an enumeration of Vs0 such that v0 = rs0 and for all 0 < i ≤ k,
prd(vi) ∈ {vj}j<i. Consider σes0 = (prd(vi), tvi)

k
i=1. Such an enumeration is called consistent.

By construction of N̊ , s̊0

σes0−−→N̊ s′0 with s′0|P = s0 and all places of PV unmarked in s′0.

3. Let s̊0
σ−→N̊ s. Then by construction, for all v ∈ Vs0 \ {rs0}, there is at most one occurrence

of tv which furthermore is fired in prd(v). Moreover since these firings consume tokens in PV
that were not used for firings of T , they can be pushed at the beginning of σ (denoted by σ1) and
completed by the missing firings of TV in σ (denoted by σ2) getting a consistent enumeration e.
Summarizing, denoting σ|N , σ without the firings of TV , one gets that:

(1) s̊0

σ1σ|N−−−−→N̊ s,
(2) s̊0

σσ2−−→N̊ s′ and

(3) s0

σ|N−−→N s′′ with s′|P = s′′ and all places of PV are unmarked in s′.
Due to observation 2, we immediately get that:

Lemma 3.2. Let (N , s0) be a marked RPN and s0
σ−→N s. Then for every consistent enumeration e,

there exists a firing sequence s̊0

σes0σ−−−→N̊ s′ with s′|P = s and all places of PV are unmarked in s′.

Due to observation 3, we immediately get that:

Lemma 3.3. Let (N , s0) be a marked RPN and s̊0
σ−→N̊ s. Then there exist a consistent enumeration

e and a decomposition σes0 = σ1σ2 such that s̊0

σ1σ|N−−−−→N̊ s, s̊0
σσ2−−→N̊ s′ and s0

σ|N−−→N s′′ with
s′|P = s′′ and all places of PV are unmarked in s′.

Due to the previous lemmas, we get that:

Proposition 3.4. The cut (resp. coverability, termination, finiteness, boundedness) problem is poly-
nomially reducible to the rooted cut (resp. coverability, termination, finiteness, boundedness) problem.

Proof:
Let (N , s0) be a marked RPN and sf be a state of N . Define s̊f a state of N̊ be as sf with in all
markings of sf , all places of P̊ \ P unmarked.

• Assume that there exists s0
σ−→N ∅. Then by Lemma 3.2, s̊0

σes0σ−−−→N̊ ∅. Assume that there exists
s̊0

σ−→N̊ ∅ which means that the last transition is fired in the root and is a cut transition. Then by

Lemma 3.3, s0

σ|N−−→N s′′ for some s′′. Since the last firing of of σ|N is the cut transition fired in the
root s′′ = ∅.
• Assume that there exists s0

σ−→N s � sf . Then by Lemma 3.2, s̊0

σes0σ−−−→N̊ s̊ with s̊|P = s. Thus
s̊ � s̊f . Assume that there exists s̊0

σ−→N̊ s � s̊f . Then by Lemma 3.3, there exists σ2 a firing

44 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

sequence of TV with s̊0
σσ2−−→N̊ s′, s0

σ|N−−→N s′′ and s′|P = s′′. Since σ2 only creates vertices and
deletes tokens from PV , s′ � s̊f . Thus s′′ � sf .

• Assume that there exists s0
σ−→N with σ infinite. Then by Lemma 3.2, s̊0

σes0σ−−−→N̊ . Assume that there

exists s̊0
σ−→N̊ with σ infinite. Then by Lemma 3.3, s0

σ|N−−→N with σ|N infinite since there are only a
finite number of firings of TV .

• Assume that Reach(N , s0) is infinite. For all s ∈ Reach(N , s0), define s̊ a state of N̊ as s with all
places of PV in markings of s unmarked. Due to Lemma 3.2, s̊ ∈ Reach(N̊ , s̊0). Since this mapping
is injective, Reach(N̊ , s̊0) is infinite. Assume that Reach(N̊ , s̊0) is infinite. Let s ∈ Reach(N̊ , s̊0).

Due to Lemma 3.3, consider s σ2−→N̊ s′ and s0

σ|N−−→N s′′ with s′|P = s′′ and all places of PV unmarked
in s′. Thus s′′ ∈ Reach(N , s0). The mapping from s to s′′ is not injective. However, the inverse image
of s′′ by this mapping is finite since there are a finite number of consistent enumerations and prefixes
of such enumerations. Thus Reach(N , s0) is infinite.

• Assume that (N , s0) is unbounded. For all s ∈ Reach(N , s0), define s̊ a state of N̊ as s with
all places of PV in markings of s unmarked. Due to Lemma 3.2, s̊ ∈ Reach(N̊ , s̊0). Thus (N̊ , s̊0)
is unbounded. Assume that (N̊ , s̊0) is unbounded. By construction, the marking of places in PV is

bounded. Let s ∈ Reach(N̊ , s̊0). Due to Lemma 3.3, consider s σ2−→N̊ s′ and s0

σ|N−−→N s′′ with
s′|P = s′′ and all places of PV unmarked in s′. Thus s′′ ∈ Reach(N , s0). Since for all vertex v of s,
v is also present in s′′ and for all p ∈ P , Ms(v)(p) = Ms′′(v)(p). Then Reach(N , s0) is unbounded.

ut

Let σ be a firing sequence. A thread is extremal w.r.t. σ if it is an initial or final thread.

Definition 3.5. Let N be an RPN. Then Tret ⊆ Tab, the set of returning transitions is defined by:

{t ∈ Tab | ∃s[r,Ω(t)]
σ−→ ∅}

For all t ∈ Tret, we define σt to be some arbitrary shortest returning sequence (i.e. s[r,Ω(t)]
σt−→ ∅).

We now introduce N̂ obtained from N by adding elementary transitions that mimic the behaviour of
a returning sequence. Observe that the size of N̂ is linear w.r.t. the size of N .

Definition 3.6. Let N be an RPN. Then N̂ =
〈
P, T̂ , Ŵ+, Ŵ−,Ω

〉
is defined by:

• T̂ab = Tab, T̂τ = Tτ , T̂el = Tel] {tr | t ∈ Tret};
• for all t ∈ T , Ŵ−(t) = W−(t) and all t ∈ Tab ∪ Tel, Ŵ+(t) = W+(t);
• for all t ∈ Tab, Ω̂(t) = Ω(t);
• for all t ∈ Tret, Ŵ−(tr) = W−(t) and Ŵ+(tr) = W+(t).

Figure 6 has an example of an RPN N and its N̂ .

Note that since N̂ enlarges N by adding transitions and that any firing of tr in N̂ can be replaced
by the firing of tσt in N we get:

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 45

p1

p2

tτ

t1p1 t2 p2

p1

p2

tτ

t1p1 t2 p2

tr1

p1

p2

t1 t2

tr1

N N̂ N̂el

Figure 6. From N to N̂ and N̂el

Proposition 3.7. Let (N , s0) be a marked RPN. Then Reach(N , s0) = Reach(N̂ , s0).

We call a firing sequence σ omniscient if any thread created during its firing is a final thread.

Proposition 3.8. Let (N , s0) be a marked RPN and s0
σ−→N s. Then there exists a firing sequence

s0
σ̂−→N̂ s such that σ̂ is omniscient.

Proof:
Assume that we have an extremal thread u which fires t ∈ Tab creating a non final thread v that
disappears by a matching cut transition (v, tτ) ∈ σ for tτ ∈ Tτ . One builds σ′ by (1) deleting from
σ the transition (u, t), (2) deleting all the firings from Desσ(v) in σ and (3) replacing the transition
(v, tτ) by (u, tr). We claim that s σ−→ s′. Indeed in u the transition (u, tr) has the same incidence
in u as the transition (u, t) followed by (v, tτ) (‘anticipating’ (v, tτ) only add tokens in intermediate
states) and the other deleted firings are performed by threads in Desσ(v) which do not exist anymore.
By taking σ̂ the sequence obtained by iterating the process, we get the omniscient sequence. ut

In order to recover from a sequence in N̂ a sequence in N , for every t ∈ Tret one has to simulate the
firings of a transition tr by sequence σt. Therefore bounding the length of σt is a critical issue. Recall
that in [4], Rackoff showed that the coverability problem for Petri nets belongs to EXPSPACE. More
precisely, he proved that if there exists a covering sequence, then there exists a ‘short’ one:

Theorem 3.9. (Rackoff [4])
LetN be a Petri net, mini, mtar be markings and σ be a firing sequence such thatmini

σ−→ m ≥ mtar.

