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Linear orbital stability of discrete shock profiles for systems of conservation laws

Lucas COEURET!

Abstract

We prove the linear orbital stability of spectrally stable stationary discrete shock profiles for conservative finite
difference schemes applied to systems of conservation laws. The proof relies on a precise description of the
pointwise asymptotic behavior of the Green’s function associated with those discrete shock profiles, improving
on the result of Godillon [God03]. The main novelty of this stability result is that it applies for a fairly large
family of schemes that introduce some artificial viscosity and most importantly, that we do not impose any
weakness assumption on the shock.

AMS classification: 35L65, 65M06
Keywords: systems of conservation laws, finite difference scheme, discrete shock profiles, semigroup esti-
mates, linear stability
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6 Appendix 65
Notations

Throughout this article, we define the following sets:
U:={z€C,|z|>1}, D:={z€C,|z|<1}, S':={z€C,|z|=1},
U:=S'ulU, D:=StuDb.

For z € C and r > 0, we let B(z,r) denote the open ball in C centered at z with radius r. We also introduce
the Kronecker symbol §; ; which is equal 1 if ¢ = j and 0 when i # j.

For E a Banach space, we denote L(E) the space of bounded operators acting on E and |[|-[| ) the operator
norm. For T in £(E), the notation ¢ (T") stands for the spectrum of the operator T and p(T) denotes the resolvent
set of T'.

We let M,, (C) denote the space of complex valued n x k matrices and we use the notation M,,(C) when
n = k. For an element M of M,, (C), the notation M7 stands for the transpose of M. For a square matrix
M, com(M) corresponds to the cofactor matrix associated with M.

We use the notation < to express an inequality up to a multiplicative constant. Eventually, we let C (resp.
¢) denote some large (resp. small) positive constants that may vary throughout the text (sometimes within the
same line). Furthermore, we use the usual Landau notation O(-) to introduce a term uniformly bounded with
respect to the argument. For more clarity, we will also occasionally use the notation O4(-) to precise the fact
that the term is a complex scalar and will try to reserve the notation O(-) for vectors/matrices.

We let Res(f, a) denote the residue of a meromorphic function f at the point a.

1 Introduction

1.1 Context

A fundamental issue on the subject of systems conservation laws is to understand how discontinuities that can
arise in solutions are handled by conservative finite difference schemes. At the center of this question stands
the notion of discrete shock profiles which correspond to solutions of the numerical scheme which are traveling
waves linking two states. They are numerical approximations of shocks and the overarching goal is thus to prove
that for any admissible and physically relevant shock of the system of conservation laws, there exists a discrete
shock profile or a family of them that verifies satisfying stability properties. For a general introduction on the
questions of existence and stability of discrete shock profiles, we highly encourage the interested reader to take
a closer look at [Ser07].

In the present paper, we will consider conservative finite difference schemes which introduce numerical
viscosity and will focus on the study of the discrete shock profiles associated with standing Lax shocks. We
assume that there exists a continuous one-parameter family of discrete shock profiles associated with such a
shock. Such an existence result has been proved for instance in [MR79, Mic84] under a weakness assumption
on the shock, i.e. when the difference between the two states is sufficiently small. Let us introduce two notions
of stability for the family of discrete shock profiles:

e Spectral stability amounts to asking for the operators obtained by linearizing the numerical scheme about
the discrete shock profiles to have no unstable or marginally stable eigenvalues except for 1 which is
always an eigenvalue because of the existence of the continuous one-parameter family of discrete shock
profiles. Furthermore, we ask for 1 to be a simple eigenvalue of the linearized operator. This corresponds
to Hypotheses 6 and 7 below.



e Nonlinear orbital stability signifies that for initial conditions of the numerical scheme which are suitably
small perturbations of one of the discrete shock profiles, then the solutions of the numerical scheme that
ensue stay close to the manifold of the discrete shock profiles. This is a stronger stability property.

There are some results surrounding nonlinear stability that have been proven. Most of them introduce
a weakness assumption on the underlying shocks and/or focus on fairly specific schemes or situations. For
instance, [LX93a, LX93b, Yin97] focus on proving a nonlinear orbital stability result on discrete shock profiles
moving with rational speeds associated with weak Lax shocks for the Lax-Friedrichs scheme. Two of the main
results which we can point out are the following ones:

e In [Mic02], Michelson proves nonlinear orbital stability of the family of discrete shock profiles associated
with weak standing Lax shocks for schemes of any odd order under an assumption of stability of the
viscous shock profiles associated with some scalar problem.

e In [JenT74]|, Jennings focuses on the particular case of monotone schemes for scalar conservation laws. The
main results are the existence and uniqueness of continuous one-parameter family of discrete shock profiles
with rational speeds and a proof of nonlinear orbital stability for them when they are associated with Lax
shocks. In this paper, no weakness assumption on the associated shocks is introduced.

Compared with the nonlinear stability theory for viscous shock profiles [ZH98] or for semi-discrete shock profiles
[BGHRO03, BHSZ10], we hope to prove that spectrally stable discrete shock profiles verify nonlinear orbital
stability. This new result would generalize the previously cited article by proving a result of nonlinear stability
for systems of conservation laws, for a fairly large family of finite difference schemes, whilst avoiding to introduce
a weakness assumption on the shocks.

Just like in [ZH98, BGHRO03, BHSZ10|, proving that spectral stability implies nonlinear orbital stability
relies on an accurate description of the Green’s function (defined below by (1.24)) associated with the operator
obtained by linearizing the numerical scheme about the discrete shock profiles. The main result of the present
paper provides such an accurate description (see Theorem 1). We have not yet proven that specral stability
implies nonlinear stability, however the description of the semi-group associated with the linearized operator
deduced by Theorem 1 already allows us to quite simply prove linear orbital stability (see Theorem 2). We
hope to prove the nonlinear stability result in a future paper.

Let us now focus on the study of the Green’s function. Theorem 1 can be seen as an improvement on
the result of [God03] that highly influenced the analysis performed in the present paper. In [God03, LGO1],
Pauline Lafitte generalizes in the fully discrete setting several tools introduced in [ZH98] necessary to study
the Green’s function for the linearized operator. More precisely, she constructs the Evans function for this
problem and introduces in her thesis [LGO01] the notion of geometric dichotomies (an equivalent version of the
exponential dichotomies in the discrete dynamical systems). Those tools will be redefined and used intensively
in the present paper. Lafitte then attempts to obtain precise estimates on the Green’s function of the linearized
operator. However, the result of [God03] has two limitations:

e The proof is done specifically for the modified Lax-Friecrichs scheme. This is not a strong limitation as
it is quite clear that the content of the paper [God03] can be generalized for a larger class of numerical
schemes (at least for odd ordered schemes).

e The estimates on the Green’s function proved in [God03, Theorem 1.1] are not sufficient to conclude on
the nonlinear stability as they are only local with respect to the initial localization of the Dirac mass
associated with the Green’s function (the parameter ! in [God03, Theorem 1.1] which corresponds to the
parameter jo in Theorem 1). This is a consequence of the analysis on the so-called spatial Green’s function
(defined below by (1.25)) done in [God03] which is not precise enough.

In the present paper, we solve those issues by describing precisely the leading order of the Green’s function
and proving sharp and uniform estimates on the remainder. We also consider schemes of any odd order, in
particular with only few restrictions on the size of the stencil of the scheme.

1.2 Definition of stationary discrete shock profiles (SDSP)

We consider a mono dimensional system of conservation laws

atU‘i‘awf(U) :O, tER+7CL‘ GR, (1 1)
u:Ry xR = U, '



where d € N\ {0} corresponds to the number of unknown u =: (uq,...,uq) of (1.1), the space of states U is an
open set of R? and the flux f : U — R? is a smooth function. We will suppose that the system of conservation
laws is hyperbolic, meaning that for all u € U, df (u) is diagonalisable with real eigenvalues.

We fix two states u~,u" € U such that

flu™) = fu®). (1.2)
This is the well-known Rankine-Hugoniot condition which allows to state that the standing shock defined by

u”  ifx <0,

Vie Ry, Ve e R, w(t,z):= { ot olse (1.3)

is a weak solution of (1.1).
Since the system of conservation laws we consider is hyperbolic at the states u™, we introduce the eigenvalues

AT, ..., AF € R and a basis of nonzero eigenvectors ri, ..., 7> € R? of df (u*) € My(C) associated with those
eigenvalues. We also define the invertible matrix

+

P* = (rf |...| ri)e Mu(R) (1.4)
and the dual basis lf, . lzlt € R associated with the eigenvectors 'rf, . rdi defined by
T -1
(I ... ) = (PF) . (1.5)

T

The vectors lli are then eigenvectors of df (u®)T associated with the eigenvalues )\li. We organize the eigenvalues

so that
AF <. <AT

In this paper, we focus our attention on Lax shocks.

Hypothesis 1 (Lax shock). We assume that 0 ¢ o(df (u™)) = {)\f[, e )\;t} (i.e. the shock is non-characteristic).
Furthermore, we assume that there exists an index I € {1,...,d} such that

AT <0< AT,
AT <0< AT,

where AT := —co and /\ZI'EJrl = 4o00.

We fix a constant v > 0 and introduce a space step Az > 0 and a time step At := vAz > 0. The constant
v then corresponds to the ratio between the space and time steps. We introduce the discrete evolution operator
N UE — U defined for u = (u;)jez € U as

VJ GZ, (./\fu)J = Uy —II(F (U;Uj_p+17...,u]‘+q)—F(V;Uj_p,...7uj‘+q_1))7 (16)

where p,q € N\ {0} and the numerical flux F : (v;u_p,...,u,—1) €]0, +0o[xUP? — R? is a C! function. We
are interested in solutions of the conservative one-step explicit finite difference scheme defined by

vneN, u"t=Nu" (1.7)

where u° € U~.
We assume that the numerical scheme satisfies the following consistency condition with regards to the PDE

(1.1)
Vv €]0,+oo[,Vu eUd, F(v;u,...,u)= f(u). (1.8)

We also suppose that the following CFL condition is verified?
YueU, wvmino(df(u)) > —¢ and wvmaxo(df(u)) <p (1.9)

which is required to have linear £2-stability at constant states.

Traveling waves solutions of the numerical scheme (1.7) linking two states of some shocks are the so-called
discrete shock profiles. Since we are considering stationary shocks (1.3) in the present paper, the discrete shock
profiles associated will also be stationary and will thus correspond to fixed points of the operator N.

2Up to considering that the space of state U is a close neighborhood of the SDSP defined underneath in Hypothesis 2, we should
be able to satisfy such a condition.



Hypothesis 2 (Existence of a stationary discrete shock profile (SDSP)). We suppose that there exists a sequence
w® = (u)jez € U that satisfies
N@*)=u" and u; — ut.
j—too

Let us point out that in [Ser07], it is proved that the existence of a SDSP implies that the Rankine-Hugoniot
(1.2) is verified. However, the existence of a SDSP for all admissible and physically significant standing shock is
not fully answered. Existence results tend to actually prove the existence of a continuous one-parameter family of
discrete shock profiles. The main results tackling the issue of existence of SDSP would be [MR79, Mic84, Jen74]:

e In [Jen74]|, Jennings focuses on discrete shock profiles for monotone conservative schemes applied to scalar
conservation laws. In this context, he proves the existence and uniqueness of a continuous one-parameter
family of discrete shock profiles associated with shocks of any strength for rational speeds. He also proves
nonlinear orbital stability for such DSPs.

o In [MR79], Majda and Ralston tackle the case of system of conservation laws and prove the existence of
a continuous one-parameter family of DSPs with rational speeds. They introduce two limitations though:
They consider schemes of order 1 (this corresponds to the case where p = 1 in Hypothesis 5 below) and
they only consider weak shocks, i.e. shocks where the difference between the two states must be small
enough. The result is generalized in [Mic84] for schemes of order 3 (i.e. =2 in Hypothesis 5 below).

The following assumption on the convergence of the SDSP w® towards its limit state is important in the
article as it it used to construct some of the main tools needed to carry the analysis of this paper (for instance
to prove the geometric dichotomy in Section 3.3 or for the proof of Lemma 4.3).

Hypothesis 3 (Exponential convergence of the SDSP towards its limit states). There exist some constants
C,c > 0 such that _
7 — | < Ceed,

Vien, [a*, —u~| < Ce 9.

(1.10)

Hypothesis 3 can most likely be proved to be a consequence of the shock being non-characteristic (Hypothesis
1). We refer to [ZH98, Corollary 1.2] for a proof of this fact in the continuous setting and [BHSZ10, Lemma
1.1] in the semi-discrete case.

1.3 Linearized scheme about the end states u*

Let us now introduce some hypotheses on the end states u+ and ©~. To summarize briefly the main assumptions,
we mainly ask for the numerical schemes we consider to introduce numerical viscosity and to have linear £"-
stability at the states u™ and u~.

We linearize the discrete evolution operator A/ about the constant states u~ and u™ and thus define the
bounded operators .Z* acting on ¢"(Z,C?%) with r € [1, +00] defined by

q
Vhe 0'(Z,CH,Vj € Z, (L*h); =Y Afhju, (1.11)

k=—p

where for k € {—p,...,q — 1}, we have

Bif = v0,,F (viu*,. .. .ut) € My(C) (1.12)
and for k € {—p,...,q}
-BE | if k =g,
Af = Bt if k= —p, (1.13)
Skold + ka - Bf else.

We start by introducing the following assumption on the matrices B,;t and A,f.

Hypothesis 4. The eigenvectors ,,,:1I:7 ey 7’2} of df (u™) are also eigenvectors of cht and thus also of Af. FEquiv-
alently, the matrices df (u™) and B,:f must commute for all k € {—p,...,q— 1}.



Hypothesis 4 is fairly usual and is not that far fetched since the consistency condition (1.8) links the numerical
flux F and the flux f and that, most of the time, the matrices B,:f defined by (1.12) are expressed using df (u®).
If you consider for example the modified Lax-Friedrichs scheme, this hypothesis is satisfied. We can then
introduce the notation for k& € {—p, ..., q}

+
ALk
= P AEpE (1.14)
o

For [ € {1,...,d}, we define the meromorphic function F;* on C\ {0} by

q
Ve e C\{0}, Ff(k)= Y A5x"eC. (1.15)

k=-p
The functions ]-"li allow us to characterize the spectrum of the operators Z+. We refer for instance to [CF22,

Coe22| for a study in the scalar case of similar convolution operators as .#*. Fourier analysis and in particular
the well-known Wiener theorem [New75| imply that

q d
o) =Jo| DY saf | = FEEhH. (1.16)
=1

KkeSL k=—p

The definition (1.13) of the matrices Af and the consistency condition (1.8) imply that

q q
Y Ap=1Id and > kAL = —wdf(uF)

k=—p k=—p
which translates into having
Vie{l,...,d}, Ff(1)=1 and of := —]-'li/(l) = VA #0. (1.17)

The following assumption is linked to the linear ¢"-stability of the numerical scheme (1.7) at the end state
which corresponds to the ¢"-power boundedness of the operators .Z*.

Hypothesis 5. For alll € {1,...,d}, we have
Ve e SN\{1}, |FE(k)| < 1. (Dissipativity condition)

Moreover, we suppose that there exists an integer p € N\ {0} and for alll € {1,...,d}, there exists a complex
number ﬁli with positive real part such that
FiE(e) o exp(—ia; ¢ — BEEH 4+ O(|¢*Y)).  (Diffusivity condition) (1.18)

Asking for the ¢2-power boundedness of the operator .#* is equivalent to asking that o(Z*) c D (Von
Neumann condition). The stronger Hypothesis 5 is inspired by the fundamental contribution [Tho65] due to
Thomée and has much further consequences, as the asymptotic expansion (1.18) assures the £"-power bounded-
ness of the operator .+ for every r in [1, 400 (see [Tho65, Theorem 1] which focuses in the scalar case on the
¢>-power boundedness but also studies the ¢"-power boundedness as a consequence). The diffusivity condition
(1.18) can be translated into asking for the numerical scheme N to introduce numerical viscosity at the end
state ut.

We conclude this section by defining the open set O which corresponds to the unbounded connected com-
ponent of C\(c(£T)Ua(£7)) represented on Figure 1. Hypothesis 5 implies that U\ {1} C O.

1.4 Linearized scheme about the SDSP u*

We now linearize the discrete evolution operator N~ about the discrete shock profile @* and thus define the
bounded operator . acting on ¢"(Z,C%) with r € [1,4+oc] defined by

q
Vhe "(Z,CYVj €L, (ZLh)j= > Ajrhjr, (1.19)

k=—p



=N
-

Figure 1: In red, we have the spectrum of the operators £+ which corresponds to the union of the curves ]-'li (SY).
In gray, we represent the set O which corresponds to the unbounded component of C\(c(Z1)Uc(£7)). The
elements of the set O are either eigenvalues of the operator .# (represented in green) or belong to the resolvent
set p(¥). We know that 1 is an eigenvalue of £ and Hypothesis 6 implies that the eigenvalues of ¥ in O are
located within the open unit disk.

where for j € Z and k € {—p,...,q — 1}, we have
Bj i :=v0,, F (V;ﬂj;p, .. ,ﬂ;+q71) € My(C)
and for j € Z and k € {—p,...,q}

—Bji1,4-1 if k=g,
A]’,k = Bj7_p if k= —p, (120)
5]€701d + Bjk — Bjt1,k—1 otherwise.

We observe that since the SDSP (Ej )jez converges exponentially fast towards its limit states ut

, we have
that the matrices A; (resp. Bj 1) converge exponentially fast towards the matrices A,f (resp. B,:f) defined by
(1.13) (resp. (1.12)) as j tends towards +oo.

We will now focus on the spectral properties of the operator . when it acts on £2(Z,C?). The following

proposition which localizes the essential spectrum of the operator £ is central.

Proposition 1. We have that
Oess(L)NO = 0.

Proposition 1 allows us to conclude that for z € O, zIldyp — £ is a Fredholm operator of index 0 and thus
that z either belongs to the resolvent set of Z or is an eigenvalue of .Z. Proposition 1 is proved for instance
in [Ser07, Theorem 4.1] using the so-called geometric dichotomy developped in the thesis of Pauline Godillon
[LGO1, Section III.1.5]. We will have to reintroduce the geometric dichotomy in Section 3 and we will thus
provide the proof of Proposition 1 (see Lemma 3.7).

We will now introduce the spectral stability assumption that we impose on our SDSP w®. It can be separated
in two parts.

Hypothesis 6. The operator £ has no eigenvalue of modulus equal or larger than 1 other than 1.

Combining Hypothesis 6 with Proposition 1, we can then conclude that the set U\ {1} is included in the
resolvent set of .Z.

The second part of the spectral stability assumption and the last hypothesis we will introduce on the
spectrum of the operator .Z has to do with the so-called Evans function Ev defined later on in the article by
(4.18). This is a complex holomorphic function defined in a neighborhood of 1 that vanishes at the eigenvalues
of Z. The Evans function plays more or less the role of a characteristic polynomial for the operator .Z.

We will show that under the previous hypotheses, 1 is an eigenvalue of the operator .Z and thus that the
Evans function Ev vanishes at 1. This is the consequence of the existence of a continuous one-parameter family of



SDSPs associated with the one we are studying. In continuous and semi-discrete settings as in [ZH98, BHSZ10],
there is an underlying regular profile that describes the continuous one-parameter family of traveling waves
studied in those papers sd translations of said profile. The derivative of the regular profile belongs to the kernel
of the linearized operator in these settings. In our present fully discrete setting, existence of such a regular
underlying profile that describes the different SDSPs on one-parameter family has translations of each other is
not clear.

Here, we will make a stronger hypothesis on the behavior of the Evans function at 1.

Hypothesis 7. We have that 1 is a simple zero of the Fvans function, i.e.

OEv
0z

(1) #0.

We will show that Hypothesis 7 implies that 1 is actually a simple eigenvalue of the operator .. More
precisely, we will prove that there exists a sequence V € £2(Z,C%)\ {0} such that

ker(Idep2 — %) = SpanV (1.21)

and such that the sequence V converges exponentially fast towards 0 at infinity, i.e. there exist two positive
constants C|, ¢ such that A
Vji€Z, |Vl <Ce il (1.22)

Coming back to the discussion above, if there exists a regular profile that allows us to describe the one-parameter
family of SDSPs as translations from one another, the sequence V would then correspond to the "derivative"
of said profile.

We finalize this section by introducing two last hypotheses that we one could qualify as more technical.

Hypothesis 8. The matrices Aj _p = Bj _p, Ajq = —Bjti1,4-1, Afp = pr and AqﬂE = —B;t_l are invertible
for all j € Z.

This hypothesis is a consequence of the CFL condition (1.9), at least for the modified Lax-Friedrichs scheme.
Hypothesis 8 serves us in the article to express the eigenvalue problems associated the operator ., T and
%~ as dynamical systems (see Section 3.1). Finally, we impose for the following assumption to be verified.

Hypothesis 9. For alll € {1,...,d}, the equation
FEr) =1 (1.23)
has p + q distinct solutions k € C\ {0}.

Hypothesis 9 will be used to prove that the matrix M;5(1) defined by (3.8) is diagonalizable with simple
eigenvalues. This will allow us to study the eigenvalues and eigenvectors of the matrix M*(1) defined by (3.1)
in Section 4. Let us observe that the expression (1.15) of }"li implies that searching for solutions x € CPT4\ {0}
of (1.23) is equivalent to searching for zeroes of

q
k € C\ {0} — kP — Z /\li)k/ﬂk“’.

k=—p

The function above has p+ ¢ zeroes counted with multiplicity and Hypothesis 8 is then just equivalent to asking
for the zeroes of the function above to be simple.

1.5 Temporal and spatial Green’s functions

For jy € Z, we define the temporal Green’s function recursively as

g(oaj()a ) = 6]'0
VneN, 9(n+1,jo,-) =29, jo,), (1.24)

where §;, = (0j,,;1d) ;- For z € p(&£), we also define the spatial Green’s function G(z,jo,") as the only

element of ¢?(Z, M4(C)) such that
(Zldp —X)G(Z,jo,') :5jo' (125)



Remark 1. To be more precise, the previous definitions can seem unclear since .# is defined on ¢?(Z,C%). A
way to understand it is that the temporal Green’s function is defined as

g(():j(h ) = 6j0
Vn e N,Vee C? Y(n+1,j,-)€:= L9 (n,jo,)e.

Also, G(z, jo, -) is the only element of ¢*(Z, M4(C)) such that for all € € C¢, G(z, jo,-)€ is the only element of
¢%(Z,C%) such that
(Zldgz — g)G(Z,jo, )g: (5j05.

The main consequence of the introduction of the temporal Green’s function is that for all k € £7(Z, C?) with

r € [1,+00], we have
VneNVjeZ, (L h); = 9(n.joj)hj,.
Jo€Z

Thus, a precise description of the temporal Green’s function is sufficient to understand the action of the semi-
group (Z")nen associated with the operator Z.

The following lemma proved via a simple recurrence is a direct consequence of the definition (1.24) of the
temporal Green’s function and the finite speed propagation of the linearized scheme.

Lemma 1.1. For alln € N, jo,j € Z, we have that

j_jO ¢ {_nqaanp} jg(n,jo,j) =0.

Our goal is now to describe the behavior of the temporal Green’s function when j — jo € {—ng,...,np}. To
do so, we define the functions Hay,,, F)5,, : R = C such that for § € C with positive real part, we have

1 i m
Ve e R, Hou(f;x):= %/6”"675“2 du,
R
“+o0

Ve e R, By (B;z) = Hy, (B;y)dy,

xT

(1.26)

where we recall that the integer u is defined in Hypothesis 5. We call the functions Hs, generalized Gaussians
and the functions Ej,, generalized Gaussian error functions since for p = 1, we have

Ve e R, Hy(B;x) = \/4171_767

Noticing that the function H5, is an even function and that it is the inverse Fourier transform of u — 67ﬁu2u7
we observe that

+oo
lim Ey,(8;7) = Hou(Biy)dy = 1 (1.27a)
Vo €R, Eou(f,—x) =1— Eau(B, ). (1.27b)

The following lemma introduces some useful inequalities on the functions Hy,, and Fy, defined by (1.26).

Lemma 1.2. Let us consider a compact subset A of {z € C,R(z) > 0} and integers p, m € N\ {0}. There exist
two positive constants C,c such that for all p € A

Vo € R, |07 Hap(B;7)| < Cexp(—cla|5T), (1.28a)
Va €]0,+oo[, |E2u(B;z)] < Cexp(—c|x|%), (1.28b)
Vo €] —00,0[, |1—Es,(B;z) < Cexp(—clz %) (1.28c¢)

The interested reader can find a proof of (1.28a) when the subset A is a one point set in [Coe22, Lemma 9| or
in [Rob91, Proposition 5.3] for a more general point of view. By observing that the constants C, ¢ constructed in
those proofs depend continuously on 3, we can then conclude the proof (1.28a) for general sets A. Inequalities
(1.28b) and (1.28¢) for the function Ey, are directly deduced by integrating the function Hs, and using (1.27a)
and (1.28a).

