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Linear orbital stability of discrete shock profiles for systems of conservation laws

Lucas Coeuret1

Abstract

We prove the linear orbital stability of spectrally stable stationary discrete shock profiles for conservative finite
difference schemes applied to systems of conservation laws. The proof relies on a precise description of the
pointwise asymptotic behavior of the Green’s function associated with those discrete shock profiles, improving
on the result of Godillon [God03]. The main novelty of this stability result is that it applies for a fairly large
family of schemes that introduce some artificial viscosity and most importantly, that we do not impose any
weakness assumption on the shock.
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Notations
Throughout this article, we define the following sets:

U := {z ∈ C, |z| > 1} , D := {z ∈ C, |z| < 1} , S1 := {z ∈ C, |z| = 1} ,

U := S1 ∪ U, D := S1 ∪ D.
For z ∈ C and r > 0, we let B(z, r) denote the open ball in C centered at z with radius r. We also introduce

the Kronecker symbol δi,j which is equal 1 if i = j and 0 when i 6= j.
For E a Banach space, we denote L(E) the space of bounded operators acting on E and ‖·‖L(E) the operator

norm. For T in L(E), the notation σ(T ) stands for the spectrum of the operator T and ρ(T ) denotes the resolvent
set of T .

We letMn,k(C) denote the space of complex valued n× k matrices and we use the notationMn(C) when
n = k. For an element M of Mn,k(C), the notation MT stands for the transpose of M . For a square matrix
M , com(M) corresponds to the cofactor matrix associated with M .

We use the notation . to express an inequality up to a multiplicative constant. Eventually, we let C (resp.
c) denote some large (resp. small) positive constants that may vary throughout the text (sometimes within the
same line). Furthermore, we use the usual Landau notation O(·) to introduce a term uniformly bounded with
respect to the argument. For more clarity, we will also occasionally use the notation Os(·) to precise the fact
that the term is a complex scalar and will try to reserve the notation O(·) for vectors/matrices.

We let Res(f, a) denote the residue of a meromorphic function f at the point a.

1 Introduction

1.1 Context
A fundamental issue on the subject of systems conservation laws is to understand how discontinuities that can
arise in solutions are handled by conservative finite difference schemes. At the center of this question stands
the notion of discrete shock profiles which correspond to solutions of the numerical scheme which are traveling
waves linking two states. They are numerical approximations of shocks and the overarching goal is thus to prove
that for any admissible and physically relevant shock of the system of conservation laws, there exists a discrete
shock profile or a family of them that verifies satisfying stability properties. For a general introduction on the
questions of existence and stability of discrete shock profiles, we highly encourage the interested reader to take
a closer look at [Ser07].

In the present paper, we will consider conservative finite difference schemes which introduce numerical
viscosity and will focus on the study of the discrete shock profiles associated with standing Lax shocks. We
assume that there exists a continuous one-parameter family of discrete shock profiles associated with such a
shock. Such an existence result has been proved for instance in [MR79, Mic84] under a weakness assumption
on the shock, i.e. when the difference between the two states is sufficiently small. Let us introduce two notions
of stability for the family of discrete shock profiles:

• Spectral stability amounts to asking for the operators obtained by linearizing the numerical scheme about
the discrete shock profiles to have no unstable or marginally stable eigenvalues except for 1 which is
always an eigenvalue because of the existence of the continuous one-parameter family of discrete shock
profiles. Furthermore, we ask for 1 to be a simple eigenvalue of the linearized operator. This corresponds
to Hypotheses 6 and 7 below.
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• Nonlinear orbital stability signifies that for initial conditions of the numerical scheme which are suitably
small perturbations of one of the discrete shock profiles, then the solutions of the numerical scheme that
ensue stay close to the manifold of the discrete shock profiles. This is a stronger stability property.

There are some results surrounding nonlinear stability that have been proven. Most of them introduce
a weakness assumption on the underlying shocks and/or focus on fairly specific schemes or situations. For
instance, [LX93a, LX93b, Yin97] focus on proving a nonlinear orbital stability result on discrete shock profiles
moving with rational speeds associated with weak Lax shocks for the Lax-Friedrichs scheme. Two of the main
results which we can point out are the following ones:

• In [Mic02], Michelson proves nonlinear orbital stability of the family of discrete shock profiles associated
with weak standing Lax shocks for schemes of any odd order under an assumption of stability of the
viscous shock profiles associated with some scalar problem.

• In [Jen74], Jennings focuses on the particular case of monotone schemes for scalar conservation laws. The
main results are the existence and uniqueness of continuous one-parameter family of discrete shock profiles
with rational speeds and a proof of nonlinear orbital stability for them when they are associated with Lax
shocks. In this paper, no weakness assumption on the associated shocks is introduced.

Compared with the nonlinear stability theory for viscous shock profiles [ZH98] or for semi-discrete shock profiles
[BGHR03, BHSZ10], we hope to prove that spectrally stable discrete shock profiles verify nonlinear orbital
stability. This new result would generalize the previously cited article by proving a result of nonlinear stability
for systems of conservation laws, for a fairly large family of finite difference schemes, whilst avoiding to introduce
a weakness assumption on the shocks.

Just like in [ZH98, BGHR03, BHSZ10], proving that spectral stability implies nonlinear orbital stability
relies on an accurate description of the Green’s function (defined below by (1.24)) associated with the operator
obtained by linearizing the numerical scheme about the discrete shock profiles. The main result of the present
paper provides such an accurate description (see Theorem 1). We have not yet proven that specral stability
implies nonlinear stability, however the description of the semi-group associated with the linearized operator
deduced by Theorem 1 already allows us to quite simply prove linear orbital stability (see Theorem 2). We
hope to prove the nonlinear stability result in a future paper.

Let us now focus on the study of the Green’s function. Theorem 1 can be seen as an improvement on
the result of [God03] that highly influenced the analysis performed in the present paper. In [God03, LG01],
Pauline Lafitte generalizes in the fully discrete setting several tools introduced in [ZH98] necessary to study
the Green’s function for the linearized operator. More precisely, she constructs the Evans function for this
problem and introduces in her thesis [LG01] the notion of geometric dichotomies (an equivalent version of the
exponential dichotomies in the discrete dynamical systems). Those tools will be redefined and used intensively
in the present paper. Lafitte then attempts to obtain precise estimates on the Green’s function of the linearized
operator. However, the result of [God03] has two limitations:

• The proof is done specifically for the modified Lax-Friecrichs scheme. This is not a strong limitation as
it is quite clear that the content of the paper [God03] can be generalized for a larger class of numerical
schemes (at least for odd ordered schemes).

• The estimates on the Green’s function proved in [God03, Theorem 1.1] are not sufficient to conclude on
the nonlinear stability as they are only local with respect to the initial localization of the Dirac mass
associated with the Green’s function (the parameter l in [God03, Theorem 1.1] which corresponds to the
parameter j0 in Theorem 1). This is a consequence of the analysis on the so-called spatial Green’s function
(defined below by (1.25)) done in [God03] which is not precise enough.

In the present paper, we solve those issues by describing precisely the leading order of the Green’s function
and proving sharp and uniform estimates on the remainder. We also consider schemes of any odd order, in
particular with only few restrictions on the size of the stencil of the scheme.

1.2 Definition of stationary discrete shock profiles (SDSP)
We consider a mono dimensional system of conservation laws

∂tu+ ∂xf(u) = 0, t ∈ R+, x ∈ R,
u : R+ × R→ U , (1.1)
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where d ∈ N\ {0} corresponds to the number of unknown u =: (u1, . . . , ud) of (1.1), the space of states U is an
open set of Rd and the flux f : U → Rd is a smooth function. We will suppose that the system of conservation
laws is hyperbolic, meaning that for all u ∈ U , df(u) is diagonalisable with real eigenvalues.

We fix two states u−, u+ ∈ U such that
f(u−) = f(u+). (1.2)

This is the well-known Rankine-Hugoniot condition which allows to state that the standing shock defined by

∀t ∈ R+,∀x ∈ R, u(t, x) :=

{
u− if x < 0,
u+ else, (1.3)

is a weak solution of (1.1).
Since the system of conservation laws we consider is hyperbolic at the states u±, we introduce the eigenvalues

λ±1 , . . . ,λ
±
d ∈ R and a basis of nonzero eigenvectors r±1 , . . . , r

±
d ∈ Rd of df(u±) ∈Md(C) associated with those

eigenvalues. We also define the invertible matrix

P± :=
(
r±1 | . . . | r±d

)
∈Md(R) (1.4)

and the dual basis l±1 , . . . , l
±
d ∈ Rd associated with the eigenvectors r±1 , . . . , r

±
d defined by(

l±1 | . . . | l±d
)T

:=
(
P±
)−1

. (1.5)

The vectors l±l are then eigenvectors of df(u±)T associated with the eigenvalues λ±l . We organize the eigenvalues
so that

λ±1 ≤ . . . ≤ λ±d .

In this paper, we focus our attention on Lax shocks.

Hypothesis 1 (Lax shock). We assume that 0 /∈ σ(df(u±)) =
{
λ±1 , . . . ,λ

±
d

}
(i.e. the shock is non-characteristic).

Furthermore, we assume that there exists an index I ∈ {1, . . . , d} such that

λ+
I < 0 < λ+

I+1,
λ−I−1 < 0 < λ−I ,

where λ±0 := −∞ and λ±d+1 := +∞.

We fix a constant ν > 0 and introduce a space step ∆x > 0 and a time step ∆t := ν∆x > 0. The constant
ν then corresponds to the ratio between the space and time steps. We introduce the discrete evolution operator
N : UZ → UZ defined for u = (uj)j∈Z ∈ UZ as

∀j ∈ Z, (Nu)j := uj − ν (F (ν;uj−p+1, . . . , uj+q)− F (ν;uj−p, . . . , uj+q−1)) , (1.6)

where p, q ∈ N\ {0} and the numerical flux F : (ν;u−p, . . . , uq−1) ∈]0,+∞[×Up+q → Rd is a C1 function. We
are interested in solutions of the conservative one-step explicit finite difference scheme defined by

∀n ∈ N, un+1 = Nun (1.7)

where u0 ∈ UZ.
We assume that the numerical scheme satisfies the following consistency condition with regards to the PDE

(1.1)
∀ν ∈]0,+∞[,∀u ∈ U , F (ν;u, . . . , u) = f(u). (1.8)

We also suppose that the following CFL condition is verified2

∀u ∈ U , ν minσ(df(u)) ≥ −q and ν maxσ(df(u)) ≤ p (1.9)

which is required to have linear `2-stability at constant states.
Traveling waves solutions of the numerical scheme (1.7) linking two states of some shocks are the so-called

discrete shock profiles. Since we are considering stationary shocks (1.3) in the present paper, the discrete shock
profiles associated will also be stationary and will thus correspond to fixed points of the operator N .

2Up to considering that the space of state U is a close neighborhood of the SDSP defined underneath in Hypothesis 2, we should
be able to satisfy such a condition.
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Hypothesis 2 (Existence of a stationary discrete shock profile (SDSP)). We suppose that there exists a sequence
us = (usj)j∈Z ∈ UZ that satisfies

N (us) = us and usj →
j→±∞

u±.

Let us point out that in [Ser07], it is proved that the existence of a SDSP implies that the Rankine-Hugoniot
(1.2) is verified. However, the existence of a SDSP for all admissible and physically significant standing shock is
not fully answered. Existence results tend to actually prove the existence of a continuous one-parameter family of
discrete shock profiles. The main results tackling the issue of existence of SDSP would be [MR79, Mic84, Jen74]:

• In [Jen74], Jennings focuses on discrete shock profiles for monotone conservative schemes applied to scalar
conservation laws. In this context, he proves the existence and uniqueness of a continuous one-parameter
family of discrete shock profiles associated with shocks of any strength for rational speeds. He also proves
nonlinear orbital stability for such DSPs.

• In [MR79], Majda and Ralston tackle the case of system of conservation laws and prove the existence of
a continuous one-parameter family of DSPs with rational speeds. They introduce two limitations though:
They consider schemes of order 1 (this corresponds to the case where µ = 1 in Hypothesis 5 below) and
they only consider weak shocks, i.e. shocks where the difference between the two states must be small
enough. The result is generalized in [Mic84] for schemes of order 3 (i.e. µ = 2 in Hypothesis 5 below).

The following assumption on the convergence of the SDSP us towards its limit state is important in the
article as it it used to construct some of the main tools needed to carry the analysis of this paper (for instance
to prove the geometric dichotomy in Section 3.3 or for the proof of Lemma 4.3).

Hypothesis 3 (Exponential convergence of the SDSP towards its limit states). There exist some constants
C, c > 0 such that

∀j ∈ N, |usj − u+| ≤ Ce−cj ,
|us−j − u−| ≤ Ce−cj .

(1.10)

Hypothesis 3 can most likely be proved to be a consequence of the shock being non-characteristic (Hypothesis
1). We refer to [ZH98, Corollary 1.2] for a proof of this fact in the continuous setting and [BHSZ10, Lemma
1.1] in the semi-discrete case.

1.3 Linearized scheme about the end states u±

Let us now introduce some hypotheses on the end states u+ and u−. To summarize briefly the main assumptions,
we mainly ask for the numerical schemes we consider to introduce numerical viscosity and to have linear `r-
stability at the states u+ and u−.

