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Abstract

The aim of the paper is to derive minimization algorithms based on the Nesterov accelerated
gradient flow [23, 24, 25] to compute the ground state of nonlinear Schrödinger equations,
which can potentially include a fractional laplacian term. A comparison is developed with
standard gradient flow formulations showing that the Nesterov accelerated gradient flow has
some interesting properties but at the same time finds also some limitations due to the nature of
the problem. A few simulations are finally reported to understand the behavior of the algorithms
and open the path to further complicate questions that require more advanced studies concerning
the application of the Nesterov accelerated gradient flow to nonlinear Schrödinger equations.
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1. Introduction

In the present paper, we consider the problem of computing a stationary state of the d-
dimensional (d = 1, 2, 3) NonLinear space Fractional Schrödinger Equation (NLFSE) written as
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the constrained energy minimization problem{
Find φ ∈ L2(Rd) such that
φ ∈ arg min||φ||2=1 Eα(φ).

(1.1)

The L2(Rd)-norm of a function φ is given by

||φ||22 =

∫
Rd

|φ|2dx :=< φ, φ > .

We also introduce the hermitian inner-product

∀(u, v) ∈ L2(Rd)× L2(Rd), < u, v >:=

∫
Rd

uv∗dx,

setting v∗ as the complex conjugate of a function v. For (1.1), we denote by Eα the total
fractional energy functional of the dimensionless NLFSE

Eα(φ) =

∫
Rd

1

2
(−∇2)αφφ∗dx +

∫
Rd

V (x)|φ|2dx +

∫
Rd

F (|φ|2)dx := Eαk (φ) + Ep(φ) + Ei(φ).

In 3D, the fractional Laplace operator is (−∆)αφ = (−∇2)αφ. The gradient operator is defined
by ∇ := (∂x, ∂y, ∂z)

t for x = (x, y, z)t ∈ R3 (similarly, for the two-dimensional, we set ∇ :=
(∂x, ∂y)

t and x = (x, y)t ∈ R2). Based on Fourier integral operators (0 ≤ α ≤ 2), we have the
representation

(−∇2)αφ =

∫
Rd

φ̂(k)|k|2αeik·xdk, (1.2)

setting |k| = (k2x + ky2)1/2 in 2D for k := (kx, ky), where the Fourier transform is

φ̂(k) =

∫
Rd

φ(x)e−ik·xdx.

The case 0 < α < 1 corresponds to subdispersion in the NLSFE while 1 < α < 2 leads to
superdispersion [6]. We define V as the confining potential. The nonlinearity is given through
the smooth real-valued function f(Ψ) := F ′(Ψ), where the density function is Ψ = |φ|2. A very
common case is the cubic nonlinearity

F (s) = βs2/2. (1.3)

Therefore, we have f(s) = βs, defining β as the nonlinearity strength (see [3, 5, 6, 7, 12] for other
examples). The energy gradient is: ∇Eα(φ) = 2Hαφφ, with Hαφ = 1

2(−∆)α + V + f(|φ|2).Let

S = {φ ∈ L2(Rd), ||φ||2 = 1} be the unit spherical manifold for the normalization constraint.
For φ ∈ S given, we define the tangent space at φ as: TφS = {h ∈ L2(Rd),Re 〈φ, h〉 = 0}.
The orthogonal projection Mφ onto this space is such that we have Mφh = h − Re 〈φ, h〉φ.
Then, tthe Euler-Lagrange equation related to our constraint problem at a minimum φ ∈ S is
Mφ∇Eα(φ) = 0, which is equivalent to the nonlinear fractional eigenvalue problem: Hαφφ = λαφ.
The parameter λα := λα(φ) =< Hαφφ, φ > is the Lagrange multiplier associated to the spherical
constraint (chemical potential for α = 1).

