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CGFormer: ViT-Based Network for Identifying
Computer-Generated Images with Token Labeling

Weize Quan, Pengfei Deng, Kai Wang, and Dong-Ming Yan

Abstract

The advanced graphics rendering techniques and image generation algorithms significantly improve the visual quality of
computer-generated (CG) images, and this makes it more challenging to distinguish between CG images and natural images (NIs)
for a forensic detector. For the identification of CG images, human beings often need to inspect and evaluate the entire image and
its local region as well. In addition, we observe that the distributions of both near and far patch-wise correlation have differences
between CG images and NIs. Current mainstream methods adopt the CNN-based architecture with the classical cross entropy loss,
however, there are several limitations: 1) the weakness of long-distance relationship modeling of image content due to the local
receptive field of CNN; 2) the pixel sensitivity due to the convolutional computation; 3) the insufficient supervision due to the
training loss on the whole image. In this paper, we propose a novel vision transformer (ViT)-based network with token labeling
for CG image identification. Our network, called CGFormer, consists of patch embedding, feature modeling, and token prediction.
We apply patch embedding to sequence the input image and weaken the pixel sensitivity. Stacked multi-head attention-based
transformer blocks are utilized to model the patch-wise relationship and introduce a certain level of adaptability. Besides the
conventional classification loss on class token of the whole image, we additionally introduce a soft cross entropy loss on patch
tokens to comprehensively exploit the supervision information from local patches. Extensive experiments demonstrate that our
method achieves the state-of-the-art forensic performance on six publicly available datasets in terms of classification accuracy,
generalization, and robustness. Code is available at https://github.com/feipiefei/CGFormer.

Index Terms

CG image forensics, transformer, token labeling, generalization, robustness

I. INTRODUCTION

IMAGE has become a prevalent and important medium of communication due to simple acquisition process and rich
content. Natural image (NI) captured by digital camera is historically reliable, i.e., “seeing is beliving”. Unfortunately, this

reliability is threatened by the computer-generated (CG) image produced by advanced computer graphics rendering techniques
and image generation algorithms. These CG images often have similar visual realism as the natural images (see Fig. 1(a)
for example). Consequently, what you see is no longer trustworthy, and distinguishing CG images from NIs (i.e., CG image
forensic problem [1]) is a practical and valuable task in the image forensics community.

In the literature, many efforts have been made to solve this problem. Early work mainly relied on feature engineering [3] to
design discriminative features, such as, geometry-based features [4] and wavelet statistic-based features [5]. These hand-
crafted features are then fed to a classifier, e.g., LDA (linear discrimination analysis), nonlinear SVM (support vector
machine), ensemble classifier, etc. The feature design heavily depends on the human prior knowledge and some (shallow-level)
observations about the data, therefore, the hand-crafted features often have a limited discrimination capability. Correspondingly,
this hampers the identification performance of hand-crafted-feature-based forensic methods.

Inspired by significant performance improvement of convolutional neural works (CNNs) on image classification, where CNN
combines the hierarchical feature extraction and classifier as a whole, recent research works [2], [6]–[8] pay more attention to
the design of CNN models and achieve better forensic performance compared to traditional methods. However, these CNN-
based approaches still have limitations in two aspects, i.e., generalization and robustness, which are very important factors for
a forensic detector working in real-world scenarios. The generalization refers to the performance of forensic models trained
on “known” data and tested on “unknown” data. The robustness means achieving stable classification performance when the
test data are subject to post-processing operations (either unintentional or malicious), e.g., rescaling, JPEG compression, and
noises.

Through carefully analyzing the existing CNN-based methods, we think that there are three reasons related to the limitations
mentioned in the last paragraph. The first one is the convolution computation process in CNNs. The common convolutional
operation is element-wise product between pixels in a convolutional window and weights in a convolutional kernel, followed by
a summation. This process fully depends on the pixels in local windows and thus is relatively sensitive to these pixel values and
corresponding distributions. As a result, the trained models are possibly vulnerable to changes in the values of local pixels and
their distributions, e.g., changes introduced by post-processing operations such as rescaling and JPEG compression. In addition,
the weights of learned convolutional kernels are fixed and applied to each input image. Therefore, CNNs to some extent have
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(a) CG images

(b) NIs

Fig. 1. CG images (a) and NIs (b). CG images are generated by the rendering tool VRay; NIs are from LSCGB dataset [2] and Corona dataset [1], respectively.

limited adaptability to the content of a single image and this may hamper the model’s generalization. The second reason is
the limited capability of modeling long-distance relationships of image content. CNNs progressively enlarge the receptive field
with stacked convolutional layers (with dilations) and pooling operations so as to access larger regions of input images. The
receptive field refers to the region of input image that is path-connected to a neuron in a certain layer [9]. However, simple
stacks of multiple convolutional layers cannot effectively establish the relationships between long-distance image content, while
such relationships contain important traces for CG image forensics as described in Section III-A. The third reason is that current
CNN-based methods omit the importance of local image patches for the training objective. A local patch from NI/CG image
has same label as the entire NI/CG image. However, existing methods mainly apply the conventional cross entropy loss over the
whole image to train the model, in a similar way as the common image recognition task in computer vision community [10],
[11]. Consequently, the CNN-based forensic detectors receive limited guidance to explore the relationships between the local
patches and the global image. Inspired by these insights, we propose a vision transformer (ViT)-based network with simple
and effective token labeling to significantly improve the generalization and robustness for CG image forensics.

Our work provides the following contributions:

• We introduce a ViT-based framework, named as CGFormer, for the CG image forensic problem. Compared to CNN-
based method, this framework can lessen network’s reliance on pixel values and corresponding distributions in a local
window, and model the relationships of both near and far image patches. Therefore, our framework is able to achieve
better generalization and robustness.

• We propose an effective token labeling method to optimize the training process. Besides the classification loss on the whole
image, we add a weak constraint on the local patches, so that each patch token of our proposed CGFormer can capture
more local information and the local-global relationships. This weak constraint can remarkably improve the forensic
performance.

• We conduct a comprehensive study on CNN-based and ViT-based methods for the CG image forensic problem, including
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architecture analysis, experimental comparisons, visualization, and understanding. This provides some insights and inspires
follow-up studies.

• Compared to CNN-based approaches, our ViT-based framework achieves the state-of-the-art performance on six common
datasets for CG image forensics: LSCGB [2], SPL2018 [12], Autodesk [1], Artlantis [1], Corona [1], and VRay [1].

The rest of this paper is organized as follows. Section II reviews the existing works. Section III describes the motivation
and technical details of the proposed method. In Section IV we present the experimental results of our method, compare it
with existing state-of-the-art methods, and make efforts to understand the results with visualization tools. Section V concludes
this paper and discusses directions for future work.

II. RELATED WORK

This section briefly reviews the existing CG image forensic approaches, including computer graphics-generated image
detection and generative models-generated image detection. We refer readers to recent surveys [13], [14] for more details
and information about the relevant research.

A. Computer Graphics-generated Image Detection

1) Traditional Methods: Traditional methods follow a two-stage machine learning framework consisting of feature extraction
and classifier design. The previous works extract the discriminative features in spatial domain and transform domain.