We linearize the discrete evolution operator N about the constant states u− and u+ and thus define the
bounded operators L ± acting on `r(Z,Cd) with r ∈ [1,+∞] defined by

∀h ∈ `r(Z,Cd),∀j ∈ Z, (L ±h)j :=

q∑
k=−p

A±k hj+k, (1.11)

where for k ∈ {−p, . . . , q − 1}, we have

B±k := ν∂ukF
(
ν;u±, . . . , u±

)
∈Md(C) (1.12)

and for k ∈ {−p, . . . , q}

A±k :=


−B±q−1 if k = q,

B±−p if k = −p,
δk,0Id+B±k −B

±
k−1 else.

(1.13)

We start by introducing the following assumption on the matrices B±k and A±k .

Hypothesis 4. The eigenvectors r±1 , . . . , r
±
d of df(u±) are also eigenvectors of B±k and thus also of A±k . Equiv-

alently, the matrices df(u±) and B±k must commute for all k ∈ {−p, . . . , q − 1}.
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Hypothesis 4 is fairly usual and is not that far fetched since the consistency condition (1.8) links the numerical
flux F and the flux f and that, most of the time, the matrices B±k defined by (1.12) are expressed using df(u±).
If you consider for example the modified Lax-Friedrichs scheme, this hypothesis is satisfied. We can then
introduce the notation for k ∈ {−p, . . . , q}λ

±
1,k

. . .
λ±d,k

 := P±
−1
A±k P±. (1.14)

For l ∈ {1, . . . , d}, we define the meromorphic function F±l on C\ {0} by

∀κ ∈ C\ {0} , F±l (κ) :=

q∑
k=−p

λ±l,kκ
k ∈ C. (1.15)

The functions F±l allow us to characterize the spectrum of the operators L ±. We refer for instance to [CF22,
Coe22] for a study in the scalar case of similar convolution operators as L ±. Fourier analysis and in particular
the well-known Wiener theorem [New75] imply that

σ(L ±) =
⋃
κ∈S1

σ

 q∑
k=−p

κkA±k

 =

d⋃
l=1

F±l (S1). (1.16)

The definition (1.13) of the matrices A±k and the consistency condition (1.8) imply that

q∑
k=−p

A±k = Id and
q∑

k=−p

kA±k = −νdf(u±)

which translates into having

∀l ∈ {1, . . . , d} , F±l (1) = 1 and α±l := −F±l
′
(1) = νλ±l 6= 0. (1.17)

The following assumption is linked to the linear `r-stability of the numerical scheme (1.7) at the end state
which corresponds to the `r-power boundedness of the operators L ±.

Hypothesis 5. For all l ∈ {1, . . . , d}, we have

∀κ ∈ S1\ {1} , |F±l (κ)| < 1. (Dissipativity condition)

Moreover, we suppose that there exists an integer µ ∈ N\ {0} and for all l ∈ {1, . . . , d}, there exists a complex
number β±l with positive real part such that

F±l (eiξ) =
ξ→0

exp(−iα±l ξ − β
±
l ξ

2µ +O(|ξ|2µ+1)). (Diffusivity condition) (1.18)

Asking for the `2-power boundedness of the operator L ± is equivalent to asking that σ(L ±) ⊂ D (Von
Neumann condition). The stronger Hypothesis 5 is inspired by the fundamental contribution [Tho65] due to
Thomée and has much further consequences, as the asymptotic expansion (1.18) assures the `r-power bounded-
ness of the operator L ± for every r in [1,+∞] (see [Tho65, Theorem 1] which focuses in the scalar case on the
`∞-power boundedness but also studies the `r-power boundedness as a consequence). The diffusivity condition
(1.18) can be translated into asking for the numerical scheme N to introduce numerical viscosity at the end
state u±.

We conclude this section by defining the open set O which corresponds to the unbounded connected com-
ponent of C\(σ(L +) ∪ σ(L −)) represented on Figure 1. Hypothesis 5 implies that U\ {1} ⊂ O.

1.4 Linearized scheme about the SDSP us

We now linearize the discrete evolution operator N about the discrete shock profile us and thus define the
bounded operator L acting on `r(Z,Cd) with r ∈ [1,+∞] defined by

∀h ∈ `r(Z,Cd),∀j ∈ Z, (L h)j :=

q∑
k=−p

Aj,khj+k, (1.19)

6



•

•

•

S1

O

σ(L ±)

•1

Figure 1: In red, we have the spectrum of the operators L ± which corresponds to the union of the curves F±l (S1).
In gray, we represent the set O which corresponds to the unbounded component of C\(σ(L +) ∪ σ(L −)). The
elements of the set O are either eigenvalues of the operator L (represented in green) or belong to the resolvent
set ρ(L ). We know that 1 is an eigenvalue of L and Hypothesis 6 implies that the eigenvalues of L in O are
located within the open unit disk.

where for j ∈ Z and k ∈ {−p, . . . , q − 1}, we have

Bj,k := ν∂ukF
(
ν;usj−p, . . . , u

s
j+q−1

)
∈Md(C)

and for j ∈ Z and k ∈ {−p, . . . , q}

Aj,k :=

 −Bj+1,q−1 if k = q,
Bj,−p if k = −p,

δk,0Id+Bj,k −Bj+1,k−1 otherwise.
(1.20)

We observe that since the SDSP (usj)j∈Z converges exponentially fast towards its limit states u±, we have
that the matrices Aj,k (resp. Bj,k) converge exponentially fast towards the matrices A±k (resp. B±k ) defined by
(1.13) (resp. (1.12)) as j tends towards ±∞.

We will now focus on the spectral properties of the operator L when it acts on `2(Z,Cd). The following
proposition which localizes the essential spectrum of the operator L is central.

Proposition 1. We have that
σess(L ) ∩ O = ∅.

Proposition 1 allows us to conclude that for z ∈ O, zId`2 −L is a Fredholm operator of index 0 and thus
that z either belongs to the resolvent set of L or is an eigenvalue of L . Proposition 1 is proved for instance
in [Ser07, Theorem 4.1] using the so-called geometric dichotomy developped in the thesis of Pauline Godillon
[LG01, Section III.1.5]. We will have to reintroduce the geometric dichotomy in Section 3 and we will thus
provide the proof of Proposition 1 (see Lemma 3.7).

We will now introduce the spectral stability assumption that we impose on our SDSP us. It can be separated
in two parts.

Hypothesis 6. The operator L has no eigenvalue of modulus equal or larger than 1 other than 1.

Combining Hypothesis 6 with Proposition 1, we can then conclude that the set U\ {1} is included in the
resolvent set of L .

The second part of the spectral stability assumption and the last hypothesis we will introduce on the
spectrum of the operator L has to do with the so-called Evans function Ev defined later on in the article by
(4.18). This is a complex holomorphic function defined in a neighborhood of 1 that vanishes at the eigenvalues
of L . The Evans function plays more or less the role of a characteristic polynomial for the operator L .

We will show that under the previous hypotheses, 1 is an eigenvalue of the operator L and thus that the
Evans function Ev vanishes at 1. This is the consequence of the existence of a continuous one-parameter family of
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SDSPs associated with the one we are studying. In continuous and semi-discrete settings as in [ZH98, BHSZ10],
there is an underlying regular profile that describes the continuous one-parameter family of traveling waves
studied in those papers sd translations of said profile. The derivative of the regular profile belongs to the kernel
of the linearized operator in these settings. In our present fully discrete setting, existence of such a regular
underlying profile that describes the different SDSPs on one-parameter family has translations of each other is
not clear.

Here, we will make a stronger hypothesis on the behavior of the Evans function at 1.

Hypothesis 7. We have that 1 is a simple zero of the Evans function, i.e.

∂Ev

∂z
(1) 6= 0.

We will show that Hypothesis 7 implies that 1 is actually a simple eigenvalue of the operator L . More
precisely, we will prove that there exists a sequence V ∈ `2(Z,Cd)\ {0} such that

ker(Id`2 −L ) = SpanV (1.21)

and such that the sequence V converges exponentially fast towards 0 at infinity, i.e. there exist two positive
constants C, c such that

∀j ∈ Z, |Vj | ≤ Ce−c|j|. (1.22)

Coming back to the discussion above, if there exists a regular profile that allows us to describe the one-parameter
family of SDSPs as translations from one another, the sequence V would then correspond to the "derivative"
of said profile.

We finalize this section by introducing two last hypotheses that we one could qualify as more technical.

Hypothesis 8. The matrices Aj,−p = Bj,−p, Aj,q = −Bj+1,q−1, A±−p = B±−p and A±q = −B±q−1 are invertible
for all j ∈ Z.

This hypothesis is a consequence of the CFL condition (1.9), at least for the modified Lax-Friedrichs scheme.
Hypothesis 8 serves us in the article to express the eigenvalue problems associated the operator L , L + and
L − as dynamical systems (see Section 3.1). Finally, we impose for the following assumption to be verified.

Hypothesis 9. For all l ∈ {1, . . . , d}, the equation

F±l (κ) = 1 (1.23)

has p+ q distinct solutions κ ∈ C\ {0}.

Hypothesis 9 will be used to prove that the matrix M±l (1) defined by (3.8) is diagonalizable with simple
eigenvalues. This will allow us to study the eigenvalues and eigenvectors of the matrix M±(1) defined by (3.1)
in Section 4. Let us observe that the expression (1.15) of F±l implies that searching for solutions κ ∈ Cp+q\ {0}
of (1.23) is equivalent to searching for zeroes of

κ ∈ C\ {0} 7→ κp −
q∑

k=−p

λ±l,kκ
k+p.

The function above has p+q zeroes counted with multiplicity and Hypothesis 8 is then just equivalent to asking
for the zeroes of the function above to be simple.

1.5 Temporal and spatial Green’s functions
For j0 ∈ Z, we define the temporal Green’s function recursively as

G (0, j0, ·) := δj0
∀n ∈ N, G (n+ 1, j0, ·) := L G (n, j0, ·),

(1.24)

where δj0 := (δj0,jId)j∈Z. For z ∈ ρ(L ), we also define the spatial Green’s function G(z, j0, ·) as the only
element of `2(Z,Md(C)) such that

(zId`2 −L )G(z, j0, ·) = δj0 . (1.25)
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Remark 1. To be more precise, the previous definitions can seem unclear since L is defined on `2(Z,Cd). A
way to understand it is that the temporal Green’s function is defined as

G (0, j0, ·) := δj0
∀n ∈ N,∀~e ∈ Cd, G (n+ 1, j0, ·)~e := L G (n, j0, ·)~e.

Also, G(z, j0, ·) is the only element of `2(Z,Md(C)) such that for all ~e ∈ Cd, G(z, j0, ·)~e is the only element of
`2(Z,Cd) such that

(zId`2 −L )G(z, j0, ·)~e = δj0~e.

The main consequence of the introduction of the temporal Green’s function is that for all h ∈ `r(Z,Cd) with
r ∈ [1,+∞], we have

∀n ∈ N,∀j ∈ Z, (L nh)j =
∑
j0∈Z

G (n, j0, j)hj0 .

Thus, a precise description of the temporal Green’s function is sufficient to understand the action of the semi-
group (L n)n∈N associated with the operator L .

The following lemma proved via a simple recurrence is a direct consequence of the definition (1.24) of the
temporal Green’s function and the finite speed propagation of the linearized scheme.

Lemma 1.1. For all n ∈ N, j0, j ∈ Z, we have that

j − j0 /∈ {−nq, . . . , np} ⇒ G (n, j0, j) = 0.

Our goal is now to describe the behavior of the temporal Green’s function when j − j0 ∈ {−nq, . . . , np}. To
do so, we define the functions H2µ, E2µ : R→ C such that for β ∈ C with positive real part, we have

∀x ∈ R, H2µ(β;x) :=
1

2π

∫
R
eixue−βu

2µ

du,

∀x ∈ R, E2µ(β;x) :=

∫ +∞

x

H2µ(β; y)dy,

(1.26)

where we recall that the integer µ is defined in Hypothesis 5. We call the functions H2µ generalized Gaussians
and the functions E2µ generalized Gaussian error functions since for µ = 1, we have

∀x ∈ R, H2(β;x) =
1√
4πβ

e−
x2

4β .

Noticing that the function H2µ is an even function and that it is the inverse Fourier transform of u 7→ e−βu
2µ

,
we observe that

lim
x→−∞

E2µ(β;x) =

∫ +∞

−∞
H2µ(β; y)dy = 1 (1.27a)

∀x ∈ R, E2µ(β,−x) = 1− E2µ(β, x). (1.27b)

The following lemma introduces some useful inequalities on the functions H2µ and E2µ defined by (1.26).

Lemma 1.2. Let us consider a compact subset A of {z ∈ C,<(z) > 0} and integers µ,m ∈ N\ {0}. There exist
two positive constants C, c such that for all β ∈ A

∀x ∈ R, |∂mx H2µ(β;x)| ≤ C exp(−c|x|
2µ

2µ−1 ), (1.28a)

∀x ∈]0,+∞[, |E2µ(β;x)| ≤ C exp(−c|x|
2µ

2µ−1 ), (1.28b)

∀x ∈]−∞, 0[, |1− E2µ(β;x)| ≤ C exp(−c|x|
2µ

2µ−1 ). (1.28c)

The interested reader can find a proof of (1.28a) when the subset A is a one point set in [Coe22, Lemma 9] or
in [Rob91, Proposition 5.3] for a more general point of view. By observing that the constants C, c constructed in
those proofs depend continuously on β, we can then conclude the proof (1.28a) for general sets A. Inequalities
(1.28b) and (1.28c) for the function E2µ are directly deduced by integrating the function H2µ and using (1.27a)
and (1.28a).

