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Adaptation and assessement of Projected Nesterov accelerated gradient flow to compute stationary states of nonlinear Schrödinger equations

Introduction

In the present paper, we consider the problem of computing a stationary state of the ddimensional (d = 1, 2, 3) NonLinear space Fractional Schrödinger Equation (NLFSE) written as Email addresses: xavier.antoine@univ-lorraine.fr (Xavier ANTOINE), chorouq.bentayaa@univ-lorraine.fr (Chorouq BENTAYAA), jeremie.gaidamour@univ-lorraine.fr (Jérémie GAIDAMOUR) 1 the constrained energy minimization problem Find φ ∈ L 2 (R d ) such that φ ∈ arg min ||φ|| 2 =1 E α (φ).

(1.1)

The L 2 (R d )-norm of a function φ is given by

||φ|| 2 2 = R d |φ| 2 dx :=< φ, φ > .
We also introduce the hermitian inner-product

∀(u, v) ∈ L 2 (R d ) × L 2 (R d ), < u, v >:= R d
uv * dx, setting v * as the complex conjugate of a function v. For (1.1), we denote by E α the total fractional energy functional of the dimensionless NLFSE

E α (φ) = R d 1 2 (-∇ 2 ) α φφ * dx + R d V (x)|φ| 2 dx + R d F (|φ| 2 )dx := E α k (φ) + E p (φ) + E i (φ).
In 3D, the fractional Laplace operator is (-∆) α φ = (-∇ 2 ) α φ. The gradient operator is defined by ∇ := (∂ x , ∂ y , ∂ z ) t for x = (x, y, z) t ∈ R 3 (similarly, for the two-dimensional, we set ∇ := (∂ x , ∂ y ) t and x = (x, y) t ∈ R 2 ). Based on Fourier integral operators (0 ≤ α ≤ 2), we have the representation

(-∇ 2 ) α φ = R d φ(k)|k| 2α e ik•x dk, (1.2) 
setting |k| = (k 2 x + k y 2 ) 1/2 in 2D for k := (k x , k y ), where the Fourier transform is

φ(k) = R d φ(
x)e -ik•x dx.

The case 0 < α < 1 corresponds to subdispersion in the NLSFE while 1 < α < 2 leads to superdispersion [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF]. We define V as the confining potential. The nonlinearity is given through the smooth real-valued function f (Ψ) := F (Ψ), where the density function is Ψ = |φ| 2 . A very common case is the cubic nonlinearity

F (s) = βs 2 /2. (1.3) 
Therefore, we have f (s) = βs, defining β as the nonlinearity strength (see [START_REF] Antoine | Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity[END_REF][START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF][START_REF] Antoine | A preconditioned conjugated gradient method for computing ground states of rotating dipolar Bose-Einstein condensates via kernel truncation method for dipole-dipole interaction evaluation[END_REF][START_REF] Bao | Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT[END_REF] for other examples). The energy gradient is:

∇E α (φ) = 2H α φ φ, with H α φ = 1 2 (-∆) α + V + f (|φ| 2 ).Let S = {φ ∈ L 2 (R d ), ||φ|| 2 =
1} be the unit spherical manifold for the normalization constraint. For φ ∈ S given, we define the tangent space at φ as: T φ S = {h ∈ L 2 (R d ), Re φ, h = 0}. The orthogonal projection M φ onto this space is such that we have M φ h = h -Re φ, h φ. Then, tthe Euler-Lagrange equation related to our constraint problem at a minimum φ ∈ S is M φ ∇E α (φ) = 0, which is equivalent to the nonlinear fractional eigenvalue problem: H α φ φ = λ α φ. The parameter λ α := λ α (φ) =< H α φ φ, φ > is the Lagrange multiplier associated to the spherical constraint (chemical potential for α = 1).