We then introduce for n € N\ {0} and j, jo € Z the functions defined by



For jo>0and l € {1,...,d}

. 1 nay” + jo —j T
S,F(n, jo, j) == ﬂjzoﬂﬂe[ﬂ 5 ]szu +7¥ i, (1.29a)
ot 24T nze nze
1
For jo > 0,1’ € {1,...,I} and l € {I +1,...d} (i.e. such that ;) <0 and a;" > 0)
o

, , 20 naf + jook —j
. 1 J Jo o ! o T
Rﬁl(ﬂ,]od) = ﬂjzoﬂai'_a;oe[ﬂ Qn]THZ/J, ﬁﬁﬁ Bl gt ,— v ril)

)
nze

(1.29b)
For jo > 0,1" € {1,...,I} and l € {1,...I — 1} (i.e. such that ;) <0 and o < 0)

. 20 nay +jo-F —J
1 J oo Jo @ ! o T
T+ (n JoyJ ) =10l _ J‘gre[%,gn]ilfbu 7751 +Bl l+ e el llJ'r )

a oy n2we ’I’LOél nal, G nze
(1.29¢)
For jo > 0and I’ € {1,...,I} (i.e. such that aj} <0)
J’» .
. nag + ) T
E}(n,jo) == Eo, ( 1 110) e, (1.29d)
nzw
For jo <Oandl € {1,...,d}
P 1 _nog +jo—J\ _,-T
Sy (n, o, j) = Licolimancpy o)~ Hou (ﬁl ), (1.29e)
o] 27 n2w nau
For jo <0,0' €{I,...,d} and l € {1,...1 — 1} (i.e. such that oy, > 0 and ¢ < 0)
j 2 noy + joo &g
1 J e ! 7 T
Rl/ (TL ]Oa ) 7]lj<0]l _ Jo_ e[g Qn]jHQ,u 7_61 - 0 51 ( > ’—L T ll’ ,
o “17 27 nze nozl nozl, al, n2u
(1.29f)
For jo < 0,1' € {I,...,d} and l € {I +1,...d} (i.e. such that aj, > 0 and o > 0)
N
- - o o + ol -
- ; 1 J Jo af ! o, _T
T; = Tiool ,  so ot o1 ——Hay | Lt — + (Y S e T
l,z(n,JmJ) J>0 & Q?_]E[fﬁzn]nﬁ 2p nal*ﬁl na; e (0‘1/ ] = Tl
(1.29g)
For jo < 0,1 €{I,...,d} (ie. such that o;, > 0)
o _ —nay —jo\ ,-T
El’ (’I’L,]o) = E2M (ﬁl/ ) l;) ll/ . (1.29h)
n 2

The functions introduced above describe different behaviors that will be observed for the temporal Green’s

function. To be more precise, the main theorem of the present paper is the following description of the temporal
Green’s function.

Theorem 1. Let us assume that Hypotheses 1-9 are verified. There ea:ist a sequence V € (2(Z,C%)\ {0} such
that (1.21) and (1.22) and families of complex scalars (CF j[) (C’lj"?3 Yoy and (CF li)l/,l such that for all
n € N\ {0}, jo €N, j € Z and € € C? such that

d

I-1
9 (n, jo, Jj)€ Z (n,jo, J Z Z Cw l/ (n, jo, J €+ZCM T/ (1, o, Jj )€+Cl/ E; (n,jo)é'vj

=1 '=1 Li=1+1 =1
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where R(n, jo,j) is a faster decaying residual in comparison to the other terms. There is a similar result when
Jo <0 using the families of complex scalars (CfF )y, (Cf}, )iy and (C )iy and the functions Ej;, S;”, Ry,
and T} ;.

Let us describe more clearly the result of Theorem 1 conveys for jo > 0. The same description can be done
when jo < 0. The first term on the right hand-side using the function .S, l+ of (1.30) corresponds to d generalized
Gaussian waves arising from the Dirac mass at jo which travel along the characteristics of the right state u™.
The generalized Gaussian behavior of the different waves originates from the smearing effect caused by the
diffusivity condition in Hypothesis 5 which corresponds to the introduction of artificial viscosity at the states
u*. Recalling that we are considering a Lax shock under Hypotheses 1, we observe the following separation of
behavior:

e The first I generalized Gaussian waves follow the characteristics entering the shock since o;f < 0 for
le{1,...,I} and will reach the shock.

e The last d — I generalized Gaussian waves follow the outgoing characteristics with respect to the shock
since a;” > 0 for I € {I +1,...,d} and travel towards +oo.

When the generalized Gaussian waves following entering characteristics reach the shock, we observe that they
are dispersed in three different behaviors:

e There are reflected generalized Gaussian waves along the outgoing characteristics of the state u™. It
corresponds to the second term using the function R;', in (1.30).

e There are transmitted generalized Gaussian waves along the outgoing characteristics of the state u=. It
corresponds to the third term using the function Tlfrl in (1.30).

o Because of the properties of the function Es, defined by (1.26), we have that the vectors E;,“ (n,jo) are

closer to 0 for small times n and converge towards l?,‘T as n tends towards +o00. Thus, the last term in the
decomposition (1.30) could be described as the apparition of a stationary part corresponding the profile
V that describes the vector subspace ker(Idy —.%). Each wave activates this profile as they reach the
shock.

One of the main consequence that can be deduced from Theorem 1 corresponds to the so-called linear orbital
stability of the stationary discrete shock profile w®.

Theorem 2. Let us assume that Hypotheses 1-9 are verified. For ry,ry € [1,400| such that r1 < ro, there
exists positive constant C' such that

C
Vh € £7(Z,C%),¥n € N, min L=V, < ————— [|hl[prr -
Veker(Id,2 —%£) ni %,%)

We recall that when we introduced the Hypothesis 7 on the Evans function, we discussed on the fact that,
when that Hypotheses 1-9 are verified, if there exists a regular profile that allows us to describe the one-
parameter family of SDSPs as translations from one another, then the elements of ker(Idy — %) correspond to
the derivative of said profile and scalar multiples of it.

1.6 Plan of the paper

Firstly, Section 2 will be dedicated to the proof of Theorem 2 using Theorem 1. The main part of the article
however (from Sections 3 to 5) will concern the proof of Theorem 1:

e In Section 3, we will prove Proposition 1 which describes the spectrum of the operator .Z in the set O
and will allow to define the spatial Green’s function defined by (1.25) on U\ {1}. We will then prove
Proposition 2 which implies exponential bounds on the spatial Green’s function in the neighborhood of
any point of U\ {1}.

e In Section 4, we prove that the spatial Green’s function can be meromorphically extended in a neighbor-
hood of 1 through the essential spectrum of the operator .. We will show that it has a pole of order 1
at z = 1 and find precise expressions (4.45)-(4.48) on it that will be essential in the Section 5.

11



e In Section 5, we express the temporal Green’s function defined by (1.24) with the spatial Green’s function
using the inverse Laplace Transform. Using the different results proved on the spatial Green’s function in
Sections 3 and 4, we will conclude the proof of Theorem 1.

Section 6 is the Appendix and contains the proof of some technical lemmas used throughout the paper.
Some of those proofs are done in other papers, however, the authors feels like they needed to be reproved either
to correct mistakes or because the way they are presented here is fairly different from the statement in other
papers.

1.7 Possible further developments

The main development that we hope for is of course that the description of the temporal Green’s function
we have proved in Theorem 1 would be sufficient to conclude on the nonlinear orbital stability for stationary
spectrally stable discrete shock profiles. Such a description of the Green’s function were sufficient to prove
conclude nonlinear orbital stability results in some instances in continuous settings (in [MZ02] Theorem 1.11
implies Theorem 1.14) and semi-discrete settings (in [BGHRO03] Theorem 4.11 implies Theorem 5.1 and in
[BHSZ10| Theorem 8 implies Theorem 1).

Possible further developments that could be expected surrounding the question of the stability discrete shock
profiles are presented below. Some of the developments presented are discussions on relaxations of restrictions
we imposed in the paper.

e The present papers only studies the case of Lax shocks (Hypothesis 1). However, in [God03], the de-
scription obtained on the Green’s function for the linearized operator also holds for discrete shock profiles
associated with stationary under-compressive and over-compressive shocks. Using ideas and calculations
performed in [God03], one could hope to adapt the results of the present paper to such cases. For in-
stance, in the under-compressive case, 1 would not be an eigenvalue of the linearized operator and thus
the expected description of the Green’s function would only be composed of generalized Gaussian waves.
On a more technical level, the main modification would be linked to the behavior of the spatial Green’s
function which could be holomorphically extended on z = 1.

e One could hope to extend the analysis performed in the present paper for standing discrete shock profiles
to moving ones, at least when the speed is rational. This would rely on studying iterations of the operator
N which would be fairly more difficult.

e An other option of extension that was tackled in the paper [God03] of Godillon would be to study the case
of boundary layer profiles for numerical schemes applied to systems of conservation laws on the half-line.

e Looking at the case of dispersive schemes like the Lax-Wendroff scheme would be another interesting
direction.

Those are only some ideas of questions surrounding the stability questions on discrete shock profiles. This
is a large subject with far more results to discover (existence of spectrally stable DSPs, equivalent results in the
multidimensional setting, etc...).

2 Proof of linear orbital stability (Theorem 2)

The goal of this section is to prove Theorem 2 using the description of the temporal Green’s function obtained in
Theorem 1. We recall that for 71,75 € [1,+00] such that 7; < 79, we have that for all n € N and h € £ (Z,C?)

L= Y 9 (n,jo. j)hj, € (m(Z,C%. (2.1)
Jo€EZ jez
We claim and will prove later on that for all couple 71,79 € [1,400] such that r; < ro, the operators

r(Z,C%  — 2 (Z,C%)

B (S SO0 i), (22)

jez

12



for I € {1,...,d} and n € N\ {0} are well-defined and that there exists a positive constants C such that
C
vie {la'~'7d}7vnEN\{O}7Vh6€T1(Za(Cd)7 Z Sl-i_(n7j07j)hj0 S ﬁ”h“lrl . (23)
Jo€EN nﬁ(ﬁfﬁ)

We claim that, using an identical proof, for all couple r1,7r9 € [1,+0o0] such that r1 < rq, the operators from
(" (Z,C%) to £2(Z,C?) defined by

jezllpry

h = Z Rl—t,z(%jod)hjo z Ry (nsjo, J
jo€N jez Jjo<O0 jez
h— Z TJ’r,l(nijvj)th h— Z T/jl(najOaj)hJO
Jjo€EN ez Jo<0 jez
h = Z S;(n,j07j)hj0 h e~ Z R(n>j07j)hj0
Jo<0 jez JoEZL jez

for n € N\ {0} are well-defined and satisfy similar bounds as (2.3). Furthermore, using the definitions (1.29d)
and (1.29h) of the functions E;; and E;, and the estimates (1.28b) and (1.28¢) on the function Es,, we have
that for h € ¢"1(Z,C%) and n € N\ {0}, the series

Z (ZCV l, (n, o) m) + Z (ch’ E, (n,jo)h; )
Jo€N \l'=1 jo<0 \l'=I

converges. Using the observations above, the equality (2.1) and the decomposition of the Green’s function given
in Theorem 1, we can then conclude that there exists a positive constant C' > 0 such that

Vh € 0" (Z,C%),Vn € N\ {0},

L~ Z(ch Ejf (n, jo) m>+Z<Zq, E; nJo)h> v <1(?1)||h
n2\r1 2

jo€N \lI'=1 jo<0 \l'=I

where we recall that the sequence V € ¢1(Z,C?) defined in Theorem 1 verifies that
ker(Idsp2 — %) = SpanV.

This allows us to conclude the proof of Theorem 2. Therefore, there just remains to prove that the operators
(2.2) are well-defined and verify (2.3). For | € {1 ,d(p+ q)}, using the bounds (1.28a) on the function
Hy,, and the definition (1.29a) of the functions Sl , we easily prove that for each of the couple (ry,rs) in
{(1,1),(1, 400), (+00,+00)}, the operators (2.2) are well-defined for n € N\ {0} and verify inequality (2.3).
Then, reasoning by interpolation using Riesz-Thorin Theorem, we can conclude that the same statement actually
holds for all couple (rq1,72) € [1,+00]? such that ry < ro.

3 Local exponential bounds on the spatial Green’s function for z far
from 1

In this section, the goal is twofold:

e In order to determine where the spatial Green’s function is defined, we want to study the spectrum of the
operator . in the set O (i.e. outside of the curves representing the spectrum of the limit operators .Z%).
More precisely, we will prove Lemma 3.7 which characterizes the eigenvalues of . in the set O and states
that there is no essential spectrum of the operator . which lies in the set (0. This result was already
proved in [Ser07, Theorem 4.1]. As a direct consequence, we will have proved that the element of the set
O are either in the resolvent set of the operator £ or are eigenvalues of .£. Using Hypothesis 6, we can
thus deduce that the set U\ {1} is included in the resolvent set of .# and that the spatial Green’s function
can be defined in a neighborhood of any point of U\ {1}.
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e We will prove Proposition 2 which introduce local uniform exponential bounds on the spatial Green’s
function G(z, jo,-) when z belongs to U\ {1} and jo € Z. We will see later on in Section 4 that the study
of the spatial Green’s function for z near 1 will require some special care and that it is a more refined
analysis of the case where 2 is in U\ {1}. It might be important to keep in mind that a lot of the tools we
will introduce will also be useful in the case of z near 1.

The main ideas of this section will be to characterize the solutions of the eigenvalue problem associated with
the operator .Z using solutions of a discrete dynamical system of finite dimension.

We will then define a central tool for our analysis : the geometric dichotomy introduced by Pauline Lafitte-
Godillon in her thesis [LG01] and based on the exponential dichotomy coined by Coppel in [Cop78]. We will
take some time to rewrite the proofs of some lemmas even though most of the ideas can already be found in
the previously cited texts.

3.1 Expression of the eigenvalue problem as a dynamical system

As we explained, one of our objectives is to study the spectrum of the operator .Z. In this section, we express
the eigenvalue problem (21dp: —.%)u = 0 as a dynamical system. We will define a few important mathematical
objects that will appear often throughout the article.

For z € C, we define the matrices A;(2) = 203 0ld — A;x and Af(z) = 20;,01d — A,f for all j € Z and
k€ {-p,...,q}. We then introduce the matrices

—Ajg(2) A1 (2) o A (2) A p(2)
Id 0o ... 0
VjezZNVzeC, MJ(Z) = 0 . € Md(erq)((C)
0 0 Id 0
and + 1AE + 1AE
AT (2) TP A (2) ... o SAT(2)TTAZ(2)
L Id 0o ... 0
VzeC, M™(z):= . N : M(p+q)(C). (3.1)
0 0 Id 0

Hypothesis 8 implies that for all z € C and j € Z, the matrices A; _,(2), Aj4(2), Ajfp(z) and AF(z) are
invertible. Thus, the matrices M;(z) and M*(z) are well-defined and invertible. We observe that M;(z) —

j—+oo

M*(z) for all z € C. If we define for every z € C and j € Z the matrices
E5(2) = Mj(2) = M*(2),

then Hypothesis 3 implies that there exists a constant a > 0 such that for every bounded set U of C, there
exists a constant C' > 0 such that?
EF ()] < Ced,

Vze UVj eN, |£:j(z)‘ < Ce—o.

(3.2)

We observe that if there exists u € £2(Z, C?) such that

(zIdp — L)u =0,

3 .
Since - @ - @
Jq—1 jﬁé?
+ _
5j (z) = :
0 0
where
e d L ADTIAY = () Ay ik € {=p,....q = 1}\{0},
gk (AD)TTAT — (Aj,0) T A50 —2((A7) 7 = (4597 1) if k=0,

the constant o can be taken uniformly on C but the constant C' must depend on z.
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then, if we define for all j € Z the vectors

Ujtq—1
W = : ;
Uj—p
we have that W; — 0 and
j—too
VjeZ, Wj+1 = MJ(Z)WJ (33)

To study the solution of the dynamical system (3.3), we define the family of fundamental matrices (X;(2));ez €
M (p4q)a(C) defined by
Viel, Xjn(z)=M;(z)X;(z),

Xo(z) = Id. (3.4)

We observe that a solution (W;);cz of the dynamical system (3.3) thus verifies that
Vy € Z, WJ = XJ(Z)WO

To find the eigenvalues of the operator .Z, the assertion above urges us to search for the solutions (Wj);ez of
the dynamical system (3.3) which converge towards 0 when j tends to too. We thus introduce the sets for
zeC

j—+oo

Z
E*(2) = {(Wj)jez € (C(p+q)d) solution of (3.3) such that W; — O} (3.5a)
B (2) i= {Wo € COF0 - (X;(2)Wa)sez € B5(2)} (3.5b)

which correspond to the solutions of the dynamical system (3.3) which converge towards 0 as j tends towards
400 and their traces at j = 0.

3.2 Spectral splitting: study of the spectrum of M*(z)

Since M;(z) = M*(z), the dynamical system (3.3) can be considered to be perturbations respectively for
j—=%oo

j € Nand j € —N of the dynamical systems

VJ € N, Wj+1 = MJr(Z)WJ (36&)
V_] S —N, Wj+1 =M" (Z)Wj (36b)
To study the solutions of (3.3) which converge towards 0 as j tends to +oo, we will study solutions converging
towards 0 of the dynamical systems (3.6a) and (3.6b). This relies on studying the spectrum of the matrices
M*(2).
Using the eigenvalues )\lik of the matrix Af defined by (1.14), we introduce

VzeCVIe{l,....d} V€ {—p,....q}, Af(2):=20r0— A, (3.7)
and
AL )TN () A () TIA L (2)
1 0o ... 0
VzeC,Vle{l,....d}, MiF(z):= o , : (3.8)
0 . . :
0 0 1 0

Hypothesis 8 implies that the matrices Afp and Afzt are invertible so Af_p(z), qu(z) 2 0. Thus, the matrices
M;*(z) are well-defined and invertible. We have the following result.

Lemma 3.1. There exists an invertible matriz QF € M, 44a(C) such that
M (2)
VzeC, M*(z)=Q* Q="
Mg (2)
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Proof We observe that

pt -1 pt —ID)qi(z)_qui_l(z) e —in(z)_l]l)fp(z)
1d 0o ... 0
M*(2) = o . (3.9)
0 . . :
+ +
P P 0 0 Id 0
where N
Al’k(z)
VkE{—p,...,q}, ]D)f(Z):
Then, in the right hand term’s matrix of (3.9), by reassembling the first columns of each blocks, then the second
columns, ...and then doing the same for the lines, we prove that the matrix M*(z) is similar to the matrix
M (2)
M (2)
|

The following lemma is due to Kreiss (see [Kre68]) and describes precisely the spectrum of the matrix M= (2)
as z belongs to O U {1}.

Lemma 3.2 (Spectral Splitting). e For z € C, k € C is an eigenvalue of MljE (2) if and only if kK # 0 and
FE(r) = =

o Letz€ O and 1 € {1,...,d}. Then the matriz M;=(z) has

— no eigenvalue on St,
— p eigenvalues in D\ {0} (that we call stable eigenvalues),

— ¢ eigenvalues in U (that we call unstable eigenvalues).
o We also have that

— if aif >0, M{*(1) has 1 as a simple eigenvalue, p — 1 eigenvalues in D\ {0} and ¢ eigenvalues in U.

—if ali <0, Mli(l) has 1 as a simple eigenvalue, p eigenvalues in D\ {0} and ¢ — 1 eigenvalues in U.

Lemma 3.2 is proved in [CF22, Lemma 1]. Combining the consequences of Lemmas 3.1 and 3.2, for z € O, the
matrix M*(z) only has eigenvalues in D or U. Also, if we define the space E*(M¥*(z)) (resp. E%(M™*(z))) which
is the strictly stable (resp. strictly unstable) subspace of M¥*(z) which corresponds to the subspace spanned by
the generalized eigenvectors of M (z) associated with eigenvalues in I (resp. U), then dim E*(M¥*(z)) = dp,
dim E*(M*(z)) = dq and

Crtad = B5(M*(2)) @ E*(M*(2)).
We consider PF(z) and PF(z) the associated projectors. Those projectors PF(z) and PX(z) can be expressed

as a contour integral. For instance, we have

PE(2) i/(tld—M*(z))—ldt

~ %n

where 7 is a simple closed positively oriented contour which surrounds the stable eigenvalues of M¥(z) and not
the unstable ones (for instance, S' is a good candidate). Therefore, the projectors P (z) and PF(z) depend
holomorphically on z € O.
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3.3 "Local" geometric dichotomy

The conclusion of the study of the spectrum of the matrices M (z) done in Section 3.2 is that the vector space
of solutions of (3.6a) (resp. (3.6b)) converging towards 0 as j tends towards +o0o (resp. —oo) is of dimension dp
(resp. dq) and can be characterized using the spectral projector P (z) (resp. P, (z)). We recall that (3.3) is
a perturbation of the dynamical systems (3.6a) and (3.6b). Thus, we could expect for the vector spaces E*(z)
and Ejf (2) (resp. E~(2) and Ej (z)) defined by (3.5a) and (3.5b) to be of dimension dp (resp. dg) and we
would want some way to characterize their elements.

In the present section, the goal is to construct projectors which will play for the dynamical system (3.3) a
similar role as the spectral projectors P} (z) and P, (z) for the dynamical systems (3.6a) and (3.6b). This is
the aim of the following lemma.

Lemma 3.3 (Geometric dichotomy). For all bounded open set U such that U C O, there exist two holomorphic
functions Q5 : U — My a(C) such that

e Forall z € U, Qf,(z) is a projector and we have

dim SQp(2) = dimker Q;;(2) =dp and dimSQp(z) = dimker Q7 (2) = dg.

o There exist two positive constants C, ¢ such that for oll z € U

Vi>k>0, |X;(2)QF(2)X(z)7t| < Cem =k, (3.10a)
VE>§>0, |X;(2)(Id—Qf(2)Xk(2) | < CemliH] (3.10b)
Vi<k<0, |X;(2)Qp(2)Xk(z)7"|< Cecli=kl, (3.10¢)
VE<j<0, |X;(2)(Id—Qp(2)Xk(2) 7| < CemeliHl (3.10d)

Lemma 3.3 has been developped in the thesis of Pauline Godillon [LGO01, Section II1.1.5] and is inspired
by the exponential dichotomy discussed by Coppel in [Cop78]. Just as it is explained in [Cop78], to better
understand the meaning of this lemma, it is interesting to see that the inequalities (3.10a) and (3.10b) imply
that for all £ € CP+a)d

Vi> k>0, |X;(2)Qf(2)¢] < Ce UM Xy (2)¢],
VE>j >0, |X;(2)(Id—Qf(2)¢] < Cem*F ) Xy (2)¢] .

The first inequality implies that there exists a dp-dimensional subspace of solutions (W}), ez of the dynamical
system (3.3) which converge exponentially fast toward 0 as j tends to +00. The second inequality translates to
the fact that there exists a supplementary of the previous subspace of solutions for which the solutions explode
exponentially as j tends towards 4+oo. Thus, QJUr (2) plays a similar role for the dynamical system (3.3) as any
projector for which the range is Ff (z) (for instance the spectral projector P (z)) for the dynamical system
(3.6a). The same kind of conclusion can be achieved with Q.

Thus, the construction of those two projectors Q7 is fundamental to study the solutions (W;);ez of (3.3)
that converge toward 0 as j tends to oo, i.e. the elements of the set E*(z) defined by (3.5a). We will see
iniLemma 3.6 that the projectors Qﬁ(z) allow to completely characterize the elements of the vectors spaces
EF (2).

Let us point out that the construction of the projectors Qf, is done on relatively compact subsets of O. More

importantly, for two sets U; and Us that satisfy the conditions of Lemma 3.3, even if U; C Us, the construction
of the proof of Lemma 3.3 does not imply that the projectors Qa and Qa are equal on Uy NU,. Therefore, we
cannot immediately construct two functions Q% that are defined on © which would verify similar properties as
QF. However, it turns out that SQ%I (2) = %Qa(z) for z € U; N Us. We will prove this fact later on and use
it to extend uniformly the geometric dichotomy on a large part of O (see Lemma 3.8).
Proof The construction of both functions Qﬁ is similar so we focus here on the construction of Q;j. The
proof will be separated in four steps. In the first step, we will construct the function Q'& using a fixed point
argument. The second step will be dedicated to proving that for all z € U, Q$(z) is a projector for which the
kernel and the range are respectively of dimension dq and dp. The third and fourth steps concern the proof of
the inequalities (3.10a) and (3.10b).

Step 1: Construction of Q‘[E.

We set for z € O that

1y (2) == max {In([¢]), ¢ € o(M*(2))ND}
1y (2) = min {In(|¢]), ¢ € o(M*(2))NU}.
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The functions 7 and ;" are continuous on O and verify that
V2eO, nf<0 and nf >o0.
The set U being a compact included in O, there exists a constant cy such that

maxn? (z) < —cg <0  and 0 < cy < minz (2).
zeU zeU

We will also ask that cy < a where « is the constant appearing in (3.2). By definition of nf and 7,

exists a positive constant C'y such that

. |M*(2)I Pf(2)| < ,

VEUIER M2 PE ()] < e,

Furthermore, using (3.2), since U is bounded, there exists a positive constant C¢ such that
VzeUVjeN, [EF(z)] < Cee™.

We fix an integer J € N and we will make a more precise choice later. We define the Banach space

0y = {(Yj)jZJ € M(pﬂ)d((c){jEN’jZJ}v Sgg Y;] < +OO}

with the norm
1Yo, s == sup [Yj].
j=J

, there

(3.11)

(3.12)

Furthermore, for z € U, we define ¢(z) € £ (¢5°) and T'(z) : {3 — (5 such that for Y € ¢3° and j > J, we have

j—1 +oo
(p(2)Y); =Y MT () ' FPF(R)E ()Y = Y M ()T P (2)E] (2)Ya
k=J k=j

and
T(2)Y := (M+(z)j*JPS+(z))jZJ + p(2)Y.

We observe that
VY € lF Vi >J, (p(2)Y)j = MT(2)(p(2)Y); + & (2)Y5,

and thus
VLR 2T (T()Y)0 = M ()T()Y); + & (Y.

(3.13)

Our goal will be to find a fixed point of T'(z). To do so, we will have to prove that there exists J large

enough so that
le ()l ey < 1

We begin by proving that the applications ¢(z) and T'(z) are well-defined. We consider Y € ¢5° and j > J.