Spatial domain. This kind of methods usually extracts the statistical differences, texture details, and geometric information
as the discriminative features. Based on the fractal and differential geometry, Ng et al. [4] designed geometry-related features
to identify CG images. Pan et al. [15] used the global color distribution and the texture difference as the cues for CG image
forensics. Sankar et al. [16] proposed hybrid features combining the periodic correlation, color histogram, moment and local
patch statistics. More aspects are also considered, such as local image edge statistics [17], gray-scale invariant local binary
patterns [18], PRNU (photo response non-uniformity noise) [19], multi-fractal spectrum [20], etc.

Transform domain. Through transforming the image from spatial domain to frequency domain, some hidden forensic traces
are exposed to construct the feature vectors. Lyu and Farid [5], [21] combined the wavelet statistics of first four orders (mean,
variance, skewness, and kurtosis) as the feature to discriminate between NIs and CG images. Chen et al. [22] conducted the
discrete wavelet transform in the HSV (hue, saturation, lightness) color space, and then extracted discriminative features from
the discrete Fourier transform of the wavelet coefficients. Özparlak et al. [23] extracted features from the contourlet and ridgelet
transform of input image. Considering some drawbacks existing in discrete and contourlet wavelet transform, later, Wang et
al. [24] proposed a quaternion wavelet transform-based feature extraction method.

2) CNN-Based Methods: The basic idea of CNN-based methods is to directly learn the mapping function from input image
to output label. Technically, the automatic feature extraction and classifier are combined as a whole, which can be trained in an
end-to-end manner. Based on the traditional CG image forensic model, Rahmouni et al. [25] combined convolutional layers,
a specific pooling layer, and a multi-layer perceptron to construct a deep model for distinguishing NIs from CG images. By
analyzing the difference between conventional image classification and CG image forensic problem, Quan et al. [6] improved
CNN’s forensic performance with a learnable preliminary filtering layer. They also understood the trained model with several
advanced visualization tools. To remove low-frequency signals and enhance the sensor pattern noise, Yao et al. [26] used
three sets of high-pass filters in the front of CNN model. He et al. [12] proposed a two-stream CNN to exploit the color
and texture characteristics and then combined a RNN (recurrent neural network) to enhance the discriminative capability of
forensic features. Nguyen et al. [27] modified the architecture and training method of the capsule network [28] to better model
image spatial information. Instead of the uniform processing for entire input image, Bhalang Tarianga et al. [29] proposed
an attention-guided recursive model to progressively process the local image area. Zhang et al. [30] identified the CG images
by jointly exploiting the channel and pixel correlation with a hybrid correlation module, which can also be used in other
CNN models. Besides the classification accuracy, Quan et al. [1] paid more attention to the blind detection (or generalization)
problem, and proposed a two-branch network with a negative-sample-based enhanced training method. He et al. [7] introduced
a dual-branch CNN with an attention-based fusion model for the identification of CG images. Their network takes as input
stacked original input image and its Gaussian blurred version. Very recently, Bai et al. [2] constructed a large-scale CG images
benchmark (LSCGB), and proposed a texture-aware network to explore the texture difference between NIs and CG images.
Yao et al. [8] designed a CG image detection network with a feature transfer module and an attention-guided fusion module,
considering both the shallow content and deep semantic features.

B. Generative Models-generated Image Detection

1) Spatial Domain: Wang et al. [31] demonstrated that a common image classifier (i.e., ResNet-50 [11]), which is trained
on a specific CNN generator with two operations (i.e., Gaussian blur and JPEG compression), can detect fake images generated
by unseen CNN-based generative models. Further, Chandrasegaran et al. [32] discovered the transferable forensic features in
“universal” detectors [31] by introducing forensic feature relevance statistics. Chai et al. [33] designed a CNN detector truncated
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from the Xception backbone [34] with small receptive fields to focus on the local artifacts. Cozzolino et al. [35] introduced a
ForensicTransfer model to improve the generalization performance. Specifically, this model is an autoencoder-based network
that jointly performs embedding learning and forensic detection. There are some works about face forgery detection. Li et
al. [36] detected face forgery by exposing the blending boundary. To train the detector, they introduced a training sample
generation method that blends two real images. Kim et al. [37] proposed a transfer learning-based feature representation
learning method to train a student model on new deepfake datasets and achieved good performance on the domain adaptation
task. Shiohara and Yamasaki [38] also designed a method based on synthetic training data, namely, self-blended images.
Different from [36], they generated the fake image by blending the source image and its slightly changed version.

2) Frequency Domain: Zhang et al. [39] proposed a spectrum-based classifier to identify GAN-generated images. For an
RGB image, they first extracted the 3 channels of the frequency spectrum with 2D DFT (discrete Fourier transform), then
normalized the spectrum as the classifier’s input. Frank et al. [40] applied the discrete cosine transform (DCT) to transform
input image into the frequency domain, and then carried out the identification of GAN fake images. Dzanic et al. [41] observed
that there were noticeable differences between real and deep network-generated images in their high-frequency spectra, and
proposed a detection method based on these characteristics. Durall et al. [42] had a similar observation and proposed a spectral
regularization term, which was inserted into the GAN training objective to compensate for observed spectral distortions.
Recently, Chandrasegaran et al. [43] revisited the claim that CNN-generated images shared high-frequency spectral decay
attributes as reported in previous studies [41], [42]. They observed that these discrepancies could be avoided by modifying the
last feature map scaling method. Similarly, Dong et al. [44] proposed a pipeline to mitigate spectra artifacts and correct the
power discrepancy of GAN-based images. As a result, the spectrum-based detectors [40], [42] have a noticeable performance
drop. These recent researches imply that spectral(frequency)-domain-based detectors can be vulnerable to mitigation methods;
by contrast, the spatial-domain-based methods may have better robustness.
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Fig. 2. The distribution of correlation of patch pairs with different distances: 16, 48, 148, and 200. In (a-d) are results calculated on LSCGB [2], and in (e-h)
are results calculated on SPL2018 [12].

III. PROPOSED METHOD

A. Observation & Motivation

For the CG image forensic problem, we have several observations and have carried out some analyses about the data, the
existing CNN-based methods, and human observers.

1) Correlation Analysis: The images generated by computers, based on advanced rendering techniques or the recent deep
generative models, are all simulating the distribution of pixels in natural images. Due to various influence factors, e.g.,
illumination, viewing angle, shadow, occlusion, and camera settings, the distribution of pixels is complex and diverse for
natural images. Different rendering algorithms and trained deep generative neural networks may cover part of the distribution
space of natural images. In this work, we use the probability distribution of the correlation of image patches with different
distances as the statistic measure to illustrate the differences between NIs and CG images.