Up to now, many studies were directed towards the development of minimization algo-
rithms for the computation of the ground state (and other excited states) of the nonlinear
Schrödinger equation for α = 1. For example, and without being exhausitive, we refer to
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[1, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 30] where various methods and some ex-
tensions are analyzed and evaluated. Less studies were devoted to the fractional case (see e.g.
[5, 6, 7]). The aim of the present paper is to focus on the possibility to design new minimiza-
tion algorithms based on advanced gradient technique. Indeed, one of the most standard and
powerful method for the computing of the ground state is based on the gradient flow formula-
tion [8, 11]. Basically, the discrete standard schemes are related to a projected gradient flow
formulation combined with suitable explicit or semi-implicit discretization schemes. Recently,
with the incredible growth of deep learning techniques, more robust gradient techniques were
introduced to improve the convergence rate of the basic steepest descent method. This is the
case of the widely used Nesterov accelerated gradient method [23, 24, 25] which finds many
impressive applications. Nevertheless, the (contraint and unconstraint) minimization problems
that are solved with this algorithm [23, 24, 25] and its variants [26, 28, 29] usually involve
simpler energy functionals and contraints than for the ground state computation associated to
the nonlinear Schrödinger equation. The goal of this paper is to understand if one can design
Nesterov accelerated gradient flow based schemes for our problem and to test the efficiency and
robustness of the resulting methods. To this end, we extend the standard methods designed
for the gradient flow formulation to the Nesterov accelerated gradient flow formulation to de-
velop some new schemes that lead to minimization algorithms. Supported by some numerical
examples, this analysis shows that getting efficient minimization schemes based on the Nesterov
accelerated gradient flow formulation is a nontrivial task and is maybe even not possible in some
cases like the fractional case.

The organization of the paper is the following. After the introduction in Section 1, Section
2 is devoted to basic properties of the projected gradient flow formulation and its discretization.
Section 3 proposes the design of a few Nesterov accelerated gradient flow based schemes which
are discretized in the spatial pseudo-spectral framework in Section 4. Numerical examples are
reported in Section 5. We finally end by a conclusion in Section 6.

2. Projected gradient flow formulation and its discretization

In this section, we recall the standard Gradient Flow with Discrete Normalization (GF-DN)
[8, 11] for computing the stationary states of the NLFSE. In particular, we straightforwardly
extend the Gradient Flow with Lagrange Multipliers (GF-LM) studied in [22] which has recently
been proven to be accurate for α = 1.

We introduce some discrete times tk ≥ 0, k ∈ N, with t0 = 0. We designate by ρk :=
tk − tk−1 > 0 the k-th local time step of the gradient flow under consideration. In the case of a
constant step method with ρk = ρ, k ∈ N, then the discrete times are tk = kρ > 0. The GF-DN
reads [8, 11] as follows

Find φ := φ(x, t) such that

∂tφ = −1

2
∇Eα(φ), t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd,

φ(x, tk+1) = φ(x, t+k+1) =
φ(x, t−k+1)

||φ(x, t−k+1)||2
, k ≥ 0,x ∈ Rd,

φ(x, 0) = φ0(x), x ∈ Rd.

(2.4)

In the above system, we set: φ(x, t±k ) = limt→t±k
φ(x, t). The initial data φ0, such that ||φ0||2 = 1,

is the initial guess of the ground state, given for example through an ansatz of the ground state
(e.g. the Thomas-Fermi approximation of the ground state or a gaussian function). To simplify
the presentation, let us now assume that the nonlinearity is cubic. Then, the GF-DN (2.4) can
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be viewed as a first-order splitting method for the following Continuous Normalized Gradient
Flow (CN-GF) [22]

Find φ := φ(x, t) such that

∂tφ = −(
1

2
∇Eα(φ)− λαφ(t)φ), t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd,

φ(x, 0) = φ0(x), x ∈ Rd,
(2.5)

where the energy is such that

Eα(φ) :=

∫
Rd

[
1

2
(−∇2)αφφ∗ + V |φ|2 +

β

2
|φ|4

]
dx, (2.6)

and the Lagrange multiplier is

λα = λαφ(t) =
< Hαφφ(·, t), φ(·, t) >

‖φ(·, t)‖22
=

1

‖φ‖22

∫
Rd

[
1

2
(−∇2)αφφ∗ + V |φ|2 + β|φ|4

]
dx.

It is proven that the CN-GF (2.5) is normalization conserving as well as energy diminishing [22]
for α = 1. Therefore, when t→ +∞, the solution to the CN-GF (2.5) converges to the ground
state if the initial data φ0 is well-chosen.

Let us now consider the time discretization of (2.5). Following [22], four discretizations
are analyzed. Here, we restrict our study to the two following schemes a) (explicit) Forward
Euler (FE) scheme and b) semi-implicit Backward Euler (BE) scheme. The Gradient Flow with
Forward Euler (GFFE) discretization and Lagrange multiplier is given by

Compute φk+1, k ≥ 0, such that

φ̃k+1 − φk

ρk+1
= −(

1

2
∇Eα(φk)− λα(φk)φk), x ∈ Rd,

φk+1 =
φ̃k+1

||φ̃k+1||2
, x ∈ Rd,

φ0 = φ0, x ∈ Rd,

(2.7)

where we have used the first-order approximation of the time derivative

∂tφ(tk+1,x) ' φ̃k+1 − φk

ρk+1

and we remark that φ̃k+1 needs to be normalized to get the correct solution φk+1.
Let us now introduce the following modified total energy

