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A pair of integers n and n + k is a simultaneous solution of an arithmetic function f :

where k ̸ = 0 is a fixed integer. This article shows that the totient function has infinitely many simultaneous solutions. In particular, φ(n) = φ(n + 2) infinitely often as n → ∞.

Introduction and the Main Result

The symbols N = {0, 1, 2, 3, . . .} and R denotes the set of nonnegative integers and the set of real numbers. An arithmetic function f : N -→ R has a simultaneous solution if f (n) = f (n + k), where k ̸ = 0 is a fixed integer, and n ≥ 1. The classifications of various arithmetic functions with infinitely many simultaneous solutions is a topic of current research in number theory. The earliest investigation for any specific arithmetic function seems to be Erdos conjecture for the totient function φ(n) = n p|n (1 -1/p). Conjecture 1.1. ([4, p. 544.]) For every k ≥ 1 there exists consecutive integers n, n + 1, . . . , n + k -1 such that

φ(n) = φ(n + 1) = φ(n + 2) = • • • = φ(n + k -1).
A related result is proved in [START_REF] Schinzel | On functions φ(n) and σ(n)[END_REF], and the corresponding result for the simultaneous inequalities φ(n) > φ(n + 1) > φ(n + 2)

> • • • > φ(n + k -1) (1.1)
is proved in [10, Theorem 1]. There are various qualitative and quantitative partial results described below, but there does not seem to be a unified general conjecture to spliced together all these partial results.

The numerical data show that the even cases such as φ(n) = φ(n + 2) have small solutions, and some of the odd cases such as φ(n) = φ(n + 3) have large solutions.

The related inequality φ(30n + 1) < φ(30n) has very unusual and extremely large solutions, see [START_REF] Martin | The Smallest Solution of φ(30n + 1) < φ(30n) is[END_REF].

It seems that the set of solutions A k ⊂ N for the general case in (1.1) has zero density in the set of integers N. In fact, in [9] it shown that the set of solutions A 1 ⊂ N for the case φ(n) = φ(n + 1) has zero density in the set of integers N. This follows from the convergence of the series

n≥1 φ(n)=φ(n+1) 1 n < 8. (1.2) 
Conversely, a zero density subset A 1 = {n : φ(n) = φ(n+1)} implies (1.2). A related density result for the inequality φ(n) < φ(n + 1) is proved in [10]. Other recent results for the totient function, the sum of divisors function, and a short survey of the current literature appears in [5]. Some cases of simultaneous solutions of arithmetic functions have very simple verification and other cases have very difficult verification. For example, the verification that the equation φ(8m + 2m) and φ(8m + 4m) (1.3) has infinitely many simultaneous odd solutions m ≥ 1 such that gcd(15, m) = 1, is elementary, see Section 10. But the verification that the relation in (1.7) has infinitely many simultaneous solutions is far more complex. Most cases of infinitely many simultaneous solutions are open problems, for example, it is unknown if

φ(n) = φ(n + 3), (1.4) 
φ(8n + 2) = φ(8n + 4) = φ(8n + 6), (1.5) et cetera, infinitely often as n → ∞. Similarly, the nonlinear problems such as φ(n 2 + 1) = φ(n 2 + 3) (1.6) remain completely unknown. This article proposes a couple of partial results for the simultaneous solutions of the totient function. The first is the state here and the second is stated in Section 12.

Theorem 1.1. If k ̸ = 0 is a small fixed even integer, then

φ(n) = φ(n + k)
infinitely often as n → ∞. In particular, φ(4n + 2) = φ(4n + 4) (1.7) has infinitely many solutions.

A short outline of this article is provided here. Theorem 1.1 is a simple corollary of Theorem 8.1 in Section 8. The basic materials required to prove the fundamental result in Theorem 8.1 are developed and proved in Section 2 to Section 6. Section 2 deals with several forms of the finite sum m,n≤x f (m, n)/[m, n], which are of independent interest in number theory. An asymptotic formula for the uniform distribution of integers in arithmetic progressions is proved in Section 3. The proof Theorem 1.1 of appears in Section 10.

Foundational Results

The expressions (m, n) = gcd(m, n) and [m, n] = lcm(m, n) denote the greatest common divisor and the lowest common multiple respectively. The totient function is defined by

φ(n) = n p|n 1 - 1 p , (2.1) 
and the Mobius function is defined by

µ(n) = (-1) w if n = p 1 p 2 • • • p w , 0 if n ̸ = p 1 p 2 • • • p w . (2.2) 
The nonnegativity of the finite sum

m,n≤x µ(m)µ(n) [m, n] > 0 (2.3)
and the convergence of the associated series as x → ∞ is the subject of a study in [START_REF] Dress | Sur une somme liee a la function de Mobius[END_REF], and in sieve theory. Similar techniques are used here to derive several estimates and verify the nonnegativity of some related finite sums. These finite sums arise in the analysis of the main term and error term of Theorem 8.1.

2.1. Elementary Identities.

Lemma 2.1. If m, n ≥ 1 are a pair of integers, then,

gcd(m, n) = d|(m,n) φ(d).
Proof. The claim follows from the additive to multiplicative relation

d|(m,n) φ(d) = p v ||(m,n) 1 + φ(p) + φ(p 2 ) + • • • + φ(p v ) (2.4) = p v ||(m,n) p v = gcd(m, n),
where p v || (m, n) is the maximal prime power divisor.