We analyze this statistical distribution on two datasets: LSCGB [2] and SPL2018 [12]. Specifically, we randomly select N
natural images and N CG images from one dataset, where N = 10, 000 for LSCGB and N = 3, 000 for SPL2018. For each
image, we randomly crop 1,000 pairs of 16 × 16 patches with four different distances, i.e., 16, 48, 148, and 200, along the
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Fig. 3. Illustration of effective receptive field of state-of-the-art CNN-based CG image forensic detectors.

horizontal direction. To compute the patch correlation, we first rescale the pixel value to [−1, 1], and then flatten each color
patch of 16 × 16 × 3 into a 768-dimensional vector. The patch correlation is obtained via the inner product of two vectors
representing a pair of patches, and the correlation value is divided by 768 to fall into [−1, 1]. Fig. 2 shows the distribution of
patch correlation for four different distance settings. It is observed that the empirical distributions of patch correlation exhibit
notable difference between NI and CG patches for all distances. Specifically, more patch pairs of CG images fall into the
strong correlation region, for both close patch pairs and distant patch pairs. The reason might be that computer generation
algorithms have potentially certain specific modes and rules which introduce some kind of repetitive patterns to CG images,
while NIs have relatively more randomness.
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Fig. 4. The whole architecture of our CGFormer. Patch embedding contains the class token and the patch tokens. Feature modeling consists of 12 stacked
transformer blocks. Token prediction efficiently exploits the supervision information by adding cross entropy loss on class token and soft cross entropy loss
on patch tokens.

2) Effective Receptive Field: For the CG image forensic problem, CNN-based models are composed of multiple convolutional
layers and down-sampling layers. For each convolutional layer, convolution operation is conducted via convolutional kernels
with fixed and small sizes (often 3×3 or 5×5) in a sliding window manner. Although the stacked arrangement of convolutional
layers can increase the receptive field, the capability of modeling long-distance relationship is limited [45] and the effective
receptive field only occupies part of the entire theoretical receptive field [46]. For several advanced CNN-based CG image
forensic methods, i.e., ScNet [30], ENet [1], TextureNet [2], and CGNet [8], we visualize the effective receptive field of a
neuron in the final feature extraction layers using the popular analysis tool proposed in [46], and the results are shown in
Fig. 3. We can see that the effective receptive field of these models for a feature neuron only covers a fraction of input image.
Therefore, the discriminative features extracted by CNNs have a certain level of locality.

3) Human Observers: To identify the authenticity of a given image, i.e., to answer the question whether it is an NI or a
CG image, human observers often need to analyze the local region and the entire image, and the relationships between them
as well. Then, they combine all these pieces of information to deduce a final result according to some “prior knowledge”. In
addition, human observers have certain ability to correctly recognize the images that are “unseen” during their learning stage
(i.e., images that are somewhat different from those seen during learning). This “generalization” ability would be related to
the “adaptability” of their analysis process, especially the analysis of relationships within a single image as described above.

B. Our Framework

Inspired by the above observations and analyses, we intend to design a novel CG image forensic network, which can
model the patch-wise relationship with near and far distances and possess the good “adaptability” capability. Therefore, we
propose a ViT-based network with token labeling, named as CGFormer. We adopt the transformer architecture to model the
patch relationships and the dynamic weight strategy hidden behind the self-attention computation to enhance the “adaptability”
capability of network. Dynamic weights refer to the so-called connection weights that are adaptively learned for each image
instance [47] (details are presented later in this subsection), whereas the convolutional kernels are fixed for all image instances.
Compared to the simple inner product of image space in Sec. III-A1, multiple self-attention-based blocks have the potential
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to model complex relationships between patch pairs, which can enlarge the representation differences between NIs and CG
images. Moreover, we introduce the token labeling to guide the network to extract more traces from local patches and enhance
the relationship modeling of local patches and the global image.

Our CGFormer takes an image I ∈ R224×224×3 as input and outputs a binary label y, where 0 means CG image and 1
means NI. As illustrated in Fig. 4, the whole network consists of three parts: patch embedding, feature modeling, and token
prediction.

1) Patch Embedding: This part reorganizes the input image as sequential tokens, which are then used for learning the patch-
wise relationship in the consequent feature modeling stage. Image I is first split into 16 × 16 patches without overlapping,
and the total number of patches is M . For each patch p, it is flattened into a vector and transformed into embedded vector
via a linear projection. It is called as patch token Tm

p ∈ Rd, where d is the feature dimension of patch token, and m is the
patch token index. For the image recognition, a class token Tc ∈ Rd with learnable parameters is often used to collect the
discriminative information for the final classification. Following the original ViT [48], we adopt a learnable positional encoding
mechanism, which introduces a parametric matrix pos ∈ RM×d describing positional information of image patches. After patch
embedding, we can obtain sequential tokens T ∈ R(M+1)×d. The detailed formulation is

T = cat(Tc, Tp + pos), (1)

where cat is the concatenation of patch tokens Tp and class token Tc along the token dimension.
2) Feature Modeling: CNN-based methods extract the hierarchical features through stacked convolutional layers and down-

sampling operations. In contrast, our method applies multiple transformer blocks to extract discriminative features. As shown
in the middle of Fig. 4, the transformer block is based on skip connection and multi-head attention [49]. The transformer
blocks take T ∈ R(M+1)×d as input and output attentive tokens T̂ ∈ R(M+1)×d. In our work, there are B stacked transformer
blocks and we take an transformer block as example to explain the practical computation process. This can be formulated as
follows:

T̃ = MHA(LN(T )) + T,

T̂ = MLP(LN(T̃ )) + T̃ ,
(2)

where LN is the layer normalization [50], MHA represents the multi-head attention module, and MLP means a multilayer
perceptron layer.

Fig. 5 shows the architecture of multi-head attention module. The input T ∈ R(M+1)×d of MHA is first processed by layer
normalization and then projected into query Q ∈ R(M+1)×d, key K ∈ R(M+1)×d, and value V ∈ R(M+1)×d, respectively. It
is written as,

Q = LN(T )WQ, K = LN(T )WK , V = LN(T )WV , (3)

where WQ ∈ Rd×d, WK ∈ Rd×d, and WV ∈ Rd×d are the linear projection matrices. Then, Q, K, and V are split into
multiple parallel heads Qh ∈ R(M+1)×dh , Kh ∈ R(M+1)×dh , and V h ∈ R(M+1)×dh , where dh = d

H and H is the number of
heads. For h-th head, the attentive feature is calculated via the scaled dot-product attention as

fh = Softmax

(
Qh
(
Kh
)T

√
dh

)
V h. (4)

Through this equation and as mentioned earlier in this subsection, the connection weights (i.e., the Softmax part in the above
equation) are dynamically predicted for each image instance according to the queries and the keys with scaled dot product and
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TABLE I
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN TRAINED ON LSCGB DATASET.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
ScNet 95.88 66.87 73.75 71.12 66.12 66.48
ENet 93.89 73.69 77.23 71.81 78.62 69.17

TextureNet 95.87 89.41 85.42 84.48 83.75 78.89
CGNet 94.89 85.42 81.59 79.03 80.25 74.75
Ours 98.00 97.13 95.56 94.87 92.23 90.98

TABLE II
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN TRAINED ON SPL2018 DATASET.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
ScNet 59.41 97.50 66.12 63.20 64.17 62.23
ENet 57.78 97.25 66.53 64.31 66.53 62.09

TextureNet 62.53 98.22 72.64 73.62 75.84 71.12
CGNet 66.08 98.04 78.89 77.23 79.45 75.84
Ours 79.53 99.16 90.70 88.62 88.48 86.67

softmax normalization. Output T ′ ∈ R(M+1)×d of MHA is obtained by concatenating these parallel attention heads and linear
projection:

T ′ = cat(f1, f2, ..., fH)W′, (5)

where cat is the concatenation operator and W′ ∈ Rd×d is the learnable projection matrix.
3) Token Prediction: To comprehensively exploit the supervision information from the global image and local patches, we

propose a simple and effective token labeling method. It adds the constraints on the features of class token and patch tokens
simultaneously. Let Fc denote the feature of class token, and Fm

p denote the feature of m-th patch token. A shared linear
classifier FC with two output neurons transforms Fc and Fm

p to the logits Gc and Gm
p , respectively.

