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Compact spherical loudspeaker arrays are new tools for the creation of auditory objects in a space. Originally designed for musical and performance purposes -as a substitute for conventional cabinet loudspeakers lacking naturalness in playback -they intent to promote spatial presence and to emulate lifelike directional features of natural sources such as acoustic instruments and performers. They are typically used to reproduce the measured radiation pattern of sound sources, or to steer directional sound beams in order to excite the acoustic environment. The directivity pattern of the sound beams can be adjusted, in orientation and shape, by modal beamforming techniques.

In electroacoustic music, it is most often desirable to apply dynamic beamforming, i.e. to vary the directional attributes over time, in order to effectively enable a sense of spatial presence or immersion. This paper presents a software tool, intended for creative applications, for the flexible design and intuitive manipulation of spherical beampatterns. In particular, we propose a simple parametric model that allows to synthesize a variety of high-order radiation patterns, and to smoothly transition between shapes. The tool is implemented in the Max environment, making it easy to extend and to interface with remote controllers for interactive applications.

I. INTRODUCTION

A well-known limitation of conventional cabinet loudspeakers is that they exhibit a fixed, non-adjustable, radiation pattern, typically with forward-firing drivers. This is especially problematic in the context of mixed music wherein electroacoustic devices and (unamplified) acoustical instrumental sources concurrently operate in the same space. Musical instruments have rich, time-varying, directivity features that interact with the room and affect the temporal and spectral distribution of the perceived sounds. In contrast, common loudspeaker systems tend to be perceived as disembodied, lacking naturalness, and "as if they are operating in entirely different acoustical spaces" [START_REF] Wessel | Instruments That Learn, Refined Controllers, and Source Model Loudspeakers[END_REF]. This has motivated the original development of compact (spherical) loudspeaker arrays to achieve freely controllable directivity [START_REF] Caussé | Radiation of Musical Instruments and Control of Reproduction with Loudspeakers[END_REF]. Following the pioneering prototype of "La Timée" [START_REF] Warusfel | Radiation Synthesis with Digitally Controlled Loudspeakers[END_REF], a number of compact loudspeaker systems have been elaborated, with varying technological specifications (number of transducers, geometrical shape and size, etc.) [START_REF] Warusfel | Directivity synthesis with 3D array of loudspeakers : application for stage performance[END_REF]- [START_REF] Trueman | BoSSA: The Deconstructed Violin Reconstructed[END_REF].

These systems have been used for the reproduction of measured radiation characteristics of sound sources [START_REF] Zotter | Analysis and Synthesis of Sound-Radiation with Spherical Arrays[END_REF], [START_REF] Misdariis | Radiation Control on Multi-Loudspeaker Device : La Timée[END_REF]- [START_REF] Noisternig | Reconstructing sound source directivity in virtual acoustic environments[END_REF], or more generally to synthesize controlled directivity patterns in a performance context [START_REF] Warusfel | Radiation Synthesis with Digitally Controlled Loudspeakers[END_REF], [START_REF] Warusfel | Directivity synthesis with 3D array of loudspeakers : application for stage performance[END_REF], [START_REF] Zotter | A Beamformer to Play with Wall Reflections: The Icosahedral Loudspeaker[END_REF], [START_REF] Warusfel | Sound Source Radiation Synthesis : from Stage Performance to Domestic Rendering[END_REF]- [START_REF] Einbond | Instrumental Radiation Patterns as Models for Corpus-Based Spatial Sound Synthesis: Cosmologies for Piano and 3D Electronics[END_REF]. These applications have fostered an intense research work, particularly focused on the design of optimal radiation filters [START_REF] Warusfel | Radiation Synthesis with Digitally Controlled Loudspeakers[END_REF], [START_REF] Avizienis | A Compact 120 Independent Element Spherical Loudspeaker Array with Programable Radiation Patterns[END_REF], [START_REF] Zotter | Analysis and Synthesis of Sound-Radiation with Spherical Arrays[END_REF], [START_REF] Wendt | Perception of Spatial Sound Phenomena Created by the Icosahedral Loudspeaker[END_REF], [START_REF] Kassakian | Design of Low-Order Filters for Radiation Synthesis[END_REF]- [START_REF] Rafaely | Optimal Model-Based Beamforming and Independent Steering for Spherical Loudspeaker Arrays[END_REF], and the perceptual evaluation of the auditory objects produced by compact loudspeaker arrays [START_REF] Wühle | The Precedence Effect in Scenarios with Projected Sound[END_REF]- [START_REF] Zotter | Virtual Acoustics under Variable Ambisonic Perspectives[END_REF].