We have using (3.11) and (3.12)

j—1 +oo
((2)Y);] < CuCeemenli=t=Hemek|y,| 43 " CyCeemenli 1Mk |y, |
k=J k=j

—+oo
< ||Y||oo,U CHCge—aJ Z e—cHli—1-k|

k=J
1+4+e¢H
< |y CyCee™®l ——
<Vl CrrCoe T
If we set .
1 —CH
0= CyCeeol -t "

1—ecH

then we just proved that the operator ¢(z) is defined, bounded and

||<P(Z)||£(z§>,°) <6.
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We also observe that (3.11) implies that (M (2)7=7 P} (2));5, € £5. Therefore, T(z) is well-defined.
We consider that we chose J large enough so that 8 < 1. For z € U, we have that I'd — ¢(z) is invertible.

Thus, we can define 4
Y(2) i= (Id— 9(2)) " (M* (207 PF ().,

It is the only fixed point of T'(z) and it depends holomorphically on z. We observe that (3.13) implies that
V2 UV =, (Y(2)ya = Mi2)(Y(2));. (3.15)

We define
VzeU, Qg(z) = XJ(Z)_l(Y(Z))JXJ(Z). (3.16)

Since Y depends holomorphically on z and is bounded on U, Q§(z) also depends holomorphically on z for z € U
and is bounded in U.

Step 2: Qﬁ is a projector.
We are going to prove that for all z € U the matrix Q;} (z) we just constructed is a projector such that

ker Qi (2) = Xy(2) 'E*(M*(2)) and dimSQF(z) = dp.

By observing that P, (z)? = P (z), we prove that ((Y(2)),; P (2));>s is a fixed point T'(z). Since Y (z) is
the only fixed point of T'(z) in ¢5°, we prove that

(Y(2))s P (2) = (Y(2)). (3.17)
Using that Y'(z) is a fixed point of T'(z), we have that

Pf(2)(Y(2)s = Pf (2)(T(2)Y (2))s

“+o0
P{(2) <PS+(Z) - M*(Z)‘”kPJ(Z)EJ(Z)(Y(Z))k> :
k=J

Because P (z) commutes with M*(z), P;7(2)? = P (z) and P} (2)Pf(2) = 0, we have proved
P (2)(Y(2))s = P (2). (3.18)

Using (3.18), we prove that ((Y(2));(Y(2)));>s is a fixed point T'(z). Since Y (z) is the only fixed point of
T(z) in 3, we prove that

(Y (2)s" = (Y (2)..
Therefore, we have proved that (Y (z))s is a projector. The equalities (3.17) and (3.18) allow us to prove that
ker(Y (2)); = ker P} (z) = E¥(M™*(z)). The definition of Qf;(2) implies that Qf;(2) is a projector and

SQH(2) = Xs(2)7'S(Y(2))s and  kerQf(2) = X (2) ' ker(Y(2))y = X;(2) " LEY(M™T(2)).
Step 3: Q{; satisfies the inequalities (3.10a) and (3.10b) respectively for j > k > J and k > j > J.

First, we are going to prove the inequality (3.10a) for j > k > J and the inequality (3.10b) for k > j > J.
We observe that (3.15) implies that

Vz2e UV >J, (Y(2),41 = M;(z)(Y(2));.

and thus
VEe UV 2, (YV(2), = X;()Xa(2) 7 (V(2))) = X5(2) Q5 () X (2) .

We introduce
VzeUNj>J, (Z(2); = X;(2)Xs(z)"  (Id = (Y(2)),) = X;(2) (Id — Qi (2)) Xs(2) "

We have the following lemma.
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Lemma 3.4. We have that
j—1
Vizk>J, (Y(2); =M () FPF )Y (2)k+ Y MT () T PFE)EN ()Y (2)
I=k
+oo

— N MF (YT PHR)E ()Y (),

and
Vk >G>0, (Z(2); =MT(2)’* P (2)(Z(2))i + Z_: M* ()T PR ()€ (2)(Z(2))
1=J
k—1

N MR ()E (2)(Z(2).

l=j
Proof

e Since we have that
Vi>J, (Y(2)j01 = M;(2)(Y(2); = (MT(2) + & (2) (Y (2));,

using the variation of constants formula, we find that
k—1
Vk=J, (Y(2)k = M) (Y (2)s + ) M) E )Y (=)
I=J

Knowing that Y'(z) is a fixed point of T'(z) and that P} (2)(Y(2)); = P, (), we have for j > k > J

(Y(2)),
=(T(2)Y(2));
j—1 +oo
=Mt () TP (2)+ Y MY T RS ()E ()Y (2) = D M () T R (2)E (2)(Y (2):
I=J =3
k—1
=M*(2)’ " Pf(2) <M+(z)k'](Y(z))J +) M*(z)kllf?l*(z)(Y(z))z)
I=J
j—1 +oo
+ Y MY T PI(R)E ()Y (2) = Y M () T RH(2)E (2)(Y (2),
I=k l=j
j—1 +oo
=M*F(2) P () + Y MY T PFR)EN () (Y (2) = Y M () T PHR)E (2) (Y (2)-
1=k =3

e Since we have that
Vi>J, (Z(2)j01 = Mj(2)(Z(2)); = (MT(2) + £ (2))(Z(2));,

using the variation of constants formula, we find that for &k > j > J

(2(2)); = M (2 (2(2))s + 3 M* (2 (:)(2(2)) (3.19)
=J
k—1

(Z()) = MH () (2(2); + 3 M6 () (3.20)
=5

Using (3.19) and knowing that P} (2)(Z(z)); = P} (2)(Id — (Y (2));) = 0, we have that

j—1

PH2)(Z(2)); =) M (2 IPE(R)E (2)(Z ()i
1=J
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Furthermore, (3.20) implies that

k—1
P (2)(Z(2)); = M*(2) P (2)(Z(2))k = > M (2) "' P (2)E7 (2)(Z(2))-
1=j

We end the proof of the lemma by observing that (Z(z)); = P} (2)(Z(z)); + P.f(2)(Z(2));.

O
We introduce the constant )
—_ e_CH
=0—. .21
© 1+e-cn (3.21)
Using Lemma 3.4 and (3.11), we obtain that for any & € C(P+9)d
¥iz k> |(Y(2)5€] < Cue U0 |(Y ()it + 0 e (Y (2)ig], (3.22)
1=k
and
k—1
Vk == J, |(Z(2));€] < Crem "D (Z(2))1€ + 0 ) eI (Z(2))ig]. (3.23)
1=J
The following lemma will allow us to obtain clearer bounds on |(Y(2));¢| and |(Z(z));&].
Lemma 3.5. For all y € £>°(N) with non negative coefficients that satisfies
VieN, y; <Cpe ™ +0) e enlim1=Hy, (3.24)
k=0
then we have ‘
v.] € Na yj S ,07”],
where
— cos ~oginn (2 12 (1) g elecn NS
r := cosh(cy) 251nh< 5 ) cosh ( 5 ) 0€le ™, 1 and p:= 5 (r—e ) >0. (3.25)
The proof can be found in the Appendix (Section 6). We will now use Lemma 3.5 to prove that
Viz k> |(Y(2)€ < pr?F (Y (2))iél, (3.26)
Vk >G>, |(Z(2));€] < prtTIN(Z(2))k€l. (3.27)

We consider & > J. If (Y(2))ré # 0, then by applying Lemma 3.5 to the bounded sequence y =

(M) , we obtain (3.26). Else, if (Y (2))r = 0, then for j > k, we have
VCDRE ) en

(Y(2))5€ = X;(2)Xk(2) "1 (Y (2))1€ = 0.

Thus, (3.26) is also verified in this case.
The proof of (3.27) is similar. If (Z(z))x€ # 0, then we apply the Lemma 3.5 to the sequence y defined by

(ZEesel e s
VieN, y ={ Izeneg  LI€{0.k}
! Y 0 else.

This proves (3.27) in this case. If (Z(2))x€ = 0, then since
Vie{J,....k}, (Z(2);€ =X;(2)Xi(2) " (Z(2)r€ =0,

(3.27) is also verified in this case.
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Using (3.26) and (3.27), we proved that

ik X (2)Q5(2)Xk(2) N < o M X2 @ () Xu(2) 7, (3.28)
k2520, (X (2)(Id - QF(2)Xe(2) M| < ot Xu(2) (1 - Qi (2) Xi(2) . (3.29)

If we prove that the families (X (2)Qp (2)Xk(2) Y g>s and (Xi(2)(Id — Qf(2))Xk(2)"1)k>s are uniformly
bounded for z € U, we would have proved (3.10a) and (3.10b) respectively for j > k> J and k > j > J.
Using Lemma 3.4, we prove that for j > J

+oo
PIE(Y(2); ==Y M () 'PL)E ()Y (),
I=j
j—1

PF(2)(2(2); =Y M () PF ()€ (2)(Z(2))-
I=J
Thus,
+oo
Pl (2)X;(2)Q0(2)X;(2) " = =Y MT(2) I PH)E () Xu(2)QF(2) X, (2) 7
1=j

P (2)X;(2)(Id = Q) X;(2) 71 = Y M (2)) ' PF(2)€ () X (2) (1d — Qg (2) X ()"
=J

Using (3.11), the definitions (3.14), (3.21) and (3.25) of the constants 6, © and p, as well as (3.28), we have

“+o0
P (2)X;(2)Q5(2)X;(2) 71 < ©) e n=UDX(2)Q7 (2) X (2) 7|

1=j
< ©e C”pZ )3 X5 (2) Qi ()X (2) 7Y
- @%plXﬂz)Q;(z)Xj(z)ﬂ

= O X (IR (X ()

Similarly, using (3.29), we have

j—1
P ()X, (2)(1d = QF ()X, (2) 1 <3 e 01 01X, () (1d — Qi ()X, (=) |
=J
j—1
<O py (re= Y X (2)(1d - QF(2)X;(2) 7
I=J
< O X, () (I~ QF (2))X,(2)
= O X, () (1 - QB () X ().

Therefore, if we define 1 := Cpy 25— (r — e“#), we have for all j > J

|PF(2)X;(2)Q5 () X; ()71 < 0| X;(2)Q(2)X;(2) 7',
|PH(2)X;(2)(Td = Q(2)) X;(2) | < nlX;(2)(Id — Q(2)) X;(2) 1.

Using the definition (3.25) of r, we observe that

n= C’H eQCH 1281nh( 5 ) <cosh (%{) — 4/ cosh (%)2 —9) .
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We already supposed that J was taken large enough so that 8 < 1. We will now also suppose that we took J
large enough so that 6 is close enough to 0 so that n < % To conclude this step of the proof, we observe that

X;j(2)Qy(2)X;(2) 7" = P (2) = Pf(2)X;(2)Qp (2)X;(2) ™' = P (2)X;(2)(Id — Q5 (2) X (2) ™
and
Xj(2)Id = Q(2)X;(2) ™" = P (2) = P (2)X;(2)(Id — Q5 (2)) X;(2) ™ = P (2)X;(2)Qf (2) X;(2) .
Thus, using (3.30) and (3.11) to bound P and P;f, we have
X5 (2)Q7 ()X (2) 71| < Crr + 1 (1X;(2)Q5(2) X, (2) 7' + 1X;(2)(Id — Q5 (2)) X;(2) 1)
and
[X;(2)(Id = QF(2))X;(2) 7' < C + 1 (1X;(2)QF (2)X; (2) 7 + X (2) (1d — Qi (2)) X;(2) 1) -

This implies that

_ 2Cy
X5 (2)QF(2)X,(2)7) < Lo
; 1
VJ Z Ja i 1 2CH
()T = Q)X ()7 < T
n
Therefore, we have proved that for all z € U, we have
: + -1 2CH i
Vi kz A X (AQHEXE) ! < preir (3.31)
: + -1 2CH g
Vk>j>J, |X;(z)(Id—Q}(2)Xk(z)" | < PT o " 7, (3.32)
-2

Step 4: Q;} satisfies the inequalities (3.10a) and (3.10b) respectively for all j > k> 0and k > j >0
We will only finish the proof of (3.10a) since the proof for (3.10b) would be similar. We have proved (3.10a)
for 7 > k > J. We consider a constant C' > 0 such that

VielU C > r~7maxjeqo,... 713 |X;(2)Q7 (2) X 5 (2) 7|
T C > T_Jmane{O’u.’Jfl} |XJ(Z)Q$(Z)Xj(z)_1|.
This can be done since the projector Qﬁ defined by (3.16) is bounded on U.

e If j > J >k >0, we have

X5 (2)QE(2)Xk(2) 7] < 1X;(2)Q (2) X (2) 71X (2)Q (2) X (2) 7|
2CH

< G—J.d
_p1_2n7’ Cr
2C ;
<Cp H =k
1—-2n

o If J > 45>k >0, we have

1X;(2)Q (2) X5 (2) 7 < [X;5(2)Qf (2) X (2) M| X (2) Q5 (2) X (2) 7|
< %2
< C?pik,

Therefore, there exists two constants C, ¢ > 0 such that for all z € U, (3.10a) is verified. O
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3.4 Spectrum of .Z and extended geometric dichotomy

Now that we have proved the geometric dichotomy, let us go back on studying the vector spaces ESE (z) which
characterize the solutions of (3.3) converging towards 0 as j tends towards +oo. The previous section about
the geometric dichotomy allows us to prove the following lemma.

Lemma 3.6. For all open bounded sets U such that U C O, we have
VzeU, Ef(z)=S(Qf(z) and E;j(2)=S(Qy(2)).

Therefore, for all z € O, dim Ef (z) = dp and dim Ej (z) = dg. Also, for Wy € Ef (2) N Eq (2), we have that
(X;(2)Wo)jez € 62(Z,C(p+q)d).

Proof We prove the first set equality.

e For Wy € 3(QF(2)), we have for j € N using (3.10a)

Xj(Z)WO = XJ(Z)Q?}(Z)X()(Z)71WO — 0.

Jj—4o0
Thus, Wy € Ef (2).
e For Wy € Ef (z), we have for j € N using (3.10b)

(Id — Qi (2))Wo = Xo(2)(Id — Qi (2)X; (=) ' X;(2)Wo = 0.

j—+o0
Thus, (Id — Qf(2))Wy =0, i.e. Wy € I(Q7(2)).
Therefore, we have proved that
Ey (2) = 3(Q5(2))
We now consider Wy € Ejf (2) N Ey (2) = 3(QF(2)) NS(Qy(2)). Because of the inequalities (3.10a) and

(3.10c), the equalities
Vi€Z, X;(x)Wo=X;(2)Qf(2)Xo(2)" Wo = X;(2)Qp (2)Xo(2) ™' Wo

imply that (X;(2)Wp) ez € ¢2(Z,CP+Dd), 0

Let us now come back to the heart of the matter: the study of the spectrum of the operator .Z. We
introduced the dynamical system (3.3) to study the solutions of the eigenvalue problem

(zIdp2 — L)u = 0.

The following lemma, for which the main part is proved in [Ser07, Theorem 4.1], is deduced using the geometric
dichotomy.

Lemma 3.7. For z € O, we have that
dimker(zIdp — ) = dim Eff (2) N Ej (2). (3.33)
Furthermore, zIdy: — £ is a Fredholm operator of index 0, i.e.
Oess(L)NO = 0.

Before proving the lemma, let us thus introduce the linear map which extracts the center values of a vector
of size d(p + q)
I Cdw+a) o o

. 3.34
(Tj)jet,..dpra)y P (T5)jefdg—1)+1,....dg} ( )

Proof We consider z € O and start by proving (3.33).
o For w € ker(zIldp — &), if we introduce



then we have that
Wj+q-1
V‘] €7, X](Z)Wo = .
Wj—p
Since w belongs to ¢3(Z,C%), we have that Wy € Ef () N Ey (2). This implies that the linear application
o: ker(zldp — %) — Ef(2)NE;(2)
Wqg—-1
w —
W—p

is well-defined.
e We consider Wy € EJ (2) N E; (z) and define for j € Z

wj = T(X;(2)Wp) € C?

where the operator II is defined by (3.34). Lemma 3.6 implies that the sequence w := (w;);ez belongs to
(%(Z,C%). Furthermore, since (X;(2)Wp) ez is a solution of (3.3), we have that

(zIdp2 — L)w = 0.
Therefore, the linear application
Vi Ef(2)NEy(z) — ker(zldp — %)
Wo = (I(X;(2)W0)) ez

is well-defined.
We have that

9001/)=IdE;(Z)mEO—(Z) and wOSOZIdker(zldez—ff)'

This concludes the proof of (3.33).
We now focus on the second part of the lemma. Our first goal is to prove that zIld, — £ is a Fredholm
operator. We have that
dimker(zIdy: — &) = dim Ef (2) N Ey (2) < +oo.

There remains to prove that S(zIdp —.£) is closed and that
codimS(zldyp2 — L) < +o0.

We fix a bounded open neighborhood U of z € O such that U C O. We consider h € ¢2(Z,C%). The sequence
h belongs to the range of zId, — . if and only if there exists v € £2(Z,C?) such that if we define

A (2)"th
_ ol
VieZ, W;= : , H; = . )
Vj—p 0

then
V_] €7, Wj+1 :MJ(Z)WJ—‘FHJ

For j > 0, we define
J 400
ZF =Y X(2)QE () Xk(2) T Her — Y X;(2)(Td — Qi (2)) X (2) T Hyy.
k=0 k=j+1

Those elements are well-defined and verify that

vy >0, Z;;_l :Mj(z)Zj—f—Hj
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and

2

1
2
SNz <o | Yo H)?

5>0 JEL
where C' > 0 is independent from h. We can then prove that the sequences (Z;); >0 which satisfy that
Z |Zj|2 < +o00
>0

and

VJZO, Zj+1:Mj(Z)Zj+Hj

are the sequences defined by ~
Vi>0, Zj=2Z +X;(z)V*

where V+ € Ej (z). We prove in a similar way that the sequences (Z;);<o which satisfy that

> 1ZjJ? < o0
Jj<0

and

are the sequences defined by

where V™~ € Ej (z) and

J 1
Vi<0, Zy = Y Xj(2)Id-Qp(2)Xe(2) 'Hi1 — > X;(2)Qu(2)Xn(2) " He1.
k=—0c0 k=j+1
We also have that

DIZpP | <c| Yo HP

§<0 jez
where C' > 0 is independent from h. Using all those information, we conclude that h is in the range of zI1dp —.&
if and only if there exists (V 1,V ™) € Ef () x Ej (2) such that
Zi —Zy =V- -Vt
If we define the operator
v:he}(2,CY — 2§ — 75 e Clrta)

which is bounded and
0: (VI V) EEf(2)xEy(2)—» V™ —-V*te Cpta)

which is an operator from a finite dimension vector space to a finite dimension vector space, then we proved
that
S(zldp — L) = v H(S).

Therefore, $(zIdp — %) is closed. We now want to prove that codimS(zldp —.£) < +00. We consider N > 1
such that there exists (hy,...,hy) a linearly independent family of ¢?(Z,C%) such that

S(zldp — L) N Span(hy, ..., hy) = {0}.

We are going to prove that the family (v(h1),...,v(hy)) is linearly independent in C*?+49) and therefore that
N <d(p+ q). We consider Ay, ..., Ay € C such that

N N
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We therefore have that N
v (Z )\th> € Sy,
i=1
thus
N
> Xihi € S(2Idp — £) N Span(hy, ..., hy).

i=1
This implies that
N
> Aihi =0
i=1
and the linear independency of (hy, ..., hy) allows us to conclude that A\; = ... = Ay = 0. We have thus proved

that zIdy> — % is a Fredholm operator for all z € O. We also know that, since O is unbounded, there exists
z € O such that zIdyp: — % is an isomorphism. The set O being connected and by continuity of the Fredholm
index, the statement of the lemma is true. |

We now introduce the sets
0, =0Np(Z) and O, :=0nNoc(Z).
Lemma 3.7 implies that O, only contains eigenvalues of .. Then, because of Hypothesis 6, we have that
U\ {1} c O,.

We also observe that Lemma 3.6 gives us the dimension of the subspaces Ex (z). Then, (3.33) implies that, for
z € O,, we have
Ef ()@ By () = Crt e,

Thus, for z € O,, we can define the projector Q(z) such that
3Q(2) = Ef () and  kerQ(z) = Ej (2).

The function 2 € O, + Q(z) is holomorphic. Indeed, for zp € O,, we have r > 0 such that if we define
U := B(zg,r), then U C O,. Lemma 3.6 then implies that

VzeU, Ej(z)=S5Qf(z) and E;(2)=SQ;(2).

Knowing that Qﬁ depend holomorphically on z, we have proved that E(J)r and E; are also depending holomor-
phically on z in a neighborhood of zy. The holomorphy of @ ensues. We will now prove that the function @ is
fundamental to the study of (3.3) by extending the geometric dichotomy. The following lemma is once again
very much inspired by [LG01, Section III.1.5] and [Cop78§].

Lemma 3.8 (Extended geometric dichotomy). For all bounded open set U such that U C O,, there exist two
positive constants C,c > 0 such that for all z € U

Vi>k, |X;(2)Q(2)Xx(2) | < Cem ik (3.35a)
Vk >4, |X;(2)(Id — Q(2))Xy(2)t| < Cemeli=hl, (3.35b)

Proof We begin by assuming that we proved the existence of two constants C, ¢ > 0 such that for all z € U

Vi>k>0, |X;(z)Q(2)Xk(z)""| < Cecli=kl (3.36a)
Y>>0, |X;(2)(Id—Q(2)Xk(2)"t] < CeVH, (3.36b)
VE<j<0, |X;(2)Q(2)Xk(z)7"| < Cecli=kl (3.36¢)
Vi<k<0, |X;j(z)(Id—Q(2)Xp(z)" "] < CelH, (3.36d)

Then, we observe that to prove the assertion (3.35a), there would only remain to look at the case where
j > 0> k. Using (3.36a) and (3.36¢), we have

X (2)Q(2) Xk (2) 7| < |X;(2)Q(2) Xo(2) ! [ Xo(2)Q(2) Xa(2) ] < CPe U™,
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We would have proved the existence of two constants C, ¢ > 0 such that assertion (3.35a) would be true for all
z € U. We would use the same kind of proof to prove the existence of C, ¢ > 0 such that assertion (3.35b) holds
true for all z € U.

Therefore, there only remains to prove the existence of C,c > 0 such that (3.36a)-(3.36d) are true for all
z € U. We will prove (3.36a) and (3.36¢c). The proof for (3.36b) and (3.36d) would be dealt with similarly.
First, we need to consider a bounded open set V such that V C O, and U C V. This will be useful later on to
bound the difference Q$ — Q. For z € U, Lemma 3.6 implies that E; (z) = %Q$(z) = 3Q(2), i.e.

QP (2)Q(2) = Q(2) and  Q(2)Q(2) = Q¥ (2).
This allows us to prove that
Qy(2) — Q(2) = QY (2)(QY(2) — Q(2))(Id — Q) (2)).
Therefore, for j, k € N, we have
Xj(2)(QP(2) = Q(2)Xk(2) ™! = X;(2)QV (2)Xo(2) TH(Qy(2) — Q(2))Xo(2)(Id — Q3 (2) X (2) "
Thus, because of the inequalities (3.10a) and (3.10D)
|1 X;(2)(Q(2) — Q(2)) Xk(2) 71| < C2e~UIQY(2) — Q(2)]. (3.37)
Using the inequalities (3.10a), (3.10b) and (3.37), we can thus prove that
Vi> k>0, |X;(2)Q(2)Xk(2)7t < CeU™R 1 02e=cU+R |0 (2) — Q(2))

and
VE>32>0, [X;(2)(Id—Q(2)Xk(2) 7| < Ce D) 4 C%eUTR QL (2) — Q(2)].

Since z € V + Q{7 (2) — Q(z)] is continuous and U C V, we can uniformly bound |Qi(z) — Q(z)| for z € U.
We can then deduce the existence of two positive constants C, ¢ to verify the inequalities (3.36a) and (3.36¢). O

3.5 Bounds on the spatial Green’s function far from 1

For z € O, and jo € Z, since z € p(£), the spatial Green’s function G(z, jo,-) defined by (1.25) exists. We
observe that the function z € O, — G(z, jo, -) is holomorphic.
We consider & € C?. We then observe that G(z, jo, )€ € ¢2(Z,C?) and

ZG(Za.jOv )é— gG(zija )5: 6_70

™y

ie. q
Vi€Z, > Ajr(2)G(z o, j+ k)E= b, €.
k=—p
Thus, we have that

A;;@-O,je
0
v] € Zv W(Zvj()vj + laé‘) = Mj(Z)W(Zijajvé) - (338)

G(Z7j0aj + q— 1)6
where W (z, jo, j, €) := . We will now prove the following proposition using the extended
G(Z,jo,j - p)é
geometric dichotomy (Lemma 3.8).