For the class token, we use the classical cross entropy loss, and it is formulated as:

Lc = −
L∑

l=1

log
exp(Gl

c)∑L
l=1 exp(G

l
c)
· 1{y = l}, (6)

where 1{·} is the indicator function (i.e., 1{False} = 0 and 1{True} = 1), and L is the number of classes (L = 2 in our work
representing two classes of NIs and CG images).

Different from the hard constraint in Eqn. (6), where for an NI training sample the prediction score (Pr) must be close
to 1 (or respectively close to 0 for a CG training sample), we add a soft constraint on patch token only requiring that the
corresponding prediction score is bigger than (or smaller than) 0.5 for NI (or CG). In other words, we do not penalize training
patches when an NI (or a CG) training patch is predicted as NI (or CG) with Pr > 0.5 (or Pr < 0.5). This design is reasonable
because the forensic information hidden behind a small patch (i.e., 16 × 16) sometimes may be not enough to produce the
right prediction with very high confidence. The detailed formulation of loss function for the patch token is written as:

Lp = − 1

M

M∑
m=1

L∑
l=1

log φ(
exp(Gm

p
l)∑L

l=1 exp(G
m
p

l)
) · 1{y = l}, (7)

where φ(·) is a thresholding function

Pr = φ(Pr) =

{
1− ε,Pr > 0.5;
ε,Pr < 0.5.

(8)

where ε is a small factor to prevent numerical instability.
The final training objective of CGFormer is the average of class token loss and patch token loss:

L =
Lc + Lp

2
. (9)

In [51], Jiang et al. used a token labeling technique to train better vision transformers for image recognition task. They
applied a pre-trained image recognition model to generate a dense score map as the auxiliary objective on patch token. There
exists two apparent differences between our token labeling and [51]: (1) For our method, the supervision information on patch
tokens directly come from the training data, whereas [51] needs a so-called machine annotator introducing additional training
cost and the performance of this annotator also affects the final results of ViTs; (2) Instead of directly using cross entropy loss
as in [51], we additionally introduce a relaxation after softmax, i.e., Eqn. (8).
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TABLE III
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN TRAINED ON AUTODESK DATASET.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
ScNet 55.85 48.13 98.62 91.98 91.81 86.95
ENet 52.39 52.79 98.75 89.04 92.92 88.23

TextureNet 62.73 76.47 98.48 88.75 83.75 84.17
CGNet 63.54 76.50 98.62 95.65 91.81 91.95
Ours 65.44 76.72 99.03 95.76 84.76 85.14

TABLE IV
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN TRAINED ON ARTLANTIS DATASET.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
ScNet 52.75 54.00 78.37 98.89 74.87 81.81
ENet 47.95 50.35 88.50 98.89 85.64 86.56

TextureNet 56.92 83.32 93.62 98.75 85.28 90.56
CGNet 54.15 77.72 95.25 98.25 87.37 85.98
Ours 67.20 87.29 97.78 99.03 87.95 91.81

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental settings, including the datasets and implementation details. Then, we
evaluate our method through comparison experiments and robustness analysis, and analyze our method via ablation studies.
Finally, we make efforts to understand the working mechanism of our CGFormer with some visualizations.

A. Experimental Setup

Datasets. In this work, we compare and evaluate our method on six publicly available datasets: LSCGB [2], SPL2018 [12],
Artlantis [1], Autodesk [1], Corona [1], and VRay [1]. In the following, we briefly describe these datsets.

LSCGB is a large-scale CG image forensics dataset, which contains 71,168 NIs and 71,168 CG images. NIs are collected
from existing CG forensics datasets (Columbia image dataset [52] and Tokuda dataset [53]), public NI datasets in computer
vision (PASCAL VOC [54] and COCO [55]), some movies without special effect, and several photo websites. CG images
mainly come from existing CG forensics datasets (Columbia image dataset [52] and Tokuda dataset [53]), 3D games and
movies, cartoon, and generative adversarial networks (e.g., StyleGAN [56], BigGAN [57], etc). For data split, we follow the
original setting shared by [2]. In particular, the training set consists of 49,823 CG images and 49,813 NIs, and the test set
contains 14,230 CG images and 14,233 NIs.

SPL2018 dataset comprises 6,800 CG images and 6,800 NIs, where CG images are created using over 50 graphics rendering
software tools (e.g., Maya, 3D Max, etc) and NIs are captured with several digital cameras. Following the original data split,
4,000 CG images and 4,000 NIs are used for training, and 1,600 CG images and 1,600 NIs for testing.

The remaining four datasets, i.e., Autodesk, Artlantis, Corona, and VRay, are collected by Quan et al. [1]. NIs are from
RAISE dataset [58] and VISION dataset [59], and CG images are produced by the above four rendering tools. For each dataset,
the training set contains 5,040 NIs and 5,040 CG images, and the test set contains 360 NIs and 360 CG images.

Implementation details. Our model is implemented with PyTorch 1.8.0. The GPU is an NVIDIA TITAN RTX. SGD
optimizer with the momentum of 0.9 and the weight decay of 1e-4 is used to train our models. We set the batch size as
64. The learning rate is initialized to 0.003, and is adjusted using a cosine annealing schedule [60] with Tmax = 30 and
ηmin = 1e− 7. The training process stops after 150 epochs. The parameters of CGFormer is initialized using the weights of
ViT pre-trained on ImageNet-21K [61] and fine-tuned on ImageNet-1K [62]. For the soft cross entropy loss on patch tokens
(Eqn. (7)), we empirically set ε = 0.01.

For all images, we resize the shorter edge as 512. In the training stage, we randomly crop a 224 × 224 subimage as
the network input. In the testing stage, we obtain the prediction of a test image by averaging predictions of ten subimages
(including subimages from the center and four corners, and their horizontally flipped version), for our method as well as for
state-of-the-art methods to ensure fair comparisons. Following previous methods [2], [8], [30], we use the accuracy (in %) as
the evaluation metric of forensic performance. In the following tables, the classification accuracy when training and testing
data come from same dataset is in italic, while the performance when training and testing data are from different datesets (i.e.,
generalization) is shown in normal font.

B. Comparisons with State-of-the-Art Methods

In this work, we compare our network with several advanced CG forensic methods, including ScNet [30], ENet [1],
TextureNet [2], and CGNet [8].