■ Lemma 2.2. If m, n ≥ 1 are a pair of integers, then, 1 [m, n] = 1 mn d|(m,n) φ(d).
Proof. Use Lemma 2.1, to transform the denominator as follows.

1 [m, n] = gcd(m, n) mn = 1 mn d|(m,n) φ(d). (2.5) ■ Lemma 2.3. If m, n ≥ 1 are a pair of integers, then, 1 φ([m, n]) = 1 φ(mn) d|(m,n) φ(d).
Proof. Substitute the identity (2.1) to transform the denominator as follows.

1 φ([m, n]) = 1 [m, n] p|[m,n] 1 - 1 p -1 (2.6) = gcd(m, n) mn p|mn 1 - 1 p -1 = 1 φ(mn) d|(m,n) φ(d).
The reverse the identity (2.1) is used on the penultimate line of equation ( 

log m log n [m, n] ≪ (log x) 5 as x → ∞.
Proof. Use Lemma 2.2 and switch the order of summation to obtain 

m, n≤x log m log n [m, n] = m,n≤x log m log n mn d|(m,n) φ(d) (2.7) = d≤x φ(d)
≪ (log x) 4 d≤x φ(d) d 2 ≪ (log x) 5 , where d≤x φ(d)d -2 ≪ log x. ■ Lemma 2.5. If x ≥ 1 is a large number, then, m, n≤x µ(m)µ(n) log m log n φ([m, n]) ≫ log x log log x
is an increasing nonnegative function as x → ∞, and bounded by log x.

Proof. By Lemma 2.3, the finite sum transforms as

B(x) = m, n≤x µ(m)µ(n) log m log n φ([m, n]) (2.9) = m,n≤x µ(m)µ(n) log m log n φ(mn) d|(m,n) φ(d) = d≤x φ(d) m,n≤x d|(m,n) µ(m)µ(n) log m log n φ(mn) .
Replace the change of variables m = dr and n = ds, where r, s ≥ 1 are squarefree integers such that gcd(r, s) = 1 to obtain the expression

B(x) = d≤x φ(d)µ 2 (d) φ(d 2 ) r,s≤x/d (d,rs)=1 gcd(r,s)=1 µ(r)µ(s) log dr log ds φ(rs) (2.10) = d≤x µ 2 (d) d     r≤x/d (d,r)=1 µ(r) log dr φ(r)     2 > 0.
Next, the asymptotic formula for the inner sum given in Lemma 2.7 leads to

B(x) = d≤x µ 2 (d) d     r≤x/d (d,r)=1 µ(r) log dr φ(r)     2 (2.11) = d≤x µ 2 (d) d G(d) + O e -b √ log x 2 = d≤x µ 2 (d)G 2 (d) d + O (log x)e -b 1 √ log x .
The singular series G(d) > 1 is an absolutely convergent series, see (2.15) below, and has the asymptotic form specified in (2.16). Together, these estimates yield the lower bound

B(x) ≫ d≤x µ 2 (d) d + O e -b 2 √ log x
(2.12) 

≫ log x log log x + O e -b 2 √ log x ≫ log x log log x since log x log log x ≪ d≤x µ 2 (d) d = 6 π 2 log x + O 1 log x . ( 2 
G(d) = 0 if d = 2m + 1, > 1 if d = 2m, (2.15)
is a small constant > 1. More precisely, for m ≥ 2, the singular series is given by the infinite product

G(2m) = 2C 2 2<p|m p -1 p -2 > 1.
(2.16)

The first case G(2) = 2C 2 > 1, where 

C 2 = p≥3 1 - 1 (p -1)
i) n≤x gcd(m,n)=1 µ(n) φ(n) = O e -c √ log x , (ii) n≤x gcd(m,n)=1 µ(n) log n φ(n) = G(m) + O e -c √ log x ,
where c > 0 is a constant.

Lemma 2.7. If x ≥ 1 is a large number, then,

n≤x/d (d,n)=1 µ(n) log dn φ(n) = G(m) + O e -b √ log x ,
where b > 0 is a constant.

Proof. A simple expansion of the finite sum into two finite sums and repeated applications of Lemma 2.6 return

n≤x/d (d,n)=1 µ(n) log dn φ(n) = n≤x/d gcd(d,n)=1 µ(n) log n φ(n) + (log d) n≤x/d gcd(d,n)=1 µ(n) φ(n) (2.18) = G(m) + O e -c √ log x + O (log d)e -c √ log x = G(m) + O e -b √ log x ,
where c > b > 0 are constants. ■ 2.4. Sum of Twisted Log Function.

Lemma 2.8. If x is a large number, then

n≤x µ(n) log n = O xe -c √ log x ,
where c > 0 is an absolute constant.

Proof. Recall the asymptotic formula

M (t) = n≤t µ(n) = O te -a √ log t
, where a > 0, confer [8, p. 424], [12, p. 385]. Now rewrite it as an integral and use partial summation.

n≤x µ(n) log n = x 2 (log t)dM (t) (2.19) = O x(log x)e -a √ log x - x 2 M (t) t dt = O xe -c √ log x ,
where a, c > 0 are constants. ■

Integers in Arithmetic Progressions

An effective asymptotic formula for the number of integers in arithmetic progressions is derived in Lemma 3.1. The derivation is based on a version of the basic large sieve inequality stated below.