Proposition 2 (Bounds far from 1). For U a bounded open set such that U C O,, there exist two constants
C,c > 0 such that o
Vz e UVee CLYj jo € Z, |W(z,jo,7,€)| < C|éle V=0l
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The result of Proposition 2 is in particular true in a neighborhood of any point z € U\ {1}.
Proof We consider z € U, 7,50 € Z and € € C? such that |€] < 1. The equality (3.38) implies the following

results:
e We have
\V/j 2]0+17 W(Zaj07j+1va :Mj(z)W(Zajoajaaa
i.e.
v] Z]O""lv W(Zv]()vj?é) :XJ(Z)XJ0+1(Z)71W(ZM707]O+17€_) (339)
Also, since G(z, jo, )€ € £2(Z,C?), we have that X, +1(2) ' W(z, jo, jo + 1,€) € Ef ().
o We have
v.] Sjo_lv W(Z,jo,j—Fl,é’) :Mj(Z)W(Z,jo,j,é),
i.e.
V] S j07 W(ij()mj?é) = Xj(Z)XJO(Z)_IW(Z7jO7j07é’)' (340)
Also, since G(z, jo, )€ € £?(Z,C%), we have that X;,(2) "1 W(z, jo, jo, €) € Ej (2).

o We have

Ajoq
W(z,jo, jo + 1,€) = M, (2)W (2, jo, jo, €) — 0
0
ie. i
on€
Xjor1(2) W (2o, jo +1,€) = X (2) T W (2, o, o, €) = —Xjon(2) |
0
Since Q(z) is the projection on Ej (z) with respect to Ej (z), we have that
e
Xjo+1(2) " Wz, jo, Jo +1,8) = —Q(2) Xjo41(2) 0 :
0
e
Xjo (2) MW (2, Jo, Jo, €) = (Id — Q(2)) Xjo+1(2) " (:)
0
Using (3.39) and (3.40), we have
o
Vi>jo+ 1, Wi(zjo,4:€) = —X;(2)Q(2) Xjo41(2) ™ O ; (3.41a)
0
Aj_afq
Vi <jo, Wiz 40,5, €) = X;(2)Id = Q(2) Xjpsa(2) 1| . |- (3.41b)
0
Thus, the inequalities (3.35a) and (3.35b) imply
e
Vz € UVjjo € Z, |W(z,jo,j,€)| < Cecli=lorhl 0
0
We can then easily conclude Proposition 2. ]
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4 Extension of the spatial Green’s function near 1

The analysis of the spatial Green’s function done in the previous section does not hold near 1. The first reason
is that we can prove that 1 is an eigenvalue of . and the curves describing the spectrum of the limit operators
Z7* in (1.16) should belong to the essential spectrum of the operator .#. Thus, the definition of the spatial
Green’s function breaks down near 1. The second reason is that the matrices M*(1) have central eigenvalues
equal to 1 as explained in Lemma 3.2, thus the geometric dichotomy will not work near 1. The solution will
be to refine the analysis of (3.3) near 1 by finding a particular basis of EgE () and using this basis to express
the spatial Green’s function. In some sense, it amounts at using the projections on a basis of solutions of (3.3)
rather than the projection associated with the geometric dichotomy.

4.1 Right and left eigenvectors of M*(z) for z near 1

To study the spatial Green’s function for z near 1, we will need to study the solutions of the dynamical system
(3.3) with more precision. The first step is to have a better understanding of the eigenvalues and eigenvectors
of M*(z) when z is close to 1.

First, let us make some observations on the eigenvalues of M i( ) defined by (3.8) for I € {1,...,d}. Using
Lemma 3.2, we know that the eigenvalues x € C\ {0} of M (1) are the solutions of

Fit(k) = 1.

Hypothesis 9 allows us to conclude that the matrlx M, i( ) only has simple eigenvalues. Furthermore, Lemma

3.2 implies that 1 is a simple eigenvalue of M;=(1) and that the rest of the elgenvalues are in D\ {0} or U and

we know the number of eigenvalues in each set depending on the sign of ozl . Thus, we can define a family
= d(p+q)

(gm)m6{1,~-.7d(p+q )y € C such that

Vie{l,....d}, U(Mlﬁ:u)):{g,gid,...,gi(mfl)d}.

Furthermore, using Hypothesis 1 to determine the sign of ozli defined by (1.17) and Lemma 3.2, we can index
them in order to have the following fact.

e Foralll € {1,...,1}, since a;r < 0, we choose
""’Cl+d -1 € D, Cler 1, 7ltrd(17+1)"“’€l++d(p+q y € u.
e Foralll € {I+1,...,d}, since ozl+ > 0, we choose
¢F ,...,ng(p 5 €D, 7;;(1(;071):1’ j+dp,...,<l++d(p+q , €U
e Foralll € {1,...,I—1}, since a; < 0, we choose
Gove ’Ql;d(pq) €D, gl?»dp =1, glld(pﬂ)’ e 7£l7+d(p+q71) el
e Foralll € {I,...,d}, since a; > 0, we choose
ol €D Capen = S Srrapren) € U-

We indexed the eigenvalues to separate the stable, central and unstable eigenvalues of the matrices M, li(l).
More precisely, we observe that if we introduce the sets

Ih={1,....dp—1)+1}, Io={1,...dp—1)+1—1},
I = {d(p—1)+1+1,... dp}, Io:={dp—1)+1,...,dp},
It ={dp+1,...,dp+1I}, I, ={dp+1,....,dp+1-1},
LS ldpt T4 dp ), D= {dp+ Tt )

then we have that
vme IE, ¢ eD,
vmeIZUIZ, ¢ =1,
vmelf, (¢ el.
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Since those are simple eigenvalues of M, li (1), we are able to extend them holomorphically in a neighborhood
of 1. We consider ¢y > 0 a radius such that for eachm =1+ (k—1)d € {1,...,d(p+¢q)} Wlth ke gtl ..,p+q}
and [ € {1,...,d}, there exists a holomorphic function ¢ : B(1,8y) — (C such that ¢t ( and for all
z € B(1,6p), Cm( ) is a simple eigenvalue of Mli( ). We will also separate the different types of e1genva1ues by
assuming that we chose Jy small enough so that there exists a constant ¢, > 0 such that for all z € B(1,dg)

Vm e IE, |G ()] < exp(~2c) (4.1)
Vm e IZUIE, exp(—c.) < |CE(2)] < exp(e) (4.2)
vm € I3, exp(2e:) < |Gn(2)]- (4.3)

When we will study the temporal Green’s function 4 (n, jo, j) later on in Section 5, we will have to bound terms
of the form ‘ ‘
G (P |G (2) 70

The inequalities (4.1)-(4.3) will allow us in a lot of cases to obtain directly exponential bounds for some of those
terms.

Using Lemma 3.1, we thus have a complete description of the eigenvalues of M¥*(z) for z in a neighborhood
of 1. The following lemma also allows us to introduce a basis of eigenvectors for the matrices M*(z).

Lemma 4.1. Form =1+ (k—1)de {1,...,d(p+q)} withk € {1,...,p+q} andl € {1,...,d}, the vector
SHOL
RE(2) = : e cdr+a) (4.4)
Gn(2) "m0

is an eigenvector of M*(z) associated with the eigenvalue Ct(z). Furthermore, for all z € B(1,68), the family
(Ri(z))meﬂ ,,,,, d(p+q)} s a basis of Cdlp+a)

Proof Let us start by proving that the vector R} (z) defined by (4.4) is an eigenvector of M*(z) associated
with the eigenvalue (£ (2). We have that ¢ (z) is an eigenvalue of M;=(2) so Lemma 3.2 implies that

Fir(Gn(2) = =
We use the definition (3.7) of the functions Ali),c and the definition (1.15) of the function F;* to prove that

_ Z AE(2)TAE(2)CE(2) Z A 1Afk(z)gﬁ(z)krli
k=—p k=—p
= (GH2) 4 AE () (2~ FEGEED)) rf
= (n(2)1ri

This allows us to conclude that the vector RE (z) is an eigenvector of M™*(z) associated with the eigenvalue

G (2)-

We now consider z € B(1,d0) and (Am)mef1,....d(p+q)} @ family of complex numbers such that

.....

d(p+q)

Z)\R

Separating the blocks of coefficients of size d in the previous equality and observing that the family (rli) le{1,....d}
is linearly independent, we have for all [ € {1,...,d},

p+q

Vj € {_p7 s q = 1} , 0= Z )\l+(k71)dglji_(k_1)d(z)j-
k=1

We have that, for each integer k € {1,...,p+ ¢}, Cﬁ(kfl)d(z) is a simple eigenvalue of M= () for all z € B(1, dp).
Therefore, the complex values (Cl:i(kfl)d(Z))ke{la--<7p+Q} are distinct and thus

vk € {]-7ap+q}7 )‘H-d(k—l) =0.
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Since this is true for all [ € {1,...,d}, we proved that the family (an(z))me{17,..,d(p+q)} is linearly independent
and is thus a basis of C4P+a), O

Thus, we have a characterization of the eigenvalues and eigenvectors of M*(z) for z € B(1,dp). Lemma
3.2 implies that, for all 2 € O N B(1,8), we have that [(;£(2)] < 1 for m € {1,...,dp} and |(E(2)| > 1 for
me{dp+1,...,d(p+q)}. Thus, for z € ON B(1,d)

E*(M*(z)) = Span {Ri(z), m e {1,...,dp}}

and
E“(M*(z)) = Span {Ri(z)7 me{dp+1,...,dp+ Q)}} )

This equality implies that we can extend holomorphically the definitions of E*(M¥*(z)) and E*(M*(z)) for
A B(l7 60)

We now conclude this section by studying the dual basis associated with the basis (R (2))mef1,....d(p+q)}-
We introduce the invertible matrix

Vz e B(1,80), N&®®(z):= (Rf(z) | R?;(W)(z)) € Map+¢)(C) (4.5)

and the vectors L (z), ..., Lf(pﬂ)(z) € CUr+a) defined by

Ve BL&). (LEE) | Dig() = Ne%() (4.6)
We observe that
vz € B(1,8),Ym,m € {1,....,d(p+q)}, Ly(2)" Ry (2) = 6mim (4.7)
and
Vz € B(1,8),¥m € {1,....,d(p+q)}, M*(2)" Ly (2) = (o (2) L (2). (4.8)

We will now prove the following lemma which gives a more precise description of the vectors L (z) of the
dual basis.

Lemma 4.2. We considerm =1+ (k—1)de {1,...,d(p+¢q)} withk e {1,...,p+q} andl € {1,...,d}. For
all z € C, there exist coefficients 2 (2),...,xE, (2) € C such that

) ptq
oy ()l
Li(2):= : : (4.9)
x;!:Jrq(z)lli
Furthermore, we have
Vz € B(1,00), 27 (2) = \5,GE (2). (4.10)
In the proof of Lemma 4.2, we also find the expression of the coefficients 1:2i (2),... ,x;i_q(z) but, contrarily

with :vli(z), they will not be used later on in the paper.
Proof The proof Lemma 4.2 uses calculations similar to those done at the end of [Coe22, Lemma 2.4]. We fix

z € B(1,8). We begin by introducing the vectors i (2), ..., :B;,Erq(z) € C¢ defined by

T3 (2)
= Li(z)
a:;t+q(z)

We consider [ € {1,...,d}\ {I}. Using the definition (4.4) and the linear independence of the vectors R (z),
we have that

+
Y1 r‘lv

Span{Rlii(Eil)d(z)v k€{177p+Q}}: ) yla---7yp+q€(c
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Using (4.7), we can thus prove that

Vie{l,...,p+q}, :1:?(2)7"7*7i =0

Since this is true for all [ € {1,...,d}\ {I}, we have that a:]i(z) € Span I forall j € {1,...,p+q}.
Now that we know that we can express the vector L (z) as (4.9), let us prove (4.10). Using (1.14) and the

definitions (1.5) and (3.7) respectively of the vectors I;¥ and of the functions Al:’tk, we have looking at the j-th
block of size d of (4.8) that

Vie{l....pta—1}, G(2)af(2) =5 (2) — AL, (2) AT, i (2)at (2)
and
Gr(2)2psq(2) = =AML (2) AL (2)a (2).
Thus, we have

. + gl Alik(z) + 1 +
Vie{l,...,p+q}, zj(2)=- Z W Ay () ay (7).
k=—p >

We now have an expression of each z; £(2) depending on 27 (z). We also recall that
liTrl =1.

Using the expressions (4.4) and (4.9) respectively of the vectors R (z) and L (2) as well as (4.7), we have

+ +q q—J
1=L(2)" R (2 Iix )1 =~ Ii g AR ()CGEE)P T AL (2) 2 (2).
= = 1,k m l,q 1
j=lk=—p

Using the definitions (3.7) and (1.15) of the functions Afk and Fi¥, we have
L=—{ > (= RASRGE | AL () e (2)

=— [ aGn(=2) e = Y (a—RASGHE) T | AL () e (2)

k=—p
~ (aGE ) e = FECGEED) + FE(GEED) AF, () 2t (2).
We observe that since (£ (2) is an eigenvalue MljE (), Lemma 3.2 allows us to prove that
FrGm) =2 and () F (Gr(z) = 1.
Thus, since qu (z) = 7)\?7:(1’ we have that
1=¢E' ()N, e (2)

and we deduce (4.10). O

4.2 Choice of a precise basis of £ (z) for » near 1

Now that we have a better understanding of the spectrum of M (z), we are going to prove a lemma that is quite
similar to the geometric dichotomy. This lemma is a direct reference to [God03, Lemma 3.1], itself inspired by
[ZH98, Proposition 3.1].

Lemma 4.3. There exist a radius 61 €]0, o] and two constants C,c > 0 such that for allm € {1,...,d(p+q)}
and z € B(1,81), there exists a sequence (V,;E(2,7)) ez € Cw+0d” sych that :
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e The functions z € B(1,61) = (Vit(2,7))jen € £°(N,CPT99) and » € B(1,61) = (Vi (2,7))je-n €
(2 (=N, CP+94) gre holomorphic. Furthermore, up to considering a smaller radius 6y, those functions
and their derivatives are bounded on B(1,41).

e For z € B(1,01), if we define WE(z,5) := CE(2)IV,E(2,5) for all j € Z, then WE(z,-) is a solution of
(3.3), i.e.
Vi €Ly Win(zj+1) = M;(2)W5 (2 5).

o We have ]
VieN, |Vi(zj)-Rh(z)| <Ce eV,

VEEBLAL e N, i) - Ru(a)l < Cemei

The proof of this lemma is fairly similar to the construction of QF(2) in Lemma 3.3.

Proof We will focus on the construction of (V,(z,j))jez for an integer m € {1,...,d(p+ ¢)}. Because of
(3.2), we have a constant C' > 0 such that

Vi eN,Vz € B(1,6), [Ef(2)] <Ce .

We fix A := ¢ and define the sets
Ly={ve{l,....dp+q)}, Q) <IGhM)]e 2}
={ve{l,....dp+q}, IO =I¢h(D)]e 2},

Because the functions (" depend holomorphicaly on z in B(1,dy), there exists §; €]0, dp[ such that

wely, |G| <IGh(z)le®

Vv eI, |CHz)| > |¢h(z)|e 22, (4.11)

VZ€B<1,51)7 {

We define for z € B(1,01)
E$ (z) := Span (R} (z), vels)
EY(2):= Span (R} (2), veI%).
We have that
Clrtad — g3 (2) @ E“ (2).

We define P? (z) and P (z) the projectors defined by this decomposition of C?+99, They depend holomorphi-
cally on z and commute with M*(z). Because of (4.11), there exists a constant C' > 0 such that
|(GhE) M () P(2)| < Cexp (-55)

Vz € B(1,61),Vj €N, ‘(@(z)—lMJr(z))_j P;i(z)‘ < Cexp (247)

(4.12)

We fix J € N and we will make a more precise choice later. For z € B(1,d1), we define (2) € £ (¢>° ({j € Z,j > J},CPt99))
such that for Y € ¢ ({j € Z,j > J},CP*99) and j > J, we have

j—1

(P()Y), = > (Gh(x) "M (2)) T T P ()G () T E ()Y
= | (4.13)
(G TIM (=) T T PG (2) T ()Y,
k=j
Using the inequalities (4.12), we have that
j—1 ] Jj—1 Al
3 ]( ;<z>f1M+<z>)f—1"fP,iL(z)c;(z)*ls:(z)Yk] Y S e FURemak
k=J k=J
< IVl e 3 el8 o) o

k=J
SIY e FU el
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and
1=k b, toe _
Z! GhE) M @) T T PG TE ()| S 1Yo D e
SlIYlce™
We have thus proved that ¢(z) is in £ (goo ({J €Z,j>J} ,C(’Hq)d)) and there exists a constant C' > 0 inde-

pendent from J such that
Vz € B(L(Sl)a ||@(Z)H£(€°°) < Ce—()ﬂ].

Furthermore, ¢ depends holomorphically on z. We can choose J large enough so that there exists a constant
C €]0, 1] such that
Ve BLA), (o)l pm) <C < L.

We can thus define for z € B(1,41)
V(z) = (Id = p(2) " (R5(2) 5, € 0 ({5 € 2,5 = J},CwHo1)
which depends holomorphically on z. We have that
V() = (BL(:)) 10y + 92V (2).
Thus, for j > J, we find that

(V(2)41 = Ri(2) Z )M (2) T PG () TIE (2) (V(2)),

- Z (Gh(2) M F (2)) " PL(2)GH=) T (2) (V(2),

k=j+1

=G (2) M (2 ( Z )M ()T P ()G () TIE () (V(2),

+oo .
=Y (G M) T T P RIGH () e (2) <v<z>>k)

k=j-+1
= GLE M) (V) + (GhE) T MH(2) T G TIE () (V(2)), )
= GH() M () (V(2));
Thus, for j > J, we have ‘
(V(2))s = Gh(2) X, ()X () (V)
We define for z € B(1,41) and j € Z
Vi (2,9) = Gh(2) X ()X (2) 7 (V ()

and
Wi(z,4) = Gh(z) Vit (z,7).

The two first points are easily proved from the previous observations. There remains to prove the inequalities
in the third point. For z € B(1,41) and j > J, we have using (4.13)-(4.15)

Vii(2,0) — Rh(2)| = l(0(2)V(2);] S e 37 + e,

We recall that for z € O, N B(1,61), we have for m € {1,...,dp} that

G (2)] < 1.

Therefore, (W, (2,0))me(1,....ap} is a family of elements of Ef (2) =SQ(2) for z € O,NB(1,61). In the same way,
we prove that for all z € O,NB(1,61), (W, (2,0))mefdpt1.....d(p+q)} 1S @ family of elements of Ej (2) = ker Q(z).
We are going to prove the following lemma.
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Lemma 4.4. For all z € B(1,61) and j € Z, (W5 (2,J))mef1...dw+q)} 974 (W, (2,9))me(t...d(p+q)} 0re bases

m

of C¥P+a) | The same is then also true for the families (Vi (2,5))meqt..dwrayy and (Vi (2,5))mef1....dp+a)} -

Proof We will write the proof for the family of vectors (W,f(2,7))meq1....d(p+q)}- We consider z € B(1,6,)
and j € Z such that the family of vectors (W} (2,7))me(1,... d(p+q)} i N0t linearly independent. We can then
introduce a family (¢m)me(1,....ap+q)3 € CUPTD\ {0} such that

d(p+q)

Z emW, (4.16)

Since the sequences (W, (z,7)) ez are solutions of (3.3), (4.16) is verified for all j € Z. We define

In:{me{177d(p+q)}v Cm7é0}7é®,
Ri= mas G4(2)] > 0,

mely
In += argma,,c |G (2)] £ 0.
Using (4.16), we obtain

0= Z CmW;;(Z’j)

mel, R
B Ghiz)Y C*( Y R (2)

e Using Lemma 4.3, there exist two positive constants C, ¢ such that we have for m € I,, and j € N

‘sz,j) — G RLA)| _ e <|<$éz>|>j e

R
Thus, )
W) - GEYRAG)
Ry j—+oo
e For m € I,,\Ig, we have 4
(C%Z))JR;( ), 2.0

Thus, we have that

3 e (@é’z)y Ri(:) = 0.

meElr
Since Ir # 0, we fix mg € Ig. Because of Lemma 4.1, the projection of the previous expression on Span(R;;O (2))
along Span(R;} (2),m # my) implies that
5o ()Y’
mo

But, mg belongs to Ir so \Cﬁ,‘lo (2)| = R. This implies that ¢,,, = 0. However, mg € Ig C I, S0 ¢y # 0. This is
a contradiction. O

For z € O, N B(1,61), we recall that
dimE; (2) =dp and dimE; (z) = dgq.

Thus, Lemma 4.4 implies that, (W (2,0)),,c11 gy (tesp. (Wi (2,0))crapr1,...d(prq)}) IS 2 basis of Ef (2)
(resp. Ej (z)). We can then extend holomorphically the subspaces E; (z) and Ej (z) on the whole ball B(1,d;)
as

Vz € B(1,61), Eg(z):= Span (W, (z,0)) and  E; (z) := Span (W, (2,0))

mée{l,...,dp} mée{dp+1,...,d(p+q)} °
(4.17)
We will also define
Iys =17, Is:=1%,
I, —Ic_u7 I :=1,.
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4.3 Definition of the Evans function

In this section, we are going to define an Evans function and prove that 1 is a simple eigenvalue of the operator
& when it acts on £2(Z,C?).

An important part of the study of the spatial Green’s function far from 1 was dedicated to introduce the pro-
jection @ of the geometric dichotomy. The main ingredient of the introduction of Q(z) has been to understand
when Ej (2) and E; (z) are supplementary, as it allowed to conclude via Lemma 3.7 which elements of O where
eigenvalues of the operator .#. For z near 1, because of (4.17), studying whether the vector subspace EO+ (z) and

E; (z) are supplementary comes down to knowing when (Wfr (2,0),..., W(;;(z, 0), Wipi1(2,0),.., Witp+a) (2, 0))
is a basis of C4P*9), We define the Evans function as

Vz € B(1,61), Ev(z):=det(W; (2,0),... ., Wi (2,0), Wy, 1 (2,0),..., Wy 1 (2,0)). (4.18)

The function Ev is holomorphic on B(1,071). Furthermore, for z € O N B(1,61), (3.33) and the set equality
(4.17) imply that the function Ev vanishes when z is an eigenvalue of the operator .#. Thus, Hypothesis 6
implies that the function Ev is not uniformly equal to 0. We will now prove the following lemma which links
the behavior at z = 1 of the Evans function Ev, the eigenspace associated with the eigenvalue 1 for the operator
% and the vector subspace

Span (W;(l, 0),m € ISS) N Span (Wrg(l,O),m € Isu) .
Lemma 4.5. We have that Ev(1) =0 and
dim Span (W} (1,0), m € I,,) N Span (W, (1,0),m € I,) = 1. (4.19)
Furthermore, if we introduce Vy € CHP+0\ {0} such that
Span (W} (1,0),m € I ) N Span (W, (1,0),m € I,,) = SpanVj,

then
ker(Idpe — ) = Span(II(X,;(2)W)) jez (4.20)

where the operator 11 defined by (3.34) is the linear map which extracts the center values of a vector of size
d(p+q)-

Proof The proof is separated in several steps.
e Step 1: We start by proving that

dim Span (W,f(1,0),m € I,,) N Span (W, (1,0),m € I,,) > 0.
We fix m € {1,...,d(p+ q)}. For all j € Z, we define W= (1, 5),..., W% '(1,5) € C¢ such that
WETN(, j)

W:t(laj) =

m

W (1.4)
and we notate u} (j) := W,%O(Lj). Since Wt satisfies

Vjez, WZEQ,j+1)=M0OWEQ,)),

we have . -
Vi€ ZYVk € {—p,....q—2}, WE(1Lj+1)=wE"(1,5) (4.21)
and
q—1
Vi€ ZWET L+ 1) = —A, )7 [ YD An@WE L)) | (4.22)
k=—p

The equality (4.21) implies that

Vi€ Z,Vk € {—p,....q— 1}, WiE(1,5) = uk(j+k).
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We then obtain using (4.22)

ZAJIC m]+k)_0
k=—p

Using the definition (1.20) of A; x, we have that

g—1 qg—1
Vi€Z, > Biawub(G+1+k)= Y Bjsui(j+k).
k=—p k=—p

Therefore, the sequence (Zz;l_p kUt (5 + k)) is constant.
JEZ

o If melx

EER

since ¢E(1) = gfn € D, Lemma 4.3 implies that

WE(1,5) 0.

]~>+oo
Therefore, u;t (j) tends to 0 as j tends to +oo.

o If m e I, since ¢, (1) = ¢, €U, Lemma 4.3 implies that

WE(1,5) — o.

j——o00
Therefore, u;t (j) tends to 0 as j tends to —

Therefore, the two previous points imply that for m € I5 U T,

q—1
Vi€Z, > Bjun(j+k) =0
k=-p
Therefore,
um(j+q-1)
Vj€Z, wuy(j—p)=D; :
ub(j—p+1)
where
D; = ( B 1B]7q 1 .. —B B]7 p+1) e My (d— 1)(p+q)((C)

This implies that
VmEIi urt, Wi(l,o) € .V ecu-Dta)
su m DyV

and thus

Span (W, (1,0),m € I,) U Span (W,,(1,0),m € I ,) C {(DVV> Ve C(dl)(p+q)} '
0

Also,

~ 4 (@=t+a) | _ (g _
dlm{<D0V>, VecC =(d-1)(p+aq),
and Hypothesis 1 implies that
H#Hlss Ul = (d - 1)(p + q) +1.
Therefore, since Lemma 4.4 implies that the families (W,}(1,0)),,c; and (W, (1,0)),,c, ~ are both linearly
independent, this allows us to conclude that

dim Span (W, (1,0), m € I,,) N Span (W, (1,0),m € I,) > 1. (4.23)

e Step 2: The inequality (4.23) allows us to conclude that Ev(1) = 0. We recall that Hypothesis 7 implies

that 5E
A%
5, D70
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Therefore, using (4.23) and the expression of the Evans function Ev, we easily deduce (4.19).

e Step 3: We introduce the vector Vy € C¥P+9\ {0} defined in the statement of Lemma 4.5. Since Vj
belongs to Span (W (1,0),m € Iys) N Span (Wy, (1,0),m € I,), we obviously have that (Il (X;(1)V0)),;, has
exponential decay as j tends towards +00 and —oo and thus belongs to ¢*(Z). Furthermore, since (X;(1)Vp);jez
is a solution of (3.3) for z =1, we have that (II(X;(1)V0));., belongs to ker(Idp2 — ). Thus,

Span (IL(X;(1)V0)) ;5 C ker(Ide — Z).