Up to now, many studies were directed towards the development of minimization algorithms for the computation of the ground state (and other excited states) of the nonlinear Schrödinger equation for α = 1. For example, and without being exhausitive, we refer to [START_REF] Antoine | GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions[END_REF][START_REF] Antoine | Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods[END_REF][START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF][START_REF] Antoine | A preconditioned conjugated gradient method for computing ground states of rotating dipolar Bose-Einstein condensates via kernel truncation method for dipole-dipole interaction evaluation[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF][START_REF] Bao | Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional[END_REF][START_REF] Baye | Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh[END_REF][START_REF] Caliari | A minimisation approach for computing the ground state of Gross-Pitaevskii systems[END_REF][START_REF] Caliari | GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations[END_REF][START_REF] Danaila | A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation[END_REF][START_REF] Danaila | Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization[END_REF][START_REF] Dion | Ground state of the time-independent Gross-Pitaevskii equation[END_REF][START_REF] Liu | Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates[END_REF][START_REF] Wu | A regularized Newton method for computing ground states of Bose-Einstein condensates[END_REF] where various methods and some extensions are analyzed and evaluated. Less studies were devoted to the fractional case (see e.g. [START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF][START_REF] Antoine | A preconditioned conjugated gradient method for computing ground states of rotating dipolar Bose-Einstein condensates via kernel truncation method for dipole-dipole interaction evaluation[END_REF]). The aim of the present paper is to focus on the possibility to design new minimization algorithms based on advanced gradient technique. Indeed, one of the most standard and powerful method for the computing of the ground state is based on the gradient flow formulation [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. Basically, the discrete standard schemes are related to a projected gradient flow formulation combined with suitable explicit or semi-implicit discretization schemes. Recently, with the incredible growth of deep learning techniques, more robust gradient techniques were introduced to improve the convergence rate of the basic steepest descent method. This is the case of the widely used Nesterov accelerated gradient method [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF][START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF] which finds many impressive applications. Nevertheless, the (contraint and unconstraint) minimization problems that are solved with this algorithm [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF][START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF] and its variants [START_REF] O'donoghue | Adaptive restart for accelerated gradient schemes[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF][START_REF] Wang | Scheduled restart momentum for accelerated stochastic gradient descent[END_REF] usually involve simpler energy functionals and contraints than for the ground state computation associated to the nonlinear Schrödinger equation. The goal of this paper is to understand if one can design Nesterov accelerated gradient flow based schemes for our problem and to test the efficiency and robustness of the resulting methods. To this end, we extend the standard methods designed for the gradient flow formulation to the Nesterov accelerated gradient flow formulation to develop some new schemes that lead to minimization algorithms. Supported by some numerical examples, this analysis shows that getting efficient minimization schemes based on the Nesterov accelerated gradient flow formulation is a nontrivial task and is maybe even not possible in some cases like the fractional case.

The organization of the paper is the following. After the introduction in Section 1, Section 2 is devoted to basic properties of the projected gradient flow formulation and its discretization. Section 3 proposes the design of a few Nesterov accelerated gradient flow based schemes which are discretized in the spatial pseudo-spectral framework in Section 4. Numerical examples are reported in Section 5. We finally end by a conclusion in Section 6.

Projected gradient flow formulation and its discretization

In this section, we recall the standard Gradient Flow with Discrete Normalization (GF-DN) [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF] for computing the stationary states of the NLFSE. In particular, we straightforwardly extend the Gradient Flow with Lagrange Multipliers (GF-LM) studied in [START_REF] Liu | Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates[END_REF] which has recently been proven to be accurate for α = 1.

We introduce some discrete times t k ≥ 0, k ∈ N, with t 0 = 0. We designate by ρ k := t k -t k-1 > 0 the k-th local time step of the gradient flow under consideration. In the case of a constant step method with ρ k = ρ, k ∈ N, then the discrete times are t k = kρ > 0. The GF-DN reads [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF] as follows

                 Find φ := φ(x, t) such that ∂ t φ = - 1 2 ∇E α (φ), t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , φ(x, t k+1 ) = φ(x, t + k+1 ) = φ(x, t - k+1 ) ||φ(x, t - k+1 )|| 2 , k ≥ 0, x ∈ R d , φ(x, 0) = φ 0 (x), x ∈ R d .
(2.4)

In the above system, we set: φ(x, t ± k ) = lim t→t ± k φ(x, t). The initial data φ 0 , such that ||φ 0 || 2 = 1, is the initial guess of the ground state, given for example through an ansatz of the ground state (e.g. the Thomas-Fermi approximation of the ground state or a gaussian function). To simplify the presentation, let us now assume that the nonlinearity is cubic. Then, the GF-DN (2.4) can be viewed as a first-order splitting method for the following Continuous Normalized Gradient Flow (CN-GF) [START_REF] Liu | Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates[END_REF]       

Find φ := φ(x, t) such that

∂ t φ = -( 1 2 ∇E α (φ) -λ α φ (t)φ), t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , φ(x, 0) = φ 0 (x), x ∈ R d , (2.5)
where the energy is such that

E α (φ) := R d 1 2 (-∇ 2 ) α φφ * + V |φ| 2 + β 2 |φ| 4 dx, (2.6) 
and the Lagrange multiplier is

λ α = λ α φ (t) = < H α φ φ(•, t), φ(•, t) > φ(•, t) 2 2 = 1 φ 2 2 R d 1 2 (-∇ 2 ) α φφ * + V |φ| 2 + β|φ| 4 dx.
It is proven that the CN-GF (2.5) is normalization conserving as well as energy diminishing [START_REF] Liu | Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates[END_REF] for α = 1. Therefore, when t → +∞, the solution to the CN-GF (2.5) converges to the ground state if the initial data φ 0 is well-chosen. Let us now consider the time discretization of (2.5). Following [START_REF] Liu | Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates[END_REF], four discretizations are analyzed. Here, we restrict our study to the two following schemes a) (explicit) Forward Euler (FE) scheme and b) semi-implicit Backward Euler (BE) scheme. The Gradient Flow with Forward Euler (GF FE ) discretization and Lagrange multiplier is given by