In addition to (re)creating radiation patterns, compact spherical loudspeaker arrays offer the means to project focused beams in arbitrary directions. These sound beams can excite reflective walls, yielding interesting effects in the perceived spatial impression, such as auditory objects that seem more distant than the loudspeaker system. When orchestrated musically, such auditory phenomena are sometimes referred to as sonic sculptures [START_REF] Zotter | A Beamformer to Play with Wall Reflections: The Icosahedral Loudspeaker[END_REF], [START_REF] Sharma | Orchestrating wall reflections in space by icosahedral loudspeaker: findings from first artistic research exploration[END_REF]- [START_REF] Sharma | Evaluation of Three Auditory-Sculptural Qualities Created by an Icosahedral Loudspeaker[END_REF], [START_REF] Zotter | Virtual Acoustics under Variable Ambisonic Perspectives[END_REF], [START_REF] Sharma | Towards Understanding and Verbalizing Spatial Sound Phenomena in Electronic Music[END_REF].

The aim of this work is to promote the artistic expressiveness of beamforming with compact loudspeaker arrays, by proposing software tools capable of producing a variety of beampatterns, with simple and flexible user control.

Most compact loudspeaker arrays used nowadays, including the popular IKO [START_REF] Zotter | A Beamformer to Play with Wall Reflections: The Icosahedral Loudspeaker[END_REF], relie on a spherical arrangement of transducers. With such spherical geometry, the sound beams can be efficiently designed using modal beamforming techniques. These methods, operating in the spherical harmonics domain, typically allows for independent control of the beam "shape" and direction. They are extensively discussed in the literature, although predominantly applied to (differential) microphone arrays rather than loudspeaker arrays.

Existing works on modal beamforming enable the design of a large class of directivity patterns. However, the design strategies are often motivated by some objective criterion which may not be relevant or user-friendly for artists, composers, or even recording engineers. In this work, we seek to develop models and tools offering smooth, intuitive, and artist-friendly control over a limited number of parameters. Furthermore, it is desired that the models be simple enough so that time-varying beampatterns can be generated in real-time contexts such as musical performances. Finally, we wish to fully exploit higher-order beampatterns, as for instance the IKO is capable of synthesizing 3rd-order Ambisonic features.

In the literature, the most notable similar work is by De Sena and Hacihabiboglu [START_REF] Sena | On the Design and Implementation of Higher Order Differential Microphones[END_REF], [START_REF] Sena | A generalized design method for directivity patterns of spherical microphone arrays[END_REF] where the authors proposed a general framework for obtaining a wide range of higher-order beampatterns specified in terms of two (physically relevant) parameters. Their approach encompasses all the conventional directivity patterns such as omnidirectional, sub-cardioid, cardioid, super-cardioid, and hyper-cardioid. However, their method requires the optimization of a convex cost function, which might not be compatible with real-time constraints. This paper is organized as follows: in section II we review the basics of first-order cardiod patterns; in sections III, IV, and V we present the proposed parametric model for higher-order beampatterns, and examine its pros and cons. Finally, in section VI, we discuss the actual software implementation.