We now consider w € ker (Idp2 —.%¢) and define

Wq—1 Wj+q—1
Wo:=| : | eci®td) and Vjiez, W,=X;()W,=
W—p Wj—p
If we decompose
d(p+q) d(p+q)
Z W, (1,0) and thus Vje€Z, W,= Z W, (1, 5)
= m=1

with a family of complex scalars (¢, )meq1,....d(p+q)} € C¥P+9) since W; — 0, we have that
j—+4oo

va{l,...,d(p+q)}\Iss, cm = 0.

This can be proved using a similar idea as in Lemma 4.4 by proving that the scalar

R := max{‘g; ,

m € {1,...,d(p+ q)} such that ¢, # O}

cannot be larger or equal than 1. Thus, using a similar proof with the family (W, (1,0))meq1,.. Ld(pta)}s We
have that W belongs to Span(W,(1,0),m € Is) NSpan(W,, (1,0),m € I,) = SpanVj. Therefore, since for all
J € Z we have w; = II(W;) = II(X,;(1)Wy), we conclude that the sequence w belongs to Span (IT (X;(1 )VO))JEZ
We can thus finally verify (4.20). O

First, as a consequence of Lemma 4.5, since the Evans function Ev is holomorphic on B(1,4d;) and not
uniformly equal to 0, the equality Ev(1) = 0 implies that we can consider §; small enough so that the Evans
function Ev only vanishes at z = 1.

Our new goal for the rest of this section will be to introduce will be to use Lemma 4.5 to introduce in (4.26)
below two new bases (P (2,0)),eq1,. apy 20 (Pm(2,0)),e(dp1,. aprq)y fOT the vector spaces Ef (2) and
E; (#) more suitable for the study of the spatial Green’s function when z is close to 1. We will also define in
(4.30c) a new Evans function D® associated with this new choice of bases which will share the same properties
as Ev.

The equality (4.19) of Lemma 4.5 implies that there exist two non zero families of complex numbers
(Os,m)mer,, and (By.m)mer,, such that

Z 08 'HL 7n 1 O Z aum ) (4'24)

melgs meElsy

In the rest of the paper we fix the choice of families of coefficients 6, ,, and 6, ,,,. Even if we have to reindex
the eigenvalues C we will suppose that 0 1,0, 4(p4q) 7 0. Furthermore, we also define

Osm :=0forme{l,....d(p+q)} \Iss and Oym:=0forme{l,...,dlp+q)} \Lsu- (4.25)
We define for m € {1,...,d(p+q)}
>omer., OsmWo (2,79), if m=1,
wEBLOYET Bai)=g  pEed Sl o a
Yometn, umWi(2,), if m=d(p+q).
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Since 05,1, 0u,a(p+q) 7 0, we have that (9n.(2,0)),,e01, apy a0 (Pr(2,0))efapri,....dprq)} AT€ Tespectively
bases of Ef (z) and E; (2). (4.24) implies that ®1(1,0) = ®g(p+4)(1,0) and since ®1(1,-) and Pgp4q)(1,-) are
solutions of (3.3) for z = 1, we have

Vi€eZ, ®1(1,5) = Pupsq(l, ). (4.27)

Furthermore, using the expression of ®;(z, j) and ®4(,4.4)(,j) as well as Lemma 4.3 and inequalities (4.1) and
(4.3), we prove that there exists a positive constant C' such that

Vz e B(1,61),¥j €N, [®1(z,j)| < Ce 2l (4.28)
Vz € B(1,01),Vj € N, ‘(I’d(p+q)(zaj)’ < Cem 2l .

Using (4.20), we have that if we define
VieZ, V(j)=1(®:(1,))) = M(®@apq)(1,5)) (4.29)

then V is a sequence in £2(Z,C%)\ {0} such that (1.21) and (1.22) are verified. It will correspond to the sequence
V in Theorem 1.
If we summarize, for z € B(1,41), we have five families to describe the solutions of the dynamical system
e The bases <<I>1(z7j), Wi (z,5), .-+ W;Epﬂ)(z,j)) and (Wf(z,j)7 Wi (2, 5),. .., W;Epﬂ)(z,j)) for which
we know the asymptotic behavior when j tends to +oo.

e The bases (Wf (2,7)y .-, Wcip+q)71(z,j), @d(erq)(z,j)) and (Wf (2,7)5- -, W(;(erq)fl(z,j)7 W;(pﬂ)(z,j))
for which we know the asymptotic behavior when j tends to —oo.

e The family (®1n(2,5)) e 1, d(ptq)y Which is linked to the solution which tend towards 0 as j tends towards
400 or —00, at least when z € O. It is a basis of C4P+9) if and only if Ef (2) @ Ej (z) = CHr+9),

We introduce a few more notations. For z € B(1,d1) and j € Z, we define

G?(2.5) = (@12 D). . [Bapiq) (2.)) . D®(2) = det(G(2.0)). (4.300)
GH(z4) = (D1 NS ) W (229)) D*(2) = det(G*(2.0)),  (4.30b)
G (z5) = (Wi ) Wi gy 1 (5o DIy (2:9)) D™ (2) := det(G (2,0)), (4.30¢)
¥ (2.4) = (Wi DIV )l Wi (2:0)) (4.30d)
G (z4) = (Wi i)W ()] Wiy (22)) - (4.30¢)

Those functions are holomorphic on B(1,47). Let us now conclude the section with a few observations:
e We observe using the definition (4.26) of ®; and ® 4,44 that for z € B(1,41) and j € Z

0571 1 9u,1
_ 0,0 1 _ . .
Gt (2,4) =G"(2,7) . . and G (z,5) =G (z,4) - 1 . (4.31)
: - L by d(ptq—1
Os,a(p+q) 1 Ou,d(p+q)

e Using (4.26) and (4.25), we have for z € B(1, 6;)

03,1 9u,1
95 2 1 9u,2
G2 (2,0) = (Wf(z,0)| AW (2,0 Wi 1 (2,0)].. |Wcip+q)(z,0)) :
os,d(p-i-q)—l 1 9u,d(p+q)—1
9s,d(p+q) 9u7d(p+q)

and thus
D‘b(z) = 93,101L,d(p+q)EV(Z)'

40



The function D® thus shares the same properties as the Evans function Ev, i.e. the function D® is holomorphic
on B(1,d;), vanishes only at z = 1 and 1 is a simple zero of D®. We will thus also call D® Evans function.

e For 2 € B(1,41)\ {1}, the function D® does not vanish at z and thus (®,,(z, 0))ime(t,...d(ptq)} 1S @ basis. We
can define form € {1,..., (p + ¢)d} the projector I, (2) on Span(®,,(z,0)) along Span(®,(2,0))ve(1,....(p+q)d}\{m}-
We observe that

I,,(2) = G®(2,0)P,,G*(2,0) 71 (4.32)

where P, = (8; m0jm) ()} € M 4¢)a(C). The function I, is holomorphic on B(1, ;)\ {1}.

i,je{1,...,

4.4 Behavior of the spatial Green’s function near 1

We have now introduced all the tools necessary to study the spatial Green’s function near 1. In Section 4.4.1,
we will use the families of vectors previously indicated to decompose the expressions (3.41a) and (3.41b) proved
on the spatial Green’s function in Section 3 and obtain the expressions (4.35) of the spatial Green’s function
on B(1,6;) N O,. Since the sequence W, are holomorphic on the whole ball B(1,d;), this will allow us to to
extend the spatial Green’s function meromorphically on B(1,4;) with a pole of order 1 at 1. The calculations
performed in this section will be fairly inspired by [God03, Section 3| and the expression (4.35) corresponds to
the result of [God03, Proposition 3.1]. However, we will need a more accurate description of the spatial Green’s
function to improve on the result of [God03]. Those calculations will be performed in Sections 4.4.2 and 4.4.3.

4.4.1 Meromorphic extension of the spatial Green’s function near 1

We observe that for z € O, N B(1,6;), we have that Q(z) is the projector on E (z) along Ej (2), so

dp (ptq)d
Q)= Tn(z) and Id—Q(z)= Y Ipy(2).
m=1 m=dp+1

Since the equalities (3.41a) and (3.41b) are still verified for z € O,NB(1, 61), if we define form € {1,...,d(p+¢)}
the functions

-1

Jo,q
Vz € B(1,60)\ {1}, VY40, j € Z,YE€ € C%,  vn(2, 50,7, ) := X;(2) M (2) Xjo41(2) 7" .
0
then, we have that for z € O, N B(1,4,)
dp
Vi>jo+ 1, W(2740,5,€) ==Y vm(2 o, @), (4.33a)
m=1
(p+a)d
vj SjOa W(Z,jo,j,éj = Z Vm(zajmjvé‘)' (433b)
m=dp+1

Since the right hand terms of (4.33) are holomorphic on B(1,471)\ {1}, we can extend holomorphically the spatial
Green’s function on B(1,01)\ {1}.
We observe that (4.32) implies for z € B(1,01)\ {1} and m € {1,..., (p + ¢)d},

-1

o . jo,a€
Vm(2, jo, J,€) = gDéZ(’ZJ)) Prcom(G*(2,0))7 Xy 11(2) :
0
If we define .
Di (2, o, €) Aj{’)’qe
: = com(G¥(2,0)" Xjora (=)™ | .|, (4.34)
Datprq) (2, o, €) 0
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then the functions Dy, (-, jo, €) is holomorphic on B(1, 51) and we have

V(2350251 &) = (Z(JO)"% (2,5)-

Therefore, (4.33a) and (4.33b) can be rewritten for z € B(1,461)\ {1} as

& Din(z, jo, @)

vj 2 jO =+ ]-7 W(Z,jo,j,é) - - Dq>( ) q) ( >]) (4353“)
m=1
(p+o)d A .
o o Dy (2, jo, €) .
< = _— . 4.
Vi < jo, Wi(z,jo,J,€) m:Ede Do) D, (2, 5) (4.35b)

Thus, recalling that 1 is a simple zero of the Evans function D?®, the expressions (4.35a) and (4.35b) allow
us to conclude that the spatial Green’s function has been meromorphically extended on B(1,01)\ {1} with a
pole of order 1 at 1.

Now that we have found the meromorphic extension of the spatial Green’s function near 1 using the family

(P (2, 0))meqt,....ap+q)}> We Will use the other families (le[(z,j)7 ey Wip+q)(z,j)> for which we know pre-

cisely the behavior as j tends towards oo to find a new improved expression of the spatial Green’s function
with terms that we can estimate more easily.

4.4.2 Decomposing the function ﬁm

We begin this section by introducing the vectors

G2, 4o, ) Ajpa®
Vz € B(1,6,),Vjo € Z,Ne € CL, €% (z, 7o, &) = : =G%(z,j0+1)7 ¢ |, (4369
Gl :
G (2,50, Ajpa
Vz € B(1,6,),Yjo € Z,Ve € C?, €F(2,jo,€) = : =Gz, jo+ 1) | . |. (4.36b)
Citpra (2009 0
Using (4.31) and (4.25), we obtain that for z € B(1,6;), jo € Z and & € C?
Gt (2,50, 8) = 0.1, (2, jo, ), (4.37a)
¥m e L\{1}, %) (2.0, €) = €} (2,0, &) + OumGi (2, jo. €), (4.37b)
vm e {1,...,d(p+ @)} \Lss, (fnt(z j0, €) = € (2, jo, €), (4.37¢)
Vm e {1,...,d(p+ @)} \Lsu, €, (2,70, €) = €, (2, Jo, €), (4.37d)
Vm € Isu\ {dp+9)},  Gn(2.00,8) = € (2,0, €) + OumE g,y ) (20, €), (4.37e)
Coatprg) (530, €) = Oud(pr)C iy i) (270 €)- (4.37f)

In Section 4.4.4, we will prove estimates to bound %nf However, the functions ‘5;,5 will be put on the side
for now and will naturally reappear later on in Section 4.4.3 using (4.37). For now, we will mainly focus on
properties linked to the functions €.

We introduce the matrices

Vze B(1,8,), ME(2):=G%(2,0)7'G%(2,0) and (gm, ( )) = com (M*(2)).
(m’,m)e{1,....d(p+q)}
(4.38)
Using the definition (4.34) of D,,, and a Laplace expansion of the determinant, we prove that
R d(p+q)
vme {1,....d(p+q)},¥z € B(1,01),Yjo € Z,YEEC?, Dp(z,jo.&) = D=(2) Y gE, . (2)C5 (2. jo. &)
m’=1

(4.39)
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Looking at (4.35), we are interested in studying the quotient of ZA)m(',jo,é) and D®. In order to have less
crowded expressions later on, we also introduce the functions

+
gm’,m (Z)

Vm,m' € {1,....d(p+q)} . Vz € B(L,s)\ {1}, G ,.(2) = Di(z)DT(z).

(4.40)
The function ﬁi,’m is meromorphic on B(1,d1)\ {1} with a pole of order less than 1 at 1 since 1 is a simple zero
of the Evans function D®. If gi,m(l) = 0, it can thus be extended holomorphically on the whole ball B(1, ;).

This decomposition of the functions D,, will be used in Section 4.4.3 with (4.35) to obtain a better expression
of the spatial Green’s function. We end this section by proving the following lemma using (4.27).

Lemma 4.6. 1. Form’ € {1,...,dp} and m € {1,...,d(p+ q)}, we have
Vs e BOL&), gt (2) = O gfz;
2. Form ¢ {1,dlp+q)} andm’ € {1,...,d(p+ q)}, we have
oty (1) = 0.
3. Form/ e {dp+1,...,dlp+q)} andm € {1,...,d(p+ q)}, we have
Vz € B(1,61), Gy m(2) = 6m/7mg¢8.
4. Form ¢ {1,d(p+q)} and m' € {1,...,d(p+ q)}, we have
Gy (1) = 0.
5. We have
911D = G D =0 and 94610 aprg) (D) = Jagprg)a (D) = 0.
6. Form' € {1,...,d(p+ q)}, we have
9:1’,1(1) = _g;:’,d(pqu)(]') and g, 1 (1) = =900 a(prq) (1)- (4.41)

Lemma 4.6 determines the couple of indexes m,m’ € {1,...,d(p + q)} such that gi/m is equal to 0. This
allows us to remove many terms in (4.39). It also determines the couple of indexes m,m’ € {1,...,d(p+¢q)}
such that gi, ., vanishes at z = 1 which implies that the function gy, ., defined by (4.40) can be holomorphically
extended on the whole ball B(1,d;).

Proof We will focus on proving the statements involving g ' m Since every statement involving g, , . will have
similar proofs. We observe that the definition (4.26) of ®,,(z, O) implies that if we define for z € B(l 1) and
me{l,...,dp+q)}

Cih(2) i= G (2,0) 1Dy (,0)

then, for m € {1,...,dp}, we have
ChHz)=en

where (€;)je{1,....d(p+q)} 15 the canonical basis of C4r+a), The equality (4.27) also implies that

Coiprg(L) =e1=C (1). (4.42)
Thus,
M*(z) = ( Igp Chn(2) | o | G () ) (4.43)
For m,m' € {1,...,d(p+ q)}, we recall that g;,’m(z) is the (m’, m)-cofactor of the matrix above.

We observe that
D®(2)

Com(M+( ))TM+( )= D+(Z)I (p+a9)-

(4.44)
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Looking at the first dp columns of M™(z) in (4.43), we then conclude that the first dp lines of com(M™(z)) are
equal to

D¥(z
(58 |0)
which implies Point 1.
We observe that the equality (4.42) implies

1

My = | Lo | et ) ol
) 0 dp+1( ce d(p+q)—1

0

Points 2 and 5 are then easily deduced by equality between the first and last columns of the matrix above.
There just remains to prove Point 6. We observe that

M (1)com(MT(1))T = 0.
Looking at the coefficient at the first line and m/-th column, we have that

d(p+q)—1

G+ Y (ChHOGh D)+ G s (D) = 0.
m=dp+1

Using Point 2, we easily conclude the proof of Point 6. g

4.4.3 Final expression of the spatial Green’s function

Depending on the sign of jy and on the localization of j depending on jy and 0, we will exhibit an expression of
the spatial Green’s function which will be useful to study the temporal Green’s function. We will only present
the expressions for jo > 0. The case where jy < 0 would be handled similarly and give another expression of the
spatial Green’s function on B(1,4;) that would be necessary to prove a decomposition of the temporal Green’s
function similar to (1.30) when jo < 0.

Case where jj > 0 and j > jo + 1:

Using (4.35a) and (4.39), we have

dp d(p+q)

(’2307 é)__z Z gmm (2-7075)‘1) ( )

m=1 m/=1

Point 1 of Lemma 4.6 then implies that

dp dp d(p+q)
W (2,40, 5,€) = = Y € (2,50, O)Pm(2.0) = D > G m(2)E0 (2,50, &) (2, 7).
m=1 m=1m/=dp+1

Using the definition (4.26) of ®1, we then have that

W(Z7j0aj7é) = _68,1%14»(27.7.075)1/[/]?’»(27].) - Z (an—t(za¢707€) + es,mcg1+(z7j07é,))Wr—rt(z7j)

melss\{1}
dp  d(p+q)
= Y Gz W) = > Y G (DG (2050, &) P (2, ).
melcs m=1m'=dp+1

Using (4.37a)-(4.37¢) which links the functions €% and €= and the definition (4.26) of ®,, for m € {2, ..., dp},
we obtain that

dp  d(p+q)
W(Z7j07j7éj - Z% z jo5é>W (Z ] Z Z g7n m m/(Z ]07aW ( )
m=1 m=2m/=dp+1
d(p+q)
= Y Ga()E) (2,50, )01(2,5).  (4.45)
m’=dp+1
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Remark 2. It m € {2,...,dp} and m' € {dp+1,...,d(p+ q)}, we have that g;;/’m(l) = 0 because of Lemma
4.6. Thus, the function

2 € B(Lo)\{1} = G, (2)%,0 (2, J0, ) (2, J)
can be holomorphically extended on the whole ball B(1,d7).
Case where jo >0 and j € {0,...,jo}:
For m € {dp+1,...,d(p+ q)}, using the respective definitions (4.30a), (4.30b) and (4.38) of the ma-
trices G®, Gt and M™, we have the following expression of the vector ®,,(z,j) depending on the family

Wi (2o 0))keqt,. . ap+a)}:

d(p+q)
®p(2,7) = G (2, ) MT(2)km)reqr,...dpray = MT(2)1.m®1(2, ) Z M (2) kWi (2, 4)-

Thus, using (4.39) and the fact that Lemma 4.6 implies g;,m =0 for m’ € {1,...,dp}, we have

D,, , D+ d(p+a) d(p+q)
e D) = Dy D GO M)+ 3 MW )
m’/=dp+1

Using (4.35b), we then have that

W(ZajOajaéj
d(p+q) d(p+q) d(p+q) [ d(p+q)
= > Y M@ m n(2) | 1z + Y Y M@k m(2) | Wi (24)
m’'=dp+1 m=dp+1 k=2 m=dp+1
D*(2)
€t (2,40, €).
Dq)(z) m(Zajo g)

Let us find expressions for the sums Z%’:&ill M (2)kmrh (2) when m/ € {dp+1,...,d(p+q)} and
kEe{l,...,dlp+q)}. We recall that g;;,vm(z) is the (m’, m)-cofactor of the matrix M¥(z). Furthermore, by

definition (4.38) of the matrix M™, we have that

_D%(»)
- DT(2)

M (2)com(MT(2))T Id. (4.46)

Thus, by observing (4.43) implies that for k € {dp+ 1,...,d(p+ q)} and m € {1,...,dp} we have M™(2)j.m =
0, we conclude looking at the k-th line and m/-th column of (4.46) that

d(p+q)

D?(z
Vee{dp+1,....dp+qg}.vm e{dp+1,....dp+a)}, D> M (Dkmgh . (2) = mgziék,m/.
m=dp+1
Furthermore, (4.43) implies that
Vk e {1,....dp},Ym e {1,...,dp}, M (2)km = Ok.m-
Thus, looking once again at the k-th line and m/-th column of (4.46), we have
d(p+q)
Vke{l,....dp} Vm' € {dp+1,....dp+a)}, D> M (Demgh . (2) = —g5 . (2)-
m=dp+1
We finally conclude using (4.37a)-(4.37¢) which links the functions € and ¢+ that
d(p+q) dp  d(p+q)
W(ZajOajvé) = Z (g (Z ]O?é) Z Z gm’ m m’(z ]07é')W ( )
m=dp+1 m=2m/=dp+1
d(p+q)
— Y G aR% (2,00, 8)P1(2,5).  (4.47)
m’=dp+1
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Remark 3. We observe that some terms in (4.47) are equal to terms of (4.45). We will see later on that they
contribute to the reflected waves in the decomposition of Theorem 1.

Case where jp > 0 and j < 0:
Using (4.35b) and (4.39),

d(p+q) d(p+q)

W(Z,j07j,é) = Z Z gm m (Z jo,é‘)@ ( )

m=dp+1 m’'=1
Lemma 4.6 implies that
Vm e {dp+1,...,dlp+q)},vm' € {1,...,dp}, 9;/,m =0.
Thus, using (4.37a)-(4.37c) which links the functions €/* and ‘5?,%,

d(p+q)—1 d(p+q)

W(z0,58) = > D G (D)6 (2000, E)Wi (2,5)

m=dp+1 m’=dp+1

d(p+q)
+ Z /d(p+q) )%if(zyjo7é)@d(p+q)(z,j). (4.48)
m’=dp+1

Remark 4. fm € {dp+1,...,d(p+q) — 1} and m' € {dp+1,...,d(p+ ¢)}, we have that 9:1/,7;@(1) = 0. Thus,
the function _
z € B(laél)\{l} = Fg:;/,m(z)cgnt’(zvjmé)q)m(z7j)

can be holomorphically extended on the whole ball B(1,d1).

4.4.4 Useful estimates

In this section, we will introduce the necessary observations to properly bound the terms appearing in the
decomposition of the spatial Green’s function of Section 4.4.3. We will in particular introduce a new expression
of the functions €F(z, jo, €), prove that they roughly act like ¢ (2)77° and determine their behavior as j, tends
towards £oo.

For z € B(1,61) and j € Z, we recall that Lemma 4.4 implies that (VF(z,))me{1,....d(p+q)} IS a basis of
C4r+49), Thus, we can define for z € B(1,6,), jo € Z and & € C?

-1

A% (2, jo, &) Ao,
+ - + : + . . + v —1 0
N*(z, jo) = ( Vit(z,0) | -+ | Vigysq (2:0) ) and , = N*E(2,j0) -
A%, (2108) :
(4.49)
We observe that (4.36b) implies that for all z € B(1,6;), jo € Z and € € C%, we have
A7l e
d(p+a) o Jo.q
Y TG (20, Vi (2o + 1) =
m=1 :
0

Thus, we have that for m € {1,...,d(p+q)}, 2 € B(1,61), jo € Z and € € C?

%;n‘?(zaj()aé‘) = Crzg(z)ijOilAi(Z?jOaé')' (450)

We now prove the following lemma which gives us the asymptotic behavior of AX (2, jq, €).
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Lemma 4.7. There exist a radius d2 €]0,01] and two constants C,c > 0 such that for all z € B(1,4s),

m=I1+k-1)de{l,....dlp+q)} withk € {l,...,p+q} andl € {1,...,d} and &€ € C¢, we have
VieN, |Vi(z) = V(L) <Clz-1], (4.51a)
Vjie-N, [Vg(z7) =V, (15| <Clz-1], (4.51b)
Wi €N, [@1(2,5) — 1(1,5) < Clz — 1e™ 2, (4.51c)
vje-N, ‘q)d p+a) (%, 4) — q)d(p+q)(1vj)| < Clz—1fe” s (4.51d)
Vjo €N, ‘A (2,50,8) — ¢ ()1 "e] < C|elecliol, (4.51e)
Vioe N, [An(z0.8) — G ("] < Cleleol, (451f)
ij € Na |A+ (Z jOaé>| < C'aa (451g)
Vjo € =N, |AL (2,50, 8)| < Clél. (4.51h)
Vio €N, |A} (2,50, €) — Af (1, jo. €)] < Clz — 1], (4.51i)
Vjo € =N, |AL(2,0,8) — A, (1,0, €)| < Clz —1]Jé]. (4.51j)

Proof The first two inequalities are direct consequences from the fact that z € B(1,d;) — 8(;/;” (2,-) €

£ (+N, C4P+a)) is bounded (see Lemma 4.3).

We will prove (4.51¢). The proof of (4.51d) would be similar. Using the definition (4.26) of ®;, we conclude
that we only have to prove that for all m € I,5 that there exists a constant C' > 0 and a radius ds €]0, §;] such
that

3cx

Vz € B(1,65),V5 €N, |W,f(z,5) = W}h(1,5)] <Clz—1]e”
We observe that for z € B(1,01) and j € N, we have

gl

(Wit (z,5) = Wit (1,3)| < |GhE Vit (z,0) = Vb D]+ Vi (L) |Gh(z) = ¢hay] .