                   Compute φ k+1 , k ≥ 0, such that φ k+1 -φ k ρ k+1 = -( 1 2 ∇E α (φ k ) -λ α (φ k )φ k ), x ∈ R d , φ k+1 = φ k+1 || φ k+1 || 2 , x ∈ R d , φ 0 = φ 0 , x ∈ R d , (2.7) 
where we have used the first-order approximation of the time derivative

∂ t φ(t k+1 , x) φ k+1 -φ k ρ k+1
and we remark that φ k+1 needs to be normalized to get the correct solution φ k+1 . Let us now introduce the following modified total energy

E α φ k (φ) := R d 1 2 (-∇ 2 ) α φφ * + V |φ| 2 + β 2 |φ k | 2 |φ| 2 dx, (2.8) 
with gradient

1 2 ∇E α φ k ( φ k+1 ) = H α φ k φ k+1 = 1 2 (-∆) α φ k+1 + V φ k+1 + β|φ k | 2 φ k+1 . (2.9)
Then, the Gradient Flow with semi-implicit Backward Euler (GF BE ) discretization and Lagrange multiplier is

                   Compute φ k+1 , k ≥ 0, such that φ k+1 -φ k ρ k+1 = -( 1 2 ∇E α φ k ( φ k+1 ) -λ α (φ k )φ k ), x ∈ R d , φ k+1 = φ k+1 || φ k+1 || 2 , x ∈ R d , φ 0 = φ 0 , x ∈ R d , (2.10) 
which leads to solving a linear variable coefficients PDE at each step k ≥ 0, following

               Compute φ k+1 , k ≥ 0, such that I + ρ k+1 H α φ k φ k+1 = (I + ρ k+1 λ α (φ k ))φ k , x ∈ R d , φ k+1 = φ k+1 || φ k+1 || 2 , x ∈ R d , φ 0 = φ 0 , x ∈ R d .
(2.11)

Let us remark that the Lagrange multiplier is treated explicitly here accordingly to [START_REF] Liu | Normalized gradient flow with Lagrange multiplier for computing ground states of Bose-Einstein condensates[END_REF]. Now, let us recall the important energy decaying properties of both schemes.

Proposition 1. Let us us assume that V (x) ≥ 0, α = 1, β ≥ 0 and that φ n is sufficiently smooth for the GF FE scheme (2.7). Then, for k ≥ 0, there exists ρ FE k+1 > 0 such that for any step 0 < ρ k+1 ≤ ρ FE k+1 , we have the energy decreasing property

E α (φ k+1 ) ≤ E α (φ k ).
(2.12)

If again V (x) ≥ 0, α = 1 and β ≥ 0, then for any step ρ k+1 > 0, the solution φ k+1 to the GF BE scheme (2.10) satisfies the modified energy decaying property

E α φ k (φ k+1 ) ≤ E α φ k (φ k ) = λ α (φ k ).
(2.13)

Projected Nesterov accelerated gradient flow formulation

Recently, steepest descent techniques were improved, in particular to design some more efficient minimization algorithms for deep learning problems. More specifically, we propose to design some Nesterov Accelerated type algorithms [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF][START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: a basic course[END_REF][START_REF] O'donoghue | Adaptive restart for accelerated gradient schemes[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF][START_REF] Wang | Scheduled restart momentum for accelerated stochastic gradient descent[END_REF] for computing the ground state of the NLSFE and to compare their performance and robustness with the schemes based on the standard gradient flow formulation.

To this end, let us introduce the following Nesterov Accelerated Gradient Flow (NAGF) formulation with Discrete Normalization (NAGF-DN)

                     Find φ := φ(x, t) such that ∂ 2 t φ + γ(t)∂ t φ = - 1 2 ∇E α (φ), t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , φ(x, t k+1 ) = φ(x, t + k+1 ) = φ(x, t - k+1 ) ||φ(x, t - k+1 )|| 2 , k ≥ 0, x ∈ R d , φ(x, 0) = φ 0 (x), x ∈ R d , ∂ t φ(x, 0) = φ 1 (x), x ∈ R d , (3.14) 
which can also be written as the CN-NAGF system with Lagrange multiplier

           Find φ := φ(x, t) such that ∂ 2 t φ + γ(t)∂ t φ = -( 1 2 ∇E α (φ) -λ α (φ)φ), t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , φ(x, 0) = φ 0 (x), x ∈ R d , ∂ t φ(x, 0) = φ 1 (x), x ∈ R d . (3.15)
The term γ : R + → R + is a positive real-valued momentum function that we will fix later. The initial guess φ 0 can be taken as for the GF-DN approach. Concerning the choice of the initial velocity φ 1 , this is less clear since it is not given a priori. We may consider here the possibilities φ 1 = 0 and φ 1 = φ 0 which are relatively standard, but also the case where φ 1 is given randomly. From numerical simulations (not reported here), it appears that φ 1 = φ 0 is a suitable choice that we keep for the paper.