Eαφk(φ) :=

∫
Rd

[
1

2
(−∇2)αφφ∗ + V |φ|2 +

β

2
|φk|2|φ|2

]
dx, (2.8)

with gradient

1

2
∇Eαφk(φ̃k+1) = Hαφk φ̃

k+1 =
1

2
(−∆)αφ̃k+1 + V φ̃k+1 + β|φk|2φ̃k+1. (2.9)

Then, the Gradient Flow with semi-implicit Backward Euler (GFBE) discretization and La-
grange multiplier is

Compute φk+1, k ≥ 0, such that

φ̃k+1 − φk

ρk+1
= −(

1

2
∇Eαφk(φ̃k+1)− λα(φk)φk), x ∈ Rd,

φk+1 =
φ̃k+1

||φ̃k+1||2
, x ∈ Rd,

φ0 = φ0, x ∈ Rd,

(2.10)
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which leads to solving a linear variable coefficients PDE at each step k ≥ 0, following

Compute φk+1, k ≥ 0, such that(
I + ρk+1Hαφk

)
φ̃k+1 = (I + ρk+1λ

α(φk))φk, x ∈ Rd,

φk+1 =
φ̃k+1

||φ̃k+1||2
, x ∈ Rd,

φ0 = φ0, x ∈ Rd.

(2.11)

Let us remark that the Lagrange multiplier is treated explicitly here accordingly to [22].
Now, let us recall the important energy decaying properties of both schemes.

Proposition 1. Let us us assume that V (x) ≥ 0, α = 1, β ≥ 0 and that φn is sufficiently
smooth for the GFFE scheme (2.7). Then, for k ≥ 0, there exists ρFEk+1 > 0 such that for any

step 0 < ρk+1 ≤ ρFEk+1, we have the energy decreasing property

Eα(φk+1) ≤ Eα(φk). (2.12)

If again V (x) ≥ 0, α = 1 and β ≥ 0, then for any step ρk+1 > 0, the solution φk+1 to the GFBE

scheme (2.10) satisfies the modified energy decaying property

Eαφk(φk+1) ≤ Eαφk(φk) = λα(φk). (2.13)

3. Projected Nesterov accelerated gradient flow formulation

Recently, steepest descent techniques were improved, in particular to design some more
efficient minimization algorithms for deep learning problems. More specifically, we propose to
design some Nesterov Accelerated type algorithms [23, 24, 25, 26, 28, 29] for computing the
ground state of the NLSFE and to compare their performance and robustness with the schemes
based on the standard gradient flow formulation.

To this end, let us introduce the following Nesterov Accelerated Gradient Flow (NAGF)
formulation with Discrete Normalization (NAGF-DN)

Find φ := φ(x, t) such that

∂2t φ+ γ(t)∂tφ = −1

2
∇Eα(φ), t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd,

φ(x, tk+1) = φ(x, t+k+1) =
φ(x, t−k+1)

||φ(x, t−k+1)||2
, k ≥ 0,x ∈ Rd,

φ(x, 0) = φ0(x), x ∈ Rd,
∂tφ(x, 0) = φ1(x), x ∈ Rd,

(3.14)

which can also be written as the CN-NAGF system with Lagrange multiplier
Find φ := φ(x, t) such that

∂2t φ+ γ(t)∂tφ = −(
1

2
∇Eα(φ)− λα(φ)φ), t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd,

φ(x, 0) = φ0(x), x ∈ Rd,
∂tφ(x, 0) = φ1(x), x ∈ Rd.

(3.15)

The term γ : R+ → R+ is a positive real-valued momentum function that we will fix later. The
initial guess φ0 can be taken as for the GF-DN approach. Concerning the choice of the initial
velocity φ1, this is less clear since it is not given a priori. We may consider here the possibilities
φ1 = 0 and φ1 = φ0 which are relatively standard, but also the case where φ1 is given randomly.
From numerical simulations (not reported here), it appears that φ1 = φ0 is a suitable choice
that we keep for the paper.
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3.1. Time discretization of the CN-NAGF formulation (3.15) as a second-order equation

Let us now derive some time discretizations of the CN-NAGF. Classically, we can use the
first-order approximation (2) as well as the following discretization of the second-order time
derivative at time tk for non uniform time steps ρk, for k ≥ 1,