Using (4.51a), (4.1) and the fact that % is bounded on B(1,d3) for d2 €]0, d2], we easily conclude.
We observe that (4.51g) and (4.51h) are direct consequences of (4.51e) and (4.51f). We will focus on (4.51e)
as (4.51f) would be proved in a similar way. We observe that Lemma 4.9, (1.14) and (1.5) imply that
—1 .
A(‘Z*‘O é
LLET| L [ =G e A =g e
0

Thus, A} (2, j0,€) — C,;L@'(z)l;rTg is the m-th coefficient of the vector

—1 —1

nge A;_O €
N | L [N

0 0

We then just have to find bounds for this difference of vectors. We have

j_(:qe Aqi_lé'
NT(z,50)7" ) — Nt>(2)7! (.)
0 0
A -y
N (2 0) " (NH(2) - N o)) N5 | [+ N
0 0
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We wish to bound each term in the right-hand side of the equality (4.52). Let us start by looking at the
first term. Lemma 4.3 implies that the functions N* (-, jo)~! are bounded on B(1,d;) and that the bound can
considered to be uniform for jo € N. The function N7°°(-)~1 is also bounded on B(1,d;). Since A;;q converges

towards A('I“i1 as jo converges towards +oo, we also have that the family of matrices (A
Finally, using Lemma 4.3, we have that there exist two constants C,c¢ > 0 such that

jio%q)joeN is bounded.
Ve € B(LG).io €N, [N*() — N¥(z,o)] < O

Thus, we have that there exists another constant C' > 0 such that
jaqe
Vz € B(1,6,),¥¢ € C4Vjo €N, [NT(z,50)7" (N+’°°(z) —N*(z,jo)) NT>(z)~! . < Clele=co.,
0
We now focus on the second term. The function N*°°(-)~1 is bounded on B(1, ;). Furthermore, Hypothesis
3 allows us to determine that there exist two constants C, ¢ > 0 such that

. - -1 —cj
Vjo €N, |Al —AFT| < Ce .

Therefore, there exists a new constant C such that

(A7l —AF~he

Jo,9q

0 ,
Vz € B(1,6,),¥¢€ € CVjp €N, |NT>(z)~1 ) < C|éle~co,
0
There remains to prove (4.51i) as (4.51j) would be proved similarly. We observe that for z € B(1,d2) and
jo € N, we have

N+<Z7j0)_1 - N+(17j0)_1 = N+(Z’j0)_1 (N+(17j0) - N+(Z’j0)) N+(17j0)_1'

Using (4.51a) and the observations above which claimed that N*(z, jo)~! is bounded uniformly for z € B(1, d2)
and jo € N, we have that there exists a positive constant C' such that

Vz € B(1,02),Yj0 €N, |[NT(z,50)" = N*T(1,j0)7 ! < Clz — 1].

The definition (4.49) and the fact that the family of matrices (A;Olq) joen is bounded imply that (4.511) is verified
for some constant C > 0. O

5 Temporal Green’s function and proof of Theorem 1

The previous Sections 3 and 4 served respectively to describe the spatial Green’s function far from 1 and
near 1. Our objective is now to focus on the core of the article: the study of temporal Green’s function and
the proof of Theorem 1. In the present section, we will express the temporal Green’s function with the spatial
Green’s function using functional analysis. We will then use the different results of the previous sections (mainly
Proposition 2 and the decompositions (4.45), (4.47) and (4.48) of the spatial Green’s function near 1) to obtain
the result of Theorem 1. Just as when proved the decompositions (4.45), (4.47) and (4.48) of the spatial Green’s
function near 1, the proof of Theorem 1 will be done whilst assuming that jo is larger than 0 to obtain (1.30).
The case where jo < 0 would be handled similarly and would necessitate to prove expressions of the spatial
Green’s function on B(1,47) similar to (4.45)-(4.48) when jo < 0.

5.1 Link between the spatial and temporal Green’s function

First, we recall that in Sections 3 and 4, we studied the vectors W (z, jo, j, €) defined in Section 3.5 which are
composed of several components of the spatial Green’s function. The inverse Laplace transform implies that if
we introduce a path I' that surrounds the spectrum o (%), for instance I',. := rS! where r > 1, then we have

1
4 (n, jo,j)€= 5 . 2"G(z, jo,j)édz = o s 2"TI(W (2, jo, j,€))dz
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where II is the linear application defined by (3.34) which extracts the center values of a large vector. We consider
the change of variables z = exp(7). If we define I', = {r + it,t € [—m, 7]}, then we have

e"Te"II(W (€7, jo, J, €))dr. (5.1)

r

94 (n,jo,j)€= %in ).
The goal will now be to use Cauchy’s formula and/or the residue theorem to modify our choice of path I'" and
to use at best the properties we proved on the spatial Green’s function.

In Section 4, we have found a decomposition and meromorphically extended the spatial Green’s function on
a ball B(1,d;) with a pole of order 1 at 1 and introduced an even smaller ball B(1,d2) on which we have more
precise bounds (Lemma 4.7) that will help us later on in the proof. We consider a radius €} €]0, 7| such that

VT € B(0,g5), € € B(1,02).
Lemma 5.1. For all radii € €]0,¢j|, there exists a width n. > 0 such that if we define
Q. :={reC, Rre]—n.,n,37€[—mn}UBQ,e),

then for all j, jo € Z and € € C?, the function T+ W (€™, jo, j,€) is meromorphically defined on Q.\ {0} with a
pole of order 1 at 0 and there exist two positive constants Ce, c. such that

vr € Q\B(0,¢),Yj,jo € Z,Yé € CL,  |W (€™, jo,j, €)| < Celeleccli=ool, (5.2)

Defining this width 7. is important for the following calculations since we have defined a set 2. on which

we can change the path of integration of (5.1) using the residue theorem. Furthermore, for 7 € Q., either
7 € B(0,¢) which implies that e € B(1,d2) and that we can thus use the decomposition of the spatial Green’s
function we obtained in Section 4.4, or 7 ¢ B(0,¢) and we can use (5.2) to obtain exponential bounds on the
spatial Green’s function.
Proof The proof is identical as [Coe23, Lemma 5.2] and will thus not be detailled. It just relies on observing
that for any radius e €]0,&4[, the results of Section 4 imply that for all jy,j € Z and & € C?, the function
T = W(e",jo,j,€) is meromorphically extended on B(0,¢)\ {0} with a pole of order 1 at 0. We then use
Proposition 2 on a neighborhood of each point of the set

U.:={reC, Rrel0,x],37€[—m n]}\B(0,¢)

and conclude via a compactness argument on the existence of a width 7. €]0, e[ and of two positive constants
C¢, c. such that (5.2) is verified. O

Let us observe that for all m € I U T%  we have that the function (& (which we recall are defined in

Section 4.1 and are eigenvalues of the matrices M*(z)) is holomorphic and ¢ (1) = 1. Therefore, there exists
a radius €% €]0, 5[ so that for all m € I£ U I that we write as m = + (k — 1)d with k € {1,...,p+ ¢} and
I €{1,...,d}, there exists an holomorphic function w;" : B(0,e}) — C such that w;"(0) = 0 and

Vr € B(0,e}), (E(e7) = exp(wi(1)). (5.3)
Since ¢ (e7) is an eigenvalue of M;(e”), Lemma 3.2 implies that
¥r e B(0,e}), Fi(e®i D)=
If we define the holomorphic function

<pli:(C—> C

+

T 1B 2

- =
l i

(5.4)

then, up to considering £} to be slightly smaller, the asymptotic expansion (1.18) implies that there exists a
bounded holomorphic function & : B(0,e%) — C such that

vr € B(0,e1), @y () = @i (1) + TG (r). (5.5)
Lemma 5.2. There exists a radius £5 €]0,e7[ and two positive constants Ag, Ay such that for alll € {1,...,d}
V1 e C, AFR(piE(T)) < —R(1) + ApR(T)* — A;S(1)?*, (5.6)

vr € B(0,¢}), af R(@i (1)) + o &5 (T) T < —R(7) + ApR(r)* — ArS(r)*
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The proof is identical as [Coe23, Lemma 5.3] and will thus not be detailed here.
Choice of the radius ¢ and of the width 7

We will now fix choices for a radius € > 0 and a width n > 0 which will satisfy a list of conditions. Those
conditions will be are centralized here in order to fix the notations and are especially important to prove some
technical lemmas in Section 5.2.1. We will try to indicate at best where those conditions are used.

First, we fix a choice of radius € € }0 min (5§’ (ﬁ) BT 1) [ where the radius <3 is defined in Lemma
5.2. This choice for € will allow us to use the results of Lemmas 5.1 and 5.2. Furthermore, if we introduce the

function
v: R — R
2 (5.8)
Tp = Tp— ArTpyH
which we will use to define a family of parameterized curve later on in Lemma 5.4, then the function ¥ is
continuous and strictly increasing on |—oo, g]. This conclusion on the function ¥ will be essential in the proof
of Lemma 5.4 to construct the path I" appearing in (5.17¢).
We now introduce the function
re: |0,e] —
L 5 5 (5.9)
n = e =n
which serves to define the extremities of the curve —n + iR N B(0, ). We recall that we defined a width 7. in
Lemma 5.1. We claim that there exists a width n €]0, n.[ that we fix for the rest of the paper such that:

e The following inequality is satisfied:

g > Agn?t. (5.10)
It is used for instance in the proof of Lemma 5.4.
o We have
n—+ Apn* — %TE(U)Q“ <0. (5.11)

It is quite clear that we can choose 7 small enough to satisfy this condition since, when 7 tends towards 0,
the first two terms on the left hand side converge towards 0 and the third converges towards —%6. The
condition (5.11) is used in Lemma 5.4 to prove (5.17b). A consequence of (5.11) is that

A 2n
Vn € N,Vx € [2,271} Nte [-nm], (n—ax)t+ At — x% <0. (5.12)
Indeed, using the convexity with regards to t of the left hand side of (5.12), we have that
A A 2n
(nfx)t#*IARtQ”f ITE( ) < |Tl*£E|T}+£L'ART]2’J*fE 17"52(77)

We observe that n € [£,2x] and thus, using ( .11), we have

AITE (U)QH

(n — 2)t + 2 Art*" — <0.

A 2n
<z (77 + Arn™ — IT€2(77) )

The consequence (5.12) of (5.11) will be used in the proof of Lemma 5.6.

o There exists a radius e4 €]0, e[ such that if we define

<w<s#> - \I’(—n));“’ (5.13)

Ag
then —n + ileztr € B(0,¢). It is used in the proof of Lemma 5.4.
We introduce the paths Ty (n), T (7), T9, (1), Tin(n), T'(n), Ta(n) represented on Figure 2 and defined as

lextr =

Lout(n) == [-n —im, —n —ire(n)| U [=n + irc(n), —n + i7],
IE () := [~y £ ire(n),n £ ir-(n)],
9, (n) = [n—ir(n),n +ir(n)], (5.14)
Lin(n) :==T5,(n) UT, () UTH (n)
L'(n) == Tin(n) U Tout(n),
La(n) == [-n —ire(n), —n +ire(n)] .
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Cout ("1)
rd.(m)
Lq(n) B (0)
R(7)
o 2. (n)
L5 (n)

Figure 2: A representation of the path described in (5.14): Tyyue(n) (in red), IE (1) (in blue), T9, () (in purple)
and T'y(n) (in green)

We observe that those paths lie in Q.. Using the Cauchy formula and acknowledging the "2ir"-periodicity
of 7 — W(eT, jo, j, €), we can prove via the equality (5.1) that

N 1 nT T T i
%(nu?()v])e = T e e H(W(e »J05 s a)dT
wm T'(n) (5 15)
1 1 '
= — e"e"II(W (€7, jo, J,€))dT + — e"Te"II(W (e, jo, J, €))dT.
2Z7T Fout(n) 227’(’ Fin(TI)

Lemma 5.3. There exist two positive constants C, ¢ such that for alln € N, jo,j € Z and &€ € C* we have that

1

PR < -nn.
2in < Clele

/ enTeTH(W(eT?jovjaé))dT
Fout(n)

Proof The conclusion of the lemma directly follows from (5.2) and the definition of T',,+(n) which implies that

VT € Fout(n)7 |en7'| =e "

The equality (5.15) and the sharp exponential bounds on

1
By enTeTH(W(eijOajaé))dTa
2Z7T Fout(ﬂ)

we just proved imply that this term will belong to the residual term R(n, jo,j) in (1.30). There just remains to
handle the term )

— e"e"II(W (€7, jo,J,€))dT (5.16)
2Z7T Fin(n)

to have the description (1.30) of the temporal Green’s function expected in Theorem 1. We recall that T';, (n) is
a path that lies inside the set B(0,¢) by construction and that we chose the radius € €]0, €3] to be small enough
so that

V7 € B(0,¢), €" € B(1,02).

Thus, recalling that we consider j, > 0, we can use the expressions (4.45), (4.47) and (4.48) to decompose
the integral (5.16) into different terms depending on the position of j with respect to 0 and jo. Our goal is
to associate those terms with the different behaviors of the temporal Green’s function presented in (1.30) of
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Theorem 1 using Lemmas 5.7-5.11 that we will proven below. To clarify, let us give details on one of the cases.
If we consider j > jo + 1, then (4.45) implies that

1 > . .
5w Jo oy VT 0.2 d sz / €T E (e o, ML (WA (e, ) dr
Cin(n Fin(
dp  d(p+aq)
SN g e o T (W ) dr
m=2m/=dpt1 =" JTin(n)
d(p+q)
=X g T o @)
m’=dp+1

Using Lemma 5.7 proved below, we can prove that the first terms are either belonging to the residual terms
R(n, jo,j,€) when m € Is or, when m € I, they are a combination of a generalized Gaussian waves
Sﬁ(mjmj)é’ for some [ € {1,...,I} and residual terms R(n, jo,j,€). In a similar manner, using Lemmas
5.8, 5.10 and 5.11 proven below, the second and third terms can be shown to relate to the reflected waves
Rl‘f’l(n, jo, j)€, the excited eigenvector E;f (n, jo)éV; and residual terms R(n, jo, j, €). We observe that the trans-

mitted waves Tl, (n,jo,j)e ) and the generalized Gaussian waves S;" (n, jo, j)€ for I € {I +1,...,d} are equal to
0 in this setting. Thus, we obtain the decomposition (1.30).
Thus, once we will have proved Lemmas 5.7-5.11, the proof of Theorem 1 will be concluded.

5.2 Decomposition of the integral within B(0,¢)

This section will be mainly devoted to the proof of Lemmas 5.7-5.11 that will allow to study each term that can
appear in the decomposition of the integral (5.16) using the expressions (4.45), (4.47) and (4.48). However, we
are first going to need to introduce a few more technical lemmas that will be used relentlessly throughout the
rest of the paper.

5.2.1 Gaussian estimates

First and foremost, we define the set X of the paths going from —n —ir.(n) to —n + ir.(n) whilst remaining in
B(0,¢e). We observe in particular that T'y(n), T, (n) € X.

Lemma 5.4. We consider an integer k € N.

e There exist two positive constants C,c such that for all n € N\ {0} and z € [0, %]
/ I7|F exp (nR(7) + 2 (=R(7) + ArR(7)* — ArS3(7)*)) |dr| < Ce™™. (5.17a)
Ta(n)

o There exist two positive constants C,c such that for all n € N\ {0} and z € [2n, +o0|

/‘ o 7" exp (nR(7) + z (=R(7) + ArR(7)* — A;S(7)?)) |dr| < Ce ™. (5.17b)

e There exist two positive constants C,c such that for all n € N\ {0} and © € [%,271], there exists a path
I' € X such that

/F 71 exp (nR(7) + 2 (—R(r) + AR(r)™ — A;3()?#)) |dr|

2u
C _ 2u—1
< —7 exp (—c (|n 1m|) ) . (5.17¢)
n 2w nze

Lemma 5.4 will allow us to obtain generalized Gaussian bounds for several terms throughout the proof of
Theorem 1. The inequalities (5.17a)-(5.17c) separate different cases depending on x. An important point to
observe is that the path T appearing in (5.17¢) depends on n and x whereas the constants C, ¢ are uniform.

The way Lemma 5.4 will be used is to first observe that the integral of some holomorphic function over
some path of X is equal by Cauchy’s formula to the integral of the same function over any path of X. We then
prove that the integrand can be well bounded and use the result of the lemma. The proof of Lemma 5.4 can be
adapted from [CF22, CF21, Coe22, Coe23] and will be done in the Appendix (Section 6).
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Lemma 5.5. There exists a constant C' > 0 such that for alll € {1,...,d}, n € N\ {0} and = € [0, 2n]
P @ (1) _ graiei (1) < Cnlr|* L exp (x (—%(7) + ApR(T)* — A[%(7)2“)) .

The proof of Lemma 5. 5 is smnlar to the proof of [Coe22, Lemma 16] and will not be detailed here. We
recall that the functions w;" and ¢j° respectively defined by (5.3) and (5.4) are linked by the equality (5.5).
Lemma 5.5 will allow us to "extract" the principal part cpl of the function wl . This principal part will then
appear in terms that can be studied using the following lemma.

Lemma 5.6. We consider ,I' € {1,...,d} and ?,?" € {—,+}. There exist two constants C,c > 0 such that for
all n € N\ {0}, we have:

e Forz,y € [0,400[ such that x +y € [g,2n] and ' € X

1 I oo ol 2 al(n— x4+
—/exp (m+m§w§(7)+ya? o (T)) dr — |L| ( B+ 51/ ( 7/> oo wty) i )
r n2e ap n2m

2

< Ce ™. (5.18a)

e Forzx e [%,Qn] and ' e X

lof | aj(n —x) C |n — x| 2T
7/exp (n7 +2a]¢] (1)) dT — llHQM( Z,“)‘ < — exp (c( — > ) (5.18b)
r

um nze

e Forx € [%72n],

1 / exp (n7+xal?<pl7(7)) ir - B, (ﬂ; —|al?|(n—x)>
— m ) T
Din(n)

2 T nze

2
C |n — x|\ 2T
< —exp|—c + .
n 2K n 2w

(5.18¢)

The proof of Lemma 5.6 is a summary of calculations performed in [Coe22; Coe23] and will be done in the
Appendix (Section 6). Let us consider that there is no condition on the paths on integration in (5.18a) and
(5.18b). However, since the integrand is only meromoprhic in (5.18a), we only consider the path T';,(n).

5.2.2 Outgoing and entering waves
We will start by looking at the outgoing and entering waves by proving the following lemma.

Lemma 5.7. We considerm € {1,...,d(p+ q)} and write it asm =1+ (k—1)d withk € {1,...,p+q} andl €
{1,...,d}. There exists a constant ¢ > 0 such that for alln € N\ {0}, jo,7 € N such that j —jo € {—ngq,...,np}
and € € C* we have:
e Ifmell,UIl and J;% € [%,2n], we have
L

+ ~
SO [ e G o OOV ) — S (0.
2im in (1)
sy
‘n - (j m)’ . —cljl —cljol 1
=exp | —c 7% (O (|é161> + O, (lék) r + O <1> leTer?') . (5.19a)
n% n2e n2e ne
e IfmelfUull, j_fo ¢ [2.2n] and ja_% >0, we have
l l
sgn(ag” ~ ) N _
—%/ ()eme%,j;(e:jo,é*)n(w (e, 5))dr — S (n, jo, j)E = O (|ele™") . (5.19b)
in(n
elfmelf andj>jo+1orifmel}, andje€{0,...,jo0}
1 -
— e"Te" 6, (€7, jo, )T (W, (€7, j))dr = O (|ele™"). (5.19¢)
20T J 1 ()
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Proof e We start by proving (5.19a). The proofs of (5.19b) and (5.19¢) will be done afterwards as they are
fairly less complicated. We consider m € I, U If, such that =L € [2,2n].
@

Using the expression of W,! given by Lemma 4.3 and (4.50), we have using Cauchy’s formula that for any
reX

[ e G o M i = [ Gy e A (i O (520
Fin(n) r

Using Cauchy’s formula once again, (5.3) since the eigenvalue we consider is central and the definition (1.29a)
of the function SEL, we then have that

+ ~
- slar) [ G o, DUV )T — S (1 §)E = B+ Bar + (Ea o+ Evt Eo) 1 Ter
u an(n)
(5.21)
where F is a vector and Fs, ..., E5 are complex scalars defined by
+ . .
E, = —Lg(.al ) / "I NE (M T A (7 o, OT(V,E(eT, §) — Ry (e7))dr
1T Ty
Sgn(al—i_) nt (j—jo—w; (7) 7 + (T 4 +/ g+ T 5
Ey=——"-"~ e"TelJTIo e (Am(e ,J0,€) — Gy (T e) dr
2 Iy
_ sgn(a?‘) nt _(j—jo)w (7 T m\=1 4+ T 1
E3**T 1“36 eU=d0=i () (eT(h(eT) 7n(€)+5 dr
o [ e (e(j—jo)w;r(ﬂ _ e(j—jo)wm)) dr
2ir|og| Jr,

1 . 1 nat 4+ jo — j
ot / el =iel Dy — 1H2M< s io j)
217T|04l ‘ I's nze nzwe

and T'y,...,T'5 are paths belonging to X. We just have to prove correct bounds on the terms Fjy,..., E5
appearing in (5.21) to obtain (5.19a). In particular, we will use good choices of paths I'y,..., s to optimize
the bounds using Lemma 5.4.

» Using (4.51g), (5.7) and Lemma 4.3 which claims that the vectors V,(z,j) converge exponentially fast
towards R (€7), we have that there exist two positive constants C, ¢ independent from n, jo, 5 and € such that

|E1| < CeVllg) [ exp <n§}%(7) + (j _fo) (=R(1) + ArR(7)*" — A,%(T)Q“)> |dr].

Iy Q

» Using (4.51e) and (5.7), we have that there exist two positive constants C, ¢ independent from n, jo, j
and € such that

|Ey| < CemVolle] [ exp (na%(f) + (j +j°> (=R(1) + ArR(7)* — AI%(T)Q“)> \dr|.

T» Qy
» We notice that ¢ (1) = 1 and ¢;'(1) = —2. Using a Taylor expansion and (5.7), we have that there
@

exists a positive constant C independent from n, j; and j such that

|Bs| < C/m 7] exp (mre(T) + <J_jo) (=R(r) + ApR(r)2 — AIs(T)%)) \dr].

Qg

» Since J;% € [%, 2n] , we can use Lemma 5.5 and prove that there exists a positive constant C' independent

from n, jo and j such that

B4 < Cn /F 25 exp (mre(T) + (j _ﬁo) (“R(r) + ArR(r)™ A,%(T)%)) dr].

@

Using Lemma 5.4 which gives a good choices of path I'1,...,I'y € X depending on n, jy, and j to handle
the integrals in the terms above as well as Lemma 5.6 to take care of the term Ej, there exist new constants
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C,c > 0 independent from n, jg, j and € such that

2u 24

, i—jo 2t 4 i—jo 2t
Celil|e] n—- o Cecliol|e] e
[Erl s ———exp | —¢| ——x——— [Erl < ————exp | —¢| ——x——
nz2u nz2u nz2u nz2u
24 24
. . 2p—1 . - 2p—1
J—Jo J—Jo
c ) c - (5]
|Es| < —exp | —¢ | ————— [Ba| < —exp | —¢| ————
nH mn2u nm mn 2
22“1
. =
_ [ 1=Jo
c ‘” ( o )‘
|Es| < —exp | —c -
nH mn2u

We have thus obtained (5.19a).
e We now focus on (5.19b). We thus consider m € If; and j > jo +1 or m € I}, and j € {0,...,jo} such
that Z={° ¢ [%, Qn]. We observe that in particular, S;"(n, jo, j) = 0. Using (5.20), (5.3) since the eigenvalue we

+
R

consider is central, Lemma 4.3 which claims that the vectors V,!(z,j) are uniformly bounded for z € B(1,4;)
and j € N, (4.51g) and (5.7), there exists a positive constant C' independent from n, jo, j and & such that for
alll" e X

+ ~
_sgnley) / e"TeT 6k (e7 Jo, TUW, (€7, 7)dr — S (n, jo, )€
2im Tin(n)

< Cle| /F exp (mre(T) + <j _f‘)) (—R(7) + ApR(7)% — Als(T)‘w)) \dr].

Q

We then use Lemma 5.4 to prove that there exist two new positive constants C, ¢ independent from n, jo, j and
€ such that

‘ sgn(a;”

_ ) / e"TeTE (€7, o, ONIL(WE (€7, 5))dT — S;F(n, jo, j)€| < Clele ™.
217‘(’ Fm(n)

e We now focus on (5.19¢). We will consider the case where the integer m belongs to I, and j > jo + 1.
The second case considered in (5.19¢) would be handled similarly. Using (5.20), Lemma 4.3 which claims that
the vectors V! (z, j) are uniformly bounded for z € B(1,d1) and j € N, (4.51g) and (4.1) whilst noticing that
j > jo + 1, there exists a positive constant C' independent from n, jg, j and € such that

1

o [T o OV )i
2im Lin(n)

< C|ae‘26*|j‘j°‘/ enﬂ?(f)|d7-|

Ta(n)

< 2T£(mg|é'|e—nn—2c* li—dol

5.2.3 Reflected waves

We now look at the reflected waves.

Lemma 5.8. We consider m € {2,...,dp} andm’ € {dp+1,...,d(p+ q)} and write them as m =1+ (k—1)d
andm/ =1+ (K — 1)d with k, k' € {1,...,p+q} and [,I' € {1,...,d}. There exists a positive constant ¢ such
that for all n € N\ {0}, jo,5 € N such that j — jo € {—nq,...,np} and &€ € C¢, we have:
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e Ifmell, m eI}, and ajj — ¢ [Z2,2n], we have
1 Xy
1 N NS ;o o L
-5 TGt (€ Cm (€7, Go, TLW, i (€7, ) dr — —e gt (DR (1, jo, §)@
2im Jr,, () Qap 7
2p
. . 2u—1
[ L _ Jo
n <Oé+ a%)‘ |é‘|e_c‘j| |a6_c‘j0| ]_ T
=exp | —c¢ — <O<1>+OS<1>7‘Z++OS( 1>l?7€7'l+>'
nawe nan nae ne
(5.22a)
e Ifmell, m eI}, and ;7 - i—‘}r ¢ [2,2n], we have
l/
1 T T T\ T 4 T 5 Ck+~ y "\ o -
“ g T VT o OOV ) = ST (O o )E = O ). (220
in (M 4

e Ifmelf, m eIl and —i—i € [%,2n], we have

1

a1
Jo
1 nT T+ N+ (T +/,7 . |é1€_c‘j| n (’;r’
T o e e gm’7m(e )Cgm (6 7]0>éjH(Wm(e ?J))dT =0 1 eEXp | —C¢| ———
27/71- Fin(n) n 2u n 2u
| (5.22¢)
o IfmeIf, m eI, and —2% ¢ [%,2n], we have
l/
1 - ~ .
- — €"TeT g L (€NEL (€T, o, O T(W, (€7, j))dr = O (|ele™"). (5.22d)
2171— Fin(n) e
e Ifmelf, melf and L € [2,2n], we have
Rl
1 ~ > . .
— 5 e g (€T (€T, do, IL(W,E (€T, 5))dr
ise Fin(ﬂ) ’
_2p
4 j Sp—1
|é1€_c‘]0‘ ‘n - aiJr
— O(|ele=") + O, ——exp | ¢ ?l r. (5.22¢)
n2u n2s
o IfmeIf, m' eI}, and 2L ¢ [2,2n], we have
R
1 ~ > . . _
L gt (@G G WA ))dr = O (jele ) (5.221)
s Fm(ﬂ) ’
o I[fmelf, m eI}, wehave
1 ~ > . . _
L gt (@G o TV ))dr = O (jele ). (5.228)
s Fin(ﬂ) ’

We observe that since we consider m € {2,...,dp} and m’ € {dp+1,...,d(p + q)}, Lemma 4.6 implies that
g, can be holomorphically extended on the whole ball B(1,d;) and thus the term g, (1) is well defined.
Proof e We start by proving (5.22a). We consider that m € I, m’ € I}, and L — 12 ¢ [%, 2n].