We then introduce for n ∈ N\ {0} and j, j0 ∈ Z the functions defined by
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• For j0 ≥ 0 and l ∈ {1, . . . , d}

S+
l (n, j0, j) := 1j≥01 j−j0

α
+
l

∈[n2 ,2n]
1

n
1

2µ

H2µ

(
β+
l ,
nα+

l + j0 − j
n

1
2µ

)
r+
l l+

l

T
, (1.29a)

• For j0 ≥ 0, l′ ∈ {1, . . . , I} and l ∈ {I + 1, . . . d} (i.e. such that α+
l′ < 0 and α+

l > 0)

R+
l′,l(n, j0, j) := 1j≥01 j

α
+
l

− j0

α
+
l′
∈[n2 ,2n]

1

n
1

2µ

H2µ

 j

nα+
l

β+
l −

j0

nα+
l′
β+
l′

(
α+
l

α+
l′

)2µ

,
nα+

l + j0
α+
l

α+

l′
− j

n
1

2µ

 r+
l l+

l′
T
,

(1.29b)

• For j0 ≥ 0, l′ ∈ {1, . . . , I} and l ∈ {1, . . . I − 1} (i.e. such that α+
l′ < 0 and α−l < 0)

T+
l′,l(n, j0, j) := 1j<01 j

α
−
l

− j0

α
+
l′
∈[n2 ,2n]

1

n
1

2µ

H2µ

 j

nα−l
β−l −

j0

nα+
l′
β+
l′

(
α−l
α+
l′

)2µ

,
nα−l + j0

α−l
α+

l′
− j

n
1

2µ

 r−l l+
l′
T
,

(1.29c)

• For j0 ≥ 0 and l′ ∈ {1, . . . , I} (i.e. such that α+
l′ < 0)

E+
l′ (n, j0) := E2µ

(
β+
l′ ,
nα+

l′ + j0

n
1

2µ

)
l+
l′
T
, (1.29d)

• For j0 < 0 and l ∈ {1, . . . , d}

S−l (n, j0, j) := 1j≤01 j−j0
α
−
l

∈[n2 ,2n]
1

n
1

2µ

H2µ

(
β−l ,

nα−l + j0 − j
n

1
2µ

)
r−l l−l

T
, (1.29e)

• For j0 < 0, l′ ∈ {I, . . . , d} and l ∈ {1, . . . I − 1} (i.e. such that α−l′ > 0 and α−l < 0)

R−l′,l(n, j0, j) := 1j≤01 j

α
−
l

− j0

α
−
l′
∈[n2 ,2n]

1

n
1

2µ

H2µ

 j

nα−l
β−l −

j0

nα−l′
β−l′

(
α−l
α−l′

)2µ

,
nα−l + j0

α−l
α−
l′
− j

n
1

2µ

 r−l l−l′
T
,

(1.29f)

• For j0 < 0, l′ ∈ {I, . . . , d} and l ∈ {I + 1, . . . d} (i.e. such that α−l′ > 0 and α+
l > 0)

T−l′,l(n, j0, j) := 1j>01 j

α
+
l

− j0

α
−
l′
∈[n2 ,2n]

1

n
1

2µ

H2µ

 j

nα+
l

β+
l −

j0

nα−l′
β+
l′

(
α+
l

α−l′

)2µ

,
nα+

l + j0
α+
l

α−
l′
− j

n
1

2µ

 r+
l l−l′

T
,

(1.29g)

• For j0 < 0, l′ ∈ {I, . . . , d} (i.e. such that α−l′ > 0)

E−l′ (n, j0) := E2µ

(
β−l′ ,
−nα−l′ − j0

n
1

2µ

)
l−l′

T
. (1.29h)

The functions introduced above describe different behaviors that will be observed for the temporal Green’s
function. To be more precise, the main theorem of the present paper is the following description of the temporal
Green’s function.

Theorem 1. Let us assume that Hypotheses 1-9 are verified. There exist a sequence V ∈ `2(Z,Cd)\ {0} such
that (1.21) and (1.22) and families of complex scalars (CEl′

±
)l′ , (CRl′,l

±
)l′,l and (CTl′,l

±
)l′,l such that for all

n ∈ N\ {0}, j0 ∈ N, j ∈ Z and ~e ∈ Cd such that

G (n, j0, j)~e =

d∑
l=1

S+
l (n, j0, j)~e+

I∑
l′=1

[
d∑

l=I+1

CRl′,l
+
R+
l′,l(n, j0, j)~e+

I−1∑
l=1

CTl′,l
+
T+
l′,l(n, j0, j)~e+ CEl′

+
E+
l′ (n, j0)~eVj

]
+R(n, j0, j)~e (1.30)
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where R(n, j0, j) is a faster decaying residual in comparison to the other terms. There is a similar result when
j0 ≤ 0 using the families of complex scalars (CEl′

−
)l′ , (CRl′,l

−
)l′,l and (CTl′,l

−
)l′,l and the functions E−l′ , S

−
l , R

−
l′,l

and T−l′,l.

Let us describe more clearly the result of Theorem 1 conveys for j0 ≥ 0. The same description can be done
when j0 < 0. The first term on the right hand-side using the function S+

l of (1.30) corresponds to d generalized
Gaussian waves arising from the Dirac mass at j0 which travel along the characteristics of the right state u+.
The generalized Gaussian behavior of the different waves originates from the smearing effect caused by the
diffusivity condition in Hypothesis 5 which corresponds to the introduction of artificial viscosity at the states
u±. Recalling that we are considering a Lax shock under Hypotheses 1, we observe the following separation of
behavior:

• The first I generalized Gaussian waves follow the characteristics entering the shock since α+
l < 0 for

l ∈ {1, . . . , I} and will reach the shock.

• The last d − I generalized Gaussian waves follow the outgoing characteristics with respect to the shock
since α+

l > 0 for l ∈ {I + 1, . . . , d} and travel towards +∞.

When the generalized Gaussian waves following entering characteristics reach the shock, we observe that they
are dispersed in three different behaviors:

• There are reflected generalized Gaussian waves along the outgoing characteristics of the state u+. It
corresponds to the second term using the function R+

l′,l in (1.30).

• There are transmitted generalized Gaussian waves along the outgoing characteristics of the state u−. It
corresponds to the third term using the function T+

l′,l in (1.30).

• Because of the properties of the function E2µ defined by (1.26), we have that the vectors E+
l′ (n, j0) are

closer to 0 for small times n and converge towards l+
l′
T
as n tends towards +∞. Thus, the last term in the

decomposition (1.30) could be described as the apparition of a stationary part corresponding the profile
V that describes the vector subspace ker(Id`2 −L ). Each wave activates this profile as they reach the
shock.

One of the main consequence that can be deduced from Theorem 1 corresponds to the so-called linear orbital
stability of the stationary discrete shock profile us.

Theorem 2. Let us assume that Hypotheses 1-9 are verified. For r1, r2 ∈ [1,+∞] such that r1 ≤ r2, there
exists positive constant C such that

∀h ∈ `r1(Z,Cd),∀n ∈ N, min
V ∈ker(Id`2−L )

‖L nh− V ‖`r2 ≤
C

n
1

2µ

(
1
r1
− 1
r2

) ‖h‖`r1 .
We recall that when we introduced the Hypothesis 7 on the Evans function, we discussed on the fact that,

when that Hypotheses 1-9 are verified, if there exists a regular profile that allows us to describe the one-
parameter family of SDSPs as translations from one another, then the elements of ker(Id`2 −L ) correspond to
the derivative of said profile and scalar multiples of it.

1.6 Plan of the paper
Firstly, Section 2 will be dedicated to the proof of Theorem 2 using Theorem 1. The main part of the article
however (from Sections 3 to 5) will concern the proof of Theorem 1:

• In Section 3, we will prove Proposition 1 which describes the spectrum of the operator L in the set O
and will allow to define the spatial Green’s function defined by (1.25) on U\ {1}. We will then prove
Proposition 2 which implies exponential bounds on the spatial Green’s function in the neighborhood of
any point of U\ {1}.

• In Section 4, we prove that the spatial Green’s function can be meromorphically extended in a neighbor-
hood of 1 through the essential spectrum of the operator L . We will show that it has a pole of order 1
at z = 1 and find precise expressions (4.45)-(4.48) on it that will be essential in the Section 5.
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• In Section 5, we express the temporal Green’s function defined by (1.24) with the spatial Green’s function
using the inverse Laplace Transform. Using the different results proved on the spatial Green’s function in
Sections 3 and 4, we will conclude the proof of Theorem 1.

Section 6 is the Appendix and contains the proof of some technical lemmas used throughout the paper.
Some of those proofs are done in other papers, however, the authors feels like they needed to be reproved either
to correct mistakes or because the way they are presented here is fairly different from the statement in other
papers.

1.7 Possible further developments
The main development that we hope for is of course that the description of the temporal Green’s function
we have proved in Theorem 1 would be sufficient to conclude on the nonlinear orbital stability for stationary
spectrally stable discrete shock profiles. Such a description of the Green’s function were sufficient to prove
conclude nonlinear orbital stability results in some instances in continuous settings (in [MZ02] Theorem 1.11
implies Theorem 1.14) and semi-discrete settings (in [BGHR03] Theorem 4.11 implies Theorem 5.1 and in
[BHSZ10] Theorem 8 implies Theorem 1).

Possible further developments that could be expected surrounding the question of the stability discrete shock
profiles are presented below. Some of the developments presented are discussions on relaxations of restrictions
we imposed in the paper.

• The present papers only studies the case of Lax shocks (Hypothesis 1). However, in [God03], the de-
scription obtained on the Green’s function for the linearized operator also holds for discrete shock profiles
associated with stationary under-compressive and over-compressive shocks. Using ideas and calculations
performed in [God03], one could hope to adapt the results of the present paper to such cases. For in-
stance, in the under-compressive case, 1 would not be an eigenvalue of the linearized operator and thus
the expected description of the Green’s function would only be composed of generalized Gaussian waves.
On a more technical level, the main modification would be linked to the behavior of the spatial Green’s
function which could be holomorphically extended on z = 1.

• One could hope to extend the analysis performed in the present paper for standing discrete shock profiles
to moving ones, at least when the speed is rational. This would rely on studying iterations of the operator
N which would be fairly more difficult.

• An other option of extension that was tackled in the paper [God03] of Godillon would be to study the case
of boundary layer profiles for numerical schemes applied to systems of conservation laws on the half-line.

• Looking at the case of dispersive schemes like the Lax-Wendroff scheme would be another interesting
direction.

Those are only some ideas of questions surrounding the stability questions on discrete shock profiles. This
is a large subject with far more results to discover (existence of spectrally stable DSPs, equivalent results in the
multidimensional setting, etc...).

2 Proof of linear orbital stability (Theorem 2)
The goal of this section is to prove Theorem 2 using the description of the temporal Green’s function obtained in
Theorem 1. We recall that for r1, r2 ∈ [1,+∞] such that r1 ≤ r2, we have that for all n ∈ N and h ∈ `r1(Z,Cd)

L nh =

∑
j0∈Z

G (n, j0, j)hj0


j∈Z

∈ `r2(Z,Cd). (2.1)

We claim and will prove later on that for all couple r1, r2 ∈ [1,+∞] such that r1 ≤ r2, the operators

`r1(Z,Cd) → `r2(Z,Cd)
h 7→

(∑
j0∈N S

+
l (n, j0, j)hj0

)
j∈Z

(2.2)
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for l ∈ {1, . . . , d} and n ∈ N\ {0} are well-defined and that there exists a positive constants C such that

∀l ∈ {1, . . . , d} ,∀n ∈ N\ {0} ,∀h ∈ `r1(Z,Cd),

∥∥∥∥∥∥
∑
j0∈N

S+
l (n, j0, j)hj0


j∈Z

∥∥∥∥∥∥
`r2

≤ C

n
1

2µ

(
1
r1
− 1
r2

) ‖h‖lr1 . (2.3)

We claim that, using an identical proof, for all couple r1, r2 ∈ [1,+∞] such that r1 ≤ r2, the operators from
`r1(Z,Cd) to `r2(Z,Cd) defined by

h 7→

∑
j0∈N

R+
l′,l(n, j0, j)hj0


j∈Z

h 7→

∑
j0<0

R−l′,l(n, j0, j)hj0


j∈Z

h 7→

∑
j0∈N

T+
l′,l(n, j0, j)hj0


j∈Z

h 7→

∑
j0<0

T−l′,l(n, j0, j)hj0


j∈Z

h 7→

∑
j0<0

S−l (n, j0, j)hj0


j∈Z

h ∈7→

∑
j0∈Z
R(n, j0, j)hj0


j∈Z

for n ∈ N\ {0} are well-defined and satisfy similar bounds as (2.3). Furthermore, using the definitions (1.29d)
and (1.29h) of the functions E+

l′ and E−l′ and the estimates (1.28b) and (1.28c) on the function E2µ, we have
that for h ∈ `r1(Z,Cd) and n ∈ N\ {0}, the series

∑
j0∈N

(
I∑

l′=1

CEl′
+
E+
l′ (n, j0)hj0

)
+
∑
j0<0

(
d∑

l′=I

CEl′
−
E−l′ (n, j0)hj0

)

converges. Using the observations above, the equality (2.1) and the decomposition of the Green’s function given
in Theorem 1, we can then conclude that there exists a positive constant C > 0 such that

∀h ∈ `r1(Z,Cd),∀n ∈ N\ {0} ,∥∥∥∥∥∥L nh−

∑
j0∈N

(
I∑

l′=1

CEl′
+
E+
l′ (n, j0)hj0

)
+
∑
j0<0

(
d∑

l′=I

CEl′
−
E−l′ (n, j0)hj0

)V

∥∥∥∥∥∥
`r2

≤ C

n
1

2µ

(
1
r1
− 1
r2

) ‖h‖`r1
where we recall that the sequence V ∈ `1(Z,Cd) defined in Theorem 1 verifies that

ker(Id`2 −L ) = SpanV.