II. FIRST-ORDER "CARDIOID-LIKE" BEAMPATTERNS

The family of first-order cardioid-like beampatterns has been well studied in the literature, and extensively used in the fields of recording technique [START_REF] Marshall | A New Microphone Providing Uniform Directivity over an Extended Frequency Range[END_REF]- [START_REF] Pfanzagl-Cardone | The Art and Science of Surround and Stereo Recording -Including 3D Audio Techniques[END_REF], beamforming [START_REF] Sena | On the Design and Implementation of Higher Order Differential Microphones[END_REF], [START_REF] Elko | A steerable and variable first-order differential microphone array[END_REF]- [START_REF] Merimaa | Applications of a 3-D Microphone Array[END_REF], or radiation synthesis [START_REF] Warusfel | Radiation Synthesis with Digitally Controlled Loudspeakers[END_REF], [START_REF] Warusfel | Directivity synthesis with 3D array of loudspeakers : application for stage performance[END_REF], [START_REF] Misdariis | Radiation Control on Multi-Loudspeaker Device : La Timée[END_REF]. The polar response of first-order cardioid-like beampattern writes

Y (Θ) = A + (1 -A) cos Θ , ( 1 
)
where Θ is the angle between the observed and steered directions, and A ∈ R ∩ 0 , 1 is an adjustable control parameter. This parametric equation is sometimes referred to as the "Limac ¸on of Pascal". Other authors [START_REF] Zhao | On a Particular Family of Differential Beamformers With Cardioid-Like and No-Null Patterns[END_REF] also expressed it in the equivalent form

Y (Θ) = B 1 + B + 1 1 + B cos Θ , (2) 
with B ∈ 0 , ∞ .

With only one degree of freedom (parameter A or B), the cardioid-like parametric model is easy to manipulate, while being able to generate a number of canonical directivity shapes (see Fig. 1), such as

• figure-8 (A = 0), also known as bidirectional.

• hyper-cardioid (A ≈ 0.25), which exhibits the maximum directivity factor (ratio between the response in the look direction and the power-average response across all directions), • super-cardioid (A ≈ 0.37), which maximizes the frontto-back ratio (directional gain for signals incident from the front relative to signals incident from the rear). Supercardioid beamshapes are somewhat similar to the max-r E beampattern [START_REF] Daniel | Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia[END_REF], designed so as to optimize the norm of the energy vector.

• cardioid (A = 0.5), also referred to as in-phase [START_REF] Daniel | Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia[END_REF], designed to suppress signals impinging from the opposite side (Θ = ±180 • ), while exhibiting a maximally flat response in that direction. • sub-cardioid (A ≈ 0.7), sometimes referred to as "forward-oriented omnidirectional". • omnidirectional (A = 1). 

III. HIGHER-ORDER "CARDIOID-LIKE" BEAMPATTERNS

A. Axis-symmetric beampatterns

Axis-symmetric spherical beampatterns can be efficiently designed in the spherical harmonics domain [START_REF] Meyer | A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield[END_REF]- [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF]: the frequency-independent beampattern, with finite order N , writes (Eq. (5.24) in [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF])

Y N (Θ) = N n=0 d N,n 2n + 1 4π P n (cos Θ) , (3) 
where P n (•) is the Legendre polynomial of order n. The (N + 1) array weighting factors d N,n are real coefficients which determine the shape of the directivity pattern.

More generally, the N th-order directional pattern can also be formulated as [START_REF] Sena | A generalized design method for directivity patterns of spherical microphone arrays[END_REF], [START_REF] Elko | Superdirectional microphone arrays[END_REF], [START_REF] Abhayapala | Higher order differentialintegral microphone arrays[END_REF]- [START_REF] Benesty | Fundamentals of Differential Beamforming[END_REF] Y

N (Θ) = N n=0 α N,n cos n Θ . (4) 
Again, the weights α N,n are a set of real coefficients (different from d N,n ) that prescribe the directional characteristics of the N th-order beampattern. They are usually chosen so that the response is normalized to 1 in the look direction (Θ = 0), i.e.

N n=0 α N,n = 1.
The general case of Eq. ( 4) has been studied in [START_REF] Pan | Design of robust differential microphone arrays with orthogonal polynomials[END_REF], [START_REF] Wang | Flexible Beampattern Design Algorithm for Spherical Microphone Arrays[END_REF]: considering the Legendre polynomials as a special case of the Jacobi polynomials, the authors were able to derive a generic formula to express the weights d N,n as a function of α N,n . While this approach is very elegant and allows for a great flexibility in the beampattern design, it requires the choice of (N + 1) control parameters, which is not adequate from a user perspective.