Tables I-VI report the comparisons of five methods on six datasets in terms of conventional classification accuracy (i.e.,
training and test data from same dataset) and generalization (i.e., training and test data from different datasets). Specifically, in
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TABLE V
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN TRAINED ON CORONA DATASET.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
ScNet 53.45 68.87 92.21 85.14 98.20 91.53
ENet 55.44 52.04 92.37 83.06 98.48 91.95

TextureNet 54.44 70.75 89.03 82.64 98.34 92.50
CGNet 61.06 80.98 92.09 87.64 98.12 95.28
Ours 68.94 84.21 92.48 87.89 99.16 96.08

TABLE VI
CLASSIFICATION PERFORMANCE OF FIVE NETWORKS WHEN TRAINED ON VRAY DATASET.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
ScNet 52.25 71.29 89.87 90.16 94.73 97.78
ENet 56.78 64.96 90.16 87.72 95.79 98.59

TextureNet 53.14 78.60 83.75 85.14 94.87 98.48
CGNet 53.55 67.67 87.50 90.09 94.66 98.62
Ours 70.88 85.66 90.23 87.89 96.81 99.03

each table all models are trained on one dataset and then tested on all datasets. From these tables, we can see that our method
achieves the superior overall performance. In terms of classification accuracy (in italics), our method surpasses the second best
method by 2.12% (LSCGB), 0.94% (SPL2018), 0.28% (Autodesk), 0.14% (Artlantis), 0.68% (Corona), and 0.41% (VRay),
respectively. Moreover, our method in many cases notably enhances the generalization capability of CG forensic detector.
Taking the results in Table I as an example, we can see that our CGFormer outperforms the second best method TextureNet
with significant gain of 7.72% (SPL2018), 10.14% (Autodesk), 10.39% (Artlantis), 8.48% (Corona), and 12.09% (VRay),
respectively.
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Fig. 6. Classification accuracies of the five methods on six datasets under rescaling and JPEG compression post-processing.

Next, we compare the robustness of all the above methods against several post-processing operations, including rescaling,
JPEG compression, Gaussian noise, and salt and pepper noise.

Similar to [6], the rescaling operations contain down-scaling (“S300”) and up-scaling (“S1000”) with bilinear interpolation.
The process is that we first resize the shorter edge of image as 300/1,000 pixels and then rescale it back to 512 pixels. For
the JPEG compression, we consider three quality factors, including 90, 80, and 70. The corresponding results are shown in
Fig. 6 and Table VII and VIII. The curves of our method are almost flat, which means that our CGFormer is very robust
against rescaling and JPEG compression. For other CNN-based competitors, the performance drastically drops for down-scaling
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TABLE VII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST RESCALING.

Method LSCGB SPL2018 Autodesk Artlantis Corona VRay

S300 S1000 S300 S1000 S300 S1000 S300 S1000 S300 S1000 S300 S1000
ScNet 68.13 93.55 54.57 88.25 85.10 91.81 52.71 72.37 68.14 85.04 59.23 62.34
ENet 68.04 83.89 50.84 77.63 84.89 90.45 52.45 66.87 68.23 70.31 78.45 81.81

TextureNet 75.44 91.83 85.92 93.69 94.50 98.77 93.50 98.49 90.31 95.45 88.23 99.03
CGNet 81.14 90.40 89.93 93.95 92.74 98.75 67.89 81.13 92.59 96.89 82.23 91.72
Ours 95.02 97.51 97.13 97.14 98.78 99.03 98.88 98.94 98.89 99.16 98.95 99.34

TABLE VIII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST JPEG COMPRESSION.

Method LSCGB SPL2018 Autodesk Artlantis Corona VRay

J90 J80 J70 J90 J80 J70 J90 J80 J70 J90 J80 J70 J90 J80 J70 J90 J80 J70
ScNet 65.46 59.65 62.43 68.66 54.89 54.79 62.39 56.43 54.57 75.81 71.81 65.70 85.00 84.02 83.26 78.48 78.48 78.18
ENet 71.72 67.48 60.64 68.57 55.47 55.38 62.37 56.50 54.56 68.62 62.26 61.18 75.17 73.28 68.39 84.12 78.78 76.25

TextureNet 79.74 70.45 68.23 96.77 85.79 78.44 97.55 96.64 93.98 98.56 96.59 93.12 85.04 73.46 71.65 97.94 96.16 94.58
CGNet 79.88 69.86 66.61 91.94 82.13 73.35 98.42 98.34 98.12 84.95 84.96 84.95 94.51 88.13 85.14 89.95 88.98 87.97
Ours 96.48 94.65 92.28 97.14 97.14 97.14 98.62 98.58 98.34 98.62 98.42 98.34 97.78 95.64 93.76 98.48 98.62 98.34

and decreases as the strength of JPEG compression increases. When the images are under rescaling and JPEG compression
operation, the correlation of pixels with their local neighborhoods is potentially changed. CNN-based forensic detectors are
mainly composed of multiple convolutional layers, where the convolutional operation is within a local window and might be
sensitive to the change of local pixels correlation.
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Fig. 7. Classification accuracies of the five methods on six datasets under Gaussian noise and salt and pepper noise post-processing.

For the Gaussian noise, we add to the original pixel value a random noise with zero mean and variances of 1, 10, and
20, respectively. For the salt and pepper noise, the signal noise rate (SNR) is set as 0.99, 0.95, and 0.90, respectively. The
corresponding results are shown in Fig. 7 and Table IX and X. We can see that the classification accuracies of CNN-based
methods quickly decrease when the density of noise increases. In contrast, the performance of our method is relatively stable
and apparently remains the best among all five methods. One possible reason is that our method mainly depends on the
patch-wise relationship modeling, which is less vulnerable to the change of individual pixel values.

In addition, we also compare our method with several advanced methods designed for CNN-generated image detection,
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TABLE IX
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST GAUSSIAN NOISE WITH THREE LEVELS OF VARIANCE.

Method LSCGB SPL2018 Autodesk Artlantis Corona VRay

V1 V10 V20 V1 V10 V20 V1 V10 V20 V1 V10 V20 V1 V10 V20 V1 V10 V20
ScNet 86.18 61.92 52.52 81.16 59.66 55.47 80.78 59.50 54.64 94.78 67.50 51.64 79.96 58.81 52.17 71.00 57.98 54.78
ENet 74.46 48.37 49.14 83.72 60.49 54.73 84.03 61.67 53.62 84.53 62.23 55.70 75.70 58.00 52.12 80.06 59.00 56.42

TextureNet 82.45 50.54 50.64 88.57 67.37 54.73 97.92 88.00 79.73 99.03 84.50 63.28 96.00 78.75 67.42 93.42 79.56 68.67
CGNet 75.17 52.99 50.12 88.16 60.22 51.22 93.65 74.23 68.54 88.95 61.39 56.84 90.21 67.23 58.31 87.64 63.09 59.06
Ours 96.41 84.56 72.39 96.10 87.29 77.79 98.75 96.84 92.44 99.03 98.09 94.88 98.98 95.03 89.51 98.84 93.56 89.21

TABLE X
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SALT AND PEPPER NOISE.