∂2t φ(tk,x) ' 1

ρk+1ρk+1/2
φk+1 − 2

ρkρk+1
φk +

1

ρkρk+1/2
φk−1, (3.16)

with ρk+1/2 = (ρk + ρk+1)/2. Then, setting γk = γ(tk), we obtain the implicit relation for the
first equation of (3.15) written at time tk

φk+1 = φk +
ρk+1

ρk
(1− γkρk+1/2)(φ

k − φk−1)− ρk+1ρk+1/2(
1

2
∇Eα(φk)− λα(φk)φk). (3.17)

Now, let us introduce the auxiliary function ψk such that

ψk := φk +
ρk+1

ρk
(1− γkρk+1/2)(φ

k − φk−1). (3.18)

Therefore, we have the equivalent writing of (3.17)

φk+1 = ψk − ρk+1ρk+1/2(
1

2
∇Eα(φk)− λα(φk)φk). (3.19)

The gradient term in equation (3.19) is explicit and taken at point φk. Because of (3.18), an
alternative and better choice to ∇Eα(φk) consists in using ∇Eα(ψk). Indeed, since ||φk−φk−1||2
is supposed to be small, we have

Eα(ψk) ' Eα(φk) +
ρk+1

ρk
(1− γkρk+1/2)∇Eα(φk)(φk − φk−1). (3.20)

In addition, if we assume that the momentum function γ is such that: (1− γkρk+1/2) ≥ 0 and
noticing that

φk − φk−1 ' −ρk∇Eα(φk), (3.21)

we deduce
Eα(ψk) ' Eα(φk)− ρk+1(1− γkρk+1/2)||∇Eα(φk)||22 ≤ Eα(φk). (3.22)

Therefore choosing ψk instead of φk in (3.19) provides a solution with lower total energy. As a
consequence, we consider the following explicit two-stages semi-discrete system approximating
(3.15) 

Compute φk+1, for k ≥ 1, such that

ψk := φk +
ρk+1

ρk
(1− γkρk+1/2)(φ

k − φk−1),

φ̃k+1 = ψk − ρk+1ρk+1/2(
1

2
∇Eα(ψk)− λα(φk)φk),

φk+1 =
φ̃k+1

||φ̃k+1||2
,

φ0 = φ0,

φ1 =
φ0 + ρ1φ1
||φ0 + ρ1φ1||2

.

(3.23)

To obtain φ1, we use the approximation φ̃1 = φ0 + ρ1φ1 and normalize it. This scheme is
called NAGF2

FE scheme (the exponent 2 refers to the fact that the equation is discretized as
a second-order Ordinary Differential Equation (ODE)). The above scheme corresponds to the
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NAGF-DN method, with variable step size and Lagrange multiplier, to compute the minimum
of the total energy functional Eα. Now, to simplify the presentation, let us assume that we
have uniformly sampled discretization time points tk = kρ. Then, the constant step NAGF-DN
writes 

Compute φk+1, k ≥ 1, such that

ψk := φk + (1− γkρ)(φk − φk−1),
φ̃k+1 = ψk − ρ2(1

2
∇Eα(ψk)− λα(φk)φk),

φk+1 =
φ̃k+1

||φ̃k+1||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

.

(3.24)

Let us now look into the details on how to choose the momentum function γ. As already
said, we have to check that we have the property: γkρ ≤ 1. Inspired by the work by Candès
et al. [28], we can choose γ(t) = 3/t. Then, one gets γkρ ≥ 1 for k ≥ 3. In addition, we
obtain: 1 − γkρ = (1 − 3/k), since tk = kρ. An alternative and better choice is to rather
consider the following slight modification γ(t) = γρ(t) = 3/(t+ 2ρ). Then, in this case, we have
γ(tk) := γk,ρ = 3ρ−1/(k + 2) and 1 − γkρ = (k − 1)/(k + 2), which is the well-known choice
initially introduced by Nesterov [28]. Another popular momentum choice [28] is given by

γk = θk(θ
−1
k−1 − 1), with θk+1 =

1

2
(
√
θ4k + 4θ2k − θ

2
k), θ0 = 1.

For the function γδ and a constant step size ρ > 0, the algorithm simplifies to

compute φk+1, k ≥ 1, such that

ψk := φk +
k − 1

k + 2
(φk − φk−1),

φ̃k+1 = ψk − ρ2(1

2
∇Eα(ψk)− λα(φk)φk),

φk+1 =
φ̃k+1

||φ̃k+1||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

.