Then there exists a sequence σ′ such that mini
σ′−→ m′ ≥ mtar with |σ′| ≤ 22cn logn

for some constant
c and n being the size of (N ,mtar).

A surprising consequence of Rackoff’s proof is that the length of the minimal coverability sequence
does not depend on the initial marking of the net.

Proposition 3.10. Let N be an RPN and t ∈ Tret. Then the returning sequence σt fulfills |σt| ≤
2·2

dn logn
for some constant d and n = size(N).

46 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

Proof:
Let us enumerate Tret = {t1, . . . , tK} in such a way that i < j implies |σti | ≤ |σtj |. Observe first
that the shortest returning sequences do not include firings of abstract transitions not followed by a
matching cut transition since it could be omitted as it only deletes tokens in the thread. We argue by
induction on k ≤ K that:

|σtk | < 2k·2
cn logn

where c is the Rackoff constant

For k = 1, we know that σt1 has a minimal length over all returning sequences. Hence there are no
cuts in σt1 except the last one. Due to the above observation, σt1 only includes firing of elementary
transitions. Thus the Rackoff bound of Theorem 3.9 applies for a covering of some final marking.
Assume that the result holds for all i < k. Due to the requirement on lengths, σtk only includes cuts
from threads created by ti ∈ Tret with i < k. Thus by Proposition 3.8 we get a sequence σ̂tk · (r, tτ)

in N̂ (where r is the root and tτ ∈ Tτ). The sequence σ̂tk consists of only elementary transitions and
does not contain any transition tri with i ≥ k. The marking of r reached by σ̂tk covers some final
marking, hence by Theorem 3.9 there exists a covering sequence σ̂′tk such that |σ̂′tk | ≤ 22cn logn

. Since
σ̂tk does not contain firing of tri with i ≥ k this also holds for σ̂′tk . Substituting any firing of tri by σti ,
one gets a corresponding sequence σ′tk in N . Using the induction hypothesis, one gets that the length
of σ′tk fulfills:

|σ′tk | ≤ |σ̂t′k |2
(k−1)·2cn logn ≤ 22cn logn · 2(k−1)·2cn logn ≤ 2k·2

cn logn

From minimality of σtk , one gets |σtk | ≤ |σ′tk | ≤ 2k·2
cn logn

which concludes the proof since

max
t∈Tret

{|σt|} ≤ 2|Tret|·2
cn logn ≤ 2n2cn logn ≤ 222cn logn

.
ut

Using the previous proposition, we can compute Tret in exponential space, by enumerating for
all abstract transitions, all firing sequences of sufficient length and checking whether they lead to the
empty tree.

Below are immediate corollaries from the previous propositions:

Corollary 3.11. Let N be a marked RPN. Then for all s σ̂−→N̂ s′, there exists s σ−→N s′ such that
|σ| ≤ 2·2

dn logn |σ̂| for some constant d and n = size(N).

Corollary 3.12. Given an RPN N one can build N̂ in exponential space.

In order to mimic the behavior of a specific thread in a firing sequence (which will be useful later
on), we introduce the Petri net N̂el. The size of N̂el is also linear w.r.t. the size of N .

Definition 3.13. Let N be an RPN. Then the Petri net N̂el =
〈
P, T̂el, Ŵ

+
el , Ŵ

−
el

〉
is defined by:

• T̂el = T̂ \ Tτ ;

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 47

• For all t ∈ T̂el \ Tab, Ŵ−el (t) = Ŵ−(t) and Ŵ+
el (t) = Ŵ+(t);

• For all t ∈ Tab, Ŵ−el (t) = Ŵ−(t) and Ŵ+
el (t) = 0.

Figure 6 has an example of an RPN N and its N̂el.

As for N̂ , one can build N̂el in exponential space.

Observation. The main (straightforward) property of N̂el is the following one. Let σ ∈ T̂ ∗el with

nt the number of occurrences of t in σ. Then m0
σ−→N̂el m if and only if s[r,m0]

(r,σ)−−−→N̂ s with

Vs = {r} ∪
⋃
t∈Tab{vt,1, . . . , vt,nt}, Ms(r) = m and for all vti , r

W+(t)−−−−→s vti and Ms(vti) = Ω(t).

4. Expressiveness

The expressiveness of a formalism may be defined by the family of languages that it can generate.
In [19], the expressiveness of RPNs was studied using reachability languages. However, using reacha-
bility languages as specification languages has an inconvenient since the emptiness problem for these
languages is not elementary [26] for Petri nets, so it is also not elementary, at least, for RPN. We
propose to characterize the expressive power of RPN by studying the family of coverability languages
which is sufficient to express most of the usual reachability properties since many of them reduce to
check that no reachable state may cover a bad marking in a thread.

The characterization of the expressive power by means of covering languages has been done for
Petri nets (studied in the book of Peterson [27]), and more recently, for Well Structured Transition
Systems (WSTS) [28] and for monotonic extensions of Petri nets like reset-transfer Petri nets, ν-Petri
nets, unordered Petri nets [29, 30]. More properties are decidable for VASS covering languages than
for VASS reachability languages. For instance, universality for reachability languages is undecidable
for 1-VASS [31] and then co-finiteness is also undecidable but these two properties are both decidable
for VASS covering languages [32]; moreover, it is Ackermann-complete for 1-VASSs [33]. Generally,
the universality of both reachability and coverability of WSTS languages is undecidable [28].

So we equip any transition t with a label λ(t) ∈ Σ ∪ {ε} where Σ is a finite alphabet and ε is the
empty word. The labelling is extended to transition sequences in the usual way. Thus given a labelled
marked RPN (N , s0) and a finite subset of states Sf , the (coverability) language LC(N , s0, Sf) is
defined by:

LC(N , s0, Sf) = {λ(σ) | ∃ s0
σ−→ s � sf ∧ sf ∈ Sf}

i.e. the set of labellings for sequences covering some state of Sf in N .

We now study the family of RPN coverability languages both from the point of view of expres-
siveness and closure under multiple operations.

Proposition 4.1. The family of coverability languages of RPNs is closed under union.

Proof:
We closely follow the classic proof that the family of Petri net languages is closed under union, i.e.
adding a place and two extra transitions that have to be fired in the beginning of the firing sequence in

48 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

order to decide in which of the Petri net one fires. Due to the correspondence between firing sequences
of (N , s0) and those of (N̊ , s̊0), established in the previous section, one can assume w.l.o.g. that the
initial markings of the RPNs have a single vertex. Consider two labelled marked RPNs with final
states (N , s[r,m0], Sf) and (N ′, s[r′,m′0], S′f). Let us define Ñ as follows. Its set of places is the
disjoint union of P and P ′ with three additional places p0, p and p′. Its set of transitions is the disjoint
union of T and T ′ with four additional elementary transitions tb, tc, t′b and t′c.

• For all t ∈ T , W̃−(t) = W−(t) + p and when t /∈ Tτ W̃+(t) = W+(t)

• For all t ∈ T ′, W̃−(t) = W ′−(t) + p′ and when t /∈ T ′τ W̃+(t) = W ′+(t)

• For all t ∈ Tab, Ω̃(t) = Ω(t) + p

• For all t ∈ T ′ab, Ω̃(t) = Ω′(t) + p′

• W̃−(tb) = W̃−(t′b) = p0, W̃+(tb) = m0 + p, W̃+(t′b) = m′0 + p′

• W̃−(tc) = p, W̃+(tc) = 2p, W̃−(t′c) = p′, W̃+(t′c) = 2p′

• S̃f is obtained from the union Sf ∪ S′f by adding a token in place p (resp. p′)
of all markings of states of Sf (respectively S′f).

• For all t ∈ T , λ̃(t) = λ(t) and for all t ∈ T ′, λ̃(t) = λ′(t)

• For all t ∈ {tb, tc, t′b, t′c}, λ̃(t) = ε.

• The initial state of Ñ is s[r̃, p0].

Let us prove that L(N , s[r,m0], Sf) ∪ L(N ′, s[r′,m′0], S′f) ⊆ L(Ñ , s[r̃, p0], S̃f). Let σ be a cover-

ability sequence of (N , s[r,m0], Sf). The corresponding coverability sequence σ̃ ofL(Ñ , s[r̃, p0], S̃f)
is built as follows. Initially, one fires (r̃, tb)(r̃, tc)

`r where `r is the number of abstract transition firings
occurring in σ triggered by r. Then after the creation of a thread v, one inserts (v, tc)

`v firings where
`v is the number of abstract transition firings occurring in σ triggered by v. It is routine to check that
σ̃ is coverability sequence. The proof for L(N ′, s[r′,m′0], S′f) is similar.