Theorem 3.1. Let x be a large number and let

Q ≤ x. If {a n : n ≥ 1} is a sequence of real number, then q≤Q q 1≤a≤q n≤x n≡a mod q a n - 1 q n≤x a n 2 ≤ Q (10Q + 2πx) n≤x |a n | 2 .
Proof. The essential technical details are covered in [START_REF] Davenport | Multiplicative number theory[END_REF]Chapter 23]. This inequality is discussed in [6] and the literature in the theory of the large sieve.

■ Lemma 3.1. If x ≥ 1 is a large number and 1 ≤ a < q ≤ x, then max 1≤a≤q n≤x n≡a mod q 1 - 1 q n≤x 1 = O x q e -c √ log x , (3.1) 
where c > 0 is a constant. In particular,

n≤x n≡a mod q 1 = x q + O x q e -c √ log x . (3.2)
Proof. Trivially, the basic finite sum satisfies the asymptotic

n≤x 1 = [x] = x -{x}, (3.3) 
where [x] = x -{x} is the largest integer function, and the number of integers in any equivalent class satisfies the asymptotic formula

n≤x n≡a mod q 1 = x q + E(x). (3.4) 
Let Q = x and let the sequence of real numbers be a n = 1 for n ≥ 1. Now suppose that the error term is of the form

E(x) = E 0 (x) = O (x α ) , (3.5) 
where α ∈ (0, 1] is a constant. Then, the large sieve inequality, Theorem 3.1, yields the lower bound

q≤x q 1≤a≤q n≤x n≡a mod q 1 - 1 q n≤x 1 2 = q≤x q 1≤a≤q x q + O (x α ) - x -{x} q 2 ≫ q≤x q 1≤a≤q x α + {x} q 2 ≫ q≤x q 1≤a≤q |x α | 2 ≫ x 2α q≤x q 1≤a≤q 1 ≫ x 2α q≤x q 2 ≫ x 3+2α . (3.6)
On the other direction, it yields the upper bound

q≤x q 1≤a≤q n≤x n≡a mod q 1 - 1 q n≤x 1 2 ≤ Q (10Q + 2πx) n≤x |a n | 2 (3.7) ≤ x (10x + 2πx) n≤x |1| 2 ≪ x 3 .
Clearly, the lower bound in (3.6) contradicts the upper bound in (3.7). Similarly, the other possibilities for the error term

E 1 = O x (log x) c and E 2 = O xe -c √ log x , (3.8) 
contradict large sieve inequality. Therefore, the error term is of the form

E(x) = O x q e -c √ log x = O x q(log x) c = O x q , (3.9) 
where c > 0 is a constant. ■

Lower Bound For The Double Main Term

An effective lower bound for the main term arising in Theorem 8.1 is computed in this section.

Lemma 4.1. If x ≥ 1 is a large number, and x 1 = (log x) c 0 , where c 0 > 0, then,

M (x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1)

≫

x log log x log log log x .

Proof. Let x be a large number and let

d 1 d 2 ≤ x 2 1 = (log x) 2c 0 ≤ e c 1 √ log x , where c 0 > 0 and c 1 = c 1 (c 0 ) > 0 are constants. Let q = [d 1 , d 2 ]
. Applying the prime number theorem for prime in arithmetic progression, see [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Corollary 11.19], yields

M (x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1) (4.1) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) x φ([d 1 , d 2 ]) + O xe -c 1 √ log x = x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) φ([d 1 , d 2 ]) +O    xe -c 1 √ log x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 (log d 1 )(log d 2 )    = M 0 (x) + M 1 (x).
The first subsum M 0 (x) is estimated in Lemma 4.2 and the second subsum M 1 (x) is estimated in Lemma 4.3. Summing these estimates yields

M (x) = M 0 (x) + M 1 (x) (4.2) ≫ x log log x log log log x + O xe -c 2 √ log x ≫ x log log x log log log x , where c 2 > 0 is a constant. ■ Lemma 4.2. Assume that d 1 | 2n + 1, d 2 | 2n + 1. If x ≥ 1 is a large number and x 1 = (log x) c 0 , where c 0 > 0, then, M 0 (x) = x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) φ([d 1 , d 2 ]) ≫ x log log x log log log x .
Proof. By Lemma 2.5 the quadruple finite sum

F (x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) φ([d 1 , d 2 ]) (4.3) ≫ log log x log log log x .
Thus, the product xF (x) ≫ (x log log x)/(log log log x) verifies the claim. ■ Lemma 4.3. If x ≥ 1 is a large number and x 1 = (log x) c 0 , then,

M 1 (x) = O    xe -c 1 √ log x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 log(d 1 ) log(d 2 )    = O xe -c 3 √ log x ,
where c 0 > 0, c 1 > 0 and c 3 > 0 are constants.

Proof. As previously stated

x 1 = (log x) c 0 ≤ e c 1 √ log x
, where c 0 > 0 and c 1 = c 1 (c 0 ) > 0 are constants. Now, an estimate of the quadruple finite sum yields

M 1 (x) = O    xe -c 1 √ log x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 log(d 1 ) log(d 2 )    (4.4) = O xe -c 1 √ log x (log x 1 ) 2 • (x 1 ) 2 = O xe -c 1 √ log x (log x) 2c 0 +1 = O xe -c 3 √ log x ,
where c 0 > 0, c 1 > 0 and c 3 > 0 are constants. ■

Lower Bound For The Triple Main Term

An effective lower bound for the main term arising in Theorem 9.1 is computed in this section.