Time discretization of the CN-NAGF formulation (3.15) as a second-order equation

Let us now derive some time discretizations of the CN-NAGF. Classically, we can use the first-order approximation (2) as well as the following discretization of the second-order time derivative at time t k for non uniform time steps ρ k , for k ≥ 1,

∂ 2 t φ(t k , x) 1 ρ k+1 ρ k+1/2 φ k+1 - 2 ρ k ρ k+1 φ k + 1 ρ k ρ k+1/2 φ k-1 , (3.16) 
with ρ k+1/2 = (ρ k + ρ k+1 )/2. Then, setting γ k = γ(t k ), we obtain the implicit relation for the first equation of (3.15) written at time t k

φ k+1 = φ k + ρ k+1 ρ k (1 -γ k ρ k+1/2 )(φ k -φ k-1 ) -ρ k+1 ρ k+1/2 ( 1 2 ∇E α (φ k ) -λ α (φ k )φ k ). (3.17)
Now, let us introduce the auxiliary function ψ k such that

ψ k := φ k + ρ k+1 ρ k (1 -γ k ρ k+1/2 )(φ k -φ k-1 ). (3.18)
Therefore, we have the equivalent writing of (3.17)

φ k+1 = ψ k -ρ k+1 ρ k+1/2 ( 1 2 ∇E α (φ k ) -λ α (φ k )φ k ). (3.19)
The gradient term in equation (3.19) is explicit and taken at point φ k . Because of (3.18), an alternative and better choice to ∇E α (φ k ) consists in using ∇E α (ψ k ). Indeed, since ||φ k -φ k-1 || 2 is supposed to be small, we have

E α (ψ k ) E α (φ k ) + ρ k+1 ρ k (1 -γ k ρ k+1/2 )∇E α (φ k )(φ k -φ k-1 ). (3.20) 
In addition, if we assume that the momentum function γ is such that: (1 -γ k ρ k+1/2 ) ≥ 0 and noticing that

φ k -φ k-1 -ρ k ∇E α (φ k ), (3.21) 
we deduce

E α (ψ k ) E α (φ k ) -ρ k+1 (1 -γ k ρ k+1/2 )||∇E α (φ k )|| 2 2 ≤ E α (φ k ). (3.22)
Therefore choosing ψ k instead of φ k in (3.19) provides a solution with lower total energy. As a consequence, we consider the following explicit two-stages semi-discrete system approximating (3.15)

                               Compute φ k+1 , for k ≥ 1, such that ψ k := φ k + ρ k+1 ρ k (1 -γ k ρ k+1/2 )(φ k -φ k-1 ), φ k+1 = ψ k -ρ k+1 ρ k+1/2 ( 1 2 ∇E α (ψ k ) -λ α (φ k )φ k ), φ k+1 = φ k+1 || φ k+1 || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρ 1 φ 1 ||φ 0 + ρ 1 φ 1 || 2 .
(3.23)

To obtain φ 1 , we use the approximation φ 1 = φ 0 + ρ 1 φ 1 and normalize it. This scheme is called NAGF 2 FE scheme (the exponent 2 refers to the fact that the equation is discretized as a second-order Ordinary Differential Equation (ODE)). The above scheme corresponds to the NAGF-DN method, with variable step size and Lagrange multiplier, to compute the minimum of the total energy functional E α . Now, to simplify the presentation, let us assume that we have uniformly sampled discretization time points t k = kρ. Then, the constant step NAGF-DN writes

                             Compute φ k+1 , k ≥ 1, such that ψ k := φ k + (1 -γ k ρ)(φ k -φ k-1 ), φ k+1 = ψ k -ρ 2 ( 1 2 ∇E α (ψ k ) -λ α (φ k )φ k ), φ k+1 = φ k+1 || φ k+1 || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 .
(3.24)

Let us now look into the details on how to choose the momentum function γ. As already said, we have to check that we have the property: γ k ρ ≤ 1. Inspired by the work by Candès et al. [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF], we can choose γ(t) = 3/t. Then, one gets γ k ρ ≥ 1 for k ≥ 3. In addition, we obtain: 1 -γ k ρ = (1 -3/k), since t k = kρ. An alternative and better choice is to rather consider the following slight modification γ(t) = γ ρ (t) = 3/(t + 2ρ). Then, in this case, we have γ(t k ) := γ k,ρ = 3ρ -1 /(k + 2) and 1 -γ k ρ = (k -1)/(k + 2), which is the well-known choice initially introduced by Nesterov [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF]. Another popular momentum choice [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF] is given by

γ k = θ k (θ -1 k-1 -1), with θ k+1 = 1 2 ( θ 4 k + 4θ 2 k -θ 2 k ), θ 0 = 1.
For the function γ δ and a constant step size ρ > 0, the algorithm simplifies to