B. Target beampattern

In this work, we wish to design a N th-order cardioidlike beampattern that preserves the simple parametrization of Eq. ( 1); we propose the following form:

Y N (Θ) = A + (1 -A) cos Θ N . (5) 
The restricted class defined by this equation appears as a straightforward generalization of the Limac ¸on curve (Eq. ( 1)). Yet, it obviously offers fewer possibilities than the generic formulation in Eq. ( 4). The major reason for considering this particular class of beampattern is that the algebra becomes simple.

In the following, our aim is to determine the beampattern weights d N,n as a function of the tunable parameter A ∈ R ∩ 0 , 1 .

Note that other authors [START_REF] Sena | On the Design and Implementation of Higher Order Differential Microphones[END_REF], [START_REF] Eargle | Handbook of Recording Engineering -fourth edition[END_REF], [START_REF] Benesty | Study and Design of Differential Microphone Arrays[END_REF] have also suggested a slightly different formulation as

Y N (Θ) = A + (1 -A) cos Θ cos N -1 (Θ)
. Although we will focus on Eq. ( 5) for the remainder of this article, the subsequent discussions could be easily adapted to this alternative form.

C. Case N = 1

As a starter, we consider the case of first-order patterns (N = 1), for which Eq. ( 5) writes

Y 1 (Θ) = A + (1 -A) cos Θ . (6) 
Alternatively, the first-order beampattern can be expressed by developing Eq. ( 3)

Y 1 (Θ) = n=N =1 n=0 d 1,n 2n + 1 4π P n (cos Θ) = d 1,0 1 4π P 0 (cos Θ) + d 1,1 3 4π P 1 (cos Θ) = d 1,0 1 4π + d 1,1 3 4π cos Θ . (7) 
Comparing Eq. ( 6) and ( 7), we can straightforwardely identify the weighting coefficients

d 1,0 = 4π A d 1,1 = 4π 1 3 (1 -A) . (8) 
This is consistant with well-established results for the family of first-order cardioid patterns [START_REF] Sena | On the Design and Implementation of Higher Order Differential Microphones[END_REF], [START_REF] Elko | A steerable and variable first-order differential microphone array[END_REF], [START_REF] Elko | Superdirectional microphone arrays[END_REF].

D. Recurrence relation

We now show that the N th-order coefficients can be obtained by simple recurrence relations. Indeed, the target beampattern in Eq. ( 5) is such that

Y N +1 (Θ) = A + (1 -A) cos Θ N +1 = A + (1 -A) cos Θ Y N (Θ) . (9) 
According to Eq. ( 3), this also writes as

Y N +1 (Θ) = N +1 n=0 d N +1,n 2n + 1 4π P n (cos Θ) . (10) 
Now, exploiting Bonnet's recursion formula (see for instance Eq. (3.39) in [START_REF] Benesty | Fundamentals of Differential Beamforming[END_REF]), valid ∀n ≥ 1 (2n + 1) x P n (x) = (n + 1) P n+1 (x) + n P n-1 (x) , [START_REF] Trueman | Alternative Voices for Electronic Sound: Spherical Speakers and Sensor-Speaker Arrays (SenSAs)[END_REF] with x = cos Θ, it follows

Y N +1 (Θ) = A N n=0 d N,n 2n + 1 4π P n (cos Θ) + (1 -A) N n=0 d N,n n + 1 4π P n+1 (cos Θ) + (1 -A) N n=1 d N,n n 4π P n-1 (cos Θ) . (12) 
Since the Legendre polynomials are orthogonal (see for instance Chapter (3.3) in [START_REF] Benesty | Fundamentals of Differential Beamforming[END_REF]), we can identify the terms for each P n , by comparing Eq. ( 10) and ( 12). This leads to the following recurrence formula, valid ∀n,