Let us prove that L(Ñ , s[r, p0], S̃f) ⊆ L(N , s[r̃,m0], Sf) ∪ L(N ′, s[r′,m′0], S′f). Observe that any

firing sequence must start by a firing of tb or t′b. Let tbσ̃ be a coverability sequence of (Ñ , s[r̃, p0], S̃f).
Consider the sequence σ obtained by deleting all the firings of tc in σ̃. It is routine to check that σ
is a coverability sequence for (N , s[r,m0], Sf). The case of a coverability sequence starting by t′b is
similar. ut

The next theorem has two interesting consequences: the family of RPN coverability languages is
not closed under intersection with the family of regular languages. But the family obtained by this
intersection is quite close to the family of recursively enumerable languages. The result was already
stated in Proposition 9 of [34] for the family of RPN reachability languages but the proof was only
sketched.

Theorem 4.2. Let L be a recursively enumerable language. Then there exist an RPN language L′, a
regular languageR and a homomorphism h such that L = h(L′ ∩R).

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 49

Proof:
LetM = (Σ, L, δ) be a Turing machine with it set of states L including `0 (resp. `f) the initial (resp.
final) state and its transition function δ from L × Σ ∪ {[} to L × Σ × {←,→} where [is the blank
character.

Let us define a labeled marked RPN N and an automaton A. Their common alphabet is the set of
transitions ofN and the labeling of the transitions of the RPN is the identity mapping. The intersection
of their languages is thus the language of the synchronized product of the two devices. The single final
state of N (to be covered) is the empty tree.

The automaton A is depicted below (with Σ = {a, b}). In q0 it allows N to generate the repre-
sentation of any word w ∈ Σ∗, input ofM. However, this intermediate representation is not suitable
for mimickingM. Thus in q1, the intermediate representation is translated into an appropriate one.
Once this representation is obtained, it mimics any transition ofM by triggering the firing of several
transitions of N . We will detail this simulation after the specification of N .

q0 q1 `0 ` `f

The simulation part of A

· · · · · ·next

froma toa

fromb tob

run

ta, tb

δ(`, a) = (`′, b,→)

` `′
right→a left→b

δ(`, a) = (`′, b,←)

`

`a,a

`a,b

`′
upd←a,b

left←a right←a

left←b right←b

δ(`, [) = (`′, b,→)

` `′
check[left→b

δ(`, a) = (`′, b,←)

`

`[,a

`[,b

`′
check[

upd←[,b

left←a right←a

left←b right←b

δ(`, [) = (`′, b,←)

N is defined as follows. Its set of places is P = {pa | a ∈ Σ}∪{root, right, left, start, ret}. We
now define the set of transitions T . The first subset corresponds to the generation of a representation
of the input word ofM.

• For all a ∈ Σ, ta ∈ Tab with W−(ta) = start, W+(ta) = ret and Ω(ta) = start+ pa;
• next ∈ Tel with W−(next) = start and W+(next) = ret;
• For all a ∈ Σ, froma ∈ Tτ W−(froma) = ret+ pa;
• For all a ∈ Σ, toa ∈ Tab with W−(toa) = right, W+(toa) = right and Ω(toa) = right+ pa;
• run ∈ Tel with W−(run) = root+ ret and W+(run) = root

The second subset corresponds to the simulation ofM.

• For all a ∈ Σ, right→a ∈ Tτ with W−(right→a) = right+ pa;

50 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

• For all a ∈ Σ, left→a ∈ Tab with W−(left→a) = W+(left→a) = left
and Ω(left→a) = left+ pa;
• For all a, b ∈ Σ, upd←a,b ∈ Tel with W−(upd←a,b) = right+ pa and W+(upd←a,b) = right+ pb
• For all a ∈ Σ, left←a ∈ Tτ with W−(left←a) = left+ pa
• For all a ∈ Σ, right←a ∈ Tab with W−(right←a) = W+(right←a) = right

and Ω(right←a) = right+ pa
• check[∈ Tel with W−(check[) = W+(check[) = right+ root;
• For all b ∈ Σ, upd←[,b ∈ Tab with W−(upd←[,b) = right, W+(upd←[,b) = right

and Ω(upd←[,b) = right+ pb.
The initial state is s[r, root+ start+ left+ right].

Let us explain how the simulation works. Let abc be the word on the tape of M. Then firing
(r, ta)(v1, tb)(v2, tc) one gets:

r

root + left + right

v1

pa

v2

pb

v3

pc + start

ret ret ret

After firing (v3, next)(v3, fromc)(r, toc)(v2, fromb)(u1, tob)(v1, froma)(u2, toa)(r, run) one
gets:

r

root + left

u1

pc

u2

pb

u3

pa + right

right right right

Let us describe the two cases of tape simulation. Assume that the content of the tape is abcd[ω

and that the head ofM is over c then the corresponding state is the following one. The “left” branch
contains the content of the tape on the left of the head while descending to the leaf and the “right”
branch contains the relevant content of the tape on the right of the head (including the cell under the
head) while ascending from the leaf. Thus the token in place right points to the thread corresponding
to the cell under the head while the token in place left points to the thread corresponding to the cell
immediately on the left of the head. The state ofM is the state of A.

r

root pd

v

pc + rightpa

u

pb + left

right rightleftleft

Assume that the content of the tape is abcd[ω and that the head ofM is over the first [then the
corresponding state is the following one.

r

root + rightpapbpcpd + left

leftleftleftleft

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 51

It is routine to check that the simulation works. Let us illustrate it with one example. Assume that the
content of the tape is abcd[ω, the head ofM is over c and the current state is `. Let δ(`, c) = (`′, e,←).
Then after firing (v, upd←c,e)(u, left

←
b)(v, right←b), one gets:

r

root pd

v

pepa + left pb + right

right rightleft right

For all a ∈ Σ, the homomorphism h maps ta to a and for all t /∈ {ta}a∈Σ, h maps t to ε. ut

Obviously, the family of RPNs coverability languages include the family of PNs coverability lan-
guages. In [19], Proposition 1 establishes that the family of context-free languages is included in
family of reachability languages for RPNs. The proof relies on simulating the leftmost derivations of
a context-free grammar within particular two places bX and eX per nonterminal symbol X where a
token in bX means that X must derived and a token in eX means that the derivation of X into a word
has been achieved. In order to adapt this result for the family of coverability languages for RPNs, it is
enough to consider w.l.o.g. that the initial symbol I never appears on the right hand side of a rule and
to specify s[r, eI] as final state. We refer the reader to [19] for more details.

Proposition 4.3. The family of Context-free languages is included in the family of coverability lan-
guages of RPNs.

Since universality is undecidable for the family of context-free languages, we deduce that univer-
sality of the family of RPN coverability languages is undecidable.

Let L1 = {ambncp | m ≥ n ≥ p}. Denote by L2 = {ww̃ | w ∈ {d, e}∗} where w̃ is the mirror
of w. Let L3 = {anbncn | n ∈ N}. Observe that given the final marking pf we get that the net in
Figure 7 has L1 as its coverability language, and L3 its reachability language.

•
ε ε pf

a b c

Figure 7. A Petri net for the languages L1 and L3

The next proposition witnesses a Petri net language interesting from an expressiveness point of
view. A similar result can be found page 179 in Peterson’s book [27].

Proposition 4.4. L1 is the coverability language of some Petri net but it is not a context-free language.

Proof:
Let us recall (a weak version of) Ogden lemma [35]. For any context-free language L there exists
an integer N such for any word w ∈ L with N marked positions, there exists a decomposition w =
w1w2w3w4w5 such thatw2w4 contains at least a marked position and for all n≥0,w1w

n
2w3w

n
4w5∈L.

52 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

The proof that L1 is not a context-free language is similar to the proof of the folk result that L3

is not a context-free language. Assume that L1 is a context-free language and consider the word
w = aNbNcN with all c positions marked. So letw = w1w2w3w4w5 with the decomposition fulfilling
the requirements of Ogden lemma. Since w′ = w1w

2
2w3w

2
4w5 ∈ L1, w2 and w4 are mono-letter

words. Furthermore one of these words is equal to cq for some q > 0. If w2 = cq then w4 = cq
′

and
thus w′ contains too much c’s to belong to L1. If w4 = cq then either w2 = aq

′
, w2 = bq

′
or w2 = cq

′
.

Whatever the case, w′ misses either a’s or b’s to belong to L1. As mentioned before the coverability
language for the net in Figure 7 with final marking pf is L1. ut

Using the previous results, the next theorem emphasises the expressive power of coverability lan-
guages of RPNs.