(3.25)

In the previous derivation, the first-order derivative was approximated at first-order. For a
constant step ρ, a second-order approximation is

∂tφ(tk,x) ' φk+1 − φk−1

2ρ
, (3.26)

leading to the second-order formulation

Compute φk+1, k ≥ 1, such that

ψk := φk +
2k + 1

2k + 7
(φk − φk−1),

φ̃k+1 = ψk − ρ2(1

2
∇Eα(ψk)− λα(φk)φk),

φk+1 =
φ̃k+1

||φ̃k+1||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

.

(3.27)
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The two above schemes are explicit. Alternatively, we can also consider a semi-implicit
Backward Euler discretization which leads to the NAGF2

BE scheme

Compute φk+1, k ≥ 1, such that
1

ρk+1ρk+1/2
φ̃k+1 − 2

ρkρk+1
φk +

1

ρkρk+1/2
φk−1 + γk

(φk − φk−1)
ρk

= −(
1

2
∇Eαφk(φ̃k+1)− λα(φk)φk),

φk =
φ̃k

||φ̃k||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

.

(3.28)

As a consequence, each time step of (3.28) requires the solution to a linear partial differential
equation written in the framework of NA as

Compute φk+1, k ≥ 1, such that

ψk = φk +
ρk+1

ρk
(1− ρk+1/2γk)(φ

k − φk−1),

(I + ρk+1/2ρk+1Hαφk)φ̃k+1 = ψk + ρk+1/2ρk+1λ
α(φk)φk,

φk =
φ̃k

||φ̃k||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

.

(3.29)

If ρ is constant, the scheme (3.28) simplifies as follows

Compute φk+1, k ≥ 1, such that

φ̃k+1 − 2φk + φk−1

ρ2
+ γk

(φk − φk−1)
ρ

= −(
1

2
∇Eαφk(φ̃k+1)− λα(φk)φk),

φk =
φ̃k

||φ̃k||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

,

(3.30)

and (3.29) is 

Compute φk+1, k ≥ 1, such that

ψk = φk + (1− ργk)(φk − φk−1),
(I + ρ2Hαφk)φ̃k+1 = ψk + ρ2λα(φk)φk,

φk =
φ̃k

||φ̃k||2
,

φ0 = φ0,

φ1 =
φ0 + ρφ1
||φ0 + ρφ1||2

.

(3.31)

For the constant step case, let us note that, by combining (3.20) with (3.21), and using a
Taylor’s expansion of Eα(φk−1), we obtain : Eα(φk) ≤ Eα(φk−1), k ≥ 1 if 1 − γkρ ≥ 0. In the
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case where the momentum is too large, then this energy decay property can be violated and
oscillations may appear. Choosing an adaptive step ρk = 1/γk, for large values of γk, would slow
down the convergence of the algorithm. Even for the linear case β = 0 and without normalization
constraint, the Nesterov accelerated algorithm is known to be non energy diminishing [28], unlike
the standard gradient flow approach (see Proposition 1). In particular, if one tries to adapt the
proof of [11] for the energy decay of the gradient flow for α = 1, we would have to prove that

dEα

dt
(φ) = −2

∫
Rd

∂tφ(∂2t φ+ γ(t)∂tφ)dx (3.32)

is negative, which may be wrong in the general case. At the continuous level, the partial
differential equation solved on each interval [tk, tk+1) is given by a nonlinear damped Klein-
Gordon equation [10, 14] following the first equation of (3.15)

∂2t φ+ γ(t)∂tφ−
1

2
∆φ+ V φ+ β|φ|2φ− λ(φ)φ = 0, t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd, (3.33)

which can indeed lead to oscillations as a nonlinear wave equation (but with an associated
decaying energy [10, 14, 27] for α = 1). To solve this problem of the fluctuations related to
the large momentum case, restarting strategies of γk can be easily included into the algorithm.
The first approach is the so-called adaptive restarting [26] (ARNAG) based on the i) function
scheme

Eα(φk) > Eα(φk−1), (3.34)

or the ii) gradient scheme
∇Eα(ψk−1)(φk − φk−1) > 0. (3.35)

A second approach is based on the scheduled restart SRNAG [29] using the update formula for
the velocity

ψk := φk +
mod (k, rm)

mod (k, rm) + 3
(φk − φk−1), (3.36)

where rm ∈ N defines the restart frequency parameter. In particular, a fixed restart rm = rf can
be considered, where rf is set a priori. These restarting strategies have all been implemented
in the Nesterov-type algorithm for our problem. From the numerical experiments, it appears
that our situation, restarting is not very efficient and can sometimes penalize the convergence
towards the ground state.