) o

Since the function §7‘;,7m can be holomorphically extended on the whole ball B(1,¢), using the expression of

W,F given by Lemma 4.3 and (4.50), we have using Cauchy’s formula that for any ' € X

/(f@pawﬁmwwmmm&ﬁw
F'in n

:/W%WWKWWQ@W“%MLMm@mHWJWr6%)
T
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Using Cauchy’s formula once again, (5.3) since the eigenvalues we consider are central and (1.29b), we then

have that

1 . = : : af o
- ﬂ enTeTg;r@’,m(eT)%er_(eTJO’é)H(WT—rt(eT7J))dT - Lg;’,m(l)RlJ’r,l(nJO’])e
Fm(ﬂ) al/

T,
=FEy+ Ear)f + (Es + Ex+ Es + Eg) I érf  (5.24)

where F is a vector and Fs, ..., Eg are complex scalars defined by
1 ~ ; ; . .
Bi= o [ gl () e Gt O AL (o, TV, (€7, ) — R (€))dr
1T T ’
1 ~ ; ; . )
E2 = —— Enng_n/ m(eT)ejler(T)6_(]0+1)w;(7)6‘r (A;/(ST,Joy é‘) - (C:L’), (eT)llJ/rTe> dr
20T Ty ’
~+
1 N o+ ~ / G m (1)
Ea—m —— nt _jw; (1) ,~Jjow,, (T) +/ ™ T +/ \—1 +, T dmimi g
3 2,“.(_ T e € e ! gm ,’m(e )6 Cm (6 ) (C’m) (6 )+ Ollf T
~t
B, = I, (1) / T (ejwm _ ewrm) e—30=) (7) gr
2ira;; Jr,
~t
Es = gm/,m(l) / en-rejg;;r(r) (efjgwlf(r) _ e*jotp??(‘l’)) dr
2ima;; Jr,
"
Im - ‘ ; +\2¢ naf +jok —j
9y (1) / iot I (e 1 J Jo (0% l af;
F. — m’,m e eI% ('r)e jotpl,(T)dT L +/ 1 —H . + —3— l , G
0 2ira;; Jr, ajf Z )ni & na;" bi na; bi M nan

and I'1, ..., s are paths belonging to X. We just have to prove bounds on the terms FEj, ..., Eg. In particular,
we will use good choices of paths I'y,...,I's to optimize the bounds using Lemma 5.4.

» Using (4.51g), (5.7) and Lemma 4.3 which claims that the vectors V,(z,j) converge exponentially fast
towards R (€7), we have that there exist two positive constants C, ¢ independent from n, jo, 5 and € such that

|Ey| < Ce~Vlle] | exp (mﬁ(r) + (ﬂ — ji) (=R(7) + ArR(7)* — AIS(T)2”)) |dr].

r, o

» Using (4.51e) and (5.7), we have that there exist two positive constants C, ¢ independent from n, jg, j
and € such that

|By| < Ce—clivljg /F exp (n%(T) + (ﬁ _ ji) (“R(r) + AgR(r)? — A,%(T)Qu)) dr].

o ap

» We notice that ¢, (1) = 1 and C:g,/(l) = —a%. Using a Taylor expansion and (5.7), we have that there
exists a positive constant C independent from n, j; and j such that

|Bs| < C/FS 7| exp (mR(T) + (ﬁ - ji) (—R(r) + ApR(r)* — A,%(ﬂ?ﬂ)) \dr|.

al al/

» We observe that -4 and —<% are positive and -L- — 4% ¢ [2,2n]. Thus, we have that I e [0,2n]. We
oy ay o ay; a
can then use Lemma 5.5 and (5.7) to prove that there exists a positive constant C independent from n, jo and

7 such that

|Esl < Cn |7|?# L exp <n3?(7') + <j+ — ]3_> (—§R(T) + ApR(T)* — A[C\‘Y(T)Q")> |dr|.

T4 o7 ay,

Furthermore, we also have that and —i—i € [0,2n]. We can also use Lemma 5.5 and (5.6) to prove that there

’

exists a positive constant C' independent from n, j, and j such that

|E5| < Cn |7'|2“+1 exp (n@?(T) + <J_~_ — Jg_) (—5}?(7) + AR§R(T)2“ - A[%(T)2“)> |dT|.

T's a o
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Using Lemma 5.4 which gives a good choices of path I'y,...,I's € X depending on n, j, and j to handle
the integrals in the terms above as well as Lemma 5.6 to take care of the term Ejg, there exist new constants
C,c > 0 independent from n, jo, j and € such that

2
j j 2p—1 j j 2p—1
0 0
. n— -4 — <% . n—{-4&- — <4
Ce_c|3‘|é'| ozl+ a;r/ Ce_c|.70|‘é'| a a;?
|E1| < ————exp | —¢ - |Ey| < —————exp | —c +
nZ;L n2u n2/_L n2/_L
24 24
j j 2p—1 j j 2p—1
0 0
C n—\2¥ =~ C n—1\2¥ — o+
l 1 L 4
|E3| < —exp | —c¢ 5 |Ey| < —exp | —c T
nH n 2w nw mn2m
_2p _2p
j j 2p—1 j j 2n—1
0 0
C n—\2F o+ C n—\2F — oF
l 1 1 G
|Es| < —exp | —c¢ +— |Eg| < —exp | —¢ +
nw n2we nH n2m

We have thus obtained (5.22a).
e We now focus on (5.22b). We consider that m € I},

cs?

m' € I} and - — o ¢ [2,2n]. We observe that in
o, ay

particular, Rl",'l(n,jo,j) = 0. Using (5.23), (5.3) since the eigenvalue we consider is central, Lemma 4.3 which

claims that the vectors V,!(z, ) are uniformly bounded for z € B(1,4;) and j € N, (4.51g) and (5.7), there

exists a positive constant C' independent from n, jg, j and € such that for all T" € X

1 a 2 T 5 T . Oé+~ )
|/ ( )6"7679;5%(6 VG (€7 o, LW, (€, ))dr — “bgl, (DR (0, o, 5)é
Tin(n

2im Q)

< C\a/rexp (nafe(T) + (ﬁ - ji) (—R(7) + ApR(1)* — Az%(T)Q“)) |dr].

« Qg

We then use Lemma 5.4 to prove that there exist two new positive constants C, ¢ independent from n, jo, j and
€ such that

< Cléele™ ™.
l/

1 N T ;o o L
’—. L T o MOV ) S VR (0, )
Lin(n

e We now focus on (5.22¢) and (5.22d). We consider that m € If,, m’ € I},. Using (5.23), (4.1) to bound
¢t (5.3) since the index m’ belongs to I},, Lemma 4.3 which claims that the vectors V,!(z,j) are uniformly
bounded for z € B(1,41) and j € N, (4.51g) and (5.7), there exists a positive constant C independent from n,

jo, j and € such that for all ' € X

! q TG+ (T i T o R
_%/ e"TeTQ;ZI’m(e )%j{(e 7]0>ép)H(W:ﬁ:(€ ,]))dT — lJrg:L,,m(l)RlJ,r’l(n7]0’j)e
27 I, (n) a;f

< Ce2elil|g /F exp (nﬂ?(T) + (— ji) (—R(7) + ApR(7)% — A,%(ﬂ?ﬂ)) |dr.

(%0

We observe that —i—i is positive since m’ belongs to I},. Using (5.17¢) when —i—‘}r € [%,2n] and (5.17a) and

i i
(5.17b) else, we end up proving (5.22c) and (5.22d).
e We now focus on (5.22¢) and (5.22f). We consider that m € I}, m’ € I},. Using (5.23), (5.3) since the
index m belongs to I}, and Cauchy’s formula, we have that

1

- e"TeTﬁz,m(eT)%Z,j;(eT,jo, (W, (e™,4))dr = E1 + Eor;
2im Tin(n)
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where the vector E; and the complex scalar F5 are defined by
E, ::/ €T G (€T ICE (eT) T TIAT (€7, o, YLV, (€7, 5) — Rip(e7))dr
Iy
Baim [ €Tl (@)= O ()AL o S
I

where 'y, T’y are paths belonging to X. Using (4.3) to bound C;ﬁ;,, Lemma 4.3 which claims that the vectors
V,;t(z,7) converge exponentially fast towards R} (e7), (4.51g) and (5.7), we prove that there exist two positive
constants C, ¢ independent from n, jg, j, €, I'1 and I's such that

|Eq] §C|é1€_c|j|e_clj°| / exp (n%(r) + ajj (—?R(T) + AgR(1)* — AIS(T)z“)) |dr],
Iy l

|Es| §C|é’|e*5|j0‘ /

T

exp <n§}?(7) + aji.*' (—=R(7) + ArR(7)* — AI%(T)2N)> |dT].
2 l

Whilst observing that -Z- is positive since m belongs to I}, when - ¢ [ ] Lemma 5.4 allows us to prove

cs?
exponential bounds Wlth regard to n on the terms F; and Ey and to thus immediately conclude the proof of
n

(5.22f). When -4 [f ] Lemma 5.4 allows us to choose I'1 and I'; depending on n, jg, j and € so that
B

there exist new constants C, ¢ > 0 independent from n, jg, j and € such that

24 24
. 2pu—1 . 2p—1
) . _J . _J
C|eleclile=cliol ‘n of C|éle—clol ‘n of
|El| < ——————exp | —¢| ——— |Ey| < —————exp | —¢ | ———
n2;¢ TLQH n2/t TLQH

Since j € [%, Zn], we have that there exist two other constants C,c¢ > 0 independent from n, jy, 7 and € such
that
|E| < Clele ™.

This allows us to conclude (5.22¢).

e There only remains to prove (5.22g). We observe using (5.23) with I' = T'4(n) € X, (4.1) and (4.3) to
bound ¢, and ¢}, (4.51g) and Lemma 4.3 which claims that the vectors V,}(z, j) are uniformly bounded for
z € B(1,41) and j € N, we have that there exist a positive constant C' independent from n, jo, j and € such
that

|/ €"TeT g (€T)C (€7 o, EVIL(W,S (€7, j))dr| < Cléle2e- (il Hlaoh=nn
Tin(n)

5.2.4 Transmitted waves

We now look at the transmitted waves.

Lemma 5.9. We consider m € {dp+1,...,d(p+q) —1} and m' € {dp+1,...,d(p+ q)} and write them as
m=I1l+k—-1)d andm’ =1U'+ (K —1)d with k, k' € {1,...,p+q} and [,I' € {1,...,d}. There exists a positive
constant ¢ such that for all n. € N\ {0}, jo € N, j € =N such that j — jo € {—ng,...,np} and € € C?, we have:

e Ifmely, m e€lf, and = — 2% € [2,2n], we have
o, o
1 nT T T - T . — T N a_N N =\ =
o e ¢ g:r; m( )Cg;rt(e aj07€)H(Wm(e 7]))d7—_ igz/7m(1)ﬂtl(n7]07])e
201 Jr,, () ap
n—(j—j‘lﬂ o il ol
o, o, —cl clJo 1
=exp | —c ZL l <O <|é161) + O, <He> . + O <1) l;tTgrf) .
nzw n2w n2 nw

(5.25a)
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e Ifmel,, m eI, anda]—;f o [Z2,2n], we have
l
1 N - N cn
o [ T (VG o T (e )7 — O (VT (o, 3)E = O (1) . (5.25)
v Tin(n) l’
e Ifmely, m eI, and —2% € [%,2n], we have
_2p
Jo et
1 . . efclj‘ ) n Oc-t
o [T )T o N (T N =0 | ST | e [ L
2w Tin(n) nze n2w
(5.25¢)
e Ifmely, m €I, and —2% ¢ [2,2n], we have
l/
1 - T - —Ccn
L[ g ()G 0 ATV (e ))dr = O (). (5.250)
m Fm(ﬁ)
o Ifmel,, m' el and L € [%,2n], we have
1 nT T+ o+ T 5
% €T G i (€7)C (€7, Jo, )TW (€7, 7)) dr
v Fm(n)
j zi,il
|é‘|6*5|]0\ ’n I
=0(lele™ ") + Os exp | —c¢ — T, . (5.25¢)
na n2u
o Ifmel,, m €I}, and L ¢ [2,2n], we have
&
1 nr T T - —cn
L[ et @B G0 W e d))dr = O (Je ) (5.256)
w Fin(n)
o Ifmel,,, mel}, wehave
1 > .
L[ et @B o W (e 3))dr = O (Je ) (5.25)
v Fm(’?)

Just like in the case of the reflected waves, since we consider m € {dp+1,...,

{dp+1,...,

and thus the term §;;/7m(1) is well defined.

dlp+q)—1} and m' €

d(p+ q)}, Lemma 4.6 implies that ﬁ;,m can be holomorphically extended on the whole ball B(1, d;)

Proof The proof of Lemma 5.9 is sensibly the same one as for Lemma 5.8 so the proof is left to the reader.
Let us just point out that in order to prove (5.25a), we have using Cauchy’s formula that

1

% Tin (77)

.707 é)H(

l
of

_ T_,_
=FE| + Ebry +(E3+E4+E5+E6)l, er,

m(€7,4))dr —

ﬁ'rtl m(l)zjlj:l(n7j07j)é)
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where F; is a vector and Fs, ..., Fg are complex scalars defined by

1 - - )
B =g | € m(€T)e™ (M= Gt D= (Ve A (e jo, ENI(Viy (€7, ) — Ry (€7))dr
(0 Ty ’
1 - - )
By =5 | € (€)™ Dem Ut D=iOer (AL (7 o, ) = () () @) dr
Ty
=+
! o ()i . ol
By =g | emem Oenmi) (g;,,m@f)ef (e (G) (€) + 9+(>> dr
i Jr, of

=+

(1 . - .

B, = ,gm_vimg) / o (eywl (T) _ pivi <r>) e—0@ ) () gr
2imag, Jry

gj’;/ym(l) nt  jp, () —jow+(T) —j099+(7)
Es=———"—7- [ 7% (e VAT — eIy )dr
2imay, Jrs
- . . - 2 ncf—l—joi—j
- it o, 1 J oo Jo « l at
enTeder (M g=dow i (M gr _ ZL 5+ (1V_—_H. B — + L - v
/1_\5 a?;gm ,m( )nﬁ 2p TLO[;BZ na;/Bl ?;

_5:'7,’,771(1)

Eg=
2imag;

) T
n2e

and I'1, ..., s are paths belonging to X. We just have to prove bounds on the terms Ej, ..., Eg just like in the
proof of (5.22a). O

5.2.5 TUnstable excited mode

Lemma 5.10. There exists a positive constant ¢ such that for all m’ € I},, n € N\{0}, jo € N, j € Z such
that j — jo € {—ngq,...,np} and € € C¢, we have
e ForjeN,

1

o e"TeT gl 1 (€N)E, (€7, jo, LD (e, 5))dr = O, (|5|e—c\-fo\) V(i) + O (lele). (5.26)
”T Tin(n)

e For j € —N,
1 nT T T\ T T 5 —clg . —cn
S S T Tt Vo Mty (7,9 = O, (18P V(G +0 (8 ) . (527
in (7]
We recall that the sequence V' is defined by (4.29).

Proof We are going to prove (5.26). We consider m’ € I},

&, meN\{0}, jo € N. For j € N, using the residue
theorem and the equality (4.50), we have

1 ~ T\ T s T 5
~ 5 e"Te G 1 (€7) (€7, Jo, E)I(P1 (€7, 5))dr
217’(’ Fin(ﬂ) ]
1 —Jjo—1 _ 717 T T 4 T
=—5— " (eT) T e g 1 (eT) AN (€7, o, E)TL(@u(eT, §))dT
ise Fd(TI) ’

— ¢L )AL (1, o, @)Res (g, 1, V(7).

m/’

We observe using (4.3) and (4.51g) that there exists a positive constant C' independent from n, jo, j and € such
that
‘C;,(l)_jo_lA;;/(lij’ é’)Res(ﬁ;;,,l, 1)‘ < C|é1€—2c* ljol

Furthermore, (4.3) and (4.28) imply that there exists another positive constant C' independent from n, jo, j
and € such that

1 1 ~- T T 4
‘ L TR (A7, o A )l
daln

2
< Cle "™ |dr| < 2r.(n)Clele ™.
La(n)
We thus obtain (5.26). The proof of (5.27) is fairly similar and is left to the reader. The only point to observe
is that we have to use the equality (4.27). O
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5.2.6 Central excited mode

Lemma 5.11. We consider m’ € I}, and write it as m' =1 + (k' — 1)d with k¥ € {1,....,p+q} and ' €
{1,...,d}. There exists a positive constant ¢ such that for all n € N\ {0}, jo € N, j € Z such that j — jo €
{-nq,...,np} and € € C?, we have
e For —i% € [%,Qn] and j > 0,
l/

1 I ;. Res(g,, 1,1) : .
— 5= e"Te G 1 (€7) (€7, jo, IRy (€7, j))dr — ————Ey (n, jo)eV (j) =
2im Tin(n) all
b
|]ecli] ‘n + 2% ,
———exp | —c| ——— + Oq (|ae_c|70|) V(). (5.28a)

o For —d4% [%,Qn] and j >0,

F
Otl/

1 ~+ >4 . . Res(g;ir»]‘ﬂl? ]‘)
- — e"e"g, 1(e")E) (e, jo, )Py (e, 7)) dT — ———F———
= (NG o, (1 (€7, ) :

By (n, jo)eV (j) =

O(lgle=™).  (5.28b)

e For —ji € [%,271] and 5 >0,
5

) - L o Re@han
% e € g;/7d(p+q)(e )%nt/((f 7]0;5)H((I)d(p+q)(e 7.7))d7—_ +7 Eﬁ(’n,]o)é"/(j) =

Tin(n) al’

2p
_ o 2n—1
|éle—cld] n+t -5 .
—exp | e | ] 10, (|g|e*c\ﬂo\) V(). (5.28¢)
nawe nwe
e [or —j—i [%,Qn] and j <0,
»

) - L o Re@an
% e € g;,7d(p+q)(€ )%nt/((f 7]0;5)H((I)d(p+q)(e 7.7))d7—_ +7 Eﬁ(’n,]o)é"/(j) =

Tin(n) al’

O(lele=). (5.28d)

We recall once again that the sequence V' is defined by (4.29).
Proof We will focus on proving (5.28a) and (5.28b) as the proof of (5.28¢) and (5.28d) would be similar whilst
observing that (4.27) implies that

vj € Z7 (I)l(la]) = q)d(p-‘rq)(lmj)
and the definition (4.40) of Ef;,,m and (4.41) which imply that
Res(ﬁ;rl,’d(pﬂ), 1) = —Res(@fz,’l, 1).

e Proof of (5.28a):
Using Cauchy’s formula, (4.50) and (5.3) since the eigenvalue ¢, is central, we have

1 ~ > . . Res(giﬂ 71) . .
- = e"TeTgt, [(eT)E (e, jo, )I(Py (7, j))dT — %Eﬁ(n,jo)éﬂ (®1(1, 7))
2im Tin(n) ’ al’

= By + EII(®(L,5)) + (B3 + Ea + Es) AL (1, jo, )I(R(1, ) + EgII(®(1, 7)) (5.29)
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where

1 - .
Byi=— o | e"eTgy (e QD= AT (67 o TI(Dy(e7, §) — By (1,))dr
1T T ’
1 N .
Byi=— o [ evengh, (e VT (AL (7 o, ) — AL, (L jo.€)) dr
1T Ty ’
1 . ~ Res(gt, .1
Esi=— — em—e_mw;(‘r) 679+/ 1(6T) +/(€T - 1) - M dr
2im Jp, e m T
=+ —J w'*,' T —J 't T
Ey=— LGS(QTI)P e / enTe ren) — 7ot )dT
2T I, T
.
1 e Jopy (7) nodt + jo
E::—R‘~+/ .1 - ntZ _~  dr—E T;li
5 es(Gps 15 1) <2m /Fm(n) e - T — Ea, ( L -
+ 4 +T
~ noy, + . ) e
Eg = —Res(g}, 1, 1) Bz < ﬁljo) (AL/(LJO@ + L )
nze Ozl/
and I'y,..., 'y € X. Let us observe that, since the function ?j;,ql has a simple pole of order 1 at 1, we have the

right to use the Cauchy’s formula for the first 4 terms as the functions inside the integrals can be holomorphically
extended on the whole ball B(1,¢).

» Using (4.51g) to bound AT, (e™, jo, €), (4.51c) to bound g, , (e")IL (®1(e”,j) — ®1(1,5)) and (5.7), there
exists a constant C' > 0 independent from n, jo, j, € and I'; such that

IBy| < Clele 511 /
Iy

» Using (4.51i) to bound @jl,’l(eT) (A (€7, j0,€) — A} (1, jo,€)) and (5.7), there exists a constant C' > 0
independent from n, jg, j, € and I's such that

exp (mﬁ(r) - O{i (—R(1) + AgR(7)** — AIS(T)2”)) |dr|.
B

|Es| < C\é]/ exp (n@?(T) — ji_ (—3?(7’) + AR§R(7)2“ — A13(7)2“)> |d|.
T, o

» Using (5.7), there exists a constant C' > 0 independent from n, jg, j, € and I's such that

|E5| < C’/F exp (n?R(T) — ji (—?R(T) + AgR(1)* — AIE‘S(T)Q“)) |dT].

oy,

» Using Lemma 5.2, there exists a constant C' > 0 independent from n, jo, j, € and I'y such that

|Ey| < Cn/ |7|2# exp <n§R(T) - ji (*5)?(7) + ApR(T)* — AI%(T)2“)> |dT].
r, o

Using Lemma 5.4 which gives a good choices of path 'y, ...,y € X depending on n, jo and j to handle the
integrals in the terms above, there exist new constants C, ¢ > 0 independent from n, jg, j and € such that

2 2
. 2n—1 . 2n—1
Jo Jo
Ce-clill nt % ol G
E < v E < 14
|Er| € ————exp [ —¢ T [Eo| < ——exp | —¢ | —x—
n2ne mn2m n 2w mn2m
_2p 2u
. 2p—1 2p—1
n 4+ 29 n 4+ 19
C ) a;
|Es| < —exp [ —c | ———— [Eal £ —exp [ —c | ———
n2e nze nze nze

Using (5.18¢) of Lemma 5.6 to handle E5 and using (4.51i) and the fact that the function Es, (53, ;) is bounded
to handle Eg, we can also consider that we chose the constants C, ¢ so that

2p

n+:70+ 2p—1 |
|Es| < S-exp | —c [ —=H |Es| < Cléle—cliol
n 2 n2n
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Using (4.28) and (4.51g) to bound ®;(1,) and AT, in (5.29), we can conclude the proof of (5.28a).
e Proof of (5.28b):
We will separate this proof into two parts.
» Let us assume that —i—‘}r € [0, %} We recall that ﬁ;,J is a meromorphic function with a pole of order 1

at 1. Using the Residue Theorem, we have

1 nrtT T T 2- T - T - Res(a-i_/ 1 1) ; >
- T e € g:;/,l(e )%”:;,(e ajO)é&)H(¢1(e 7.7))d7— - +Eﬂ_(n)j0)é’l—[ (‘bl(lm])) =
1T Tin(n) Oél,
1 _ .
- e"TeTg;l, 1(67)67(J0+1)WW(T)A;/(67'7.7'07 é)H(q)l(eT7j>)dT
2im Ta(n) '

RGS(§+/ 1) not + Jo T .
- Trj_, : (1E2,u< l-i/_a li >)l?’_ éH((I)l(]-a.]))
O[l/ n2u
We need to obtain exponential bounds on both terms on the right hand side of the equality above. First, we
observe that since —i—i belongs to [O, %], we have
l/

o +
nay ;‘I‘JO < %nhﬁ%ll
nze
We have that a;f < 0 since m’ belongs to I}, and thus, using (1.28c) and (4.28), we have that there exist two
positive constants C, ¢ such that for all n € N\ {0}, jo,j € N, &€ C?

ReS(E,;Z/ )1> n&t+j T ]
+’1<1_E2u( lf;llo)>l;c el (@1(1, 7))

al’ nﬁ

< CleleVleen,

We now observe that using (4.51g), (4.28) and (5.7), we can prove that there exist two positive constants
C, c such that such that for all n € N\ {0}, jo,j € N, € € C¢

1 .
77./ TG, (€)W rIEI DAL (&7 o, ETI(®: (€7, 5))dr
2im Ta(n) 7

< Clele=V! / exp <nm(7) - ]i (=R(7) + ArR(7)*" — A,%(ﬁﬂ)) |dr].
T'q(n) ap

Using (5.17a), we can find exponential bounds for the integral in the right hand term above. This allows us to
conclude the proof of (5.28b) when —-% belongs to [0, 2].