0 < n < N d N +1,n = A d N,n + (1 -A) n 2n + 1 d N,n-1 + (1 -A) n + 1 2n + 1 d N,n+1 , (13) 
and the boundary conditions are given by

     d N +1,0 = A d N,0 + (1 -A) d N,1 d N +1,N = A d N,N + (1 -A) N 2N +1 d N,N -1 d N +1,N +1 = (1 -A) N +1 2N +3 d N,N . (14) 
Equations ( 13) and ( 14) allow to calculate the weighting coefficients d N,n . Results are listed in Table I for N ≤ 4.

d 1,0 = 4π A d 1,1 = 4π 1 3 (1 -A) d 2,0 = 4π A 2 + 1 3 (1 -A) 2 d 2,1 = 4π 2 3 A (1 -A) d 2,2 = 4π 2 15 (1 -A) 2 d 3,0 = 4π A A 2 + (1 -A) 2 d 3,1 = 4π 1 5 -6A 3 + 8A 2 -3A + 1 d 3,2 = 4π 6 15 A (1 -A) 2 d 3,3 = 4π 6 105 (1 -A) 3 d 4,0 = 4π 1 5 16A 4 -24A 3 + 16A 2 -4A + 1 d 4,1 = 4π 4 15 A -8A 3 + 14A 2 -9A + 3 d 4,2 = 4π 4 35 (1 -A) 2 8A 2 -2A + 1 d 4,3 = 4π 8 35 A (1 -A) 3 d 4,4 = 4π 24 945 (1 -A) 4 TABLE I: Beampattern weights for N ≤ 4.
The polar response of the proposed beampattern is displayed in Fig. 2 for 1 ≤ N ≤ 5. As expected, the resulting polar patterns "look" similar to the canonical shapes (Fig. 1), somehow extended to higher orders. While the solution has the advantage of great simplicity, it also suffers from various limitations that will be discussed in the next section.

IV. SHAPE DESIGNER

A. Graphical User Interface

We now introduce a graphical user interface (GUI) to control the higher-order cardioid-like beampattern described in the previous section. The directivity function Y N (Θ) (Eq. 5) is fully described by the shape parameter A, and the order N . In Figure 3, we propose a simple 2-D polar interface to "navigate" within the space of realizable shapes. The order N is mapped to the radial coordinate. As a consequence, the center point (origin of the polar grid) corresponds to the omnidirectional pattern (N = 0). Instead of mapping directly A to the polar angle, we divide the azimutal plane in five "branches" corresponding to the five canonical directivity shapes (see Fig. 3). This provides a relatively intuitive way to specify the desired beampattern.

Although this work and the proposed GUI are rather intended for artistic usage, it is worth examining certain objective performance measures of the beampatterns produced in each of the five branches.

B. Directivity index -hyper-cardioid branch

The directivity factor quantifies the ratio between the magnitude of the beampattern in the look direction and the power averaged over all directions. For the axis-symmetric beampattern in Eq. ( 3), the directivity factor writes (see Eq. (5.30) in [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF])

DF N = N n=0 d N,n 2n+1 4π 2 1 4π N n=0 |d N,n | 2 2n+1 4π , (15) 
and the directivity index is defined such as

DI N = 10 log 10 DF N . (16) 
The directivity index of the higher-order "cardioid-like" beampatterns Eq. ( 5) is displayed in Figure 4. The beampattern does not offer an optimal directivity index. It is known that the highest achievable directivity factor for a N th-order array is DF N = (N + 1) 2 (see for instance [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF], [START_REF] Elko | Microphone array systems for hands-free telecommunication[END_REF]). With Eq. ( 5), such optimal value is achieved only for N = 1. For higher orders, the directivity index of the proposed beampattern is less than optimal. In other words, the proposed method is not able to generate a "true" hyper-cardioid pattern for N > 1.