Usually, the introduction of the second-order ODE in the Nesterov gradient formulation (i.e.
the first equation of (3.15)) is related to a mechanical system interpretation (e.g. heavy ball
formulation). Nevertheless, an alternative viewpoint is the following: let us first assume that γ
is a constant function and let us define the Laplace transform

L(X)(τ) =

∫ +∞

0
e−τtX(t)dt, τ > 0,

where we set X = ∂tφ. Then, Laplace transforming the ODE and using the first-order initial
condition X0 = φ1 leads to

(τ + γ)L(X) = −L(
1

2
∇Eα(φ)− λα(φ)φ) + φ1, (3.37)

or equivalently to the convolution formulation (using the ? operator)

X = ∂tφ = −L−1( 1

τ + γ
) ? ((

1

2
∇Eα(φ)− λα(φ)φ) + φ1), (3.38)
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where we know that

L−1( 1

τ + γ
) = e−γtY (t),

denoting by Y the Heaviside’s function and by L−1 the inverse Laplace transform [18]. There-
fore, based on (3.37) or (3.38), we can see that the effect of the explicit convolution, or equiva-
lently solving implicitly the local ODE, amounts to precondition the gradient flow in view of a
faster convergence. It is not clear a priori which operator should be considered. For γ(t) = 3/t,
we have a similar result but with the property that

L(γ(t)X)(τ) := L(
3X

t
)(τ) = 3

∫ +∞

τ
L(X)(u)du.

3.2. Time discretization of the CN-NAGF formulation (3.15) as a first-order system

The NA algorithms derived in Section 3.1 are based on discretizations of the first- and
second-order derivatives of the second-order ODE. A direct alternative is to rather rewrite
(3.15) as a first-order ODE system and then discretize. More concretely, (3.15) can be written
as 

Find (φ, ψ) such that

(∂t + γ(t))ψ = −(
1

2
∇Eα(φ)− λα(φ)φ), t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd,

∂tφ = ψ, t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd,
φ(x, 0) = φ0(x), x ∈ Rd,
∂tφ(x, 0) = φ1(x), x ∈ Rd.

(3.39)

Then the explicit Forward Euler discretization gives the NAGF1
FE scheme

Compute (φk+1, ψk+1), k ≥ 0, such that

ψk+1 = (1− ρk+1γk)ψ
k − ρk+1(

1

2
∇Eα(φk)− λα(φk)φk),

φ̃k+1 = φk + ρk+1ψ
k+1,

φk+1 =
φ̃k+1

||φ̃k+1||2
,

φ0 = φ0,
ψ0 = φ1.

(3.40)

An alternative first-order semi-implicit discretization leads to

Compute (φk+1, ψk+1), k ≥ 0, such that

(I + ρ2k+1Hαφk)φ̃k+1 = φk + ρk+1(1− ρk+1γk)ψ
k + ρ2k+1λ

α(φk)φk,

ψk+1 =
φ̃k+1 − φk

ρk+1
,

φk+1 =
φ̃k+1

||φ̃k+1||2
,

φ0 = φ0,
ψ0 = φ1.

(3.41)

Concerning the initial data φ1, it can be chosen as φ0, randomly or as an approximation through
the gradient flow since φ1 = ∂tφ at t = 0. Here, we will use φ1 = φ0 which appears as adapted
from the numerical experiments.
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4. Pseudospectral spatial discretization

We consider now a pseudo-spectral discretization scheme using the Fast Fourier Transforms
(FFTs) [1, 2, 3, 11]. In the 2D case (the extension to the 3D case is direct), we introduce the
truncated wave function φ in a square domain D := [−ax, ax] × [−ay, ay] (ax and ay are both
positive). We impose periodic boundary conditions, and we discretize the wave function φ by
using even numbers nx and ny grid points in the x- and y-directions, respectively. Let M :=
(nx, ny). Then we consider the uniformly sampled grid DM := {xk1,k2 = (xk1 , yk2)}(k1,k2)∈OM

.
Here, we set: OM := {0, . . . , nx − 1} × {0, . . . , ny − 1}, xk1+1 − xk1 = hx and yk2+1 − yk2 = hy,
for the mesh sizes hx = 2ax/nx and hy = 2ay/ny. We also need the N ×N Hermitian matrix(-
free) operators acting from CN (N = nxny in 2D) to C such that J(−∆)αK := J(−∂2x − ∂2y)αK.
Therefore, we can derive the discrete gradient of the energy

(∇Eα)(φ) ≈ (J∇KEα)(φ) = 2JHαφKφ,

where we define

JHαφK :=
1

2
J(−∆)αK + JV K + Jf(|φ|2)K.

Let φ := (φ̃(xk1,k2))(k1,k2)∈OM
(φ̃ designates the approximation of φ) be the unknown vector

in CN . An array representation φ in the vector space of 2D complex-valued arrays Mnx,ny(C)
(stored according to the 2D grid) is identified with the reshaped vector φ ∈ CN . For simplifi-
cation, we do not precise the brackets JAK, which means that A is the matrix operator related
to a continuous operator A, considering the FFT approximation. This leads to O(N logN)
operations to compute the application of the discrete operator since we use a 2D FFT.