This allows us to conclude the proof of Theorem 2. Therefore, there just remains to prove that the operators
(2.2) are well-defined and verify (2.3). For l ∈ {1, . . . , d(p+ q)}, using the bounds (1.28a) on the function
H2µ and the definition (1.29a) of the functions S+

l , we easily prove that for each of the couple (r1, r2) in
{(1, 1), (1,+∞), (+∞,+∞)}, the operators (2.2) are well-defined for n ∈ N\ {0} and verify inequality (2.3).
Then, reasoning by interpolation using Riesz-Thorin Theorem, we can conclude that the same statement actually
holds for all couple (r1, r2) ∈ [1,+∞]2 such that r1 ≤ r2.

3 Local exponential bounds on the spatial Green’s function for z far
from 1

In this section, the goal is twofold:

• In order to determine where the spatial Green’s function is defined, we want to study the spectrum of the
operator L in the set O (i.e. outside of the curves representing the spectrum of the limit operators L ±).
More precisely, we will prove Lemma 3.7 which characterizes the eigenvalues of L in the set O and states
that there is no essential spectrum of the operator L which lies in the set O. This result was already
proved in [Ser07, Theorem 4.1]. As a direct consequence, we will have proved that the element of the set
O are either in the resolvent set of the operator L or are eigenvalues of L . Using Hypothesis 6, we can
thus deduce that the set U\ {1} is included in the resolvent set of L and that the spatial Green’s function
can be defined in a neighborhood of any point of U\ {1}.
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• We will prove Proposition 2 which introduce local uniform exponential bounds on the spatial Green’s
function G(z, j0, ·) when z belongs to U\ {1} and j0 ∈ Z. We will see later on in Section 4 that the study
of the spatial Green’s function for z near 1 will require some special care and that it is a more refined
analysis of the case where z is in U\ {1}. It might be important to keep in mind that a lot of the tools we
will introduce will also be useful in the case of z near 1.

The main ideas of this section will be to characterize the solutions of the eigenvalue problem associated with
the operator L using solutions of a discrete dynamical system of finite dimension.

We will then define a central tool for our analysis : the geometric dichotomy introduced by Pauline Lafitte-
Godillon in her thesis [LG01] and based on the exponential dichotomy coined by Coppel in [Cop78]. We will
take some time to rewrite the proofs of some lemmas even though most of the ideas can already be found in
the previously cited texts.

3.1 Expression of the eigenvalue problem as a dynamical system
As we explained, one of our objectives is to study the spectrum of the operator L . In this section, we express
the eigenvalue problem (zId`2 −L )u = 0 as a dynamical system. We will define a few important mathematical
objects that will appear often throughout the article.

For z ∈ C, we define the matrices Aj,k(z) = zδk,0Id − Aj,k and A±k (z) = zδk,0Id − A±k for all j ∈ Z and
k ∈ {−p, . . . , q}. We then introduce the matrices

∀j ∈ Z,∀z ∈ C, Mj(z) :=


−Aj,q(z)−1Aj,q−1(z) . . . . . . −Aj,q(z)−1Aj,−p(z)

Id 0 . . . 0

0
. . . . . .

...
0 0 Id 0

 ∈Md(p+q)(C)

and

∀z ∈ C, M±(z) :=


−A±q (z)−1A±q−1(z) . . . . . . −A±q (z)−1A±−p(z)

Id 0 . . . 0

0
. . . . . .

...
0 0 Id 0

Md(p+q)(C). (3.1)

Hypothesis 8 implies that for all z ∈ C and j ∈ Z, the matrices Aj,−p(z), Aj,q(z), A±−p(z) and A±q (z) are
invertible. Thus, the matrices Mj(z) and M±(z) are well-defined and invertible. We observe that Mj(z) →

j→±∞
M±(z) for all z ∈ C. If we define for every z ∈ C and j ∈ Z the matrices

E±j (z) := Mj(z)−M±(z),

then Hypothesis 3 implies that there exists a constant α > 0 such that for every bounded set U of C, there
exists a constant C > 0 such that3

∀z ∈ U,∀j ∈ N, |E+
j (z)| ≤ Ce−αj ,
|E−−j(z)| ≤ Ce−αj .

(3.2)

We observe that if there exists u ∈ `2(Z,Cd) such that

(zId`2 −L )u = 0,

3Since

E±j (z) =


ε±j,q−1(z) . . . ε±j,−p(z)

0 . . . 0
...

...
...

0 . . . 0


where

ε±j,k(z) :=

{
(A±

q )−1A±
k − (Aj,q)

−1Aj,k if k ∈ {−p, . . . , q − 1} \ {0} ,
(A±

q )−1A±
0 − (Aj,q)

−1Aj,0 − z((A±
q )−1 − (Aj,q)

−1) if k = 0,

the constant α can be taken uniformly on C but the constant C must depend on z.
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then, if we define for all j ∈ Z the vectors

Wj =

uj+q−1

...
uj−p

 ,

we have that Wj →
j→±∞

0 and

∀j ∈ Z, Wj+1 = Mj(z)Wj . (3.3)

To study the solution of the dynamical system (3.3), we define the family of fundamental matrices (Xj(z))j∈Z ∈
M(p+q)d(C) defined by

∀j ∈ Z, Xj+1(z) = Mj(z)Xj(z),
X0(z) = Id.

(3.4)

We observe that a solution (Wj)j∈Z of the dynamical system (3.3) thus verifies that

∀j ∈ Z, Wj = Xj(z)W0.

To find the eigenvalues of the operator L , the assertion above urges us to search for the solutions (Wj)j∈Z of
the dynamical system (3.3) which converge towards 0 when j tends to ±∞. We thus introduce the sets for
z ∈ C

E±(z) :=

{
(Wj)j∈Z ∈

(
C(p+q)d

)Z
solution of (3.3) such that Wj →

j→±∞
0

}
(3.5a)

E±0 (z) :=
{
W0 ∈ C(p+q)d, (Xj(z)W0)j∈Z ∈ E±(z)

}
(3.5b)

which correspond to the solutions of the dynamical system (3.3) which converge towards 0 as j tends towards
±∞ and their traces at j = 0.

3.2 Spectral splitting: study of the spectrum of M±(z)

Since Mj(z) →
j→±∞

M±(z), the dynamical system (3.3) can be considered to be perturbations respectively for

j ∈ N and j ∈ −N of the dynamical systems

∀j ∈ N, Wj+1 = M+(z)Wj . (3.6a)

∀j ∈ −N, Wj+1 = M−(z)Wj . (3.6b)

To study the solutions of (3.3) which converge towards 0 as j tends to ±∞, we will study solutions converging
towards 0 of the dynamical systems (3.6a) and (3.6b). This relies on studying the spectrum of the matrices
M±(z).

Using the eigenvalues λ±l,k of the matrix A±k defined by (1.14), we introduce

∀z ∈ C,∀l ∈ {1, . . . , d} ,∀k ∈ {−p, . . . , q} , Λ±l,k(z) := zδk,0 − λ±l,k, (3.7)

and

∀z ∈ C,∀l ∈ {1, . . . , d} , M±l (z) :=


−Λ±l,q(z)

−1Λ±l,q−1(z) . . . . . . −Λ±l,q(z)
−1Λ±l,−p(z)

1 0 . . . 0

0
. . . . . .

...
0 0 1 0

 . (3.8)

Hypothesis 8 implies that the matrices A±−p and A±q are invertible so Λ±l,−p(z),Λ
±
l,q(z) 6= 0. Thus, the matrices

M±l (z) are well-defined and invertible. We have the following result.

Lemma 3.1. There exists an invertible matrix Q± ∈M(p+q)d(C) such that

∀z ∈ C, M±(z) = Q±

M
±
1 (z)

. . .
M±d (z)

Q±
−1
.
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Proof We observe thatP
±

. . .
P±


−1

M±(z)

P
±

. . .
P±

 =


−D±q (z)−1D±q−1(z) . . . . . . −D±q (z)−1D±−p(z)

Id 0 . . . 0

0
. . . . . .

...
0 0 Id 0

 (3.9)

where

∀k ∈ {−p, . . . , q} , D±k (z) =

Λ±1,k(z)
. . .

Λ±d,k(z)

 .

Then, in the right hand term’s matrix of (3.9), by reassembling the first columns of each blocks, then the second
columns, . . . and then doing the same for the lines, we prove that the matrix M±(z) is similar to the matrixM

±
1 (z)

. . .
M±d (z)

 .

�

The following lemma is due to Kreiss (see [Kre68]) and describes precisely the spectrum of the matrixM±l (z)
as z belongs to O ∪ {1}.

Lemma 3.2 (Spectral Splitting). • For z ∈ C, κ ∈ C is an eigenvalue of M±l (z) if and only if κ 6= 0 and

F±l (κ) = z.

• Let z ∈ O and l ∈ {1, . . . , d}. Then the matrix M±l (z) has

– no eigenvalue on S1,

– p eigenvalues in D\ {0} (that we call stable eigenvalues),

– q eigenvalues in U (that we call unstable eigenvalues).

• We also have that

– if α±l > 0, M±l (1) has 1 as a simple eigenvalue, p− 1 eigenvalues in D\ {0} and q eigenvalues in U.
– if α±l < 0, M±l (1) has 1 as a simple eigenvalue, p eigenvalues in D\ {0} and q − 1 eigenvalues in U.

Lemma 3.2 is proved in [CF22, Lemma 1]. Combining the consequences of Lemmas 3.1 and 3.2, for z ∈ O, the
matrixM±(z) only has eigenvalues in D or U. Also, if we define the space Es(M±(z)) (resp. Eu(M±(z))) which
is the strictly stable (resp. strictly unstable) subspace of M±(z) which corresponds to the subspace spanned by
the generalized eigenvectors of M±(z) associated with eigenvalues in D (resp. U), then dimEs(M±(z)) = dp,
dimEu(M±(z)) = dq and

C(p+q)d = Es(M±(z))⊕ Eu(M±(z)).

We consider P±s (z) and P±u (z) the associated projectors. Those projectors P±s (z) and P±u (z) can be expressed
as a contour integral. For instance, we have

P±s (z) =
1

2iπ

∫
γ

(tId−M±(z))−1dt

where γ is a simple closed positively oriented contour which surrounds the stable eigenvalues of M±(z) and not
the unstable ones (for instance, S1 is a good candidate). Therefore, the projectors P±s (z) and P±u (z) depend
holomorphically on z ∈ O.
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3.3 "Local" geometric dichotomy
The conclusion of the study of the spectrum of the matrices M±(z) done in Section 3.2 is that the vector space
of solutions of (3.6a) (resp. (3.6b)) converging towards 0 as j tends towards +∞ (resp. −∞) is of dimension dp
(resp. dq) and can be characterized using the spectral projector P+

s (z) (resp. P−u (z)). We recall that (3.3) is
a perturbation of the dynamical systems (3.6a) and (3.6b). Thus, we could expect for the vector spaces E+(z)
and E+

0 (z) (resp. E−(z) and E−0 (z)) defined by (3.5a) and (3.5b) to be of dimension dp (resp. dq) and we
would want some way to characterize their elements.

In the present section, the goal is to construct projectors which will play for the dynamical system (3.3) a
similar role as the spectral projectors P+

s (z) and P−u (z) for the dynamical systems (3.6a) and (3.6b). This is
the aim of the following lemma.

Lemma 3.3 (Geometric dichotomy). For all bounded open set U such that U ⊂ O, there exist two holomorphic
functions Q±U : U →M(p+q)d(C) such that

• For all z ∈ U , Q±U (z) is a projector and we have

dim=Q+
U (z) = dim kerQ−U (z) = dp and dim=Q−U (z) = dim kerQ+

U (z) = dq.

• There exist two positive constants C, c such that for all z ∈ U

∀j ≥ k ≥ 0,
∣∣Xj(z)Q

+
U (z)Xk(z)−1

∣∣ ≤ Ce−c|j−k|, (3.10a)

∀k ≥ j ≥ 0,
∣∣Xj(z)(Id−Q+

U (z))Xk(z)−1
∣∣ ≤ Ce−c|j−k|, (3.10b)

∀j ≤ k ≤ 0,
∣∣Xj(z)Q

−
U (z)Xk(z)−1

∣∣ ≤ Ce−c|j−k|, (3.10c)

∀k ≤ j ≤ 0,
∣∣Xj(z)(Id−Q−U (z))Xk(z)−1

∣∣ ≤ Ce−c|j−k|. (3.10d)

Lemma 3.3 has been developped in the thesis of Pauline Godillon [LG01, Section III.1.5] and is inspired
by the exponential dichotomy discussed by Coppel in [Cop78]. Just as it is explained in [Cop78], to better
understand the meaning of this lemma, it is interesting to see that the inequalities (3.10a) and (3.10b) imply
that for all ξ ∈ C(p+q)d

∀j ≥ k ≥ 0,
∣∣Xj(z)Q

+
U (z)ξ

∣∣ ≤ Ce−c(j−k) |Xk(z)ξ| ,
∀k ≥ j ≥ 0,

∣∣Xj(z)(Id−Q+
U (z))ξ

∣∣ ≤ Ce−c(k−j) |Xk(z)ξ| .