(b) Additionally, the parameter value A max that maximizes the directivity index depends on the order (see vertical dashed lines in Figure 4): A max ≈ 0.25 for N = 1; A max ≈ 0.2 for N = 2; etc. This means that a fixed value of A does not guarantee an actual hyper-cardioid beamshape. As a consequence, for the hyper-cardioid branch (top-right in Figure 3), it may be preferable to use an alternative implementation; indeed, the weighting coefficients for N thorder hyper-cardioid, achieving maximum directivity factor, are known to be [START_REF] Meyer | A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield[END_REF]- [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF] :

∀n ≤ N, d N,n = 4π (N + 1) 2 . ( 17 
)
C. Front-back ratio -super-cardioid branch

Another important measure for the evaluation of directivity functions is the front-back ratio F, which, as the name suggests, is defined as the ratio between the front and back parts of the beampattern [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF], [START_REF]Differential Microphone Arrays[END_REF]. The front-back ratio according to Eq. ( 5) is displayed in Figure 5. The analysis of this figure raises similar concerns as for the directivity index: the proposed beampattern does not achieve the highest possible front-back ratio (known to be approximately 12, 25, 38, 52, and 66 dB for N = 1 to 5 respectively, see [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF], [START_REF] Carpentier | Spherical beampatterns with fractional orders[END_REF]) except for N = 1, and the parameter value A max that maximizes F varies with the order N . In other words, the proposed beampattern (with A ≈ 0.37) does not realize an actual super-cardioid beamshape for higher orders.

So again, it might be preferable to replace the super-cardioid branch (bottom-right in Figure 3) with the known optimal solution for maximum front-back ratio, the derivation of which can be found in [START_REF] Elko | Superdirectional microphone arrays[END_REF] or Chapter 6.5 in [START_REF] Rafaely | Fundamentals of Spherical Array Processing[END_REF].

D. In-phase criterion -cardioid branch

The cardioid branch (bottom-left in Figure 3) is expected to exhibit a null in direction Θ = ±180 • while ensuring maximal flatness in that direction, i.e.

∂ n Y N (Θ) ∂Θ n Θ=±180 • = 0 for n = 1, ..., N -1 . ( 18 
)
Considering A = 0.5, the cardioid-like beampattern in Eq. ( 5) reduces to

Y N (Θ) = 1 + cos Θ 2 N , ( 19 
)
and it is straightforward to see that this is a solution to the maximal flatness problem Eq. ( 18). Alternatively, one can also observe that introducing A = 0.5 into Equations ( 13) and ( 14) leads to

∀n ≤ N, d N,n = 4π (N !) 2 (N + n + 1)! (N -n)! , ( 20 
)
which is consistent with the well-known in-phase formulae (see Eq. (A.75) in [START_REF] Daniel | Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia[END_REF] or Eq. ( 12) in [START_REF] Hold | Spatial filter bank design in the spherical harmonic domain[END_REF]). We conclude that A = 0.5 indeed generates an optimal N th-order cardioid beampattern.

E. Sub-cardioid branch

To the best of the authors' knowledge, there is no clearly established criterion for the design of sub-cardioid beampatterns, besides exhibiting a relatively smooth attenuation in the rear. It is clear that a fixed value of A ≈ 0.7 cannot be an optimal choice for arbitrary orders N ; nevertheless, for the sake of simplicity, we will assume that this is acceptable for relatively low orders.

F. Summary

In this section, we have seen that, for each of the five canonical branches of the GUI proposed in Figure 3, it is possible to derive analytically the weighting factors d N,n . Although Eq. ( 5) is quite generic and simple, it does not allow for optimal hyper-cardioid and super-cardioid designs. For the remainder of this article, these two branches will be implemented with the optimal solutions as presented in Equations ( 17) and (20).

V. INTERPOLATION BETWEEN PATTERNS

In order to offer flexible control, the design space proposed in Figure 3 should be fully and continuously browsable. This requires smooth control along the radial axis (i.e. the design order N ) and the azimutal direction (i.e. the design criterion w.r.t. the five canonical shapes).

A. Interpolation between orders

The beampattern design strategies discussed in the previous sections are only available for integer orders N ∈ N. To achieve continuous control along the radial axis, we need to design beampatterns for fractional orders ν ∈ R. A simple way to do so is by interpolating between two adjacent integer orders: considering the fractional order ν ∈ R ∩ (N -1) , N , Y ν (Θ) is constructed by interpolation between beampatterns of order N -1 and N :

Y ν (Θ) = α Y N (Θ) + (1 -α) Y N -1 (Θ) , (21) 
where α ∈ 0 , 1 is an interpolation factor to be determined.