Theorem 4.5. The family of coverability languages of RPNs strictly include the union of the family
of coverability languages of PNs and the family of context-free languages.

Proof:
The inclusion is an immediate consequence of Proposition 4.3. Consider the language L = L1 ∪ L2.
Since (1) by Proposition 4.1, the family of coverability languages of RPNs is closed under union, (2)
L1 is a PN language, and (3) the language of palindromes is a context-free language, we deduce that
L is an RPN language.
PN and context-free languages are closed under homomorphism. Since the projection of L on {a, b, c}
is the language of Proposition 4.4, L is not a context-free language. The projection of L on {d, e} is
the language of palindromes. Since it was seen in [36] that the language of (2 letters) palindromes is
not a coverability language for any PN we are done. ut

The next propositions show that the family of coverability languages of an RPN is a particular
family of reachability languages of an RPN : the family of cut languages. A cut language of an RPN
is a reachability language with a single final state ∅.

Proposition 4.6. The family of cut languages of RPNs is included in the family of coverability lan-
guages of RPNs.

Proof:
Due to the correspondence between firing sequences of (N , s0) and those of (N̊ , s̊0), established in
the previous section, one can assume w.l.o.g. that the initial markings of the RPNs have a single
vertex. Let LR(N , s[r,m0], {∅}) be such a reachability language.
N ′ is obtained by adding places todo and done and a transition start ∈ T ′ab with:

λ′(start) = ε, W ′−(start) = todo, W ′+(start) = done, Ω′(start) = m0.
Then it is routine to check that LC(N ′, s[r, todo], {s[r, done]}) = LR(N , s[r,m0], {∅}). ut

Establishing the converse inclusion is more intricate.

Proposition 4.7. The family of coverability languages of RPNs is included in the family of cut lan-
guages of RPNs.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 53

Proof:
Due to the correspondence between firing sequences of (N , s0) and those of (N̊ , s̊0), established in
the previous section, one can assume w.l.o.g. that the initial markings of the RPNs have a single
vertex. Let LC(N , s[r,m0], Sf) be a coverability RPN language.

Case ∅ ∈ Sf . Observe that in this case we can reduce Sf to {∅}. Then N ′ is obtained from N by
adding a place root and a cut transition troot with λ′(troot) = ε and W ′−(troot) = root. It is routine
to check that the reachability language LR(N ′, s[r,m0 + root], {∅}) = LC(N , s[r,m0], {∅}).

Case ∅ /∈ Sf . Consider the net N ∗ obtained from N by adding two places start and run with
m∗0 = start, transitions trun ∈ Tel and tstart ∈ Tab with λ∗(trun) = λ∗(tstart) = ε and:
W ∗−(trun) = run, W ∗+(trun) = 2run,
W ∗−(tstart) = start, W ∗+(tstart) = 0 and Ω∗(tstart) = m0 + run.
• For all t ∈ Tel, W ∗−(t) = W ∗−(t) + run and W ∗+(t) = W+(t);
• For all t ∈ Tab, Ω∗(t) = Ω(t) + run, W ∗−(t) = W−(t) + run and W ∗+(t) = W+(t) + run;
• For all t ∈ Tτ , W ∗−(t) = W−(t) + run.

Let S∗f be Sf where all markings are increased by run.
Then it is routine to check that: LC(N ∗, s[r,m∗0], S∗f) = LC(N , s[r,m0], Sf).
Furthermore (1) the empty tree is not reachable in (N ∗, s[r,m∗0]) and (2) for any coverability sequence
s[r,m∗0]

σ−→ s � sf ∈ S∗f , r does not belong to the image of the corresponding mapping f . Thus in the
rest of the proof we assume that (N , s[r,m0], Sf) fulfills these properties. We also assume w.l.o.g.
that all vertices in Sf are distinct. We denote Vf this set of vertices.

Let N ′ obtained as follows.
One adds places todo, done, cut, {pv | v ∈ Vf}, {pu,v | s ∈ Sf , u

mv−−→s v}.
• For all t ∈ Tel, W ′−(t) = W−(t) and W ′+(t) = W+(t);
• For all t ∈ Tab, W ′−(t) = W−(t), W ′+(t) = W+(t) and Ω′(t) = Ω(t) + cut;
• For all t ∈ Tτ , W ′−(t) = W−(t) + cut.

For all t ∈ Tab, one adds the following abstract transitions:
• one adds tBr ∈ T ′ab with λ′(tBr) = λ(t) and
W ′−(tBr) = W−(t) + todo, W ′+(tBr) = done, Ω′(tBr) = Ω(t) + todo;
• For all rs with s ∈ Sf one adds trs ∈ T ′ab with λ′(trs) = λ(t) and
W ′−(trs) = W−(t) + todo, W ′+(trs) = done, Ω′(trs) = Ω(t) + (|{rs

mw−−→s w}|+ 1)prs ;
• For all v ∈ Vs \ {rs} with s ∈ Sf and u mv−−→s v such that W+(t) ≥ mv,

one adds tv ∈ T ′ab with λ′(tv) = λ(t) and
W ′−(tv) = W−(t) + pu, W ′+(tv) = pu,v, Ω(tv) = Ω(t) + (|{v mw−−→s w}|+ 1)pv.

One adds the following cut transitions:
• One adds τdone ∈ Tτ with W ′−(τdone) = done and λ′(τdone) = ε.
• For all v ∈ Vs with s ∈ Sf one adds τv ∈ T ′τ with λ′(τv) = ε and
W ′−(τv) = Ms(v) + pv +

∑
v
mw−−→sw

pv,w.
Let us prove that LR(N ′, s[r,m0 + todo], {∅}) = LC(N , s[r,m0], Sf).

• LC(N , s[r,m0], Sf) ⊆ LR(N ′, s[r,m0 + todo], {∅}). Consider in N a coverability sequence
s[r,m0]

σ−→ s � sf ∈ Sf with f the mapping from Vsf to Vs. Let Br be the branch in s from r

54 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

to f(rsf), excluding f(rsf). We build a sequence σ′ as follows.
• Let v ∈ Br \ {r} and (u, t) be the firing in σ that creates v.

Then we substitute (u, t) by (u, tBr);
• Let (u, t) be the firing in σ that creates f(rsf). Then we substitute (u, t) by (u, trsf);
• Let v ∈ Vsf \ {rsf } and (u, t) be the firing in σ that creates f(v).

Then we substitute (u, t) by (u, trsf).

Then σ′ is a firing sequence of (N ′, s[r,m0 + todo]) that leads to s′ with the same tree structure (and
vertices) as the one of s and where the markings labelling s′ are defined as follows.
• For all v ∈ Vs′ \ (Br ∪ f(Vsf)), Ms′(v) = Ms(v) + cut,

and all u
m′v−−→s′ v and u mv−−→s v, one has m′v = mv;

• For all v ∈ Br, Ms′(v) = Ms(v). For all v
m′w−−→s′ w with w ∈ Br ∪ {f(rsf)}, m′w = done;

• For all v ∈ Vsf , Ms′(f(v)) = Ms(f(v)) + pv. For all f(v)
m′w−−→s′ f(w), m′w = pv,w.

Observe that λ(σ′) = λ(σ). Then one completes σ′ by firing {(f(v), τv)}v∈Vsf bottom up followed
by firing {(v, τdone)}v∈Br bottom up leading to ∅.

• LR(N ′, s[r,m0+todo], {∅}) ⊆ LC(N , s[r,m0], Sf). Observe that in (N ′, s[r,m0+todo]) the only
way to reach ∅ is to fire τdone since in r (by induction) only abstract transitions of Tab, {tBr | t ∈ Tab}
and {trs | t ∈ Tab ∧ s ∈ Sf} are fireable and places cut and {pv}v∈Vf are initially unmarked.
Furthermore a single firing {tBr | t ∈ Tab} and {trs | t ∈ Tab ∧ s ∈ Sf} is at most possible in r since
no transition can produce tokens for todo in r.