The first inequality implies that there exists a dp-dimensional subspace of solutions (Wj)j∈Z of the dynamical
system (3.3) which converge exponentially fast toward 0 as j tends to +∞. The second inequality translates to
the fact that there exists a supplementary of the previous subspace of solutions for which the solutions explode
exponentially as j tends towards +∞. Thus, Q+

U (z) plays a similar role for the dynamical system (3.3) as any
projector for which the range is E+

s (z) (for instance the spectral projector P+
s (z)) for the dynamical system

(3.6a). The same kind of conclusion can be achieved with Q−U .
Thus, the construction of those two projectors Q±U is fundamental to study the solutions (Wj)j∈Z of (3.3)

that converge toward 0 as j tends to ±∞, i.e. the elements of the set E±(z) defined by (3.5a). We will see
in Lemma 3.6 that the projectors Q±U (z) allow to completely characterize the elements of the vectors spaces
E±0 (z).

Let us point out that the construction of the projectors Q±U is done on relatively compact subsets of O. More
importantly, for two sets U1 and U2 that satisfy the conditions of Lemma 3.3, even if U1 ⊂ U2, the construction
of the proof of Lemma 3.3 does not imply that the projectors Q±U1

and Q±U2
are equal on U1 ∩U2. Therefore, we

cannot immediately construct two functions Q± that are defined on O which would verify similar properties as
Q±U . However, it turns out that =Q±U1

(z) = =Q±U2
(z) for z ∈ U1 ∩ U2. We will prove this fact later on and use

it to extend uniformly the geometric dichotomy on a large part of O (see Lemma 3.8).
Proof The construction of both functions Q±U is similar so we focus here on the construction of Q+

U . The
proof will be separated in four steps. In the first step, we will construct the function Q+

U using a fixed point
argument. The second step will be dedicated to proving that for all z ∈ U , Q+

U (z) is a projector for which the
kernel and the range are respectively of dimension dq and dp. The third and fourth steps concern the proof of
the inequalities (3.10a) and (3.10b).

Step 1: Construction of Q+
U .

We set for z ∈ O that
η±s (z) := max {ln(|ζ|), ζ ∈ σ(M±(z)) ∩ D}
η±u (z) := min {ln(|ζ|), ζ ∈ σ(M±(z)) ∩ U} .
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The functions η+
s and η+

u are continuous on O and verify that

∀z ∈ O, η+
s < 0 and η+

u > 0.

The set U being a compact included in O, there exists a constant cH such that

max
z∈U

η+
s (z) < −cH < 0 and 0 < cH < min

z∈U
η+
u (z).

We will also ask that cH < α where α is the constant appearing in (3.2). By definition of η+
s and η+

u , there
exists a positive constant CH such that

∀z ∈ U,∀j ∈ N,
∣∣M+(z)jP+

s (z)
∣∣ ≤ CHe−cHj ,∣∣M+(z)−jP+

u (z)
∣∣ ≤ CHe−cHj . (3.11)

Furthermore, using (3.2), since U is bounded, there exists a positive constant CE such that

∀z ∈ U,∀j ∈ N, |E+
j (z)| ≤ CEe−αj . (3.12)

We fix an integer J ∈ N and we will make a more precise choice later. We define the Banach space

`∞J :=

{
(Yj)j≥J ∈M(p+q)d(C){j∈N,j≥J}, sup

j≥J
|Yj | < +∞

}
with the norm

‖Y ‖∞,J := sup
j≥J
|Yj |.

Furthermore, for z ∈ U , we define ϕ(z) ∈ L (`∞J ) and T (z) : `∞J → `∞J such that for Y ∈ `∞J and j ≥ J , we have

(ϕ(z)Y )j :=

j−1∑
k=J

M+(z)j−1−kP+
s (z)E+

k (z)Yk −
+∞∑
k=j

M+(z)j−1−kP+
u (z)E+

k (z)Yk

and
T (z)Y :=

(
M+(z)j−JP+

s (z)
)
j≥J + ϕ(z)Y.

We observe that
∀Y ∈ `∞J ,∀j ≥ J, (ϕ(z)Y )j+1 = M+(z)(ϕ(z)Y )j + E+

j (z)Yj ,

and thus
∀Y ∈ `∞J ,∀j ≥ J, (T (z)Y )j+1 = M+(z)(T (z)Y )j + E+

j (z)Yj . (3.13)

Our goal will be to find a fixed point of T (z). To do so, we will have to prove that there exists J large
enough so that

‖ϕ(z)‖L(`∞J ) < 1.

We begin by proving that the applications ϕ(z) and T (z) are well-defined. We consider Y ∈ `∞J and j ≥ J .
We have using (3.11) and (3.12)

|(ϕ(z)Y )j | ≤
j−1∑
k=J

CHCEe
−cH |j−1−k|e−αk|Yk|+

+∞∑
k=j

CHCEe
−cH |j−1−k|e−αk|Yk|

≤ ‖Y ‖∞,U CHCEe
−αJ

+∞∑
k=J

e−cH |j−1−k|

≤ ‖Y ‖∞,U CHCEe
−αJ 1 + e−cH

1− e−cH
.

If we set

θ := CHCEe
−αJ 1 + e−cH

1− e−cH
, (3.14)

then we just proved that the operator ϕ(z) is defined, bounded and

‖ϕ(z)‖L(`∞J ) ≤ θ.
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We also observe that (3.11) implies that (M+(z)j−JP+
s (z))j≥J ∈ `∞J . Therefore, T (z) is well-defined.

We consider that we chose J large enough so that θ < 1. For z ∈ U , we have that Id − ϕ(z) is invertible.
Thus, we can define

Y (z) := (Id− ϕ(z))−1
(
M+(z)j−JP+

s (z)
)
j≥J .

It is the only fixed point of T (z) and it depends holomorphically on z. We observe that (3.13) implies that

∀z ∈ U,∀j ≥ J, (Y (z))j+1 = Mj(z)(Y (z))j . (3.15)

We define
∀z ∈ U, Q+

U (z) := XJ(z)−1(Y (z))JXJ(z). (3.16)

Since Y depends holomorphically on z and is bounded on U , Q+
U (z) also depends holomorphically on z for z ∈ U

and is bounded in U .
Step 2: Q+

U is a projector.
We are going to prove that for all z ∈ U the matrix Q+

U (z) we just constructed is a projector such that

kerQ+
U (z) = XJ(z)−1Eu(M+(z)) and dim=Q+

U (z) = dp.

By observing that P+
s (z)2 = P+

s (z), we prove that ((Y (z))jP
+
s (z))j≥J is a fixed point T (z). Since Y (z) is

the only fixed point of T (z) in `∞J , we prove that

(Y (z))JP
+
s (z) = (Y (z))J . (3.17)

Using that Y (z) is a fixed point of T (z), we have that

P+
s (z)(Y (z))J = P+

s (z)(T (z)Y (z))J

= P+
s (z)

(
P+
s (z)−

+∞∑
k=J

M+(z)J−1−kP+
u (z)E+

k (z)(Y (z))k

)
.

Because P+
s (z) commutes with M+(z), P+

s (z)2 = P+
s (z) and P+

s (z)P+
u (z) = 0, we have proved

P+
s (z)(Y (z))J = P+

s (z). (3.18)

Using (3.18), we prove that ((Y (z))j(Y (z))J)j≥J is a fixed point T (z). Since Y (z) is the only fixed point of
T (z) in `∞J , we prove that

(Y (z))J
2

= (Y (z))J .

Therefore, we have proved that (Y (z))J is a projector. The equalities (3.17) and (3.18) allow us to prove that
ker(Y (z))J = kerP+

s (z) = Eu(M+(z)). The definition of Q+
U (z) implies that Q+

U (z) is a projector and

=Q+
U (z) = XJ(z)−1=(Y (z))J and kerQ+

U (z) = XJ(z)−1 ker(Y (z))J = XJ(z)−1Eu(M+(z)).

Step 3: Q+
U satisfies the inequalities (3.10a) and (3.10b) respectively for j ≥ k ≥ J and k ≥ j ≥ J .

First, we are going to prove the inequality (3.10a) for j ≥ k ≥ J and the inequality (3.10b) for k ≥ j ≥ J .
We observe that (3.15) implies that

∀z ∈ U,∀j ≥ J, (Y (z))j+1 = Mj(z)(Y (z))j .

and thus
∀z ∈ U,∀j ≥ J, (Y (z))j = Xj(z)XJ(z)−1 (Y (z))J = Xj(z)Q

+
U (z)XJ(z)−1.

We introduce

∀z ∈ U,∀j ≥ J, (Z(z))j := Xj(z)XJ(z)−1 (Id− (Y (z))J) = Xj(z)
(
Id−Q+

U (z)
)
XJ(z)−1.

We have the following lemma.
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Lemma 3.4. We have that

∀j ≥ k ≥ J, (Y (z))j =M+(z)j−kP+
s (z)(Y (z))k +

j−1∑
l=k

M+(z)j−1−lP+
s (z)E+

l (z)(Y (z))l

−
+∞∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Y (z))l,

and

∀k ≥ j ≥ J, (Z(z))j =M+(z)j−kP+
u (z)(Z(z))k +

j−1∑
l=J

M+(z)j−1−lP+
s (z)E+

l (z)(Z(z))l

−
k−1∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Z(z))l.

Proof

• Since we have that

∀j ≥ J, (Y (z))j+1 = Mj(z)(Y (z))j = (M+(z) + E+
j (z))(Y (z))j ,

using the variation of constants formula, we find that

∀k ≥ J, (Y (z))k = M+(z)k−J(Y (z))J +

k−1∑
l=J

M+(z)k−1−lE+
l (z)(Y (z))l.

Knowing that Y (z) is a fixed point of T (z) and that P+
s (z)(Y (z))J = P+

s (z), we have for j ≥ k ≥ J

(Y (z))j

=(T (z)Y (z))j

=M+(z)j−JP+
s (z) +

j−1∑
l=J

M+(z)j−1−lP+
s (z)E+

l (z)(Y (z))l −
+∞∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Y (z))l

=M+(z)j−kP+
s (z)

(
M+(z)k−J(Y (z))J +

k−1∑
l=J

M+(z)k−1−lE+
l (z)(Y (z))l

)

+

j−1∑
l=k

M+(z)j−1−lP+
s (z)E+

l (z)(Y (z))l −
+∞∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Y (z))l

=M+(z)j−kP+
s (z)(Y (z))k +

j−1∑
l=k

M+(z)j−1−lP+
s (z)E+

l (z)(Y (z))l −
+∞∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Y (z))l.

• Since we have that

∀j ≥ J, (Z(z))j+1 = Mj(z)(Z(z))j = (M+(z) + E+
j (z))(Z(z))j ,

using the variation of constants formula, we find that for k ≥ j ≥ J

(Z(z))j = M+(z)j−J(Z(z))J +

j−1∑
l=J

M+(z)j−1−lE+
l (z)(Z(z))l (3.19)

(Z(z))k = M+(z)k−j(Z(z))j +

k−1∑
l=j

M+(z)k−1−lE+
l (z)(Z(z))l. (3.20)

Using (3.19) and knowing that P+
s (z)(Z(z))J = P+

s (z)(Id− (Y (z))J) = 0, we have that

P+
s (z)(Z(z))j =

j−1∑
l=J

M+(z)j−1−lP+
s (z)E+

l (z)(Z(z))l.
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Furthermore, (3.20) implies that

P+
u (z)(Z(z))j = M+(z)j−kP+

u (z)(Z(z))k −
k−1∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Z(z))l.

We end the proof of the lemma by observing that (Z(z))j = P+
s (z)(Z(z))j + P+

u (z)(Z(z))j .

�

We introduce the constant

Θ := θ
1− e−cH
1 + e−cH

. (3.21)

Using Lemma 3.4 and (3.11), we obtain that for any ξ ∈ C(p+q)d

∀j ≥ k ≥ J, |(Y (z))jξ| ≤ CHe−cH(j−k) |(Y (z))kξ|+ Θ

+∞∑
l=k

e−cH |j−1−l| |(Y (z))lξ| , (3.22)

and

∀k ≥ j ≥ J, |(Z(z))jξ| ≤ CHe−cH(k−j) |(Z(z))kξ|+ Θ

k−1∑
l=J

e−cH |j−1−l| |(Z(z))lξ| . (3.23)

The following lemma will allow us to obtain clearer bounds on |(Y (z))jξ| and |(Z(z))jξ|.