It is tempting to extend the higher-order cardioid-like beampattern in Eq. ( 5) to fractional orders ν ∈ R as

Y ν (Θ) = A + (1 -A) cos Θ ν . ( 22 
)
The latter is valid only in the restricted domain A ∈ 1 2 , 1 , wherein it is easy to solve Eq. ( 21), leading to the solution:

α = A ν-N +1 -1 A -1 . (23) 
However, the domain where A ∈ 0 , 1 2 is more problematic.

Alternative approaches to the design of fractional-order beampatterns have also been discussed in the literature, with proposals to determine the optimal interpolation factor α to meet specific design criteria. [START_REF] Bernardini | Efficient Continuous Beam Steering for Planar Arrays of Differential Microphones[END_REF], [START_REF] Huang | Design of Planar Differential Microphone Arrays With Fractional Orders[END_REF] have addressed the design of 2D (horizontal-only) beampatterns; 3D fractionalorder hyper-cardioid patterns have been examined in [START_REF]A flexible high directivity beamformer with spherical microphone arrays[END_REF], and the approach was later generalized to other shapes (such as super-cardioid, max-r E , etc.) in [START_REF] Carpentier | Spherical beampatterns with fractional orders[END_REF].

While these approaches are elegant and optimal in some sense, they are not easily generalizable to arbitrary beam shapes (e.g. figure -8). In this work, we have therefore adopted a much simpler strategy, with a straightforward linear interpolation between patterns of order N -1 and N , i.e. we choose the following interpolation factor : α = ν -(N -1).

B. Interpolation between branches

Similarly, interpolation between branches, i.e. along the azimutal direction and for a fixed radius/order ν, is simply and naively implemented by linear interpolation between the two adjacent branches. Although such implementation does not ensure linear variation of the beampattern characteristics (directivity index, front-back ratio, etc), this is considered acceptable at least for artistic usages.

C. Results

We now present some results for our final implementation, which includes the five canonical branches as detailed in section IV, and the interpolation procedure described above (section V). Figure 6 displays the directivity index of the produced beampattern, up to order N = 5; it obviously exhibits maximum values for the hyper-cardioid branch, and for higher orders (increasing values of ν). Figure 7 shows the front-back ratio which, as expected, is optimal in the super-cardioid branch. Additionally, in Figure 8 we present the beamwidth at -6 dB, i.e. the angular width of the main lobe, at 6 dB below its peak. We speculate that the beamwidth might be a significant criterion to consider when projecting sound beams.

These figures reveal that the proposed interface is able to generate a relatively wide range of contrasting radiation patterns, with relatively smooth transitions when browsing through the polar grid. 

VI. SOFTWARE IMPLEMENTATION

The technique presented in the previous sections, as well as the corresponding GUI, have been implemented in the Cycling'74 Max environment, as part of the Ircam Spat toolbox [START_REF] Carpentier | Spat: a comprehensive toolbox for sound spatialization in Max[END_REF]. The main control panel is displayed in Figure 9.

It is divided in three main modules, from top to bottom: (a) first, an incoming monophonic signal goes through a filterbank, so that the radiation pattern is controllable in several frequency bands. By default, a 3-band Linkwitz-Riley crossover filter [START_REF] Linkwitz | Active Crossover Networks for Noncoincident Drivers[END_REF] (having a flat amplitude response with a smoothly changing phase response) is used. The crossover frequencies can be adjusted, and the corresponding low/mid/high bands are depicted in red, green, and blue color respectively. The choice of three frequency bands is a compromise between complexity and perceptual relevance. Yet, the module can be straightforwardly extended to a higher number of frequency bands, if necessary. (b) The second module is the "shape designer", implementing the concept presented in Figure 3. It allows to specify the beampattern characteristics, for each frequency band (depicted by the small dots with corresponding color code). (c) Finally, a steering unit is used to adjust the orientation (azimuth and elevation) of the radiation patterns. The signals are encoded into N th-order Ambisonic by applying the spherical harmonic weight coefficients, as detailed in the previous paragraphs. Finally, the three Ambisonic-encoded frequency bands are recombined for subsequent decoding (i.e. typically for diffusion with a spherical loudspeaker array).