So consider inN ′ a firing sequence s[r,m0 + todo]
σ′−→ ∅. Due to the previous observation before the

firing (r, τdone) ending σ′, there has been in σ′ a firing of (r, tBr) or (r, trs) for some t ∈ Tab and s ∈
Sf creating a vertex v1 followed by the firing of a cut transition in v1. Since Ω′(tBr) = Ω(t) + todo,
if v1 has been created by (r, tBr) then the only cut transition that can be fired in v1 is τdone. Since
λ′(τdone) = ε and W ′+(tBr) = done, this firing can delayed in σ′ just before the firing of (r, τdone).
Furthermore there must have been before this firing, the firing of (v1, tBr) or (v2, trs) for some t ∈ Tab
and s ∈ Sf creating a vertex v2 followed by the firing of a cut transition in v2. Since this iterated
reasoning must end, there must be some vk created by the firing of (vk−1, trs) (with v0 = r) for some
t ∈ Tab and s ∈ Sf . We denote by f(rs) the vertex vk.
Since Ω′(trs) = Ω(t) + (|{rs

mw−−→s w}| + 1)prs , the only cut transition that can be fired in f(rs) is
τrs . Since λ′(τrs) = ε and W ′+(trs) = done, this firing can delayed in σ′ just before the firing of
(vk−1, τdone). Furthermore the firing of this cut transition must have been preceded for all rs

mw−−→s w
by the firing of some abstract transition (vk, tw) creating a vertex denoted f(w) followed by the firing
of a cut transition in f(w).
Applying the same reasoning for f(w) as the one for f(rs), one gets that the only cut transition that
can be fired in f(w) is τw and that all the firings related to these w’s can be delayed before the firing
(f(rs), τrs).
Iterating this process, one obtains that σ′ can be reordered as σ′′στ with λ′(σ′′) = λ′(σ′), and στ is a
sequence of cut transition firings with λ(στ) = ε.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 55

Let s′′ be the state of reached by σ′′: it includes a branch created by the firings among {tBr}t∈Tab
followed by a tree whose set vertices is f(Vs) and every vertex f(v) has been created by the firing of
some transition in {tv}t∈Tab . Observe that due to our observations on (N ′, s[r,m0 + todo]) all other
firings of σ′′ are firings of transitions in T . By substituting in σ′′ all tBr by t and all tv by t, one gets
a firing sequence σ of (N , s[r,m0]) with λ(σ) = λ′(σ′) that covers s. ut

The transformation presented in the above proof can be performed in polynomial time and this
will be used in the next section. The next proposition establishes that, as for Petri nets, coverability
does not ensure the power of “exact counting”. The proof is interesting by itself since it combines an
argument based on WSTS (case 1) and an argument à la Ogden (case 2).

Proposition 4.8. L3 is the reachability language of the Petri net of Figure 7 but it is not the coverabil-
ity language of any RPN.

Proof:
Due to Proposition 4.7, it is enough to prove that there does not exist (N , s[r,m0]) such that L3 =
LR(N , s[r,m0], {∅}). Assume by contradiction that there exists such (N , s[r,m0]}). For all n, let σn
be a firing sequence reaching ∅ such that λ(σn) = anbncn and σ′n be the prefix of σn whose last tran-
sition corresponds the last occurrence of a. Denote sn the state reached by σ′n and the decomposition
by σn = σ′nσ

′′
n. Among the possible σn, we select one such that sn has a minimal number of threads.

Let Post be the finite set of NP defined by: Post = {W+(t)}t∈Tab .

•
s[r,m0] sn ∅

σ′n σ′′n

σ′n = ρt

λ(ρ) = an−1

λ(t) = a

λ(σ′′n) = bncnλ(σ′′n) = bncn

minimal number of threads of sn

Case 1. There exists a bound B of the depths of the trees corresponding to {sn}n∈N. Let SB be the
set of abstract states of depth at most B and different from ∅. Observe that S0 can be identified to
NP and SB can be identified to NP ×Multiset(Post × SB−1). Furthermore the (component) order
on NP and the equality on Post are well quasi-orders. Since well quasi-order is preserved by the
multiset operation and the cartesian product, SB is well quasi-ordered by a quasi-order denoted <. By
construction, s ≤ s′ implies s �r s′. Thus there exist n < n′ such that sn �r sn′ which entails that
σ′n′σ

′′
n is a firing sequence with trace an

′
bncn reaching ∅ yielding a contradiction.

Case 2. The depths of the trees corresponding to {sn}n∈N are unbounded. There exists n such that
the depth of sn is greater than (2|Post| + 1). Thus in sn for 1 ≤ j ≤ 3, there are edges uj

m−→sn vj
and denoting ij the depth of vj , one has 0 < i1 < i2 < i3.

For k ∈ {1, 2, 3}, consider of the sequence ρk performed in the subtree rooted in vk by the firings of
σn. Among these three firing sequences two of them either (1) both finish by a cut transition in vk or

56 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

(2) both do not finish by a cut transition in vk. Let us call i, j with i < j the indices of these sequences
and wi and wj their traces. We have illustrated the situation below.

•
s[r,m0]

∅
σ′n σ′′n

ρi

ρj
•

vi
•

•vj

•

•

One can build two firing sequences that still reach ∅ and thus whose labels belong to the language.
The first one consists of mimicking the “behavior” of the subtree rooted in vj starting from vi, which
is possible due to the choice of i and j, as illustrated below.

•
s[r,m0]

∅

ρj
•

vi
•

The second one consists of mimicking the “behavior” of the subtree rooted in vi starting from vj as
illustrated below.

•
s[r,m0]

∅

ρi
ρj

•
vi

•
•vj

•
•
•

•
•
•

Case wi = wj . Then the firing sequence reaching ∅ obtained by mimicking in vi the behaviour of vj
has trace anbncn and leads to another state sn with less threads yielding a contradiction, since sn was
supposed to have a minimal number of threads.

Case wi 6= wj . Let w 6= ε be the trace of the sequence performed in the subtree rooted in vi without
the trace of the sequence performed in the subtree rooted in vj . Let us consider the firing sequence
σ reaching ∅ obtained by mimicking in vj the behaviour of vi. The trace of σ is an interleaving of
anbncn and w and it belongs to L3 which implies that w = aqbqcq for some q > 0. Furthermore σ can
be chosen in such a way that the firing subsequences in the subtrees rooted at vi and vj are performed
in one shot which implies that its trace is . . . aqaqwjbqcqbqcq . . . yielding a contradiction. ut

The following corollary shows that extending the family of coverability languages of PNs by substi-
tuting either (1) coverability by reachability or (2) PNs by RPNs is somewhat “orthogonal”.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 57

Corollary 4.9. The families of reachability languages of Petri nets and the family of coverability
languages of RPNs are incomparable.

Proof:
One direction is a consequence of Proposition 4.8 while the other direction is a consequence of Propo-
sition 4.3 observing that the language of palindromes is not the reachability language of any Petri
net. ut

The next corollary exhibits a particular feature of RPNs languages (e.g. Petri nets or context-free
languages are closed under intersection with a regular language).

Corollary 4.10. The family of coverability languages of RPNs is not closed under intersection with a
regular language and under complementation.

Proof:
Due to Proposition 4.8, the family of coverability languages of RPNs is strictly included in the family
of recursively enumerable languages. Since the former family is closed under homomorphism, The-
orem 4.2 implies that it is not closed under intersection with a regular language and a fortiori with
another coverability language. Since intersection can be obtained by union and complementation and
since the family of RPN coverability languages is closed under union, they are not closed under com-
plementation. ut

Combining Propositions 4.6, 4.7 and 4.8, one gets the following theorem.

Theorem 4.11. The family of coverability languages of RPNs is strictly included in the family of
reachability languages of RPNs.

Figure 8 illustrates the hierarchy of the languages presented in this work.

Reach-PN Cov-RPN

Cov-PN CF

Reach-RPN

L3
L1 L2

L1 ∪ L2

L2 ∪ L3

Figure 8. L1 = {ambncp | m ≥ n ≥ p};L2 = {w ∈ {d, e}∗ | w = w̃};L3 = {anbncn | n ∈ N}

58 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

5. Coverability is EXPSPACE-complete

The section is devoted to establishing that the coverability problem is EXPSPACE-complete. The
EXPSPACE-hardness follows immediately from the EXPSPACE-hardness of the coverability problem
for Petri nets [37].

Observe that the coverability problem is equivalent to the emptiness problem of the coverability
language of an RPN. In Section 4 we have shown that the families of coverability languages and
cut languages for RPN are equal and that the transformation from one to another is performed in
polynomial time (proposition 4.6 and 4.7). Therefore we will establish the complexity result for the
cut problem getting as a corollary the same result for the coverability problem.

Theorem 5.1. The cut problem is EXPSPACE-complete.

Proof:
Let (N , s0) be a marked RPN and η the accumulated size of the RPN and the initial state. By Propo-
sition 3.4 we can assume that Vs0 is a singleton {r}.
Assume there exists a firing sequence s0

σ−→N ∅. Using Proposition 3.8 one gets an omniscient
sequence s0

σ̂−→N̂ ∅ such that σ̂ = (r, σ1)(r, t) for some t ∈ Tτ .
The (omniscient) sequence (r, σ1) contains only elementary transitions. Thus m0

σ1−→N̂el m with

m ≥W−(t). By Theorem 3.9, there exists σ′1 with |σ′1| ≤ 22cη log η
covering W−(t). Using Corollary

3.11 there s σ′−→N ∅ with |σ′| ≤2eη log η
for some constant e.