                               compute φ k+1 , k ≥ 1, such that ψ k := φ k + k -1 k + 2 (φ k -φ k-1 ), φ k+1 = ψ k -ρ 2 ( 1 2 ∇E α (ψ k ) -λ α (φ k )φ k ), φ k+1 = φ k+1 || φ k+1 || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 .
(3.25)

In the previous derivation, the first-order derivative was approximated at first-order. For a constant step ρ, a second-order approximation is

∂ t φ(t k , x) φ k+1 -φ k-1 2ρ , (3.26) 
leading to the second-order formulation

                               Compute φ k+1 , k ≥ 1, such that ψ k := φ k + 2k + 1 2k + 7 (φ k -φ k-1 ), φ k+1 = ψ k -ρ 2 ( 1 2 ∇E α (ψ k ) -λ α (φ k )φ k ), φ k+1 = φ k+1 || φ k+1 || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 .
(3.27)

The two above schemes are explicit. Alternatively, we can also consider a semi-implicit Backward Euler discretization which leads to the NAGF 2 BE scheme

                                 Compute φ k+1 , k ≥ 1, such that 1 ρ k+1 ρ k+1/2 φ k+1 - 2 ρ k ρ k+1 φ k + 1 ρ k ρ k+1/2 φ k-1 + γ k (φ k -φ k-1 ) ρ k = -( 1 2 ∇E α φ k ( φ k+1 ) -λ α (φ k )φ k ), φ k = φ k || φ k || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 .
(3.28)

As a consequence, each time step of (3.28) requires the solution to a linear partial differential equation written in the framework of NA as

                             Compute φ k+1 , k ≥ 1, such that ψ k = φ k + ρ k+1 ρ k (1 -ρ k+1/2 γ k )(φ k -φ k-1 ), (I + ρ k+1/2 ρ k+1 H α φ k ) φ k+1 = ψ k + ρ k+1/2 ρ k+1 λ α (φ k )φ k , φ k = φ k || φ k || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 . (3.29) 
If ρ is constant, the scheme (3.28) simplifies as follows

                         Compute φ k+1 , k ≥ 1, such that φ k+1 -2φ k + φ k-1 ρ 2 + γ k (φ k -φ k-1 ) ρ = -( 1 2 ∇E α φ k ( φ k+1 ) -λ α (φ k )φ k ), φ k = φ k || φ k || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 , (3.30) 
and

(3.29) is                            Compute φ k+1 , k ≥ 1, such that ψ k = φ k + (1 -ργ k )(φ k -φ k-1 ), (I + ρ 2 H α φ k ) φ k+1 = ψ k + ρ 2 λ α (φ k )φ k , φ k = φ k || φ k || 2 , φ 0 = φ 0 , φ 1 = φ 0 + ρφ 1 ||φ 0 + ρφ 1 || 2 .
(3.31)

For the constant step case, let us note that, by combining (3.20) with (3.21), and using a Taylor's expansion of E α (φ k-1 ), we obtain :

E α (φ k ) ≤ E α (φ k-1 ), k ≥ 1 if 1 -γ k ρ ≥ 0.
In the case where the momentum is too large, then this energy decay property can be violated and oscillations may appear. Choosing an adaptive step ρ k = 1/γ k , for large values of γ k , would slow down the convergence of the algorithm. Even for the linear case β = 0 and without normalization constraint, the Nesterov accelerated algorithm is known to be non energy diminishing [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF], unlike the standard gradient flow approach (see Proposition 1). In particular, if one tries to adapt the proof of [START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF] for the energy decay of the gradient flow for α = 1, we would have to prove that

dE α dt (φ) = -2 R d ∂ t φ(∂ 2 t φ + γ(t)∂ t φ)dx (3.32)
is negative, which may be wrong in the general case. At the continuous level, the partial differential equation solved on each interval [t k , t k+1 ) is given by a nonlinear damped Klein-Gordon equation [START_REF] Bao | Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime[END_REF][START_REF] Bao | Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime[END_REF] following the first equation of (3.15)

∂ 2 t φ + γ(t)∂ t φ - 1 2 ∆φ + V φ + β|φ| 2 φ -λ(φ)φ = 0, t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , (3.33) 
which can indeed lead to oscillations as a nonlinear wave equation (but with an associated decaying energy [START_REF] Bao | Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime[END_REF][START_REF] Bao | Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime[END_REF][START_REF] Royer | Energy decay for the Klein-Gordon equation with highly oscillating damping[END_REF] for α = 1). To solve this problem of the fluctuations related to the large momentum case, restarting strategies of γ k can be easily included into the algorithm. The first approach is the so-called adaptive restarting [START_REF] O'donoghue | Adaptive restart for accelerated gradient schemes[END_REF] (ARNAG) based on the i) function scheme