Lemma 3.5. For all y ∈ `∞(N) with non negative coefficients that satisfies

∀j ∈ N, yj ≤ CHe−cHj + Θ

+∞∑
k=0

e−cH |j−1−k|yk, (3.24)

then we have
∀j ∈ N, yj ≤ ρrj ,

where

r := cosh(cH)− 2 sinh
(cH

2

)√
cosh2

(cH
2

)
− θ ∈]e−cH , 1[ and ρ :=

CH
Θ

(r − e−cH ) > 0. (3.25)

The proof can be found in the Appendix (Section 6). We will now use Lemma 3.5 to prove that

∀j ≥ k ≥ J, |(Y (z))jξ| ≤ ρrj−k|(Y (z))kξ|, (3.26)

∀k ≥ j ≥ J, |(Z(z))jξ| ≤ ρrk−j |(Z(z))kξ|. (3.27)

We consider k ≥ J . If (Y (z))kξ 6= 0, then by applying Lemma 3.5 to the bounded sequence y =(
|(Y (z))k+jξ|
|(Y (z))kξ|

)
j∈N

, we obtain (3.26). Else, if (YU (z))k = 0, then for j ≥ k, we have

(Y (z))jξ = Xj(z)Xk(z)−1(Y (z))kξ = 0.

Thus, (3.26) is also verified in this case.
The proof of (3.27) is similar. If (Z(z))kξ 6= 0, then we apply the Lemma 3.5 to the sequence y defined by

∀j ∈ N, yj =

{
|(Z(z))k−jξ|
|(Z(z))kξ| if j ∈ {0, . . . , k} ,

0 else.

This proves (3.27) in this case. If (Z(z))kξ = 0, then since

∀j ∈ {J, . . . , k} , (Z(z))jξ = Xj(z)Xk(z)−1(Z(z))kξ = 0,

(3.27) is also verified in this case.
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Using (3.26) and (3.27), we proved that

∀j ≥ k ≥ J, |Xj(z)Q
+
U (z)Xk(z)−1| ≤ ρrj−k|Xk(z)Q+

U (z)Xk(z)−1|, (3.28)

∀k ≥ j ≥ J, |Xj(z)(Id−Q+
U (z))Xk(z)−1| ≤ ρrk−j |Xk(z)(Id−Q+

U (z))Xk(z)−1|. (3.29)

If we prove that the families (Xk(z)Q+
U (z)Xk(z)−1)k≥J and (Xk(z)(Id − Q+

U (z))Xk(z)−1)k≥J are uniformly
bounded for z ∈ U , we would have proved (3.10a) and (3.10b) respectively for j ≥ k ≥ J and k ≥ j ≥ J .

Using Lemma 3.4, we prove that for j ≥ J

P+
u (z)(Y (z))j = −

+∞∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)(Y (z))l,

P+
s (z)(Z(z))j =

j−1∑
l=J

M+(z)j−1−lP+
s (z)E+

l (z)(Z(z))l.

Thus,

P+
u (z)Xj(z)Q

+
U (z)Xj(z)

−1 = −
+∞∑
l=j

M+(z)j−1−lP+
u (z)E+

l (z)Xl(z)Q
+
U (z)Xj(z)

−1,

P+
s (z)Xj(z)(Id−Q+

U (z))Xj(z)
−1 =

j−1∑
l=J

M+(z)j−1−lP+
s (z)E+

l (z)Xl(z)(Id−Q+
U (z))Xj(z)

−1.

Using (3.11), the definitions (3.14), (3.21) and (3.25) of the constants θ, Θ and ρ, as well as (3.28), we have

|P+
u (z)Xj(z)Q

+
U (z)Xj(z)

−1| ≤ Θ

+∞∑
l=j

e−cH(l−(j−1))|Xl(z)Q
+
U (z)Xj(z)

−1|

≤ Θe−cHρ

+∞∑
l=j

(re−cH )l−j |Xj(z)Q
+
U (z)Xj(z)

−1|

= Θ
e−cH

1− re−cH
ρ|Xj(z)Q

+
U (z)Xj(z)

−1|

= CH
r − e−cH
ecH − r

|Xj(z)Q
+
U (z)Xj(z)

−1|.

Similarly, using (3.29), we have

|P+
s (z)Xj(z)(Id−Q+

U (z))Xj(z)
−1| ≤ Θ

j−1∑
l=J

e−cH(j−1−l)|Xl(z)(Id−Q+
U (z))Xj(z)

−1|

≤ ΘecHρ

j−1∑
l=J

(re−cH )j−l|Xj(z)(Id−Q+
U (z))Xj(z)

−1|

≤ ΘecH
1

1− re−cH
ρ|Xj(z)(Id−Q+

U (z))Xj(z)
−1|

= CHe
2cH

r − e−cH
ecH − r

|Xj(z)(Id−Q+
U (z))Xj(z)

−1|.

Therefore, if we define η := CH
e2cH
ecH−1 (r − e−cH ), we have for all j ≥ J

|P+
u (z)Xj(z)Q

+
U (z)Xj(z)

−1| ≤ η|Xj(z)Q
+
U (z)Xj(z)

−1|,
|P+
s (z)Xj(z)(Id−Q+

U (z))Xj(z)
−1| ≤ η|Xj(z)(Id−Q+

U (z))Xj(z)
−1|.

(3.30)

Using the definition (3.25) of r, we observe that

η = CH
e2cH

ecH − 1
2 sinh

(cH
2

)(
cosh

(cH
2

)
−
√

cosh
(cH

2

)2

− θ

)
.
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We already supposed that J was taken large enough so that θ < 1. We will now also suppose that we took J
large enough so that θ is close enough to 0 so that η < 1

2 . To conclude this step of the proof, we observe that

Xj(z)Q
+
U (z)Xj(z)

−1 − P+
s (z) = P+

u (z)Xj(z)Q
+
U (z)Xj(z)

−1 − P+
s (z)Xj(z)(Id−Q+

U (z))Xj(z)
−1

and

Xj(z)(Id−Q+
U (z))Xj(z)

−1 − P+
u (z) = P+

s (z)Xj(z)(Id−Q+
U (z))Xj(z)

−1 − P+
u (z)Xj(z)Q

+
U (z)Xj(z)

−1.

Thus, using (3.30) and (3.11) to bound P+
s and P+

u , we have

|Xj(z)Q
+
U (z)Xj(z)

−1| ≤ CH + η
(
|Xj(z)Q

+
U (z)Xj(z)

−1|+ |Xj(z)(Id−Q+
U (z))Xj(z)

−1|
)

and

|Xj(z)(Id−Q+
U (z))Xj(z)

−1| ≤ CH + η
(
|Xj(z)Q

+
U (z)Xj(z)

−1|+ |Xj(z)(Id−Q+
U (z))Xj(z)

−1|
)
.

This implies that

∀j ≥ J,
|Xj(z)Q

+
U (z)Xj(z)

−1| ≤ 2CH
1− 2η

,

|Xj(z)(Id−Q+
U (z))Xj(z)

−1| ≤ 2CH
1− 2η

.

Therefore, we have proved that for all z ∈ U , we have

∀j ≥ k ≥ J, |Xj(z)Q
+
U (z)Xk(z)−1| ≤ ρ 2CH

1− 2η
rj−k, (3.31)

∀k ≥ j ≥ J, |Xj(z)(Id−Q+
U (z))Xk(z)−1| ≤ ρ 2CH

1− 2η
rk−j . (3.32)

Step 4: Q+
U satisfies the inequalities (3.10a) and (3.10b) respectively for all j ≥ k ≥ 0 and k ≥ j ≥ 0

We will only finish the proof of (3.10a) since the proof for (3.10b) would be similar. We have proved (3.10a)
for j ≥ k ≥ J . We consider a constant C > 0 such that

∀z ∈ U, C > r−J maxj∈{0,...,J−1} |Xj(z)Q
+
U (z)XJ(z)−1|

C > r−J maxj∈{0,...,J−1} |XJ(z)Q+
U (z)Xj(z)

−1|.

This can be done since the projector Q+
U defined by (3.16) is bounded on U .

• If j ≥ J > k ≥ 0, we have

|Xj(z)Q
+
U (z)Xk(z)−1| ≤ |Xj(z)Q

+
U (z)XJ(z)−1||XJ(z)Q+

U (z)Xk(z)−1|

≤ ρ 2CH
1− 2η

rj−JCrJ

≤ Cρ 2CH
1− 2η

rj−k.

• If J > j ≥ k ≥ 0, we have

|Xj(z)Q
+
U (z)Xk(z)−1| ≤ |Xj(z)Q

+
U (z)XJ(z)−1||XJ(z)Q+

U (z)Xk(z)−1|
≤ C2r2J

≤ C2rj−k.

Therefore, there exists two constants C, c > 0 such that for all z ∈ U , (3.10a) is verified. �
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3.4 Spectrum of L and extended geometric dichotomy
Now that we have proved the geometric dichotomy, let us go back on studying the vector spaces E±0 (z) which
characterize the solutions of (3.3) converging towards 0 as j tends towards ±∞. The previous section about
the geometric dichotomy allows us to prove the following lemma.

Lemma 3.6. For all open bounded sets U such that U ⊂ O, we have

∀z ∈ U, E+
0 (z) = =(Q+

U (z)) and E−0 (z) = =(Q−U (z)).

Therefore, for all z ∈ O, dimE+
0 (z) = dp and dimE−0 (z) = dq. Also, for W0 ∈ E+

0 (z) ∩ E−0 (z), we have that
(Xj(z)W0)j∈Z ∈ `2(Z,C(p+q)d).

Proof We prove the first set equality.

• For W0 ∈ =(Q+
U (z)), we have for j ∈ N using (3.10a)

Xj(z)W0 = Xj(z)Q
+
U (z)X0(z)−1W0 →

j→+∞
0.

Thus, W0 ∈ E+
0 (z).

• For W0 ∈ E+
0 (z), we have for j ∈ N using (3.10b)

(Id−Q+
U (z))W0 = X0(z)(Id−Q+

U (z))Xj(z)
−1Xj(z)W0 →

j→+∞
0.

Thus, (Id−Q+
U (z))W0 = 0, i.e. W0 ∈ =(Q+

U (z)).

Therefore, we have proved that
E±0 (z) = =(Q±U (z)).

We now consider W0 ∈ E+
0 (z) ∩ E−0 (z) = =(Q+

U (z)) ∩ =(Q−U (z)). Because of the inequalities (3.10a) and
(3.10c), the equalities

∀j ∈ Z, Xj(z)W0 = Xj(z)Q
+
U (z)X0(z)−1W0 = Xj(z)Q

−
U (z)X0(z)−1W0

imply that (Xj(z)W0)j∈Z ∈ `2(Z,C(p+q)d). �

Let us now come back to the heart of the matter: the study of the spectrum of the operator L . We
introduced the dynamical system (3.3) to study the solutions of the eigenvalue problem

(zId`2 −L )u = 0.

The following lemma, for which the main part is proved in [Ser07, Theorem 4.1], is deduced using the geometric
dichotomy.

Lemma 3.7. For z ∈ O, we have that

dim ker(zId`2 −L ) = dimE+
0 (z) ∩ E−0 (z). (3.33)

Furthermore, zId`2 −L is a Fredholm operator of index 0, i.e.

σess(L ) ∩ O = ∅.

Before proving the lemma, let us thus introduce the linear map which extracts the center values of a vector
of size d(p+ q)

Π : Cd(p+q) → Cd
(xj)j∈{1,...,d(p+q)} 7→ (xj)j∈{d(q−1)+1,...,dq}

. (3.34)

Proof We consider z ∈ O and start by proving (3.33).
• For w ∈ ker(zId`2 −L ), if we introduce

W0 :=

wq−1

...
w−p
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then we have that

∀j ∈ Z, Xj(z)W0 =

wj+q−1

...
wj−p

 .

Since w belongs to `2(Z,Cd), we have that W0 ∈ E+
0 (z) ∩ E−0 (z). This implies that the linear application

ϕ : ker(zId`2 −L ) → E+
0 (z) ∩ E−0 (z)

w 7→

wq−1

...
w−p


is well-defined.
• We consider W0 ∈ E+

0 (z) ∩ E−0 (z) and define for j ∈ Z

wj := Π(Xj(z)W0) ∈ Cd

where the operator Π is defined by (3.34). Lemma 3.6 implies that the sequence w := (wj)j∈Z belongs to
`2(Z,Cd). Furthermore, since (Xj(z)W0)j∈Z is a solution of (3.3), we have that

(zId`2 −L )w = 0.

Therefore, the linear application

ψ : E+
0 (z) ∩ E−0 (z) → ker(zId`2 −L )

W0 7→ (Π(Xj(z)W0))j∈Z

is well-defined.
We have that

ϕ ◦ ψ = IdE+
0 (z)∩E−0 (z) and ψ ◦ ϕ = Idker(zId`2−L ).

This concludes the proof of (3.33).
We now focus on the second part of the lemma. Our first goal is to prove that zId`2 −L is a Fredholm

operator. We have that
dim ker(zId`2 −L ) = dimE+

0 (z) ∩ E−0 (z) < +∞.

There remains to prove that =(zId`2 −L ) is closed and that

codim=(zId`2 −L ) < +∞.

We fix a bounded open neighborhood U of z ∈ O such that U ⊂ O. We consider h ∈ `2(Z,Cd). The sequence
h belongs to the range of zId`2 −L if and only if there exists v ∈ `2(Z,Cd) such that if we define

∀j ∈ Z, Wj =

vj+q−1

...
vj−p

 , Hj =


−Aj,p(z)−1hj

0
...
0

 ,

then
∀j ∈ Z, Wj+1 = Mj(z)Wj +Hj .