Therefore if there is a cut sequence then there is one with length at most 22eη log η
. Hence one guesses a

sequence with at most this length and simultaneously checks whether it is a cut sequence in exponential
space. This shows that the cut problem belongs to NEXPSPACE which is equivalent to EXPSPACE
by Savitch’s theorem.
The EXPSPACE hardness of the coverability problem in Petri nets entails EXPSPACE hardness of
the coverability problem in RPNs which in turn entails the EXPSPACE hardness of the cut problem
in RPNs. ut

The next theorem is an immediate corollary of the previous one.

Theorem 5.2. The coverability problem for RPNs is EXPSPACE-complete.

6. Termination is EXPSPACE-complete

In this section we tackle the termination problem for RPN. Let (N , s0) be a marked RPN. We denote
the size of the input of the termination problem by η. In [4] Rackoff showed that the termination
problem for Petri net is solvable in exponential space:

Theorem 6.1. (Rackoff[37, 4])
The termination problem for Petri nets is EXPSPACE-complete.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 59

We aim to show that the termination problem for RPN is EXPSPACE-complete. EXPSPACE-hardness
follows immediately from EXPSPACE-hardness of the termination problem for Petri nets [37]. By
Proposition 3.4 we can assume that Vs0 = {r}. Hence for the rest of the section, we will assume that
s0 = s[r,m0] for some marking m0.

A main ingredient of the proof is the construction of an abstract graph related to the firing of abstract
transitions.

Definition 6.2. (abstract graph)
Let (N , s0) be a marked RPN. Let GN ,s0 = (Va, Ea,Ma) be a labeled directed graph defined induc-
tively as follows:

1. r ∈ Va and Ma(r) = m0;

2. For any v ∈ Va and t ∈ Tab, if there exists s[v,Ma(v)]
σ(v,t)−−−→ then

vt ∈ Va, (v, vt) ∈ Ea and Ma(v) = Ω(t).

Observe that an edge (v, vt) means that from state s[v,Ma(v)], the thread v can fire t in the future and
by induction that vt ∈ Va if and only if t is fireable in the marked RPN. Observe that the size of GN ,s0
is linear w.r.t. the size of (N , s0).

Lemma 6.3. Let (N , s0) be a marked RPN. Then one can build its abstract graph in exponential
space.

Proof:
First note that |Va| ≤ |Tab|+ 1. Then for any vertex v already in Va and any t ∈ Tab checking whether

s[v,Ma(v)]
σ(v,t)−−−→ is fireable is equivalent to solving the covering problem Ma(v)

σ−→ m � W−(t)
in N̂el (recall Definition 3.13) which can be done in exponential space due to Rackoff’s coverability
theorem for Petri nets. ut

While we will not prove it, using a reduction from the Petri net coverability problem, one can show
that we cannot use less than an exponential space to build the abstract graph.

Let us illustrate the abstract graph in Figure 9 corresponding to the RPN of Figure 1. Here the
initial state is s[r, pini]. For clarity, we have renamed the abstract transitions as follows: t := tbeg,
ta := ta2 , tb := tb2 . For instance, the existence of the edge from vt to vta is justified by the firing
sequence (vt, ta1)(vt, ta).

r vt
vta

vtb

Figure 9. An abstract graph for the RPN in Figure 1

60 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

Let σ be an infinite firing sequence. We say that σ is deep if it visits a state s whose depth is
strictly greater than |Tab|. Otherwise, we say that σ is shallow. To solve the termination problem it
suffices to show whether the RPN has such an infinite sequence, either shallow or deep.

The next lemma establishes that lassos of the abstract graph are witnesses of deep infinite se-
quences in an RPN:

Lemma 6.4. Let (N , s0) be a marked RPN. Then there is a deep infinite sequence starting from s0 if
and only if there is a cycle in GN ,s0 .

Proof:
• Assume that σ is a deep sequence. Hence, it reaches a state s̃ whose tree has a path γ starting from
the root, with |γ| > |Tab|. Let us denote it by γ = (vi)

m
i=1. For all i ≤ m denote by ti the abstract

transition that creates vi. Using γ, one builds a path γa = v1v2 . . . vm in GN ,s0 as follows. First
v1 = r and mr = Ma(r). Since along σ the thread r fires t1 to create v2, there is an edge between
r to vt2 in GN ,s0 . For any 1 < i ≤ m the thread vi is created with the marking Ω(ti) = Ma(vti).
Since vi+1 is a child of vi, somewhere on the sequence σ the thread vi fires ti+1. Therefore there is
an edge from vti to vti+1 in GN ,s0 . The length of the path γa strictly greater then |Tab|, and since
Va ≤ |Tab|+ 1 there is a cycle in γa.
• Conversely assume that there is a cycle in GN ,s0 . Then there is an infinite path γa = {vi}∞i=0 in
GN ,s starting from r, where for any i ≥ 1 denote by ti the abstract transition associated the vertex vi.
We now translate this infinite path to an deep sequence on N with initial state s0. Note that v0 = r
and that mr = Ma(r). By definition of Ea there is a sequence s σ1−→ s′0 where the abstract transition

t1 is fireable from v0 in s′0. We get s σ1−→ s′0
(v0,t1)−−−−→ s2. Denote by v1 the thread created by t1. The

threads marking has Ms1(v1) = Ma(v1), therefore one continues translating the path γa in the same
way as the first edge. Since for any (vi, vi+1) in γa we create a new thread from vi one gets an deep
sequence. ut

We now show that for any shallow σ there is a thread v which fires infinitely many times in σ.

Lemma 6.5. Let (N , s0) be a marked RPN and σ be a shallow sequence. Then there is a thread v that
fires infinitely many times in σ.

Proof:
If the root r fires infinitely often then we are done. Otherwise, r has finitely many children, and the
firing subsequence of σ of the subtree of (at least) one child, say v, must be infinite. If v fires infinitely
often then we are done. Otherwise, we proceed inductively up to |Tab| where some thread must fire
infinitely often. ut

We now show that given some state s[r,m0] one can check in exponential space the existence of a
shallow sequence in which r fires infinitely many times.

Lemma 6.6. Let (N , s0) be a marked RPN. Then one can check in exponential space, whether there
exists an infinite sequence starting with r firing infinitely many times.

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 61

Proof:
We first show that there is a sequence where r fires infinitely many times if and only if there is a
infinite firing sequence in the marked Petri net (N̂el,m0).
• Assume there exists such σ in (N , s[r,m0]). Then the sequence σ is also fireable in (N̂ , s[r,m0]).
In N̂ , one eliminates in σ the cut transitions by increasing occurrence order as follows. Let (v, t)
be a cut transition and (v′, t′) be the firing that creates v. Then one deletes all the firings performed
by the descendants of v and replaces (v′, t′) by (v′, t′r). Let σ′ be the sequence obtained after this
transformation. In σ′, the root still fires infinitely often since no firing performed by the root has been
deleted (but sometimes substituted by an elementary firing). Moreover, σ′ has no more cut transitions.
Consider the still infinite firing sequence (r, σ′′) where in σ′ all firings in other vertices than r have
been deleted. Observe now that by definition, σ′′ is also an infinite sequence of N̂el.
• Conversely, assume there exists an infinite firing sequence σ of (N̂el,m0). Then (r, σ) is an infinite
firing sequence of (N̂ , s[r,m0]) (with only root firings) entailing the existence of an infinite firing
sequence of (N , s[r,m0]).
By Theorem 6.1, one can check in exponential space whether there exists an infinite sequence of
(N̂el,m0). ut

Summing up the results for shallow and deep sequences we get:

Theorem 6.7. The termination problem of RPN is EXPSPACE-complete.

Proof:
The algorithm proceeds as follows. It builds in EXPSPACE (by Lemma 6.3) the abstract graph and
checks whether there is a deep infinite sequence using the characterization of Lemma 6.4. In the
negative case, it looks for a shallow infinite sequence. To this aim, it checks in exponential space
for any reachable vertex v from r in GN ,s0 , whether there exists an infinite sequence starting from
s[v,Ma(v)] with the root firing infinitely many times. The complexity follows from Lemma 6.6 while
the correctness follows from Lemma 6.5. ut

7. Finiteness and boundedness are EXPSPACE-complete

In this section we will show that the finiteness and boundedness problems for RPNs are EXPSPACE-
complete w.r.t. η = size(N , s0), i.e. the accumulated size of the RPN and the initial state. For Petri
nets the finiteness problem, which is equivalent to the boundedness problem, has been shown to be
EXPSPACE-complete:

Theorem 7.1. ([37, 4])
The finiteness problem for Petri nets is EXPSPACE-complete.