E α (φ k ) > E α (φ k-1 ), (3.34) 
or the ii) gradient scheme

∇E α (ψ k-1 )(φ k -φ k-1 ) > 0. (3.35) 
A second approach is based on the scheduled restart SRNAG [START_REF] Wang | Scheduled restart momentum for accelerated stochastic gradient descent[END_REF] using the update formula for the velocity

ψ k := φ k + mod (k, r m ) mod (k, r m ) + 3 (φ k -φ k-1 ), (3.36) 
where r m ∈ N defines the restart frequency parameter. In particular, a fixed restart r m = r f can be considered, where r f is set a priori. These restarting strategies have all been implemented in the Nesterov-type algorithm for our problem. From the numerical experiments, it appears that our situation, restarting is not very efficient and can sometimes penalize the convergence towards the ground state. Usually, the introduction of the second-order ODE in the Nesterov gradient formulation (i.e. the first equation of (3.15)) is related to a mechanical system interpretation (e.g. heavy ball formulation). Nevertheless, an alternative viewpoint is the following: let us first assume that γ is a constant function and let us define the Laplace transform

L(X)(τ ) = +∞ 0 e -τ t X(t)dt, τ > 0,
where we set X = ∂ t φ. Then, Laplace transforming the ODE and using the first-order initial condition X 0 = φ 1 leads to

(τ + γ)L(X) = -L( 1 2 ∇E α (φ) -λ α (φ)φ) + φ 1 , (3.37)
or equivalently to the convolution formulation (using the operator)

X = ∂ t φ = -L -1 ( 1 τ + γ ) (( 1 2 ∇E α (φ) -λ α (φ)φ) + φ 1 ), (3.38)
where we know that

L -1 ( 1 τ + γ ) = e -γt Y (t),
denoting by Y the Heaviside's function and by L -1 the inverse Laplace transform [START_REF] Chiff | The Laplace transform: Theory and Applications[END_REF]. Therefore, based on (3.37) or (3.38), we can see that the effect of the explicit convolution, or equivalently solving implicitly the local ODE, amounts to precondition the gradient flow in view of a faster convergence. It is not clear a priori which operator should be considered. For γ(t) = 3/t, we have a similar result but with the property that

L(γ(t)X)(τ ) := L( 3X t )(τ ) = 3 +∞ τ L(X)(u)du.

Time discretization of the CN-NAGF formulation (3.15) as a first-order system

The NA algorithms derived in Section 3.1 are based on discretizations of the first-and second-order derivatives of the second-order ODE. A direct alternative is to rather rewrite (3.15) as a first-order ODE system and then discretize. More concretely, (3.15) can be written as

               Find (φ, ψ) such that (∂ t + γ(t))ψ = -( 1 2 ∇E α (φ) -λ α (φ)φ), t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , ∂ t φ = ψ, t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , φ(x, 0) = φ 0 (x), x ∈ R d , ∂ t φ(x, 0) = φ 1 (x), x ∈ R d .
(3.39)

Then the explicit Forward Euler discretization gives the NAGF 1 FE scheme

                         Compute (φ k+1 , ψ k+1 ), k ≥ 0, such that ψ k+1 = (1 -ρ k+1 γ k )ψ k -ρ k+1 ( 1 2 ∇E α (φ k ) -λ α (φ k )φ k ), φ k+1 = φ k + ρ k+1 ψ k+1 , φ k+1 = φ k+1 || φ k+1 || 2 , φ 0 = φ 0 , ψ 0 = φ 1 .
(3.40)

An alternative first-order semi-implicit discretization leads to

                           Compute (φ k+1 , ψ k+1 ), k ≥ 0, such that (I + ρ 2 k+1 H α φ k ) φ k+1 = φ k + ρ k+1 (1 -ρ k+1 γ k )ψ k + ρ 2 k+1 λ α (φ k )φ k , ψ k+1 = φ k+1 -φ k ρ k+1 , φ k+1 = φ k+1 || φ k+1 || 2 , φ 0 = φ 0 , ψ 0 = φ 1 . (3.41) 
Concerning the initial data φ 1 , it can be chosen as φ 0 , randomly or as an approximation through the gradient flow since φ 1 = ∂ t φ at t = 0. Here, we will use φ 1 = φ 0 which appears as adapted from the numerical experiments.

Pseudospectral spatial discretization

We consider now a pseudo-spectral discretization scheme using the Fast Fourier Transforms (FFTs) [START_REF] Antoine | GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions[END_REF][START_REF] Antoine | Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates[END_REF][START_REF] Antoine | Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. In the 2D case (the extension to the 3D case is direct), we introduce the truncated wave function φ in a square domain D := [-a x , a x ] × [-a y , a y ] (a x and a y are both positive). We impose periodic boundary conditions, and we discretize the wave function φ by using even numbers n x and n y grid points in the x-and y-directions, respectively. Let M := (n x , n y ). Then we consider the uniformly sampled grid