Lemma 5.1. If x ≥ 1 is a large number, and x 1 = (log x) c 0 , where c 0 > 0, then,

M T (x) = 1≤d 1 ≤x 1 , 1≤d 2 ≤x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤x 1 , 1≤d 4 ≤x 1 3≤i≤4 µ(d i ) log(d i ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 Λ(n + 1) ≫ x log log x log log log x 2 .
Proof. Let x be a large number and let

d 1 d 2 d 3 d 4 ≤ x 2 1 = (log x) 4c 0 ≤ e c 1 √ log x , where c 0 > 0 and c 1 = c 1 (c 0 ) > 0 are constants. Let q = [d 1 , d 2 , d 3 , d 4 ].
Applying the prime number theorem for prime in arithmetic progression, see [START_REF] Montgomery | Multiplicative number theory. I. Classical theory[END_REF]Corollary 11.19], yields

M T (x) = 1≤d 1 ≤x 1 , 1≤d 2 ≤x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤x 1 , 1≤d 4 ≤x 1 3≤i≤4 µ(d i ) log(d i ) (5.1) × x φ([d 1 , d 2 , d 3 , d 4 ]) + O xe -c 1 √ log x = x 1≤d 1 ≤x 1 , 1≤d 2 ≤x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤x 1 1≤d 4 ≤x 1 3≤i≤4 µ(d i ) log(d i ) 1 φ([d 1 , d 2 , d 3 , d 4 ]) +O xe -c 1 √ log x d 1 , d 2 , d 3 , d 4 ≤x 1 , 1≤i≤4 log(d i ) = M T 0 (x) + M T 1 (x).
The first subsum M T 0 (x) is estimated in Lemma 5.2 and the second subsum M T 1 (x) is estimated in Lemma 5.3. Summing these estimates yields 

M (x) = M 0 (x) + M 1 (x) (5.2) ≫ x log log x log log log x 2 + O xe -c 2 √ log x ≫ x log log x log log log x
M T 0 (x) = x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤x 1 1≤d 4 ≤x 1 3≤i≤4 µ(d i ) log(d i ) 1 φ([d 1 , d 2 , d 3 , d 4 ]) ≫ x log log x log log log x 2 . Proof. The hypothesis d 1 | 2n+1, d 2 | 2n+1 and d 3 | 4n+1, d 4 | 4n+1 implies that the lowest common multiple [d 1 , d 2 , d 3 , d 4 ] = [d 1 , d 2 ][d 3 , d 4 ] is a product of factors.
Consequently, the finite sum can be factored as

M T 0 (x) = x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 1≤i≤2 µ(d i ) log(d i ) φ([d 1 , d 2 ]) 1≤d 3 ≤x 1 1≤d 4 ≤x 1 3≤i≤4 µ(d i ) log(d i ) φ([d 3 , d 4 ]) .
(5.3) Lemma 2.5 supplies a lower bound for each factor. Therefore, the quadruple finite sum has the lower bound

M T 0 (x) ≫ x log log x log log log x • log log x log log log x (5.4) ≫ x log log x log log log x 2 .
This verifies the claim. ■ Lemma 5.3. If x ≥ 1 is a large number, and x 1 = (log x) c 0 , where c 0 > 0, then,

M T 1 (x) = O xe -c 1 √ log x d 1 , d 2 , d 3 , d 4 ≤x 1 , 1≤i≤4 log(d i ) = O xe -c 5 √ log x ,
where c 1 > c 5 > 0 is a constant.

Proof. As previously stated

x 1 = (log x) c 0 ≤ e c 1 √ log x
, where c 0 > 0 and c 1 = c 1 (c 0 ) > 0 are constants. Now, an estimate of the quadruple finite sum yields

M T 1 (x) = O xe -c 1 √ log x d 1 , d 2 , d 3 , d 4 ≤x 1 , 1≤i≤4 log(d i ) (5.5) = O xe -c 1 √ log x (log x 1 ) 4 • (x 1 ) 4 = O xe -c 1 √ log x (log x) 4c 0 +2 = O xe -c 5 √ log x ,
where c 1 > c 5 > 0 is a constant. ■

Upper Bound For The Double Error Term

The error term arising in Theorem 8.1 consists of a sum of three finite sums

E(x) = 1≤d 1 ≤2x+1 1≤d 2 ≤2x+1 d 1 >x 1 or d 2 >x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1) (6.1) = x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 + 1≤d 1 ≤2x+1 x 1 <d 2 ≤2x+1 + x 1 <d 1 ≤2x+1 x 1 <d 2 ≤2x+1 = E 1 (x) + E 2 (x) + E 3 (x). Lemma 6.1. Assume that d 1 | 2n + 1, d 2 | 2n + 1. If x ≥ 1 is a large number and x 1 = (log x) c 0 < xe c 1 √ log x , then E(x) = O xe -c √ log x ,
where c 0 > 0, c 1 > 0 and c > 0 are constants.

Proof. Except for minor changes, the analysis of the upper bounds for finite sums E 1 (x), E 2 (x) and E 3 (x) are similar. The first one is computed in Lemma 6.2. Summing these estimates yields

E(x) = E 1 (x) + E 2 (x) + E 3 (x) (6.2) = O xe -c √ log x . ■ Lemma 6.2. Assume that d 1 | 2n + 1, d 2 | 2n + 1. If x ≥ 1 is a large number and x 1 = (log x) c 0 , then E 1 (x) = x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1) = O xe -c 4 √ log x ,
where c 0 > 0, and c 4 > 0 are constants.

Proof. First replace Λ(n) = -d|n µ(d) log d in the inner sum.