EXPSPACE-hardness follows immediately from EXPSPACE-hardness of the finiteness problem for
Petri nets [37].

Moreover by applying Proposition 3.4 like in previous sections we will assume that s0 = s[r,m0].
Given two vertices u, v in a graph G, the distance between them distG(u, v) is the length of a shortest
path going from one to the other.

62 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

Lemma 7.2. Let (N , s0) be a marked RPN and GN ,s0 = (Va, Ea,Ma) be its abstract graph. Then
for all v ∈ Va, there exists s ∈ Reach(N , s0) and u ∈ Vs such that Ms(u) = Ma(v).

Proof:
We show the lemma by induction on distGN ,s0 (r, u). If distGN ,s0 (r, v) = 0 then v = r and Ma(r) =
m0. Assume that we have shown the lemma for any v such that distGN ,s0 (r, v) < n, and pick v ∈ Va
such that distGN ,s0 (r, v) = n. Since distGN ,s0 (v, r) > 0, v = vt for some t ∈ Tab. Moreover
there is some (u, vt) ∈ Ea such that distGN ,s0 (r, u) = n − 1 and by the induction hypothesis there

is a sequence s0
σu−→ su and some w ∈ Vsu such that Msu(w) = Ma(u). From the definition

of GN ,s0 there is a fireable sequence s[w,Ma(w)]
σt(w,t)−−−−→. Combining these sequences, we get

s0
σu−→ su

σt(w,t)−−−−→ svt , where the newly created thread w′ fulfills Msv(w
′) = Ω(t) = Ma(vt). ut

The following lemma shows that we can simulate the behaviour of every thread by a Petri net.

Lemma 7.3. Let (N , s0) be a marked RPN and GN ,s0 = (Va, Ea,Ma) be its abstract graph. Then:⋃
s∈Reach(N ,s0)

{Ms(v)}v∈Vs =
⋃
u∈Va

Reach(N̂el,Ma(u)).

Proof:
• Let m ∈

⋃
s∈Reach(N ,s0){Ms(u)}u∈Vs . There exists s0

σ−→ s with some v ∈ Vs such that Ms(v) =

m. By Proposition 3.8 there is an omniscient sequence in s0
σ̂−→N̂ s. We split σ̂ into s0

σ̂1−→N̂ sv
σ̂2−→N̂

where sv is the the state where the thread v first appears. Note that there is u ∈ Va for whichMsv(v) =
Ma(u). Let (v, σ̂′2) consisting of all firings of v in σ̂2. (v, σ̂′2) is fireable from sv since σ̂2 is omniscient
implying that there will be not cut transition fired by a child of v. By construction of N̂el, the sequence
σ̂′2 is a firing sequence of (N̂el,Ma(u)) thus m ∈ Reach(N̂el,Ma(u)).
• Let u ∈ Va andm ∈ Reach(N̂el,Ma(u)), i.e. Ma(u)

σ−→N̂el m for some n ∈ N. First by Lemma 7.2

there exists s0
σu−→N su where for some v ∈ Vsu we have Msu(v) = Ma(u). By construction of N̂

we also have s0
σu−→N̂ su. By construction of N̂el we get that su

(v,σ)−−−→N̂ s where Ms(v) = m. By
Proposition 3.7, s ∈ Reach(N , s0), which concludes the proof. ut

Using the previous Lemma and Rackoff’s Theorem we establish the complexity of the boundedness
problem:

Proposition 7.4. The boundedness problem of RPN is EXPSPACE-complete.

Proof:
Hardness of the problem comes from hardness of Petri nets. Let (N , s0) be a marked RPN. First by
Corollary 3.4 we can assume that s0 = s[r,m0]. By Lemma 7.3 checking whetherN , s0 is bounded is
equivalent to whether for v ∈ Va, (N̂el,Ma(u)) is bounded which, due to Rackoff, can be performed
in exponential space. ut

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 63

Let (N , s0) be a marked RPN. If s0 = ∅ then the number of reachable states is finite (one), hence
from now on we assume that s0 6= ∅. Next, if there exists t ∈ Tab with W−(t) = 0 then there are
infinitely many reachable states since one can fire t repeatedly which provides us with a sequence of
states with an unbounded number of threads. Therefore from now on we assume that for all t ∈ Tab,
W−(t) > 0.

We now establish a connection between the boundedness of N̂el and the maximal number of
children of the root in N :

Lemma 7.5. Let N be an RPN such that (N̂el,m0) is bounded. Then:

sup
s′∈Reach(N ,s[r,m0])

|{v ∈ Vs′ | rs′ →s′ v}| <∞

Proof:
Assume that there exists a family of sequences {σn}n∈N such that s[r,m0]

σn−→N sn and the number
of children of r in sn is greater than n. By Proposition 3.8 for all σn there exists an omniscient
sequence σ̂n in N̂ from s[r,m] reaching sn. We remove from σ̂n all the transitions not fired from the
root getting (r, σ̂′n) which is also fireable from s[r,m] and which leads to a state where the root has
a number of children greater than n. Since an abstract transition consumes tokens from the root (for

all t ∈ Tab, W−(t) > 0) one can remove them from (r, σ̂′n) and get (r, σ̂′′n) for which s
(r,σ̂′′n)−−−−→N̂ s′′n

and
∑

p∈P Ms′′n(r)(p) > n. Since σ̂′′n is fireable from m in N̂el this contradicts the hypothesis of the
lemma. ut

Combining the above results, we get a characterization of the finiteness problem:

Proposition 7.6. Let (N , s0) be a marked RPN. Then Reach(N , s0) is finite if and only if both of
the following assertions hold:
1. There is no loop in GN ,s0 = (Va, Ea,Ma);
2. For all v ∈ Va, (N̂el,Ma(v)) is bounded.

Proof:
• Assume that assertions 1 and 2 hold. Due to Assertion 1 and Lemma 6.4 any reachable state has
its depth bounded by some constant. Due to Assertion 2 and Lemmas 7.3 and 7.5 each thread in
any reachable state has a bounded number of children, and a bounded number of different reachable
markings. Therefore Reach(N , s0) is finite.

• Assume that Assertion 1 does not hold. By Lemma 6.4 there is a deep infinite sequence. Hence
there is an infinite sequence of states with growing depth. Therefore Reach(N , s0) is not finite.
• Assume that Assertion 2 does not hold for some vertex v. By Lemma 7.2 there exists a state
s ∈ Reach(N , s0) and a vertex u ∈ Vs such that Ms(u) = Ma(v). By the definition of N̂el, for

any m ∈ Reach(N̂el,Ms(v)), there exists a firing sequence (r, σ′) in N̂ such that s
(r,σ′)−−−→N̂ s′ with

Ms′(v) = m. Therefore Reach(N̂ , s) ⊆ Reach(N̂ , s0). Due to Proposition 3.7, Reach(N̂ , s0) =
Reach(N , s0). ut

64 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

Theorem 7.7. The finiteness problem of RPN is EXPSPACE-complete.

Proof:
The algorithm proceeds by checking Assertions 1 and 2 of Proposition7.6. It builds in exponential
space (by Lemma 6.3) the abstract graph and checks whether there is no loop inGN ,s0 . In the negative
case, it checks in exponential space for any vertex v ∈ Va, whether the marked Petri net (N̂el,Ma(v))
is bounded. ut

8. Conclusion

We have proven that RPN is a strict generalisation of both Petri nets and context-free grammars with-
out increasing the complexity of coverability, termination, boundedness and finiteness problems. It
remains several open problems about languages of RPN and decidability/complexity of checking prop-
erties. Here is a partial list of open problems:

• How to decide whether a word belongs to a coverability or reachability language of a RP?

• Since the quasi-order possesses an infinite antichain, but there exist short witnesses for cover-
ability, does there exist an effective finite representation of the downward closure of the reacha-
bility set?

• Does there exist a relevant fragment of LTL decidable for RPN?

8.1. Acknowledgment

We thank the reviewers very much for their deep, detailed and insightful reviews, which helped us a
lot in order to simplify and clarify this paper.

References

[1] Mayr EW. An Algorithm for the General Petri Net Reachability Problem. SIAM J. Comput., 1984.
13(3):441–460.