It should be noted that two adjacent bands overlap near the crossover frequencies; therefore the radiation pattern actually synthesized in that frequency region will be a mix of the corresponding theoretical beampatterns (as they are depicted in bottom of Figure 9).

It is also worth noting that the steering unit allows for independent control of the beam orientation in each frequency band: in the example presented in Figure 9(c), the direction axes are substantially different in the three frequency bands. This feature may be useful to simulate the radiation characteristics of certain instruments, such as woodwinds, that may radiate sound in significantly different directions depending on frequency [START_REF] Meyer | Acoustics and the Performance of Music -Manual for Acousticians[END_REF]- [START_REF]Spherical correlation as a similarity measure for 3D radiation patterns of musical instruments[END_REF].

All the control parameters of the UI can be equivalently adjusted with the mouse, via conventional Max messages, or over OSC [START_REF] Wright | Open Sound Control: an enabling technology for musical networking[END_REF]. OSC messages are especially interesting as they allow for time-varying automation and remote control of the parameters. Creating time-variant radiation effects is known to be particularly effective in spatial electroacoustic music [START_REF] Wessel | Instruments That Learn, Refined Controllers, and Source Model Loudspeakers[END_REF], [START_REF] Wendt | Perception of Spatial Sound Phenomena Created by the Icosahedral Loudspeaker[END_REF], [START_REF] Sharma | Evaluation of Three Auditory-Sculptural Qualities Created by an Icosahedral Loudspeaker[END_REF], as this allows to emulate lifelike directional features of natural sources such as acoustic instruments and performers.

Being integrated in the Max environment, the tool can be easily extended, modified, or combined with other packages, in order to meet the particular needs of each user.

VII. CONCLUSION

In this article, we have presented an analytical method to design higher-order cardioid-like beampatterns, adjustable with a single "shape" parameter A (Eq. 5). We showed that this model has some limitations that can be overcome if precise design criteria (maximum directivity index, front-back ratio, etc.) are expected. We have then proposed a simple GUI that combines different design strategies in a unified interface, allowing for the flexible and intuitive manipulation of cardioidlike directivity patterns. The tool is typically intended for the control of radiation synthesis with spherical loudspeaker arrays. Yet, the relevance and usefulness of the proposed tool for artistic uses remain to be evaluated in actual productions, and future work will assess user experience (UX). In any case, the prototype is designed in a quite open and modular way, in order to evolve agilely based on the users' feedback.
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 1 Fig. 1: Polar response of the canonical first-order cardioidlike beampatterns. The radial scale is logarithmic, with 6 dB/division.

Fig. 2 :

 2 Fig. 2: Cardioid-like beampattern for various values of N and A. The radial scale is logarithmic, with 6 dB/division.

Fig. 3 :

 3 Fig.3: Proposed GUI for "navigation" within the space of realizable shapes. Here displayed up to order N = 5.
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 4 Fig. 4: Directivity index of the "cardioid-like" beampattern, for 1 ≤ N ≤ 5. Vertical dashed lines indicate the location of the maximum value for each order.
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 5 Fig. 5: Front-back ratio of the "cardioid-like" beampattern, for 1 ≤ N ≤ 5. Vertical dashed lines indicate the location of the maximum value.
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 6 Fig. 6: Directivity Index (in dB). Up to order N = 5.
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 7 Fig. 7: Front-back ratio. Up to order N = 5.

Fig. 8 :

 8 Fig. 8: Beamwidth. Up to order N = 5.

Fig. 9 :

 9 Fig. 9: GUI for the radiation shape designer (here presented for N = 5). (a) Top: 3-band filter bank. (b) Middle: directivity shape designer. (c) Bottom: directivity steering unit.