For j ≥ 0, we define

Z+
j :=

j∑
k=0

Xj(z)Q
+
U (z)Xk(z)−1Hk−1 −

+∞∑
k=j+1

Xj(z)(Id−Q+
U (z))Xk(z)−1Hk−1.

Those elements are well-defined and verify that

∀j ≥ 0, Z+
j+1 = Mj(z)Z

+
j +Hj
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and ∑
j≥0

|Z+
j |

2

 1
2

≤ C

∑
j∈Z
|Hj |2

 1
2

where C > 0 is independent from h. We can then prove that the sequences (Z̃j)j≥0 which satisfy that∑
j≥0

|Z̃j |2 < +∞

and
∀j ≥ 0, Z̃j+1 = Mj(z)Z̃j +Hj

are the sequences defined by
∀j ≥ 0, Z̃j = Z+

j +Xj(z)V
+

where V + ∈ E+
0 (z). We prove in a similar way that the sequences (Z̃j)j≤0 which satisfy that∑

j≤0

|Z̃j |2 < +∞

and
∀j ≤ 0, Z̃j+1 = Mj(z)Z̃j +Hj

are the sequences defined by
∀j ≤ 0, Z̃j = Z−j +Xj(z)V

−

where V − ∈ E−0 (z) and

∀j ≤ 0, Z−j :=

j∑
k=−∞

Xj(z)(Id−Q−U (z))Xk(z)−1Hk−1 −
1∑

k=j+1

Xj(z)Q
−
U (z)Xk(z)−1Hk−1.

We also have that ∑
j≤0

|Z−j |
2

 1
2

≤ C

∑
j∈Z
|Hj |2

 1
2

where C > 0 is independent from h. Using all those information, we conclude that h is in the range of zId`2−L
if and only if there exists (V +, V −) ∈ E+

0 (z)× E−0 (z) such that

Z+
0 − Z

−
0 = V − − V +.

If we define the operator
ν : h ∈ `2(Z,Cd) 7→ Z+

0 − Z
−
0 ∈ Cd(p+q)

which is bounded and
ϕ : (V +, V −) ∈ E+

0 (z)× E−0 (z) 7→ V − − V + ∈ Cd(p+q)

which is an operator from a finite dimension vector space to a finite dimension vector space, then we proved
that

=(zId`2 −L ) = ν−1(=ϕ).

Therefore, =(zId`2 −L ) is closed. We now want to prove that codim=(zId`2 −L ) < +∞. We consider N ≥ 1
such that there exists (h1, . . . , hN ) a linearly independent family of `2(Z,Cd) such that

=(zId`2 −L ) ∩ Span(h1, . . . , hN ) = {0} .

We are going to prove that the family (ν(h1), . . . , ν(hN )) is linearly independent in Cd(p+q) and therefore that
N ≤ d(p+ q). We consider λ1, . . . , λN ∈ C such that

0 =

N∑
i=1

λiν(hi) = ν

(
N∑
i=1

λihi

)
.
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We therefore have that

ν

(
N∑
i=1

λihi

)
∈ =ϕ,

thus
N∑
i=1

λihi ∈ =(zId`2 −L ) ∩ Span(h1, . . . , hN ).

This implies that
N∑
i=1

λihi = 0

and the linear independency of (h1, . . . , hN ) allows us to conclude that λ1 = . . . = λN = 0. We have thus proved
that zId`2 −L is a Fredholm operator for all z ∈ O. We also know that, since O is unbounded, there exists
z ∈ O such that zId`2 −L is an isomorphism. The set O being connected and by continuity of the Fredholm
index, the statement of the lemma is true. �

We now introduce the sets

Oρ := O ∩ ρ(L ) and Oσ := O ∩ σ(L ).

Lemma 3.7 implies that Oσ only contains eigenvalues of L . Then, because of Hypothesis 6, we have that

U\ {1} ⊂ Oρ.

We also observe that Lemma 3.6 gives us the dimension of the subspaces E±0 (z). Then, (3.33) implies that, for
z ∈ Oρ, we have

E+
0 (z)⊕ E−0 (z) = C(p+q)d.

Thus, for z ∈ Oρ, we can define the projector Q(z) such that

=Q(z) = E+
0 (z) and kerQ(z) = E−0 (z).

The function z ∈ Oρ 7→ Q(z) is holomorphic. Indeed, for z0 ∈ Oρ, we have r > 0 such that if we define
U := B(z0, r), then U ⊂ Oρ. Lemma 3.6 then implies that

∀z ∈ U, E+
0 (z) = =Q+

U (z) and E−0 (z) = =Q−U (z).

Knowing that Q±U depend holomorphically on z, we have proved that E+
0 and E−0 are also depending holomor-

phically on z in a neighborhood of z0. The holomorphy of Q ensues. We will now prove that the function Q is
fundamental to the study of (3.3) by extending the geometric dichotomy. The following lemma is once again
very much inspired by [LG01, Section III.1.5] and [Cop78].

Lemma 3.8 (Extended geometric dichotomy). For all bounded open set U such that U ⊂ Oρ, there exist two
positive constants C, c > 0 such that for all z ∈ U

∀j ≥ k,
∣∣Xj(z)Q(z)Xk(z)−1

∣∣ ≤ Ce−c|j−k|, (3.35a)

∀k ≥ j,
∣∣Xj(z)(Id−Q(z))Xk(z)−1

∣∣ ≤ Ce−c|j−k|. (3.35b)

Proof We begin by assuming that we proved the existence of two constants C, c > 0 such that for all z ∈ U

∀j ≥ k ≥ 0,
∣∣Xj(z)Q(z)Xk(z)−1

∣∣ ≤ Ce−c|j−k|, (3.36a)

∀k ≥ j ≥ 0,
∣∣Xj(z)(Id−Q(z))Xk(z)−1

∣∣ ≤ Ce−c|j−k|, (3.36b)

∀k ≤ j ≤ 0,
∣∣Xj(z)Q(z)Xk(z)−1

∣∣ ≤ Ce−c|j−k|, (3.36c)

∀j ≤ k ≤ 0,
∣∣Xj(z)(Id−Q(z))Xk(z)−1

∣∣ ≤ Ce−c|j−k|. (3.36d)

Then, we observe that to prove the assertion (3.35a), there would only remain to look at the case where
j ≥ 0 ≥ k. Using (3.36a) and (3.36c), we have∣∣Xj(z)Q(z)Xk(z)−1

∣∣ ≤ ∣∣Xj(z)Q(z)X0(z)−1
∣∣ ∣∣X0(z)Q(z)Xk(z)−1

∣∣ ≤ C2e−c(j−k).
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We would have proved the existence of two constants C, c > 0 such that assertion (3.35a) would be true for all
z ∈ U . We would use the same kind of proof to prove the existence of C, c > 0 such that assertion (3.35b) holds
true for all z ∈ U .

Therefore, there only remains to prove the existence of C, c > 0 such that (3.36a)-(3.36d) are true for all
z ∈ U . We will prove (3.36a) and (3.36c). The proof for (3.36b) and (3.36d) would be dealt with similarly.
First, we need to consider a bounded open set V such that V ⊂ Oρ and U ⊂ V . This will be useful later on to
bound the difference Q+

V −Q. For z ∈ U , Lemma 3.6 implies that E+
0 (z) = =Q+

V (z) = =Q(z), i.e.

Q+
V (z)Q(z) = Q(z) and Q(z)Q+

V (z) = Q+
V (z).

This allows us to prove that

Q+
V (z)−Q(z) = Q+

V (z)(Q+
V (z)−Q(z))(Id−Q+

V (z)).

Therefore, for j, k ∈ N, we have

Xj(z)(Q
+
V (z)−Q(z))Xk(z)−1 = Xj(z)Q

+
V (z)X0(z)−1(Q+

V (z)−Q(z))X0(z)(Id−Q+
V (z))Xk(z)−1.

Thus, because of the inequalities (3.10a) and (3.10b)∣∣Xj(z)(Q
+
V (z)−Q(z))Xk(z)−1

∣∣ ≤ C2e−c(j+k)|Q+
V (z)−Q(z)|. (3.37)

Using the inequalities (3.10a), (3.10b) and (3.37), we can thus prove that

∀j ≥ k ≥ 0, |Xj(z)Q(z)Xk(z)−1| ≤ Ce−c(j−k) + C2e−c(j+k)|Q+
V (z)−Q(z)|

and
∀k ≥ j ≥ 0, |Xj(z)(Id−Q(z))Xk(z)−1| ≤ Ce−c(k−j) + C2e−c(j+k)|Q+

V (z)−Q(z)|.

Since z ∈ V 7→ |Q+
V (z) − Q(z)| is continuous and U ⊂ V , we can uniformly bound |Q+

V (z) − Q(z)| for z ∈ U .
We can then deduce the existence of two positive constants C, c to verify the inequalities (3.36a) and (3.36c). �

3.5 Bounds on the spatial Green’s function far from 1

For z ∈ Oρ and j0 ∈ Z, since z ∈ ρ(L ), the spatial Green’s function G(z, j0, ·) defined by (1.25) exists. We
observe that the function z ∈ Oρ 7→ G(z, j0, ·) is holomorphic.

We consider ~e ∈ Cd. We then observe that G(z, j0, ·)~e ∈ `2(Z,Cd) and

zG(z, j0, ·)~e−LG(z, j0, ·)~e = δj0~e,

i.e.

∀j ∈ Z,
q∑

k=−p

Aj,k(z)G(z, j0, j + k)~e = δj0,j~e.

Thus, we have that

∀j ∈ Z, W (z, j0, j + 1, ~e) = Mj(z)W (z, j0, j, ~e)−


A−1
j,q δj0,j~e

0
...
0

 (3.38)

where W (z, j0, j, ~e) :=

G(z, j0, j + q − 1)~e
...

G(z, j0, j − p)~e

. We will now prove the following proposition using the extended

geometric dichotomy (Lemma 3.8).

Proposition 2 (Bounds far from 1). For U a bounded open set such that U ⊂ Oρ, there exist two constants
C, c > 0 such that

∀z ∈ U,∀~e ∈ Cd,∀j, j0 ∈ Z, |W (z, j0, j, ~e)| ≤ C|~e|e−c|j−j0|.
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The result of Proposition 2 is in particular true in a neighborhood of any point z ∈ U\ {1}.
Proof We consider z ∈ U , j, j0 ∈ Z and ~e ∈ Cd such that |~e| ≤ 1. The equality (3.38) implies the following
results:

• We have
∀j ≥ j0 + 1, W (z, j0, j + 1, ~e) = Mj(z)W (z, j0, j, ~e),

i.e.
∀j ≥ j0 + 1, W (z, j0, j, ~e) = Xj(z)Xj0+1(z)−1W (z, j0, j0 + 1, ~e). (3.39)

Also, since G(z, j0, ·)~e ∈ `2(Z,Cd), we have that Xj0+1(z)−1W (z, j0, j0 + 1, ~e) ∈ E+
0 (z).

• We have
∀j ≤ j0 − 1, W (z, j0, j + 1, ~e) = Mj(z)W (z, j0, j, ~e),

i.e.
∀j ≤ j0, W (z, j0, j, ~e) = Xj(z)Xj0(z)−1W (z, j0, j0, ~e). (3.40)

Also, since G(z, j0, ·)~e ∈ `2(Z,Cd), we have that Xj0(z)−1W (z, j0, j0, ~e) ∈ E−0 (z).

• We have

W (z, j0, j0 + 1, ~e) = Mj0(z)W (z, j0, j0, ~e)−


A−1
j0,q

~e

0
...
0


i.e.

Xj0+1(z)−1W (z, j0, j0 + 1, ~e)−Xj0(z)−1W (z, j0, j0, ~e) = −Xj0+1(z)−1


A−1
j0,q

~e

0
...
0

 .

Since Q(z) is the projection on E+
0 (z) with respect to E−0 (z), we have that

Xj0+1(z)−1W (z, j0, j0 + 1, ~e) = −Q(z)Xj0+1(z)−1


A−1
j0,q

~e

0
...
0

 ,

Xj0(z)−1W (z, j0, j0, ~e) = (Id−Q(z))Xj0+1(z)−1


A−1
j0,q

~e

0
...
0

 .

Using (3.39) and (3.40), we have

∀j ≥ j0 + 1, W (z, j0, j, ~e) = −Xj(z)Q(z)Xj0+1(z)−1


A−1
j0,q

~e

0
...
0

 , (3.41a)

∀j ≤ j0, W (z, j0, j, ~e) = Xj(z)(Id−Q(z))Xj0+1(z)−1


A−1
j0,q

~e

0
...
0

 . (3.41b)

Thus, the inequalities (3.35a) and (3.35b) imply

∀z ∈ U,∀j, j0 ∈ Z, |W (z, j0, j, ~e)| ≤ Ce−c|j−(j0+1)|

∣∣∣∣∣∣∣∣∣


A−1
j0,q

~e

0
...
0


∣∣∣∣∣∣∣∣∣ .