D M := {x k 1 ,k 2 = (x k 1 , y k 2 )} (k 1 ,k 2 )∈O M .
Here, we set: O M := {0, . . . , n x -1} × {0, . . . , n y -1}, x k 1 +1 -x k 1 = h x and y k 2 +1 -y k 2 = h y , for the mesh sizes h x = 2a x /n x and h y = 2a y /n y . We also need the N × N Hermitian matrix(free) operators acting from C N (N = n x n y in 2D) to C such that (-∆) α := (-∂ 2

x -∂ 2 y ) α . Therefore, we can derive the discrete gradient of the energy

(∇E α )(φ) ≈ ( ∇ E α )(φ) = 2 H α φ φ,
where we define

H α φ := 1 2 (-∆) α + V + f (|φ| 2 ) . Let φ := ( φ(x k 1 ,k 2 )) (k 1 ,k 2 )
∈O M ( φ designates the approximation of φ) be the unknown vector in C N . An array representation φ in the vector space of 2D complex-valued arrays M nx,ny (C) (stored according to the 2D grid) is identified with the reshaped vector φ ∈ C N . For simplification, we do not precise the brackets A , which means that A is the matrix operator related to a continuous operator A, considering the FFT approximation. This leads to O(N log N ) operations to compute the application of the discrete operator since we use a 2D FFT. For a discrete given function φ ∈ C N , the total discrete energy E(φ) is such that

E α (φ) = E α k (φ) + E p (φ) + E i (φ), (4.42) 
where

E k (φ) := 1 2 (-∇) α φ, φ , E p (φ) := V φ, φ , E i (φ) := F (ρ), 1 . (4.43) 
We set 1 ∈ C N as the vector with components 1, while ||φ|| 2 is the discretization of the L 2 (R d )norm on the uniform grid using u, v . Finally, u and v are two complex-valued functions on D M .

Numerical examples

The integer case (α = 1)

We first start by considering the standard integer case (α = 1) with quadratic potential

V (x) := 1 2 (x 2 + y 2 ), (5.44) 
and a cubic nonlinearity (1.3) with nonlinearity strength β = 5000. We fix a x = a y = 20, defining then the computational domain D = [-20; 20] 2 . We discretize in space with M = (256, 256) points. For all the numerical simulations, we consider the stopping criterion [START_REF] Antoine | Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods[END_REF]:

E α,k err := |E α (φ k+1 ) -E α (φ k )| ≤ ε err ,
with ε err = 10 -10 . In the following, we denote by k err the value of k for which the stopping criterion is fulfilled. The initial guess is chosen as the Thomas-Fermi (TF) approximation

φ 0 = φ TF β ||φ TF β || 2 , with φ TF β =        λ TF β -V (x) β , if λ TF β > V (x), 0, otherwise, (5.45) 
where the eigenvalue approximation λ TF β is given by λ TF β = β/π. This leads to a numerical converged energy equals to 26.6372. For solving the linear systems arising in the semi-implicit schemes (related to (2.11), (3.29) and (3.41) after discretization by the pseudospectral scheme), we use the iterative BiCGSTAB (BS) solver. To this end, we force the BiCGSTAB tolerance to BS = 10 -11 for a maximal number of BiCGSTAB iterations equal to 1000. For a given iteration k, the BiCGSTAB solver will need n k BS (≤ 1000) iterations. In the next Figures and Tables, we report the number of iterations of the various algorithms to converge according to the stopping criterion for ε err . For the explicit algorithms (FE), the global number of iterations is given by k err,g = k err . However, for the semi-implicit schemes (BE), each iteration k requires a certain number of inner iterations n k BS of BiCGSTAB. Since we are using a pseudospectral scheme, then the global computational cost of the whole procedure is given : k err,g = kerr k=0 n k BS . In addition, each iteration of BiCGSTAB corresponds to a matrix vector product computed in a matrix-free way via the FFT/iFFT.

We report in Table 1 the number of global iterations k err,g to converge as well as k err for the semi-implicit schemes with respect to the constant step ρ. For the explicit schemes, we observe that the Nesterov accelerated schemes (NAGF 2 FE and NAGF 1 FE ) converge for larger steps ρ than the standard gradient flow (NC=Not Converged in the Table ). This is probably due to the conditional stability properties of the schemes which should be investigated more. Even if we do not prospect this question here, this remark should open the path to using well-adapted time stepping techniques to increase the convergence rates of the explicit schemes. For the semiimplicit schemes, as it is known, their stability is better and we observe a convergence even for large steps, where the behavior of the NAGF 2 BE scheme is slightly better than the standard GF BE scheme as long as the step is large. For smaller steps, we observe a deterioration of NAGF 2 BE which is maybe due to a conditioning problem, in particular of the linear systems to resolve. This however should be possible to improve it in both schemes based on the use of adapted preconditioners [START_REF] Antoine | Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates[END_REF]. Moreover, using regular grid finite-difference schemes may avoid this problem since then efficient direct solvers for structured meshes could be used for the linear systems solution. All the results in Table 1 are obtained without any restarting strategy. Indeed, we implemented all the previous restarting strategies but we have observed that they usually slow down the convergence rate of the algorithms. Therefore, we recommend to not using restarting strategies for the GPE. For the quadratic potential, the damping function γ(t)/3t is a well-suited choice (but any other choice given in Section 3.1 also leads to similar convergence results). We report on Figure 1 the behavior of the energy at each time step k of the algorithms (ρ = 10 -2 except for GF FE where we have to consider ρ = 10 -3 to get a converged solution). We observe in particular that the energy may not decay even if the convergence to the stationary state is obtained. These results (and others not reported here for the sake of conciseness) show that accelerated algorithms provide some very specific behavior for the GPE but still need to be understood, from the point of view of the properties but also based on the discretization schemes. 5.2. The general fractional case (0 < α < 1)