. I’ .

» Let us assume that —i—i € [2n,4o0[. Since —-2% belongs to [2n, 4+o00[, we have
’ ay
nal",' =+ Jo
n

We have that o;; < 0 since m/ belongs to I}, and thus, using (1.28b) and (4.28), we have that there exist two
positive constants C, ¢ such that for all n € N\ {0}, jo,j € N, &€ C?

> —af,nmfl.

~+ + .
Res(gm’,l’ 1)E2,u < 1. oy +Jo < C|é16_c|j|€_cn,

T .
v +. ) e (@4(1, )

al/ nﬁ

Furthermore, using (4.51g), (4.28) and (5.7), we can prove that there exist two positive constants C, ¢ such that
such that for all n € N\ {0}, jo,j € N, &€ C?

1 - T - T . T N
|—/F ( )e’”eTg;/,l(e )C (€7, jo, EIL(P1 (e, j))dr
in 7

2im
< C|aefcm /

T

o exp (n%m - ji (—R(1) + ApR(1)* — Alg(f)%)) |d|.

al/

Using (5.17b), we can find exponential bounds for the integral in the right hand term above. This allows us to

conclude the proof of (5.28b) when —-<% belongs to [2n, +00[. O
l/

[e%

Acknowledgements: A faire
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6 Appendix

Proof of Lemma 3.5

Proof We define recursively
Vi e N, z? =Y

and

+oo
Vn e N,Vj € N, z;-”l = Cpge " + 0 Z e~enli—l=kln (6.1)
k=0
We then prove recursively that for all n € N, the sequence 2™ is bounded, has non negative coefficients and
n Cu . n n+1
I3 ”°°Sﬂ and VjeEN, 2z} <z
Indeed, this property is obviously true for n = 0 using the inequality (3.24) since z° = y. We now consider
n € N for which the property is verified we will prove that the property for n + 1 is satisfied. We first observe

using the equality (6.1) that for all j € N the coefficient zjm'l is non negative and

4 <Oy 40|

Thus, we have that 2"+ € /°°(N) and

e, < 12

Finally, we observe that using the equality (6.1) for n and n + 1, we have

+oo
A2 il =@ Z:‘efch’lﬁl*k'(?:,zHrl —zp) >0.

J J
k=0 >0

This concludes the recurrence. We now observe that, for p, g € N\ {0}, using the equality (6.1), we have

“+oo
J-2f=0) el i),

k=0
This implies that

2% — 2o <62 — 2|

Thus, we have that
2Cy
1-0
Since # < 1, the sequence (2"),en is a Cauchy sequence of ¢*°(N), thus it converges towards a sequence
2% € £°(N). Since we have y; < z7 for all n,j € N, we obviously have

Vp>q>0, |27 =29, <09P -yl <6

VieN, y; <z°.
Also, the equality (6.1) implies that

“+oo
ViEN, 2°=Cpe 40 e cnliztbpe (6.2)
k=0

Thus, there just remain to prove that there exists only one bounded sequence that satisfies (6.2) and that it
has the form 2 = (pr?);en where p and r satisfies the properties we expected.

We write (6.2) for j, j + 1 and j + 2 and reassemble the terms 23°, 25, and 295, on the left side. We then
have

_ _,—CH oo _ ,—2cH oo _ ,—3cH [eS)
(1-e"0) z° —e Oz71, —e 0275

7j—1 “+o0
=Cpe " +0© Z emenliml=kl 20 4 Z e~enli=l=kl 20| (6.3a)
k=0 k=j+3
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—0z° 4+ (1—-e#0) 257, — 672CH@Z;>3_2

7j—1 “+o0
=e “H(Cge ) + O [ e~ “H E e_cH‘J_l_k‘z,‘zC + eH E e_cH“_l_k‘zZO (6.3b)
k=0 k=j+3

—e T M0z° — 0257, 4 (1 — e H0) 230,

J—1 +oo
= e 2HCye Ml 4 @ | e72H Ze_cHlj_l_klzZO + e2cH Z e_cl’i"j_l_k‘z,‘c’O . (6.3¢)
k=0 k=j+3
We consider «, 3,7 € R such that
a4+ Be CH fye 20 =)
a+ BeH +ye*en =0,

A solution is o = v =1 and 8 = —Gaf=e "% _ _sinhQen) _ _9 o0k (cy). We then have that

e“H —e~°H sinh(cy)

€H €H

6;_762 (2" — 2cosh(cp))
ez2 +e 2

sinh (CTH)
cosh (‘7”)

=1+ 40 sinh?® (%LI) .

a—@(ae‘”’—i—ﬁ—i—ve‘”’) =1-0

= 1+ 20sinh(cy)

Multiplying the equalities (6.3) respectively by «, 8, and summing them, we obtain that

VjeN, =275, —2cosh(ey)zjyy + (1 + 46 sinh? (%)) 25° = 0.

We are thus led to study the polynomial P := X2 — 2cosh(cy)X + (1 + 40sinh® (%4)). Its discriminant is
A = 4sinh?(cy;) — 166 sinh? (%H) — 16sinh? (%H) (cosh? (%H) ~9) >0.
Its roots are
r4 := cosh(cy) &+ 2sinh (%I) cosh? (%1) —0.
We observe that evaluating the polynomial P at 0 and 1 gives us

P(0) = 1 + 40sinh? (%H) >0

and
_o inh? (1) = —4(1 — 0) sinh? (<
P(1) =2 = 2cosh(en) + 40sinh” (1) = —4(1 = ) sinh® (1) < 0.

Thus, r > 1 and r := r_ €]0, 1[. We have that p, 5 € R such that
VieEN, 2z = prd +ﬁri.
Since the sequence z*° is bounded, we have that p =0, i.e.
VjieEN, 2 = prd.

We are now going to be using the equality (6.2) to determine p. We first observe that r > e~ “#. Indeed, we
have

r = cosh(cpg) — 2sinh (%) cosh? (%{) -0
> cosh(cy) — 2sinh (%) cosh (%I)

= cosh(cy) — sinh(cpy)

=e °H,
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Now, using the equality (6.2), we obtain

—+o0
pr? = Cye " 4+ Op E eculi—1=kl.k
k=0

= Cye™ " +6p (QCH(“)(MCH“ + ecml)(T’eCH)J)

recH — 1 1—re-cu

— i (O —0p— ) 4 i er e
o H P reen —1 P\reen —1 T 1—yp—en )

Using the definition (3.21) of ©, we have that

o et n e~cH _y sinh (<) 2sinh(cy)
reci —1  1—r=cn ) “cosh (%) —r? 4 2cosh(cy) — 1
_sinh (<) 2sinh(cy)
~ cosh (%) 40sinh® (%)
=1
Thus,
i geni e i
pr- =e CH — @pm + pr
ie.
Cpp = Op—-"
H=OP en — 1
Therefore,
Cy e
p= @(T —e ).
]
Proof of Lemma 5.4
Proof e Proof of (5.17a)
We consider n € N\ {0} and = € [0, %]. Noticing that I'q(n) C B(0,¢) and using (5.10), we have
TE(TI)
/ |7|¥ exp (nR(7) + 2(—R(1) + AgR(T)** — A;S(7)*)) |dr| < ek / exp (—(n — z)n+ zApn™ — zAt*") dt
La(n) —re(n)

< 27”5(17)5]“ exp (—g (77 - ARn2“))

< 2r.(n)e* exp (—%) .

e Proof of (5.17b):

We consider n € N\ {0} and « € [2n, +oo[. We will separate the integral on the path I';,(n) using the paths
19 (1) and 'S () introduced in (5.14).

» Noticing that I'y(n) C B(0,¢) and that n — 2z < —F, we have using condition (5.10)

re(n)

/ |7|¥ exp (nR(7) + 2(—R(1) + AgR(T)** — A;S(7)*H)) |dr| < ek / exp ((n— z)n + zAgn™ — zAt*) dt
o (n) —re(n)

<ot (- (3 - nr)
< 2r.(netexp (<20 (2 — Apn™)).

We have proved exponential bounds on this first term.
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» We have that using (5.11) and that > 2n

n
/i |7|* exp (nR(7) + 2(—R(7) + ApR(T)** — A;S(1)*)) |dr| < Ek/ exp ((n — z)t + Art™ — xArr(n)*") dt
5. ()

-
< et exp ((x — n)n + zApn™ — wApre(n)™)
< 2ne¥exp (z (n + Apn™ — Arre(n)**))

< 2me exp (—Alrg(n)z“n) .

We have proved exponential bounds on this second term.
We can then easily conclude the proof of (5.17b)
e Proof of (5.17c¢):
We consider n € N\ {0} and = € [%,2n]. We start by observing that

_2p
_ Zn—1
V€ {Q,Qn} , <|n 130) <n. (6.4)
2 nze
Thus, obtaining exponential bounds on certain terms when z € [%,2n] would also allow to conclude on the
proof of (5.17c).
We will now follow a strategy developed in [ZH98] in a continuous setting, which has also been used in

[God03, CF22, CF21, Coe22, Coe23| in the discrete case, and introduce a family of parameterized curves.
We recall that we introduced in (5.8) the function ¥ defined by

V1, €R, V(1) =1, — ARTPQ“.

and that we chose e small enough so that the function ¥ is continuous and strictly increasing on | — 0o, ¢]. We
can therefore introduce for 7, € [—n, €] the curve T', defined by

Iy={reC,—n<R(r) <7, R(T)—AgR(T)* + A7) =V(r,)} .

It is a symmetric curve with respect to the axis R which intersects this axis on the point 7,. If we introduce ¢, =
( W(rp)—¥(=n)
Ar

of this curve by defining v, : [—¢;, £,] — C such that

1
) o , then —n+1f, and —n —il, are the end points of I',. We can also introduce a parametrization

V1 € [=n,el V€ [y, 6], S(p(t)) =t R(p(t) = hy(t) == 07" (¥(rp) — Art™). (6.5)
The above parametrization immediately yields that there exists a constant C' > 0 such that
V1 € [=m,e], YVt € [y, 6], |hy,(t)] < C. (6.6)
Also, there exists a constant ¢, > 0 such that
V7, € [-m,e], VT €Ty, R(T) = 7p < —,S(7)*. (6.7)
For 7 € T',, it follows from (6.7) that
nR(T) +x (—%(7) + AR§R(T)2“ — A[%(T)QH) < —ncp(\‘s(T)Q“ +(n—x)7 + LUART;H. (6.8)

There remains to make an appropriate choice of 7, depending on n and x that minimizes the right-hand side of
the inequality (6.8) whilst the paths I', have to remain within the ball B(0,¢). We recall that when we fixed
our choice of width 1, we defined a radius ex €]0, e[ such that —n + ilcy € B(0,¢) where the real number Iy,
is defined by (5.13). This implies that the curve I', associated with 7, = e4 intersects the axis —n + iR within

B(0,¢e). We let
Laon L wAn (O)
(= o T p(y)—sgn(é)(w) :

Inequality (6.8) thus becomes

nR(r) + x (—§R(7‘) + AgR(1)* — A1$(7)2“) < —ncpc\‘r(T)Z” + n(w‘i“ —2u(Tp). (6.9)
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Our limiting estimates will come from the case where ¢ is close to 0. We observe that the condition x > 7
implies

Agr
> 2R
7=

(6.10)

Then, we take
p (%) , ifp (%) €[—4,e4], (Case A)
Tp = e, if p (%) >ey,  (Case B)
—1, ifp($) <-4 (Case )

The case A corresponds to the choice to minimize the right-hand side of (6.9) since p (%) is the unique real

root of the polynomial
X2 =

The cases B and C allow the path I', to stay within B(0,¢).
We now define the paths:

Tpres = {_77 +it, te€ [_Ta (77)’ _gp] U [epv Te (Tl)]} ’
Fp,in ::Fp ) Fp,res,

where the function r. is defined by (5.9). We observe that I',;, belongs to the set of paths X. We will
decompose the integral

/F \T|k exp(nR(7) + x (—§R(T) + ApR(T)* — AI%(T)Q“))|dT|

pyin
using the paths I', and I'y, ;.. and we will then bound each term.
» Let us assume that = and n are such that we are in Case A. Since 7, = p (%) is the unique root of

~X2=1 _ ¢ we have
YTt = 2u(Ty = —(2p — 1)y < 0. (6.11)

Thus, the inequality (6.9) becomes for 7 € '),
nR(7) + z (—R(7) + AgR(T)* — A1S(7)*) < —nep,S(7)** — (2u — 1)yn72t.

Therefore, we have

/ |7|¥ exp (n?R(T) +x (—§R(T) + ApR(1)* — AIS(T)Q“)) |dr| < / |7|* exp (—ncpS(T)Z”) |dT| exp (—(Q,u - 1)’yn75“) .

p p

Using the parametrization (6.5) and the inequality (6.6), we have that

—0,
/1“ \T|k exp (—nc,,%(7’)2“) ldr| < / (|Tp|k + tk)e_”cptzudt.

P Lp

The change of variables u = n?i¢ and the fact that the functions y > 0 > y* exp (—2-Lyy?#) are uniformly

bounded with respect to v > A—QR imply

—tp 2 1
/ |t|k67ncpt “dt 5 —

—4p n 2w
— 1 2u—1
/ ‘Tp|kefncpt2/*dt 5 T OXp ( :u2 7”75#> .
—Lp n 2w

Thus,

/ |7|* exp (nR(7) + x (—R(7) + ArR(T)* — ArS(r)*)) |dr| < 7,}“ exp (— 21 = 17n7'2“) .
. (=S

P n 2w
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Furthermore, since we are in the Case A

2p
2u—1 2n—1 n—xl\*»!
— N2 'ym'g” =— H s AR (' - |) .
2(2MAR)2H*1 X2

Therefore, there exist two positive constants C, ¢ independent from n and = such that if we are in Case A,

[ It exp (n(r) 42 (<R(r) + AR = 413(r)) fir| <~ exp (—(n 736) >
t n 2w xT2m

Since x € [§,2n], this gives us two new constants C, ¢ independent from n and 2 such that if we are in Case A
and x € [5,2n], then as expected

FP n 2w nze

/ ¥ exp (nR(r) + & (<R(7) + ARR(r — ArS(7)%)) Jdr] < —cor exp (-0 (n — ) ) .

» Let us assume that x and n are such that we are in Case B. Since 7, =4 < p (%), we have

2p—1
—(¢< V4
and thus using (6.10)
2p—1
YTt = 2p(T, < —(2p — 1)75;&“ < - M2 AREi“. (6.12)

Therefore, the inequality (6.9) becomes for 7 € T',,

nR(1) +z (=R(7) + ApR(7)* — 4S(7)*") < —ne, (1) — 21— 1ARnsi“

We conclude that there exist two positive constants C, ¢ independent from n and x such that if we are in Case
B,

/F I7|F exp (RR(7) + z (—=R(7) + ApR(7)* — A;S(7)*)) |dr| < Ce ™.

Using (6.4) if necessary, we obtain the bound expected in the statement of the lemma.

» Let us assume that = and n are such that we are in Case C. Since 7, = —4 > p (%), we have
77)2;1,71
< _~ (2
(=7 (2
and thus using (6.10)
2n 21 20— 1 21
VTt = 20Ty = (g) + 2ucg <-@2p-1)y (g) < - “2 Ar (g) : (6.13)

- 2
We then conclude that there exist two positive constants C, ¢ independent from n and z such that if we are in
Case C,
/ |T\k exp (n%(r) +2x (—éR(T) + ApR(1)** — AIS(T)Q“)) |dT| < Ce™“".
r

p

Using (6.4) if necessary, we obtain the bound expected in the statement of the lemma.
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» We recall that —n £ £, belongs to I',. For 7 € I'y, ;.cs, we have that
R(r)=-n and [S(1)| > .
Thus,
nR(7) +2(=R(r) + ARR(r)* — ArS(r)) < —nnp+x(n + Apn™ — Ar6")

< —nn+az(—7 + ARTj“)

< —n(n+1,) + n(m’ﬁ“ —2u(Ty).
In each cases A, B and C, we have that

N+ T > g and 'yTg“ —2u¢T, <0.
Therefore, for all 7 € I' yes,
nR(7) + 2(—R(1) + ApR(r)2* — A;S()) < —ng.

We then conclude that

/ |7|* exp (nﬂ?(T) + (—§R(T) + ApR(T)* — A1%(7)2“)) |dr| < 2meke "3,
Fp,res

Using (6.4) if necessary, we obtain the bound expected in the statement of the lemma.
Combining all the results we encountered, we easily conclude the proof of (5.17c). O

Proof of Lemma 5.6

Proof We will prove the statement of Lemma 5.6 with ? =7 = + in order to alleviate the notations.
e Proof of (5.18a):
» We start by defining the paths

Lo :={it,t € [~re(n),re(N]}  and T, = {t £ire(n),t € [-n,0]} .

For all " € X, Cauchy’s formula implies that

/ exp (nT + xaﬁpf (1) + yaf?go;,r(T)) dr — / exp (nT + mlﬂaf (1) + yalﬁplf (7')) dr
T T'o

<

+

/+ exp (nT + xoz?'cpl"'(T) + yoz?,'(p?,'(T)) dr / exp (m’ + xa?’(p?‘(T) + yoz?,'gp?,' (T)) dr|.
T'domp Leomp

We observe that (5.6) implies that

/ri exp (n7 + zoy” o (1) + yoif o) (1)) dr
comp

0
< / exp ((n— (z + )t + (v +y) Art* — (x +y) Arr=(n)*") dt.

—n
Using (5.12) since ¢ € [-7,0] and = +y € [%,2n], we have that
(n = (@+y)t+ @+ Apt™ = (w+y)Ar=(n)™ < -

Combining the observations above, we have thus proved that for all path ' € X, n € N\ {0}, =,y € [0, 00|
such that x +y € [%, Qn}

/ exp (nT + :val"’gof () + ya?,'gof,r (7)) dr — / exp (nT + xa?'cpl"’(T) + yal",’goj,' (T)) dr
T To
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» Since x +y > %, we observe that

“+o0 A 20 +00 A 2
/ exp (_(ﬂf + y)AItQM) dt < exp (_17‘5(77)”> / exp (_ 1t ) it
re(n) i,

4 <(n)
Therefore, if we introduce the path

e = {it,t € R}
then, using (5.6), the integral

/ exp (m’ + asocl+<pl+(7') + ya?,‘tp?,‘ (T)) dr
rge
is defined and we have that

/ exp (nT + xal"'gol"’(T) + yal‘fgol‘f (T)) dr — / exp (m’ + xoz?'go?' (1) + ya?f@l",’(T)) dr
To rge
1

+o0o A t2“ A 2u
= 2/ exp (A dtexp (- 27 (6.15)
4 4
7<(n)
» Using the change of variables u = n2

—t, we obtain
R

1 + + + + 1o[re
% exp (nT +xa; o (T) + yoy o) (T)) dr
1T Fgo

. x/B[-i_ yﬂl—i_ 21
e exp (zt(n—(m—i—y))— ( i 21 ) dt

(%} (677

2p
_ Toop Yoy a; .af(n—(a:—i—y))
= %HQFL n,@[ +’[’L 1 a+ 3 7L .
nze

g nQ;L

Combining (6.14), (6.15) and the observation above, we obtain the inequality (5.18a).
e Proof of (5.18b):

1
We observe using the change of variables u = z:f t that
1

(7 + zatet () dr = = [ exp (it —a) — 0 ) a
-0 ex nTt ro T T = — ex nw\n—x) — —5-
20 e L ) T o

+ +
« o; (N —T
:uf%<#l<l>)

xT2m

xTr2m

Combining (6.14), (6.15) and the observation above, we have proved that there exist two constants C,c > 0
such that

1 + + _
Vr € [Q,Qn} s = / exp (m’ + xozfgo;r(r)) dr — |al1 |H2u i M < Ce ", (6.16)
2 20T T T2 T2

Using (6.4), we can obtain the same generalized Gaussian bound as the one expected in (5.18b).

» We observe that

1 af (n—x) 1 a (n—x)
1H2M<l+;l1 — — Hay ( B ="
xXT2m xXT2m

1
L nﬁ

nzw

o (1 () = (02 o (015502 (G - ) o

1o T
nzn nzn

T T
X2 n2e
We want to prove generalized Gaussian bounds for the two terms on the right hand side of (6.17). Applying the
mean value inequality and (1.28a), we have that there exist two constants C,c > 0 such that for all = € [5, 2n]

24
1 af(n—=x of(n—z C n—x|\ 21
€T2m xT2m mn2u

1 1
T T
€T 2m n 2w

n2p

% ‘n_x|
n-<x
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Since x € [%, Qn], we also have using the mean value inequality that

— 1 22 |n —
< [n — 2] Sup ——— In — 2] (6.18)
2p te[z,n] |t| 2p

2
Therefore, since the function y — 52 exp (—%y 2u51) is bounded, there exist two new constants C,c > 0 such

that for all z € [%,2n]

2p
1 af(n—z af (n—z C n—x|\ 21
1<H2M<l+;l(l)>—H2H(l+;l(l)>)‘§exp(—c( 1) > (6.19)
x2n nzu n nzu

x€X2n

We have thus proved generalized Gaussian bounds for the first term of the right hand side in (6.17). We
now focus on the second term. Using (1.28a), (6.18) and the fact that, for any constant ¢ > 0, the function

Y — Yy exp (fcy 25‘:1) is bounded, we have that there exist two constants C,c > 0 such that

of(n—2a 1 1 C n—x T
‘H2M<l+; Z(L ))( * = 1)‘§exp _C< 1|> . (6.20)
nzu x2n n2u n n2u

Combining (6.17), (6.19) and (6.20), we have proved generalized Gaussian bounds for the difference

1 af(n—x) 1 a (n—x)
1H2u<z+§ll -y (B ).

T2m T2 n2n n2u

With (6.16), we easily conclude the proof of (5.18b).
e Proof of (5.18¢):
» We observe that (5.6) implies that

1 n
< / exp ((n — 2)t + zApt™ — zArr-(n)**) dt.

T

/ exp (nT + xa;rcp;r(T)) i
ri (n)

Using (5.12) since ¢ € [-n,7] and = € [%,2n], we have that
(n — )t + xApt® — xApro(n)** < —

Using the observations above and Cauchy’s formula, we have thus proved that for all n € N\ {0}, = € [%, Qn}
and paths I' € X

4 Apre(n)?
< exp<—ﬁpn). (6.21)

T T re(n)

/ exp (’17/7' + mafgof (T)) dr — / exp (’17/7' + xafgof (T)) i
Tin(n) Y. ()

» Since x > 5 > %, we observe that

+o0 _ A 20 A tQ,u 1 +oo A t2,u
/ exp ((n — 2y + 2 .R77 il )dt < 7/ exp < L ) dt exp ((n —x)n+ xArn* — ngjrs(n)2"> .
re(n) |77 + Zt| NJr.(n) 8 4

<400

Furthermore, using (5.12) since = € [%,2n], we have that

Apre(n)?
exp ((n —z)n+ rAgn* — xiAIrE(n)2“> < exp (—ﬁémn> .

Therefore, if we introduce the path
Lo (n) == {n+it,t e R}

then, using (5.6), the integral

T

/ exp (m’ + scafgof (7‘)) i
I ()
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is defined and we have that

/ exp (nT + xa?’g@?’(T)) dr — / exp (nT + xa?’gpf’('f)) p
T T
o, (m T ree(n) T
2 [T Apt?r A 2
< */ exp (— L > dt exp (_17"8(77)”> . (6.22)
77 Te (”]) 8 8
+
» We observe that using the change of variables t = — lai | u, we have
2K
exp | i(n —x)(t —in) — xﬂ(n +it)2H
1 exp (nT + zaf o (7)) 0 1 /+oo ot 7" »
27 Jros () T 2im J_ t—in
o |(n—z 3% 3\
oo exp (7, | Lﬁ ) (u+lﬁ:+r)ﬂl+ <u+ .L2l+77> )
1 T 28 i i
T 2in ) — izin u.
o |

Furthermore, we can prove that

1 [+oo exp (zx (u+is) — B} (u+ is)Q”) .
Vs €]0, +oo Ve €R,  —o— - e du = By, (6,5 ) .

The proof is done in [Coe23, (5.65)]. Therefore,

1 exp (nT + xafr@f(T)) n —|al+|(n — )
-0 dr = EQH ﬂl ) s w—— I
2im ree (n) T e

Combining this observation with (6.21), (6.22) and (6.4), we have that there exist two positive constants C, ¢
such that for all n € N\ {0} and = € [%,2n]

1 exp (n7 + za; o (1) —|o|(n — = o n—x|\ 21
L[ eleranlel0) (g el © (L (=
17T Fm(n) T T 2n nze nze

» We notice that 0, Es, (57; ) = —Hy, (Bl'" ; ) Therefore, we have using the mean value inequality and
(1.28a) that there exist two positive constants C, ¢ such that for all n € N\ {0} and = € [%,2n]

—lajf|(n — = —la |(n — = n—ax T
e (o L) (5 B0 | < | o Lo (152 ).
n

€T2m nze
Using (6.18) and the fact that y — y?exp (—%y‘é‘%l) is bounded, we have that there exist two new positive
constants C, ¢ such that for all n € N\ {0} and € [%,2n]

+ + Py
—la"|(n —x —|a;" [(n — x C c(|n—x|\32 1
oy (65 o |i ) B (8 oy |& ) L \ - | .
,CL'QM ’]’LQ;L nl Pm 2 n2u

This allows us to conclude the proof of (5.18¢). O

1
T T
xze n2u
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