E 1 (x) = - x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |n+1 µ(d 3 ) log(d 3 ) = - x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |n+1
1. (6.3)

Rewrite it in the form

E 1 (x) = -x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) [d 1 , d 2 , d 3 ] (6.4) - x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) ×       1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |n+1 1 - x [d 1 , d 2 , d 3 ]       = T 0 (x) + T 1 (x).
The subsum T 0 (x) is estimated in Lemma 6.3 and subsum T 1 (x) is estimated in Lemma 6.4. Summing these estimates completes the proof. ■ Lemma 6.3. Assume that

d 1 | 2n + 1, d 2 | 2n + 1, and 
d 3 | n + 1. If x ≥ 1 is a large number and x 1 = (log x) c 0 , then T 0 (x) = x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log d 3 [d 1 , d 2 , d 3 ] = O xe -c 4 √ log x ,
where c 0 > 0 and c 4 > 0 are constants.

Proof. The hypothesis

d 1 | 2n + 1, d 2 | 2n + 1, and d 3 | n + 1 implies that [d 1 , d 2 , d 3 ] = [d 1 , d 2 ]d 3 since gcd(d 1 d 2 , d 3 ) = 1.
Consequently, the finite sum can be factored as

T 0 (x) = x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) [d 1 , d 2 , d 3 ] (6.5) = x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) [d 1 , d 2 ] 1≤d 3 ≤x+1 µ(d 3 ) log(d 3 ) d 3 .
Applying Lemma 2.8 to the inner sum in (6.5) and Lemma 2.4 to the middle sum, yield

T 0 (x) = O    x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 log(d 1 ) log(d 2 ) [d 1 , d 2 ] e -c 2 √ log x    (6.6) = O x(log x) 5 e -c 2 √ log x = O xe -c 4 √ log x ,
where c 2 > 0 and c 4 > 0 are constants. ■ Lemma 6.4. Assume that

d 1 | 2n + 1, d 2 | 2n + 1, and 
d 3 | n + 1. If x ≥ 1 is a large number and x 1 = (log x) c 0 , then T 1 (x) = - x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) ×       1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |n+1 1 - x [d 1 , d 2 , d 3 ]       = O xe -c 5 √ log x ,
where c 0 > 0 and c 5 > 0 are constants.

Proof. Let q = [d 1 , d 2 , d 3 ]
. Taking absolute value and invoking Lemma 3.1 yield

|T 1 (x)| ≤ x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 log(d 1 ) log(d 2 ) log(d 3 ) 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |n+1 1 - x [d 1 , d 2 , d 3 ] (6.7) = O       xe -c √ log x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤x+1 log(d 1 ) log(d 2 ) log(d 3 ) [d 1 , d 2 , d 3 ]       . The hypothesis d 1 | 2n + 1, d 2 | 2n + 1, and 
d 3 | n + 1 implies that [d 1 , d 2 , d 3 ] = [d 1 , d 2 ]d 3 since gcd(d 1 d 2 , d 3 ) = 1.
Consequently, the finite sum can be factored as

T 1 (x) = O xe -c √ log x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 log(d 1 ) log(d 2 ) [d 1 , d 2 ] 1≤d 3 ≤x+1 log(d 3 ) d 3 . (6.8)
Estimating the inner sum, and applying Lemma 2.4 to the middle sum return

T 1 (x) = O xe -c √ log x • (log x) 5 • (log x) 2 (6.9) = O x(log x) 7 )e -c √ log x = O xe -c 5 √ log x ,
where c > 0 and c 5 > 0 are constants. ■

Upper Bound For The Triple Error Term

The error term arising in Theorem 9.1 consists of seven finite sums

E(x) = 1≤d 1 ≤2x+1 1≤d 2 ≤2x+1 d 1 >x 1 or d 2 >x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1 1≤d 4 ≤4x+1 d 3 >x 1 or d 4 >x 1 3≤i≤4 µ(d i ) log(d i ) × 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 Λ(n + 1) = x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 1≤d 3 ≤4x+1 1≤d 4 ≤4x+1 + 1≤d 1 ≤2x+1 x 1 <d 2 ≤2x+1 1≤d 3 ≤4x+1 1≤d 4 ≤4x+1 + • • • + x 1 <d 1 ≤2x+1 x 1 <d 2 ≤2x+1 x 1 <d 3 ≤4x+1 x 1 <d 4 ≤4x+1 = E 1 (x) + E 2 (x) + • • • + E 7 (x). (7.1)
The derivations of the upper bounds for the error terms E i (x), 1 ≤ i ≤ 7, are similar. The first error term E 1 (x) is computed below to illustrate the technique. x ≥ 1 is a large number and x 1 = (log x) c 0 , then

E 1 (x) = x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) × 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 Λ(n + 1) = O xe -c 7 √ log x ,
where c 0 > 0 and c 7 > 0 are constants.

Proof. First replace Λ(n) = -d|n µ(d) log d in the inner sum. x ≥ 1 is a large number and x 1 = (log x) c 0 , then

E 1 (x) = - x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) (7.2) × 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 d 5 |n+1 µ(d 5 ) log d 5 = - x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) × d 5 ≤x+1 µ(d 5 ) log d 5 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 d 5 |n+1 1. Let q = [d 1 , d 2 , d 3 , d 4 , d 5 ] ≤ 4x + 1. Rewrite it in the form E 1 (x) = x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) (7.3) × 1≤d 5 ≤x+1 µ(d 5 ) log d 5 x [d 1 , d 2 , d 3 , d 4 , d 5 ] - x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) × 1≤d 5 ≤x+1 µ(d 5 ) log d 5          1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 d 5 |n+1 1 - x [d 1 , d 2 , d 3 , d 4 , d 5 ]          = T 2 (x) + T 3 (x).
T 2 (x) = - x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) × 1≤d 5 ≤x+1 µ(d 5 ) log d 5 x [d 1 , d 2 , d 3 , d 4 , d 5 ] = O xe -c 3 √ log x ,
where c 0 > 0 and c 6 > 0 are constants.