Method LSCGB SPL2018 Autodesk Artlantis Corona VRay

S0.99 S0.95 S0.90 S0.99 S0.95 S0.90 S0.99 S0.95 S0.90 S0.99 S0.95 S0.90 S0.99 S0.95 S0.90 S0.99 S0.95 S0.90
ScNet 51.69 47.90 48.78 83.70 70.06 52.28 66.59 50.23 50.00 51.17 51.12 51.48 68.49 50.39 49.14 50.42 51.00 50.96
ENet 66.04 49.32 49.32 63.29 49.94 48.48 63.63 50.00 48.98 52.64 48.00 47.98 53.14 50.56 50.56 51.81 49.42 47.96

TextureNet 66.04 50.00 50.00 50.79 50.72 52.29 71.39 69.39 50.96 65.06 54.89 50.24 86.95 78.83 73.12 76.20 63.17 63.03
CGNet 50.02 50.00 50.45 51.25 51.07 51.23 80.06 50.00 50.96 52.64 50.34 50.24 77.37 63.12 49.87 62.00 54.45 52.21
Ours 86.22 77.93 61.66 84.38 81.25 65.42 97.78 96.39 92.62 98.23 91.81 79.87 97.78 94.42 84.48 97.18 92.06 79.89

including SpecCNN [39], FSD [41], LFA [40], Xception2 [33], and CNNDet [31], where SpecCNN, FSD, and LFA are
frequency domain-based methods. We train these models on LSCGB dataset and then test them on other datasets, including
computer graphics-generated images (in Table XI) and AIGC (artificial intelligence generated content)-generated images (in
Table XII). Following the setting in [31], all images are resized with a shorter edge of 256 pixels, and we apply center
cropping in the testing stage. For AIGC-generated images, we evaluate 13 synthesis models of different categories: (1)
unconditional GAN (ProGAN [63], StyleGAN [56], and BigGAN [57]); (2) conditional GAN (CycleGAN [64], StarGAN [65],
and GauGAN [66]); (3) perceptual loss (CRN [67] and IMLE [68]); (4) low-level vision (SITD [69] and SAN [70]); (5)
Deepfake (FaceForensics++ [71]); (6) diffusion model (stable diffusion [72] and midjourney1). The images generated by the
first 11 CNN-based generation methods are shared by [31]. We collect two kinds of diffusion model-generated images, i.e.,
SD (stable diffusion) and MJ (midjourney). For each diffusion model, we select 1,000 synthetic images with high realism and
randomly select 1,000 real images from CNN synth testset [31].

From Table XI and XII, we find that our method in general achieves superior detection performance. Furthermore, we
add five post-processing operations, e.g., Scale160 (down-scaling), Scale500 (up-scaling), JPEG90, Var1, and SNR0.99, on
13 kinds of AIGC-generated images. For Scale160 and Scale500, we first rescale the shorter edge of the image as 160/500
pixels and then resize it back to 256 pixels. The corresponding detection results are reported in Table XIII-XVII. Among all
competitive methods, our method demonstrates the best overall robustness. In addition, most detection models achieve rather
limited performances when tested on AIGC-generated images. A possible reason is that there may exist differences between
forensic traces on computer graphics-generated images (main focus of this paper and the dominant content of the LSCGB
dataset representing about 90% of its computer-generated images) and traces on AIGC-generated images. Future research
efforts shall be devoted to investigating this interesting point.

C. Ablation Studies

1) Patch Size: Our CGFormer first conducts the patch embedding, which splits the original input image into many non-
overlapped image patches. Here, we carry out ablation experiments to analyze the impact of different patch size on the forensic
performance. Specifically, we evaluate the following three types of patch size: 8× 8, 16× 16, and 32× 32. For each type, the
model is trained and tested on all six datasets, and the numerical results are reported in Table XVIII. Among these three patch
sizes, 16× 16 achieves relatively superior performance. When patch size is 8× 8, such a small patch contains less information
for classification. For large patch size, i.e., 32× 32, the modeling of patch-wise relationship is somewhat coarse, which may
then hamper the capability of the forensic detector. Therefore, we choose a patch size of 16× 16 with the appropriate amount
of information and relatively fine-grained patch relationship modeling.

2) Token Labeling: In this work, we introduce the token labeling to comprehensively exploit the supervision information of
training data, i.e., the ground-truth label on the entire image and local patches. As reported in Eqn. (7), we add a soft constraint
on the prediction of each patch. Besides this soft cross entropy loss, we have also tried other strategies: hard labeling (“HL”),
label smoothing (“LS”), two classifiers (“TC”), and mean pooling (“MP”). “HL” means that class token and patch token both
use the classical cross entropy loss as Eqn. (6). “LS” adopts the label smoothing [73] for class token and patch token. Label

1https://www.midjourney.org/
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TABLE XI
THE PERFORMANCE COMPARISON OF OUR METHOD WITH FIVE CNN-GENERATED IMAGE DETECTION METHODS.

Network LSCGB SPL2018 Autodesk Artlantis Corona VRay
SpecCNN 80.16 68.78 64.86 56.94 58.05 58.05

FSD 66.58 46.25 60.97 61.25 52.78 51.94
LFA 71.18 53.25 62.22 53.47 56.81 55.83

CNNDet 92.53 88.93 83.80 87.00 81.98 82.55
Xception2 79.18 83.84 61.39 58.19 59.17 58.61

Ours 96.76 95.25 91.12 92.23 87.09 85.42

TABLE XII
THE PERFORMANCE COMPARISON OF OUR METHOD AND FIVE ADVANCED METHODS ON AIGC-GENERATED IMAGES.

Network ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake SD MJ Avg
SpecCNN 60.61 71.45 63.25 80.58 94.20 75.07 59.59 58.77 65.83 61.19 56.17 80.95 65.75 68.72

FSD 44.21 54.46 48.73 63.97 50.93 58.04 50.36 46.54 52.78 55.37 50.23 51.40 58.00 52.69
LFA 48.19 52.41 43.08 72.07 66.18 51.19 50.49 58.55 67.22 63.70 63.16 67.75 60.95 58.84

CNNDet 49.75 34.35 47.77 51.92 46.54 49.17 48.91 48.95 54.16 46.80 45.86 32.35 41.40 45.99
Xception2 67.40 64.35 64.85 66.99 52.00 53.96 50.00 50.00 62.78 63.48 51.53 69.00 60.00 59.71

Ours 71.00 62.72 65.33 65.66 87.52 66.39 50.04 50.03 53.06 61.42 69.42 80.65 67.00 65.40

TABLE XIII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SCALE160.

Network ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake SD MJ Avg
SpecCNN 54.32 61.51 55.52 52.88 66.03 49.44 48.07 51.80 50.00 63.25 49.62 77.40 71.75 57.82

FSD 50.08 54.94 44.60 62.15 51.70 56.49 48.52 41.42 50.28 47.73 50.43 52.95 64.90 53.06
LFA 52.62 51.61 51.08 48.60 51.25 40.55 50.78 49.09 55.00 40.81 42.66 46.50 51.55 48.62

CNNDet 51.30 49.42 51.17 47.54 46.52 46.69 50.00 50.00 48.61 49.31 50.36 56.15 48.30 49.64
Xception2 50.58 46.75 47.27 41.14 41.57 44.13 74.27 73.79 65.56 60.62 49.94 67.85 60.80 55.71

Ours 70.75 59.32 58.33 58.99 79.44 60.49 50.84 50.85 50.84 54.80 61.11 80.50 68.50 61.90

TABLE XIV
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SCALE500.