[2] Czerwinski W, Lasota S, Lazic R, Leroux J, Mazowiecki F. The reachability problem for Petri nets is not
elementary. In: Proceedings of STOC 19. 2019 pp. 24–33. doi:10.1145/3313276.3316369.

[3] Leroux J, Schmitz S. Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension.
In: Proceedings of LICS 19. 2019 pp. 1–13. doi:10.1109/LICS.2019.8785796.

[4] Rackoff C. The covering and boundedness problems for vector addition systems. Theoretical Computer
Science, 1978. 6(2):223 – 231.

[5] Reinhardt K. Reachability in Petri Nets with Inhibitor Arcs. Electr. Notes Theor. Comput. Sci., 2008.
223:239–264. doi:10.1016/j.entcs.2008.12.042.

[6] Bonnet R, Finkel A, Leroux J, Zeitoun M. Model Checking Vector Addition Systems with one zero-test.
LMCS, 2012. 8(2:11). doi:10.2168/LMCS-8 (2:11).

A. Finkel et al. / Coverability, Termination, and Finiteness in RPN 65

[7] Bonnet R. The Reachability Problem for Vector Addition System with One Zero-Test. In: MFCS 2011,
Warsaw, Poland, volume 6907 of LNCS. 2011 pp. 145–157. doi:10.1007/978-3-642-22993-0 16.

[8] Schnoebelen Ph. Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets. In:
MFCS 2010, Brno, Czech Republic, volume 6281 of LNCS. 2010 pp. 616–628. doi:10.1007/978-3-642-
15155-2 54.

[9] Dufourd C, Finkel A, Schnoebelen Ph. Reset Nets between Decidability and Undecidability. In:
ICALP’98, volume 1443 of LNCS. Springer, Aalborg, Denmark, 1998 pp. 103–115. doi:10.1007/
BFb0055044.

[10] Lazić R, Schmitz S. The Complexity of Coverability in ν-Petri Nets. In: LICS 2016. ACM Press, New
York, United States, 2016 pp. 467–476. doi:10.1145/2933575.2933593.

[11] Lazic R. The reachability problem for vector addition systems with a stack is not elementary. CoRR, 2013.
abs/1310.1767. 1310.1767.

[12] Lazic R, Schmitz S. Non-elementary complexities for branching VASS, MELL, and extensions. In: CSL-
LICS 2014, Vienna, Austria. ACM, 2014 pp. 61:1–61:10. doi:10.1145/2733375.

[13] Demri S, Jurdziński M, Lachish O, Lazić R. The covering and boundedness problems for branching
vector addition systems. Journal of Computer and System Sciences, 2012. 79(1):23–38. doi:10.1016/
j.jcss.2012.04.002.

[14] Atig MF, Ganty P. Approximating Petri Net Reachability Along Context-free Traces. In: FSTTCS 2011,
Mumbai, India, volume 13 of LIPIcs. 2011 pp. 152–163. doi:10.4230/LIPIcs.FSTTCS.2011.152.

[15] Mavlankulov G, Othman M, Turaev S, Selamat MH, Zhumabayeva L, Zhukabayeva T. Concurrently
controlled grammars. Kybernetika, 2018. 54(4):748–764. doi:10.14736/kyb-2018-4-0748.

[16] Dassow J, Turaev S. Petri Net Controlled Grammars: the Case of Special Petri Nets. J. UCS, 2009.
15(14):2808–2835.

[17] Zetzsche G. The Emptiness Problem for Valence Automata or: Another Decidable Extension of Petri
Nets. In: RP 2015, Warsaw, Poland, volume 9328 of LNCS. 2015 pp. 166–178.

[18] El Fallah Seghrouchni A, Haddad S. A Recursive Model for Distributed Planning. In: ICMAS 1996,
Kyoto, Japan. 1996 pp. 307–314. ISBN:978-1-57735-013-2.

[19] Haddad S, Poitrenaud D. Theoretical Aspects of Recursive Petri Nets. In: ICATPN 1999, Williamsburg,
Virginia, USA, volume 1639 of LNCS. 1999 pp. 228–247. doi:10.1007/3-540-48745-X 14.

[20] Haddad S, Poitrenaud D. Modelling and Analyzing Systems with Recursive Petri Nets. In: WODES 2000,
Ghent, Belgium, volume 569 of The Springer International Series in Engineering and Computer Science.
2000 pp. 449–458. doi:10.1007/978-1-4615-4493-7 48.

[21] Haddad S, Poitrenaud D. Checking Linear Temporal Formulas on Sequential Recursive Petri Nets.
In: TIME 2001, Civdale del Friuli, Italy. IEEE Computer Society, 2001 pp. 198–205. doi:10.1109/
TIME.2001.930718.

[22] Haddad S, Poitrenaud D. Recursive Petri nets. Acta Inf., 2007. 44(7-8):463–508. doi:10.1007/s00236-
007-0055-y.

[23] Finkel A, Haddad S, Khmelnitsky I. Coverability and Termination in Recursive Petri Nets. In:
PETRI NETS’19, volume 11522 of LNCSs. Springer, Aachen, Germany, 2019 pp. 429–448. HAL Id:
hal-02081019, URL https://hal.inria.fr/hal-02081019.

1310.1767
https://hal.inria.fr/hal-02081019

66 A. Finkel et al. / Coverability, Termination, and Finiteness in RPN

[24] Stadel M. A remark on the time complexity of the subtree problem. Computing, 1978. 19(4):297–302.

[25] Finkel A, Schnoebelen P. Well-structured transition systems everywhere! Theor. Comput. Sci., 2001.
256(1-2):63–92. doi:10.1016/S0304-3975(00)00102-X.

[26] Czerwinski W, Lasota S, Lazic R, Leroux J, Mazowiecki F. The reachability problem for Petri nets is not
elementary. In: STOC 2019. ACM, 2019 pp. 24–33. arXiv:1809.07115 [cs.FL].

[27] Peterson JL. Petri net theory and the modeling of systems / James L. Peterson. Prentice-Hall Englewood
Cliffs, N.J, 1981. ISBN:0136619835.

[28] Geeraerts G, Raskin J, Begin LV. Well-structured languages. Acta Informatica, 2007. 44(3-4):249–288.
doi:10.1007/s00236-007-0050-3.

[29] Bonnet R, Finkel A, Haddad S, Rosa-Velardo F. Ordinal Theory for Expressiveness of Well-Structured
Transition Systems. Information and Computation, 2013. 224:1–22. doi:10.1016/j.ic.2012.11.003.

[30] Delzanno G, Rosa-Velardo F. On the coverability and reachability languages of monotonic extensions of
Petri nets. Theor. Comput. Sci., 2013. 467:12–29. doi:10.1016/j.tcs.2012.09.021.

[31] Valk R, Vidal-Naquet G. Petri Nets and Regular Languages. J. Comput. Syst. Sci., 1981. 23(3):299–325.

[32] Figueira D. Co-finiteness of VASS coverability languages, 2019. Working paper or preprint, URL https:

//hal.archives-ouvertes.fr/hal-02193089.

[33] Hofman P, Totzke P. Trace Inclusion for One-Counter Nets Revisited. In: RP 2014, volume 8762 of LNCS.
Springer, 2014 pp. 151–162. doi:10.1007/978-3-319-11439-2 12.

[34] Haddad S, Poitrenaud D. Decidability and undecidability results for recursive Petri nets. Technical Report
019, LIP6, Paris VI University, 1999. Id: hal-02548232, URL https://hal.archives-ouvertes.fr/

hal-02548232.

[35] Ogden W. A helpful result for proving inherent ambiguity. Mathematical systems theory, 1968. 2(3):191–
194. doi:10.1007/BF01694004.

[36] Lambert J. A Structure to Decide Reachability in Petri Nets. Theor. Comput. Sci., 1992. 99(1):79–104.
doi:10.1016/0304-3975(92)90173-D.

[37] Lipton RJ. The Reachability Problem Requires Exponential Space. Technical Report 062, Yale University,
Department of Computer Science, 1976.

https://hal.archives-ouvertes.fr/hal-02193089
https://hal.archives-ouvertes.fr/hal-02193089
https://hal.archives-ouvertes.fr/hal-02548232
https://hal.archives-ouvertes.fr/hal-02548232

	Introduction
	Recursive Petri nets
	Presentation
	An order for Recursive Petri Nets

	Decision problems and reductions
	Expressiveness
	Coverability is EXPSPACE-complete
	Termination is EXPSPACE-complete
	Finiteness and boundedness are EXPSPACE-complete
	Conclusion
	Acknowledgment