Proof. The hypothesis

d 1 | 2n + 1, d 2 | 2n + 1, d 3 | 4n + 1, d 4 | 4n + 1, and d 5 | n + 1 (7.4) implies that [d 1 , d 2 , d 3 , d 4 , d 5 ] = [d 1 , d 2 ] • [d 3 , d 4 ] • d 5 (7.5) since gcd(d 1 d 2 , d 3 d 4 , d 5 ) = 1.
Consequently, the finite sum can be factored as

T 2 (x) = -x x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) [d 1 , d 2 ] 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) [d 3 , d 4 ] × 1≤d 5 ≤x+1 µ(d 5 ) log d 5 d 5 . (7.6) 
Apply Lemma 2.8 to the inner finite sum in (7.6) and apply Lemma 2.4 to the other middle finite sums, that is,

x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) [d 1 , d 2 ] ≤ x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 log(d 1 ) log(d 1 ) [d 1 , d 2 ] ≪ (log x) 5 . (7.7)
Combining these estimates yield

T 2 (x) = O x • (log x) 5 • (log x) 5 • e -c 6 √ log x (7.8) = O x(log x) 10 e -c 6 √ log x = O xe -c 7 √ log x ,
where c 0 > 0 and c 6 > 0 are constants.

■ Lemma 7.3. Assume that d 1 | 2n + 1, d 2 | 2n + 1 and d 3 | 4n + 1, d 4 | 4n + 1. If
x ≥ 1 is a large number and x 1 = (log x) c 0 , then

T 3 (x) = - x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) (7.9) × 1≤d 5 ≤x+1 µ(d 5 ) log d 5          1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 d 5 |n+1 1 - x [d 1 , d 2 , d 3 , d 4 , d 5 ]          = O xe -c 8 √ log x ,
where c 0 > 0 and c 6 > 0 are constants.

Proof. Taking absolute value and invoking Lemma 3.1 yield

|T 3 (x)| ≤ x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 log(d i ) (7.10) × 1≤d 5 ≤x+1 log d 5 1≤n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 d 5 |n+1 1 - x [d 1 , d 2 , d 3 , d 4 , d 5 ] = O     xe -c 8 √ log x x 1 <d 1 ≤2x+1, 1≤d 2 ≤2x+1 log(d 1 ) log(d 2 ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 log(d 3 ) log(d 4 ) × 1≤d 5 ≤x+1 log d 5 • 1 [d 1 , d 2 , d 3 , d 4 , d 5 ]
.

The hypothesis

d 1 | 2n + 1, d 2 | 2n + 1, d 3 | 4n + 1, d 4 | 4n + 1, and d 5 | n + 1 (7.11) implies that [d 1 , d 2 , d 3 , d 4 , d 5 ] = [d 1 , d 2 ] • [d 3 , d 4 ] • d 5 (7.12) since gcd(d 1 d 2 , d 3 d 4 , d 5 ) = 1.
Consequently, the finite sum can be factored as

T 3 (x) = O xe -c √ log x x 1 <d 1 ≤2x+1 1≤d 2 ≤2x+1 log(d 1 ) log(d 2 ) [d 1 , d 2 ] 1≤d 3 ≤4x+1 1≤d 4 ≤4x+1 log(d 3 ) log(d 4 ) [d 3 , d 4 ] × 1≤d 5 ≤x+1 log d 5 d 5 . (7.13) 
Estimating the inner sum, and applying Lemma 2.4 to the middle sum return

T 3 (x) = O xe -c √ log x • (log x) 5 • (log x) 5 • (log x) 2 (7.14) = O x(log x) 12 e -c √ log x = O xe -c 8 √ log x ,
where c 0 > 0 and c 8 > 0 are constants. ■ Lemma 7.4. Assume that

d 1 | 2n + 1, d 2 | 2n + 1 and d 3 | 4n + 1, d 4 | 4n + 1. If x ≥ 1 is a large number and x 1 = (log x) c 0 , then E(x) = O xe -c √ log x ,
where c 0 > 0 and c > 0 are constants.

Proof. Except for minor changes, the analysis of the upper bounds for finite sums E 1 (x), E 2 (x),. . . , E 7 (x) are similar. The first one is computed in Lemma 7.1. Summing these estimates yields

E(x) = E 1 (x) + E 2 (x) + • • • + E 7 (x) (7.15) = O xe -c √ log x .
These complete the proof. ■

Sequence of Prime Pairs

Let Λ(n) denotes the weighted prime power indicator function, (von Mangoldt function),

Λ(n) = log n if n = p k , 0 if n ̸ = p k . (8.1)
The standard prime pairs p = n + 1 and q = 2n + 1 weighted counting function has the form Λ(n + 1).

Let x 1 = (log x) c 0 , with c 0 > 0 constant, and partition the quadruple finite sum.