Network ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake SD MJ Avg
SpecCNN 59.50 71.36 56.52 67.56 85.32 53.21 42.85 44.54 56.11 61.58 50.69 76.85 71.15 61.32

FSD 62.89 56.83 49.65 56.89 49.10 53.36 47.66 40.50 50.56 58.95 50.06 45.85 54.75 52.08
LFA 51.99 53.56 48.32 62.53 60.50 36.17 46.98 49.65 52.22 51.55 53.12 51.65 55.60 51.83

CNNDet 47.50 38.98 47.75 51.53 48.84 47.86 43.87 43.58 53.05 48.17 51.15 33.70 44.60 46.19
Xception2 52.44 51.58 56.43 79.18 50.48 47.55 50.00 50.00 50.00 53.94 49.97 56.70 55.50 54.13

Ours 78.12 63.98 76.71 71.72 76.49 73.02 50.37 50.52 58.34 61.88 52.20 80.35 65.30 66.07

TABLE XV
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST JPEG90.

Network ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake SD MJ Avg
SpecCNN 52.38 56.22 48.70 50.68 49.22 51.25 54.69 53.05 47.78 48.69 52.95 53.75 52.75 51.70

FSD 50.08 54.94 44.60 62.15 51.70 56.49 48.52 41.42 50.28 47.73 50.43 52.95 64.90 52.01
LFA 50.60 51.99 47.60 64.00 50.15 51.78 47.70 43.64 48.06 44.87 52.36 54.15 56.60 51.03

CNNDet 50.00 33.67 48.22 51.92 46.49 49.30 51.98 50.18 55.00 46.11 45.84 32.90 41.65 46.40
Xception2 51.01 50.13 50.32 50.57 50.03 51.14 50.00 50.00 50.00 51.07 50.05 50.60 49.45 50.33

Ours 68.75 64.53 59.48 57.09 69.24 60.75 49.76 50.15 44.73 57.31 65.22 76.15 61.00 60.32

TABLE XVI
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST VAR1.

Network ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake SD MJ Avg
SpecCNN 57.86 62.44 59.63 71.08 64.81 65.70 62.16 62.59 61.67 57.04 51.56 49.25 57.40 60.24

FSD 49.75 53.51 48.15 60.33 52.65 54.26 50.15 41.82 53.89 63.48 45.59 58.10 55.00 52.82
LFA 50.09 54.10 45.85 64.38 64.33 50.38 51.95 60.17 61.67 64.68 53.71 51.10 61.85 56.48

CNNDet 49.50 30.29 48.15 51.92 42.27 49.44 50.00 51.70 49.72 46.57 47.75 42.20 42.05 46.27
Xception2 78.80 73.01 59.42 59.84 81.09 51.98 50.00 50.00 60.28 62.05 52.38 79.60 61.75 63.09

Ours 68.75 63.43 64.06 62.92 85.60 63.46 50.04 50.05 49.73 58.91 63.23 74.90 59.15 62.63
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TABLE XVII
THE PERFORMANCE COMPARISON OF ROBUSTNESS AGAINST SNR0.99.

Network ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake SD MJ Avg
SpecCNN 51.01 50.91 51.02 51.74 52.73 48.62 50.85 49.00 51.67 44.15 49.66 58.00 49.80 50.70

FSD 51.38 49.30 49.85 56.67 53.05 51.97 51.85 48.13 49.72 49.88 49.92 74.15 59.30 53.47
LFA 49.49 50.10 50.03 49.92 49.90 49.94 51.79 52.00 53.89 48.45 50.54 48.85 49.45 50.33

CNNDet 49.50 51.17 51.97 54.23 49.67 49.88 52.78 52.75 48.61 47.94 46.17 49.05 47.30 50.07
Xception2 56.35 51.01 53.05 52.16 50.00 45.78 50.00 50.00 61.94 56.56 49.92 60.05 59.15 53.53

Ours 63.50 64.80 50.93 59.23 58.58 62.50 50.06 49.86 45.56 60.74 50.16 61.95 46.90 55.75

TABLE XVIII
CLASSIFICATION PERFORMANCE FOR DIFFERENT PATCH SIZES: 8× 8 (P8), 16× 16 (P16), AND 32× 32 (P32).

Training
Testing LSCGB SPL2018 Autodesk Artlantis Corona VRay

P8 P16 P32 P8 P16 P32 P8 P16 P32 P8 P16 P32 P8 P16 P32 P8 P16 P32
LSCGB 98.73 98.00 96.98 96.75 97.13 96.85 87.37 95.56 95.55 87.50 94.87 94.73 89.73 92.23 90.70 85.00 90.98 90.84
SPL2018 80.89 79.53 77.56 99.54 99.16 98.97 86.04 90.70 89.87 85.84 88.62 88.89 87.02 88.84 88.20 85.01 86.67 87.09
Autodesk 65.61 65.44 65.40 87.06 76.72 85.91 98.65 99.03 98.75 95.42 95.76 96.12 86.89 84.76 87.64 86.55 85.14 89.45
Artlantis 63.99 67.20 67.99 90.26 87.29 91.16 98.60 97.78 98.20 98.65 99.03 98.75 87.33 87.95 89.73 94.12 91.81 92.92
Corona 66.05 68.94 66.80 86.77 84.21 87.97 91.24 92.48 91.12 87.04 87.89 87.45 99.09 99.16 98.89 95.66 96.08 96.67
VRay 66.98 70.88 69.88 82.86 85.66 85.66 91.14 90.23 90.14 88.01 87.89 86.81 97.79 96.81 97.50 99.03 99.03 99.03

TABLE XIX
ABLATION STUDIES OF TOKEN LABELING WHEN TRAINED ON LSCGB.

Method LSCGB SPL2018 Autodesk Artlantis Corona VRay
Baseline 96.13 95.69 89.31 88.48 89.87 87.64

Hard label 97.59 96.13 94.87 93.34 91.53 91.25
Label smooth 97.83 96.41 93.48 94.17 91.12 90.28
Two classifiers 97.73 96.13 94.73 94.17 91.12 88.75
Mean pooling 97.75 96.35 94.31 93.48 91.81 90.14

Ours 98.00 97.13 95.56 94.87 92.23 90.98

TABLE XX
ABLATION STUDIES OF TOKEN LABELING WHEN TRAINED ON SPL2018.

Method LSCGB SPL2018 Autodesk Artlantis Corona VRay
Baseline 73.93 98.47 80.14 82.92 83.48 79.31

Hard label 75.39 98.85 83.48 84.87 86.09 80.70
Label smooth 76.01 99.19 86.12 86.95 88.20 83.20
Two classifiers 75.36 98.88 85.98 86.53 88.20 83.48
Mean pooling 76.15 99.04 85.14 86.95 87.78 83.48

Ours 79.53 99.16 90.70 88.62 88.48 86.67
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Fig. 8. Illustration of effective receptive field of our network without token labeling (the top row) and with token labeling (the bottom row).
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TABLE XXI
THE CLASSIFICATION PERFORMANCE OF PATCH TOKENS. “TL” REFERS TO OUR PROPOSED TOKEN LABELING (EQN. (7)).