For a discrete given function φ ∈ CN , the total discrete energy E(φ) is such that

Eα(φ) = Eαk (φ) + Ep(φ) + Ei(φ), (4.42)

where

Ek(φ) :=
1

2
〈(−∇)αφ,φ〉, Ep(φ) := 〈V φ,φ〉, Ei(φ) := 〈F (ρ),1〉. (4.43)

We set 1 ∈ CN as the vector with components 1, while ||φ||2 is the discretization of the L2(Rd)-
norm on the uniform grid using 〈u,v〉. Finally, u and v are two complex-valued functions on
DM .

5. Numerical examples

5.1. The integer case (α = 1)

We first start by considering the standard integer case (α = 1) with quadratic potential

V (x) :=
1

2
(x2 + y2), (5.44)

and a cubic nonlinearity (1.3) with nonlinearity strength β = 5000. We fix ax = ay = 20,
defining then the computational domain D = [−20; 20]2. We discretize in space with M =
(256, 256) points. For all the numerical simulations, we consider the stopping criterion [4]:

Eα,kerr := |Eα(φk+1)− Eα(φk)| ≤ εerr,
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with εerr = 10−10. In the following, we denote by kerr the value of k for which the stopping
criterion is fulfilled. The initial guess is chosen as the Thomas-Fermi (TF) approximation

φ0 =
φTF
β

||φTF
β ||2

, with φTF
β =


√
λTF
β − V (x)

β
, if λTF

β > V (x),

0, otherwise,

(5.45)

where the eigenvalue approximation λTF
β is given by λTF

β =
√
β/π. This leads to a numerical

converged energy equals to 26.6372. For solving the linear systems arising in the semi-implicit
schemes (related to (2.11), (3.29) and (3.41) after discretization by the pseudospectral scheme),
we use the iterative BiCGSTAB (BS) solver. To this end, we force the BiCGSTAB tolerance
to εBS = 10−11 for a maximal number of BiCGSTAB iterations equal to 1000. For a given
iteration k, the BiCGSTAB solver will need nkBS(≤ 1000) iterations. In the next Figures and
Tables, we report the number of iterations of the various algorithms to converge according to
the stopping criterion for εerr. For the explicit algorithms (FE), the global number of iterations
is given by kerr,g = kerr. However, for the semi-implicit schemes (BE), each iteration k requires
a certain number of inner iterations nkBS of BiCGSTAB. Since we are using a pseudospectral

scheme, then the global computational cost of the whole procedure is given : kerr,g =
∑kerr

k=0 n
k
BS.

In addition, each iteration of BiCGSTAB corresponds to a matrix vector product computed in
a matrix-free way via the FFT/iFFT.

We report in Table 1 the number of global iterations kerr,g to converge as well as kerr for the
semi-implicit schemes with respect to the constant step ρ. For the explicit schemes, we observe
that the Nesterov accelerated schemes (NAGF2

FE and NAGF1
FE) converge for larger steps ρ

than the standard gradient flow (NC=Not Converged in the Table). This is probably due to
the conditional stability properties of the schemes which should be investigated more. Even if
we do not prospect this question here, this remark should open the path to using well-adapted
time stepping techniques to increase the convergence rates of the explicit schemes. For the semi-
implicit schemes, as it is known, their stability is better and we observe a convergence even for
large steps, where the behavior of the NAGF2

BE scheme is slightly better than the standard
GFBE scheme as long as the step is large. For smaller steps, we observe a deterioration of
NAGF2

BE which is maybe due to a conditioning problem, in particular of the linear systems to
resolve. This however should be possible to improve it in both schemes based on the use of
adapted preconditioners [2]. Moreover, using regular grid finite-difference schemes may avoid
this problem since then efficient direct solvers for structured meshes could be used for the linear
systems solution. All the results in Table 1 are obtained without any restarting strategy. Indeed,
we implemented all the previous restarting strategies but we have observed that they usually
slow down the convergence rate of the algorithms. Therefore, we recommend to not using
restarting strategies for the GPE. For the quadratic potential, the damping function γ(t)/3t is
a well-suited choice (but any other choice given in Section 3.1 also leads to similar convergence
results). We report on Figure 1 the behavior of the energy at each time step k of the algorithms
(ρ = 10−2 except for GFFE where we have to consider ρ = 10−3 to get a converged solution). We
observe in particular that the energy may not decay even if the convergence to the stationary
state is obtained. These results (and others not reported here for the sake of conciseness) show
that accelerated algorithms provide some very specific behavior for the GPE but still need to
be understood, from the point of view of the properties but also based on the discretization
schemes.
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Figure 1: Example 1 (α = 1): energy convergence curves.