ψ 0 (x) = n≤x Λ(n + 1) d 1 |2n+1 µ(d 1 ) log(d 1 ) d 2 |2n+1 µ(d 1 ) log(d 2 ) (8.5) = 1≤d 1 ≤2x+1 1≤d 2 ≤2x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1) + 1≤d 1 ≤2x+1 1≤d 2 ≤2x+1 d 1 >x 1 or d 2 >x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |2n+1, d 2 |2n+1 Λ(n + 1) = M (x) + E(x).
Summing the main term computed in Lemma 4.1 and the error term computed in Lemma 6.1, yields The weight factor w(n) = Λ(2n + 1)Λ(4n + 1) ≥ 0 provides effective control over the error term at the cost of a smaller main term, by a factor of approximately log x. 

ψ 0 (x) = M (x) + E(x) (8.6) ≫ x log log x log log log x + O xe -c 1 √ log x ≫ x log
ψ T (x) = n≤x Λ(n + 1)Λ 2 (2n + 1)Λ 2 (4n + 1) (9.3) = n≤x Λ(n + 1) 1≤i≤2 d i |2n+1 µ(d i ) log(d i ) 3≤i≤4 d i |4n+1 µ(d i ) log(d i ) = 1≤d 1 ≤2x+1, 1≤d 2 ≤2x+1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1, 1≤d 4 ≤4x+1 3≤i≤4 µ(d i ) log(d i ) n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 Λ(n + 1).
Let x 1 = (log x) c 0 , with c 0 > 0 constant, and partition the quintuple finite sum. (10.5)

ψ T (x) = 1≤d 1 ≤x 1 , 1≤d 2 ≤x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤x 1 , 1≤d 4 ≤x 1 3≤i≤4 µ(d i ) log(d i ) n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 Λ(n + 1) + 1≤d 1 ≤2x+1 1≤d 2 ≤2x+1 d 1 >x 1 or d 2 >x 1 1≤i≤2 µ(d i ) log(d i ) 1≤d 3 ≤4x+1 1≤d 4 ≤4x+1 d 3 >x 1 or d 4 >x 1 3≤i≤4 µ(d i ) log(d i ) × n≤x d 1 |2n+1, d 2 |2n+1 d 3 |4n+1, d 4 |4n+1 Λ(n + 1) = M T (x) + E T (x). ( 9 
For any fixed prime pair n + 1 and 2n + 1, equation (10.5) has infinitely many solutions as m → ∞.

Example 10.1. Let n+1 = 3 and 2n+1 = 5, and let m ≥ 1 be an integer such that gcd(15, m) = 1. Then, each integer pairs (10m, 12m) has the same totient value For a fixed prime triple, it readily follows that (12.7) is true for infinitely many integer triples as m → ∞. However, the other case for fixed m ≥ 1 and variable prime triples is more difficult to settle. The initial terms of the sequence of three simultaneous totient values generated by these integer triples are tabulated below. 

φ(2 • 5 • m) = φ(2 2 • 3 • m) = 4φ(m). ( 10 
n
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2 , 2 .

 22 Assume that d 1 | 2n + 1, d 2 | 2n + 1 and d 3 | 4n + 1, d 4 | 4n + 1. If x ≥ 1 is a large number, and x 1 = (log x) c 0 , where c 0 > 0, then,

Lemma 7. 1 .

 1 Assume that d 1 | 2n + 1, d 2 | 2n + 1 and d 3 | 4n + 1, d 4 | 4n + 1. If

The subsum T 2

 2 (x) is estimated in Lemma 7.2 and subsum T 3 (x) is estimated in Lemma 7.3. Summing these estimates completes the proof. ■ Lemma 7.2. Assume that d 1 | 2n + 1, d 2 | 2n + 1 and d 3 | 4n + 1, d 4 | 4n + 1. If

2 )1≤d 2

 22 The derivation of a lower bound is based on a new weighted prime pairs counting functionψ 0 (x) = n≤x w(n)Λ(n + 1)Λ(2n + 1). (8.3)The weight factor w(n) = Λ(2n + 1) ≥ 0 provides effective control over the error term at the cost of a smaller main term, by a factor of approximately log x.Theorem 8.1. If x ≥ 1 is a large real number, then n≤x w(n)Λ(n + 1)Λ(2n + 1) ≫ x log log x log log log x . Proof. Substitute the identity Λ(n) = -d|n µ(d) log d, see [1, Theorem 2.11], then reverse the order of summations. ≤2x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |2n+1, d 2 |2n+1

Theorem 9. 1 . 2 .

 12 If x ≥ 1 is a large real number, then n≤x w(n)Λ(n + 1)Λ(2n + 1)Λ(4n + 1) ≫ x log log x log log log x Proof. Substitute the identity Λ(n) = -d|n µ(d) log d, see [1,Theorem 2.11], then reverse the order of summations.