In the case of a fractional exponent 0 < α < 1, it appears that only the methods based on the standard gradient flow (i.e. GF FE and GF BE ) are able to provide a converged solution to the NLFSE. To illustrate this claim, we report on Figure 2 an example for the fractional exponent α = 0.6. For both the GF FE (left) and NAGF 2 FE (right) schemes, we fix the following parameters: β = 1000, D = [-20; 20] 2 , M = (256, 256) points and ∆t = 0.5 × 10 -3 . On the left figure, we observe that the evolving solution converges towards a stationary solution after 51357 time steps. For the NAGF 2 FE scheme, after enough iterations (about 40000 here), the solution diverges (see right figure). This appears even when refining the time step, and happens for any Nesterov-type scheme. More generally, based on Nesterov formulation, which leads to the nonlinear space-fractional wave equation

∂ 2 t φ + γ(t)∂ t φ + 1 2 (-∆) α φ + V φ + β|φ| 2 φ -λ(φ)φ = 0, t ∈ [t k , t k+1 ), k ≥ 0, x ∈ R d , (5.46)
we always obtain a solution with an energy E α which tends to infinity, even when considering very small space and time discretization steps. Based only on simulations, it is difficult to certify the origin of the behavior of the schemes and if they may be adapted to the fractional case. Among the possible reasons leading to the current restriction, one may think to the behavior of the solution of the wave equation (5.46) with normalization step, to unadapted time-discretization schemes or/and finally to the choice of the tuning parameters in Nesterov approach (initial guess, restarting or not, damping function) that may be helpful but are difficult to fix. Finally, in the case of standard gradient flows, we remarked that it would be important to design robust preconditioners for the solution of the linear system arising in GF BE since the conditioning and computational effort is strongly affected by the choice of the time step which needs to be taken small when α tends to decay.

Conclusion

This paper presented the adaptation and assessment of the Nesterov accelerated gradient method to the computation of the ground state of the nonlinear Schrödinger equation, including the space fractional Schrödinger equation. Even if the algorithms are as simple as for the standard gradient flow method and show so interesting properties, many questions remain open concerning the possibility of improving their robustness in the case of strongly nonlinear quantum problems, which can in addition involve a space fractional operator that translates some nonlocal spatial interactions into the quantum system. In particular, for the fractional case, it was shown that one has to solve a nonlinear damped fractional Klein-Gordon equation with an additional projection step. The physical behavior of such a system that is derived from the Nesterov gradient flow formulation may be not adapted if the system has a growing energy. At this step, the proposed algorithms still need further developments following a few directions that were sketched in the paper, the most crucial being the statement of the system properties (energy behavior), the consistent and stable discretization of the resulting system and finally the choice of the tuning parameter related to the Nesterov gradient flow formulation.
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 2 Figure 2: Example 2 (α = 0.6): left : converged density function |φ| 2 when using the explicit standard gradient flow. Right: divergence of the evolving density function |φ| 2 after enough time steps of the explicit Nesterov gradient flow for the same parameters as on the left figure.
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		26.675									
		26.67									
		26.665									
		26.66									
		26.655									
		26.65									
		26.645									
		26.64									
		26.635									
		0	200	400	600	800	1000	1200	1400	1600	1800	2000
		Figure 1: Example 1 (α = 1): energy convergence curves.
	Scheme	GF FE		GF BE		NAGF 2 FE			NAGF 2 BE	NAGF 1 FE
	Iter.	k err,g	k err k err,g			k err,g			k err	k err,g	k err,g
	ρ = 1 × 10 -0	NC		65 1701			NC			64	1670	NC
	ρ = 5 × 10 -1	NC		69 1745			NC			66	1617	NC
	ρ = 1 × 10 -1	NC		85 1828			NC			69	853	NC
	ρ = 5 × 10 -2	NC		91 1773			NC			111	700	351
	ρ = 1 × 10 -2	NC	257 2372			1371		1395	3399	1515
	ρ = 5 × 10 -3	NC	448 2808			2842		2097	4643	2859
	ρ = 1 × 10 -3	1266	1958 5369		24618 18403 26390	11020
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