LSCGB SPL2018 Autodesk Artlantis Corona VRay
Patch Index w/o TL w TL w/o TL w TL w/o TL w TL w/o TL w TL w/o TL w TL w/o TL w TL

L
SC

G
B

P1 96.26 97.99 95.81 96.75 89.45 95.48 89.31 94.73 90.14 92.89 88.20 91.48
P14 96.24 98.01 95.66 96.85 89.45 95.56 89.03 94.59 90.00 92.23 87.64 91.45
P91 96.12 97.78 95.75 96.88 89.31 95.32 88.48 94.73 89.59 92.25 87.92 90.88

P183 96.24 98.01 95.66 96.91 89.45 95.62 88.89 94.45 89.73 93.04 87.92 90.79
P196 96.24 98.00 95.72 96.85 89.53 95.82 89.03 94.31 89.87 92.64 87.92 90.64

SP
L

20
18

P1 73.92 79.11 98.44 99.07 80.56 90.23 82.78 88.39 83.62 88.62 79.87 86.74
P14 73.91 79.89 98.47 99.03 80.56 89.85 83.06 88.13 83.75 88.48 80.00 86.61
P91 73.92 79.41 98.35 99.13 80.28 89.97 82.92 88.62 83.34 89.31 79.59 86.59

P183 73.85 79.07 98.47 99.13 80.28 89.49 82.92 88.29 83.48 88.48 79.73 86.21
P196 73.85 79.02 98.50 99.07 80.28 90.65 83.06 88.13 83.75 88.75 79.73 86.37

smoothing was initially proposed in [73] for regularizing the training of CNN recognition models. Different from Eqn. (6),
the label smoothing computes the cross entropy loss over a weighted mixture of original label of datasets with the uniform
distribution2. “TC” refers to the variant where the class token and patch token are processed respectively with two different
classification headers. “MP” conducts a global average on all patch tokens, and then sends it to the classification header.
As shown in Fig. 4 (part of “Token Prediction”), in our experiments “Baseline” means that the model is trained without
token labeling, i.e., only using Eqn. (6). We conduct the ablation experiments on LSCGB and SPL2018 datasets, and the
corresponding results are reported in Tables XIX and XX. When comparing the results of “Baseline” with those of other rows,
we can find that the token labeling is indeed useful for the CG image forensic problem, in particular to improve generalization.
Furthermore, our proposed soft cross entropy loss has superior overall performance, compared to the other four strategies.

D. Visualization & Analysis

1) Effective Receptive Field: To further analyze the effect of token labeling (i.e., Eqn. (7)), we visualize the effective
receptive field of our network according to the method proposed in [46]. This is also used in a recent ViT-related research
work [74]. Fig. 8 shows the effective receptive field of class token and several selected patch tokens, where our network is
trained with/without token labeling. Comparing the two rows of Fig. 8, we can see that with token labeling (the bottom row),
the effective receptive field of patch tokens are more uniform and can cover the full input image. This means that patch tokens
capture more far-distance information and thus enhance the learned features.

In addition, we evaluate the forensic performance of the above patch tokens and the statistical results are shown in Table XXI.
Comparing the numerical values of “w/o TL” and “w TL”, we can find that the classification performance of patch tokens is
in general considerably improved after adding our soft cross entropy loss. This performance improvement is also consistent
with the visualization shown in Fig. 8.

2) Prediction Confidence: Fig. 9 illustrates the prediction confidence for several NI and CG images using the predictions
of patch tokens. “Baseline” means that the CGFormer is trained without token labeling, and the samples enclosed by the green
boxes are wrongly classified by “Baseline”. Compared to “Baseline”, we can observe that more patches are correctly classified
by introducing the token labeling. The reason is that token labeling adds the soft supervision on individual patches to take
advantage of the useful information that has been overlooked in patches. Therefore, our CGFormer can obtain better forensic
performance by comprehensively combining the contributions from class token and patch tokens.

3) Grad-CAM: Gradient-weighted class activation mapping (Grad-CAM) [75] is a prevalent tool to localize the important
regions in the input image for the final prediction. This tool is conceptually simple and easily applicable to different network
architectures like CNNs and Transformers and it is often utilized in the image forensics community for understanding the
results of deep networks. As shown in Fig. 10, we visualize the Grad-CAM for NIs and CG images to compare our method
with existing CNN-based methods. For the image in the first row of “CG” group in Fig. 10, our method pays more attention
to the desk with unnatural light reflection and simple texture comparing to other competitors, and this contributes to the final
prediction. By contrast, our CGFormer predicts the first sample in “NI” group as NI image mainly due to the natural texture
in the vegetation. For the second row in “NI” group, most CNN-based methods focus on the semantic object (e.g., the contour
of castle), whereas our method depends on the natural shadows in the top part of castle. Similarly, our CGFormer predicts the
second sample in “CG” group as CG image due to the rather unrealistic sky. To summarize, light, texture, shadow, and color
are important cues for distinguishing CG images from natural images.

In addition, we visualize in Fig. 11 the Grad-CAM of NIs and CG images under different post-processing operations.
Among all five methods, we can see that the Grad-CAM of our method has no apparent changes for the vast majority of
samples. However, the post-processing operations clearly affect the capture of forensic traces for CNN-based competitors. This
visualization again illustrates the robustness of our CGFormer against potential post-processing operations. Moreover, Fig. 12

2Label smoothing is implemented with the operation of timm.loss.LabelSmoothingCrossEntropy in PyTorch.
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Fig. 9. Illustration of prediction confidence of patch tokens. Green box highlights the wrong prediction.

visualizes the Grad-CAM of our CGFormer for more examples under different post-processing operations. The important
regions related to the final prediction of our method are stable for these examples, which means the good robustness of our
CGFormer.

V. CONCLUSIONS AND FUTURE WORK

For the CG image forensic problem, we carefully analyzed the possible reasons of the limited generalization and robustness
of existing CNN-based methods, including the locality and fixed kernels of convolutional layers, the sensitivity to the pixel
values and their distributions in a local window, and the insufficient supervision information. Based on the observations and
analyses on data and CNN, we proposed a ViT-based framework with token labeling. Patch embedding is applied to project the
original input image into sequential tokens in a patch-wise manner, which serves for the subsequent patch relationship modeling
and can also decrease the local sensitivity. To improve the model’s adaptability and extract the discriminative information based
on the relationship modeling of patch pairs, we adopt multiple transformer blocks with multi-head attention. A token labeling
strategy is proposed to better utilize the supervision information and further guide the network to exploit the local-global
relationship of a single image. Extensive results demonstrate the superior forensic performance of our proposed method.

In this work, we choose 16× 16 as the patch size in the patch embedding because this setting achieves relatively superior
results. In fact, CGFormer with 8 × 8 and 32 × 32 patches sometimes also achieves decent results. In the future, we would
like to design an appropriate architecture to combine these three patch sizes to further improve the forensic performance. We
would also like to extend our framework to other image forensic problems, such as deepfakes detection.
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Fig. 11. Grad-CAM visualizations of five methods for CG images and NIs with post-processing of rescaling, JPEG compression, Gaussian noise, and salt
and pepper noise.
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Fig. 12. Grad-CAM visualizations of our CGFormer for CG images and NIs with post-processing of rescaling, JPEG compression, Gaussian noise, and salt
and pepper noise.
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