. 4 )x log log x log log log x 2 + O xe -c 1 √ log x ≫ x log log x log log log x 2 , 2 . 2 ≥ x 2 1( 2 (

 42122222 Summing the main term computed in Lemma 5.1 and the error term computed in Lemma 7.1, yieldsψ T (x) = M T (x) + E T (x) (9.5) ≫ where c 1 > 0 is a constant. ■ Corollary 9.1. If x ≥ 1 is a large real number, then n≤x Λ(n + 1)Λ(2n + 1)Λ(4n + 1) ≫ x log log x (log x) log log log x Proof. A routine application of Theorem 9.1 and partial summation yield n≤x Λ(n + 1)Λ(2n + 1)Λ(4n + 1) ≥ n≤x w(n)Λ(n + 1)Λ(2n + 1)Λ(4n + 1) (log n) log z) 2 dψ T (z) ≫ x log log x (log x) log log log x Two Simultaneous Values over the Ring of Integers Let 2 a m ≥ 2 be an even integer, where a ≥ 1, m ≥ 1 is odd. Assume n + 1 and 2n + 1 are primes such that gcd(m, n + 1) = 1 and gcd(m, 2n + 1) = 1. (10.1) Then, φ(2 a m(2n + 1)) = 2 a nφ(m). (10.2) and φ(2 a+1 m(n + 1)) = nφ(2k) = 2 a nφ(m). (10.3) Thus, the double indexed sequence of pair of distinct integers 2 a m(2n + 1) = 2 a+1 mn + 2 a m and 2 a+1 m(n + 1) = 2 a+1 mn + 2 a+1 m (10.4) have the same totient values φ(2 a m(2n + 1)) = φ(2 a+1 m(n + 1)) = 2 a nφ(m).

Let 2 a

 2 m ≥ 2 be an even integer, where a ≥ 1, m ≥ 1 is odd, and let n > m. Assume n + 1, 2n + 1, and 4n + 1 (12.1) are primes. The initial conditions imply that gcd(2, m, n+1) = 1, gcd(2, m, 2n+1) = 1, and gcd(2, m, 4n+1) = 1. (12.2)Accordingly, the first totient value isφ((n + 1)2 a+1 m) = φ(n + 1)φ(2 a+1 )φ(m) = 2 a nφ(m),(12.3)the second totient value isφ((2n + 1)2 a m) = φ(2n + 1)φ(2 a )φ(m) = 2 a nφ(m),(12.4)and the third totient value isφ((4n + 1)2 a-1 ) = φ(4n + 1)φ(2 a-1 )φ(m) = 2 a nφ(m). (12.5) Thus, the integer triples (4n + 1)2 a-1 m, (2n + 1)2 a m, and (n + 1)2 a+1 m (12.6) have the same totient value φ((4n + 1)2 a-1 m) = φ((2n + 1)2 a m) = φ((n + 1)2 a+1 m) = 2 a nφ(m). (12.7)

Theorem 12 . 1 . 13 .

 12113 If r ̸ = 2 and r ̸ = 4 are small fixed even integers, then φ(n) = φ(n + r) = φ(n + s) infinitely often as n → ∞. In particular, φ(4n + 2) = φ(4n + 4) = φ(4n + 8)(12.8) has infinitely many solutions.Proof. Let 2 a m ≥ 2 be a fixed even integer, where a ≥ 1, m ≥ 1 is odd, and let n > m. Assume n + 1, 2n + 1 and 4n + 1 are primes. The initial conditions imply that (12.2) is valid. Accordingly, the integer triple (4n + 1)2 a-1 m, (2n + 1)2 a m, and (n + 1)2 a+1 m (12.9)have the same totient valueφ((4n + 1)2 a-1 m) = φ((2n + 1)2 a m) = φ((n + 1)2 a+1 m) = 2 a nφ(m). (12.10) By Corollary 9.1, there are infinitely many prime triples n + 1, 2n + 1 and 4n + 1 as n → ∞. In particular, φ(8n + 2)) = φ(8n + 4)) = φ(8n + 8) = 4n (12.11) infinitely often. ■ Numerical Data for Three Simultaneous Values over the Integers Example 13.1. The sequence of prime triples n + 1, 2n + 1 and 4n + 1 generates the sequence of nearly consecutive integer triples 8n + 2, 8n + 4, and 8n + 8. (13.1)

  2.6), and Lemma 2.1 is used to obtain the last line.

■ 2.2. Elementary Estimates. Lemma 2.4. If x ≥ 1 is a large number, then, m, n≤x

Table 1 .

 1 .6) So, as m → ∞, there are infinitely many integer pairs with the same totient values. Numerical Data for Two Simultaneous Values over the Integers Example 11.1. The sequence of prime pairs n+1 and 2n+1 generates the sequence of consecutive even integer pairs 4n + 2 and 4n + 4. (11.1) The initial terms of the sequence of two simultaneous totient values generated by these integer pairs are tabulated below. Two Simultaneous Values of the Totient Function 12. Three Simultaneous Values over the Ring of Integers

	The other case for a fixed m and variable n is far more difficult to prove, as shown
	below.	
	Proof. (Theorem 1.1) Fix a small even integer 2 a m ≥ 2, where a ≥ 1, m ≥ 1 is odd.
	By Corollary 8.1, there are infinitely many prime pairs n + 1 and 2n + 1 as n → ∞.
	Therefore, the relation (10.2) and (10.2) are true infinitely often. In particular,
	φ(4n + 2)) = φ(4n + 4) = 2n	(10.7)
	infinitely often. Quod erat inveniendum.	■

Table 2 .

 2 Three Simultaneous Values of the Totient Function

		18	78	330	438	498	618	828
	n + 1	19	79	331	439	499	619	829
	2n + 1	37	157	661	877	997	1237	1657
	4n + 1	73	313	1321	1753	1993	2473	3313
	8n + 2	146	626	2642	3506	3986	4946	6626
	φ(8n + 2)	72	312	1320	1752	1992	2472	3312
	φ(8n + 4)	72	312	1320	1752	1992	2472	3312
	φ(8n + 8)	72	312	1320	1752	1992	2472	3312