Scheme GFFE GFBE NAGF2
FE NAGF2

BE NAGF1
FE

Iter. kerr,g kerr kerr,g kerr,g kerr kerr,g kerr,g

ρ = 1× 10−0 NC 65 1701 NC 64 1670 NC

ρ = 5× 10−1 NC 69 1745 NC 66 1617 NC

ρ = 1× 10−1 NC 85 1828 NC 69 853 NC

ρ = 5× 10−2 NC 91 1773 NC 111 700 351

ρ = 1× 10−2 NC 257 2372 1371 1395 3399 1515

ρ = 5× 10−3 NC 448 2808 2842 2097 4643 2859

ρ = 1× 10−3 1266 1958 5369 24618 18403 26390 11020

Table 1: Number of iterations to converge for the various methods with constant steps ρ.

5.2. The general fractional case (0 < α < 1)

In the case of a fractional exponent 0 < α < 1, it appears that only the methods based
on the standard gradient flow (i.e. GFFE and GFBE) are able to provide a converged solution
to the NLFSE. To illustrate this claim, we report on Figure 2 an example for the fractional
exponent α = 0.6. For both the GFFE(left) and NAGF2

FE (right) schemes, we fix the following
parameters: β = 1000, D = [−20; 20]2, M = (256, 256) points and ∆t = 0.5 × 10−3. On the
left figure, we observe that the evolving solution converges towards a stationary solution after
51357 time steps. For the NAGF2

FE scheme, after enough iterations (about 40000 here), the
solution diverges (see right figure). This appears even when refining the time step, and happens
for any Nesterov-type scheme. More generally, based on Nesterov formulation, which leads to
the nonlinear space-fractional wave equation

∂2t φ+ γ(t)∂tφ+
1

2
(−∆)αφ+ V φ+ β|φ|2φ− λ(φ)φ = 0, t ∈ [tk, tk+1), k ≥ 0,x ∈ Rd, (5.46)

we always obtain a solution with an energy Eα which tends to infinity, even when considering
very small space and time discretization steps.

Based only on simulations, it is difficult to certify the origin of the behavior of the schemes
and if they may be adapted to the fractional case. Among the possible reasons leading to
the current restriction, one may think to the behavior of the solution of the wave equation
(5.46) with normalization step, to unadapted time-discretization schemes or/and finally to the
choice of the tuning parameters in Nesterov approach (initial guess, restarting or not, damping
function) that may be helpful but are difficult to fix. Finally, in the case of standard gradient
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Figure 2: Example 2 (α = 0.6): left : converged density function |φ|2 when using the explicit standard gradient
flow. Right: divergence of the evolving density function |φ|2 after enough time steps of the explicit Nesterov
gradient flow for the same parameters as on the left figure.

flows, we remarked that it would be important to design robust preconditioners for the solution
of the linear system arising in GFBE since the conditioning and computational effort is strongly
affected by the choice of the time step which needs to be taken small when α tends to decay.

6. Conclusion

This paper presented the adaptation and assessment of the Nesterov accelerated gradient
method to the computation of the ground state of the nonlinear Schrödinger equation, includ-
ing the space fractional Schrödinger equation. Even if the algorithms are as simple as for the
standard gradient flow method and show so interesting properties, many questions remain open
concerning the possibility of improving their robustness in the case of strongly nonlinear quan-
tum problems, which can in addition involve a space fractional operator that translates some
nonlocal spatial interactions into the quantum system. In particular, for the fractional case,
it was shown that one has to solve a nonlinear damped fractional Klein-Gordon equation with
an additional projection step. The physical behavior of such a system that is derived from the
Nesterov gradient flow formulation may be not adapted if the system has a growing energy. At
this step, the proposed algorithms still need further developments following a few directions
that were sketched in the paper, the most crucial being the statement of the system properties
(energy behavior), the consistent and stable discretization of the resulting system and finally
the choice of the tuning parameter related to the Nesterov gradient flow formulation.
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