We can then easily conclude Proposition 2. �
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4 Extension of the spatial Green’s function near 1

The analysis of the spatial Green’s function done in the previous section does not hold near 1. The first reason
is that we can prove that 1 is an eigenvalue of L and the curves describing the spectrum of the limit operators
L ± in (1.16) should belong to the essential spectrum of the operator L . Thus, the definition of the spatial
Green’s function breaks down near 1. The second reason is that the matrices M±(1) have central eigenvalues
equal to 1 as explained in Lemma 3.2, thus the geometric dichotomy will not work near 1. The solution will
be to refine the analysis of (3.3) near 1 by finding a particular basis of E±0 (z) and using this basis to express
the spatial Green’s function. In some sense, it amounts at using the projections on a basis of solutions of (3.3)
rather than the projection associated with the geometric dichotomy.

4.1 Right and left eigenvectors of M±(z) for z near 1

To study the spatial Green’s function for z near 1, we will need to study the solutions of the dynamical system
(3.3) with more precision. The first step is to have a better understanding of the eigenvalues and eigenvectors
of M±(z) when z is close to 1.

First, let us make some observations on the eigenvalues of M±l (1) defined by (3.8) for l ∈ {1, . . . , d}. Using
Lemma 3.2, we know that the eigenvalues κ ∈ C\ {0} of M±l (1) are the solutions of

F±l (κ) = 1.

Hypothesis 9 allows us to conclude that the matrix M±l (1) only has simple eigenvalues. Furthermore, Lemma
3.2 implies that 1 is a simple eigenvalue of M±l (1) and that the rest of the eigenvalues are in D\ {0} or U and
we know the number of eigenvalues in each set depending on the sign of α±l . Thus, we can define a family
(ζ±
m

)m∈{1,...,d(p+q)} ∈ Cd(p+q) such that

∀l ∈ {1, . . . , d} , σ(M±l (1)) =
{
ζ±
l
, ζ±
l+d

, . . . , ζ±
l+(p+q−1)d

}
.

Furthermore, using Hypothesis 1 to determine the sign of α±l defined by (1.17) and Lemma 3.2, we can index
them in order to have the following fact.

• For all l ∈ {1, . . . , I}, since α+
l < 0, we choose

ζ+

l
, . . . , ζ+

l+d(p−1)
∈ D, ζ+

l+dp
= 1, ζ+

l+d(p+1)
, . . . , ζ+

l+d(p+q−1)
∈ U.

• For all l ∈ {I + 1, . . . , d}, since α+
l > 0, we choose

ζ+

l
, . . . , ζ+

l+d(p−2)
∈ D, ζ+

l+d(p−1)
= 1, ζ+

l+dp
, . . . , ζ+

l+d(p+q−1)
∈ U.

• For all l ∈ {1, . . . , I − 1}, since α−l < 0, we choose

ζ−
l
, . . . , ζ−

l+d(p−1)
∈ D, ζ−

l+dp
= 1, ζ−

l+d(p+1)
, . . . , ζ−

l+d(p+q−1)
∈ U.

• For all l ∈ {I, . . . , d}, since α−l > 0, we choose

ζ−
l
, . . . , ζ−

l+d(p−2)
∈ D, ζ−

l+d(p−1)
= 1, ζ−

l+dp
, . . . , ζ−

l+d(p+q−1)
∈ U.

We indexed the eigenvalues to separate the stable, central and unstable eigenvalues of the matrices M±l (1).
More precisely, we observe that if we introduce the sets

I+
ss := {1, . . . , d(p− 1) + I} , I−ss := {1, . . . , d(p− 1) + I − 1} ,

I+
cs := {d(p− 1) + I + 1, . . . , dp} , I−cs := {d(p− 1) + I, . . . , dp} ,
I+
cu := {dp+ 1, . . . , dp+ I} , I−cu := {dp+ 1, . . . , dp+ I − 1} ,

I+
su := {dp+ I + 1, . . . , d(p+ q)} , I−su := {dp+ I, . . . , d(p+ q)} ,

then we have that

∀m ∈ I±ss, ζ±
m
∈ D,

∀m ∈ I±cs ∪ I±cu, ζ±
m

= 1,

∀m ∈ I±su, ζ±
m
∈ U.
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Since those are simple eigenvalues of M±l (1), we are able to extend them holomorphically in a neighborhood
of 1. We consider δ0 > 0 a radius such that for each m = l+ (k−1)d ∈ {1, . . . , d(p+ q)} with k ∈ {1, . . . , p+ q}
and l ∈ {1, . . . , d}, there exists a holomorphic function ζ±m : B(1, δ0) → C such that ζ±m(1) = ζ±

m
and for all

z ∈ B(1, δ0), ζ±m(z) is a simple eigenvalue of M±l (z). We will also separate the different types of eigenvalues by
assuming that we chose δ0 small enough so that there exists a constant c∗ > 0 such that for all z ∈ B(1, δ0)

∀m ∈ I±ss, |ζ±m(z)| ≤ exp(−2c∗), (4.1)

∀m ∈ I±cs ∪ I±cu, exp(−c∗) ≤ |ζ±m(z)| ≤ exp(c∗) (4.2)

∀m ∈ I±su, exp(2c∗) ≤ |ζ±m(z)|. (4.3)

When we will study the temporal Green’s function G (n, j0, j) later on in Section 5, we will have to bound terms
of the form

|ζ±m(z)|j |ζ±m′(z)|
−j0 .

The inequalities (4.1)-(4.3) will allow us in a lot of cases to obtain directly exponential bounds for some of those
terms.

Using Lemma 3.1, we thus have a complete description of the eigenvalues of M±(z) for z in a neighborhood
of 1. The following lemma also allows us to introduce a basis of eigenvectors for the matrices M±(z).

Lemma 4.1. For m = l + (k − 1)d ∈ {1, . . . , d(p+ q)} with k ∈ {1, . . . , p+ q} and l ∈ {1, . . . , d}, the vector

R±m(z) :=

ζ
±
m(z)q−1r±l

...
ζ±m(z)−pr±l

 ∈ Cd(p+q) (4.4)

is an eigenvector of M±(z) associated with the eigenvalue ζ±m(z). Furthermore, for all z ∈ B(1, δ0), the family
(R±m(z))m∈{1,...,d(p+q)} is a basis of Cd(p+q).

Proof Let us start by proving that the vector R±m(z) defined by (4.4) is an eigenvector of M±(z) associated
with the eigenvalue ζ±m(z). We have that ζ±m(z) is an eigenvalue of M±l (z) so Lemma 3.2 implies that

F±l (ζ±m(z)) = z.

We use the definition (3.7) of the functions Λ±l,k and the definition (1.15) of the function F±l to prove that

−
q−1∑
k=−p

A±q (z)−1A±k (z)ζ±m(z)kr±l = −
q−1∑
k=−p

Λ±l,q(z)
−1Λ±l,k(z)ζ±m(z)kr±l

=
(
ζ±m(z)q + Λ±l,q(z)

−1
(
z −F±l (ζ±m(z))

))
r±l

= ζ±m(z)qr±l .

This allows us to conclude that the vector R±m(z) is an eigenvector of M±(z) associated with the eigenvalue
ζ±m(z).

We now consider z ∈ B(1, δ0) and (λm)m∈{1,...,d(p+q)} a family of complex numbers such that

0 =

d(p+q)∑
m=1

λmR
±
m(z).

Separating the blocks of coefficients of size d in the previous equality and observing that the family (r±l )l∈{1,...,d}
is linearly independent, we have for all l ∈ {1, . . . , d},

∀j ∈ {−p, . . . , q − 1} , 0 =

p+q∑
k=1

λl+(k−1)dζ
±
l+(k−1)d(z)

j .

We have that, for each integer k ∈ {1, . . . , p+ q}, ζ±l+(k−1)d(z) is a simple eigenvalue ofM±l (z) for all z ∈ B(1, δ0).
Therefore, the complex values (ζ±l+(k−1)d(z))k∈{1,...,p+q} are distinct and thus

∀k ∈ {1, . . . , p+ q} , λl+d(k−1) = 0.
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Since this is true for all l ∈ {1, . . . , d}, we proved that the family (R±m(z))m∈{1,...,d(p+q)} is linearly independent
and is thus a basis of Cd(p+q). �

Thus, we have a characterization of the eigenvalues and eigenvectors of M±(z) for z ∈ B(1, δ0). Lemma
3.2 implies that, for all z ∈ O ∩ B(1, δ0), we have that |ζ±m(z)| < 1 for m ∈ {1, . . . , dp} and |ζ±m(z)| > 1 for
m ∈ {dp+ 1, . . . , d(p+ q)}. Thus, for z ∈ O ∩B(1, δ0)

Es(M±(z)) = Span
{
R±m(z), m ∈ {1, . . . , dp}

}
and

Eu(M±(z)) = Span
{
R±m(z), m ∈ {dp+ 1, . . . , d(p+ q)}

}
.

This equality implies that we can extend holomorphically the definitions of Es(M±(z)) and Eu(M±(z)) for
z ∈ B(1, δ0).

We now conclude this section by studying the dual basis associated with the basis (R±m(z))m∈{1,...,d(p+q)}.
We introduce the invertible matrix

∀z ∈ B(1, δ0), N±,∞(z) :=
(
R±1 (z) | . . . | R±d(p+q)(z)

)
∈Md(p+q)(C) (4.5)

and the vectors L±1 (z), . . . , L±d(p+q)(z) ∈ Cd(p+q) defined by

∀z ∈ B(1, δ0),
(
L±1 (z) | . . . | L±d(p+q)(z)

)T
:= N±,∞(z)−1. (4.6)

We observe that
∀z ∈ B(1, δ0),∀m, m̃ ∈ {1, . . . , d(p+ q)} , L±m(z)TR±m̃(z) = δm,m̃ (4.7)

and
∀z ∈ B(1, δ0),∀m ∈ {1, . . . , d(p+ q)} , M±(z)TL±m(z) = ζ±m(z)L±m(z). (4.8)

We will now prove the following lemma which gives a more precise description of the vectors L±m(z) of the
dual basis.

Lemma 4.2. We consider m = l + (k − 1)d ∈ {1, . . . , d(p+ q)} with k ∈ {1, . . . , p+ q} and l ∈ {1, . . . , d}. For
all z ∈ C, there exist coefficients x±1 (z), . . . , x±p+q(z) ∈ C such that

L±m(z) :=

 x±1 (z)l±l
...

x±p+q(z)l
±
l

 . (4.9)

Furthermore, we have
∀z ∈ B(1, δ0), x±1 (z) = λ±l,qζ

±
m
′
(z). (4.10)

In the proof of Lemma 4.2, we also find the expression of the coefficients x±2 (z), . . . , x±p+q(z) but, contrarily
with x±1 (z), they will not be used later on in the paper.
Proof The proof Lemma 4.2 uses calculations similar to those done at the end of [Coe22, Lemma 2.4]. We fix
z ∈ B(1, δ0). We begin by introducing the vectors x±1 (z), . . . ,x±p+q(z) ∈ Cd defined by x±1 (z)

...
x±p+q(z)

 := L±m(z).

We consider l̃ ∈ {1, . . . , d} \ {l}. Using the definition (4.4) and the linear independence of the vectors R±m̃(z),
we have that

Span
{
R±
l̃+(k̃−1)d

(z), k̃ ∈ {1, . . . , p+ q}
}

=


 y1r±

l̃
...

yp+qr±
l̃

 , y1, . . . , yp+q ∈ C

 .
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Using (4.7), we can thus prove that

∀j ∈ {1, . . . , p+ q} , x±j (z)T r±
l̃

= 0

Since this is true for all l̃ ∈ {1, . . . , d} \ {l}, we have that x±j (z) ∈ Span l±l for all j ∈ {1, . . . , p+ q}.
Now that we know that we can express the vector L±m(z) as (4.9), let us prove (4.10). Using (1.14) and the

definitions (1.5) and (3.7) respectively of the vectors l±l and of the functions Λ±l,k, we have looking at the j-th
block of size d of (4.8) that

∀j ∈ {1, . . . , p+ q − 1} , ζ±m(z)x±j (z) = x±j+1(z)− Λ±l,q(z)
−1Λ±l,q−j(z)x

±
1 (z)

and
ζ±m(z)x±p+q(z) = −Λ±l,q(z)

−1Λ±l,−p(z)x
±
1 (z).

Thus, we have

∀j ∈ {1, . . . , p+ q} , x±j (z) = −

 q−j∑
k=−p

Λ±l,k(z)

ζ±m(z)q−j−k+1

Λ±l,q(z)
−1x±1 (z).

We now have an expression of each x±j (z) depending on x±1 (z). We also recall that

l±l
T
r±l = 1.

Using the expressions (4.4) and (4.9) respectively of the vectors R±m(z) and L±m(z) as well as (4.7), we have

1 = L±m(z)TR±m(z) =

p+q∑
j=1

x±j (z)ζ±m(z)q−j = −

p+q∑
j=1

q−j∑
k=−p

Λ±l,k(z)ζ±m(z)k−1

Λ±l,q(z)
−1x±1 (z).

Using the definitions (3.7) and (1.15) of the functions Λ±l,k and F±l , we have

1 = −

 q∑
k=−p

(q − k)Λ±l,k(z)ζ±m(z)k−1

Λ±l,q(z)
−1x±1 (z)

= −

qζ±m(z)−1z −
q∑

k=−p

(q − k)λ±l,kζ
±
m(z)k−1

Λ±l,q(z)
−1x±1 (z)

= −
(
qζ±m(z)−1(z −F±l (ζ±m(z))) + F±l

′
(ζ±m(z))

)
Λ±l,q(z)

−1x±1 (z).

We observe that since ζ±m(z) is an eigenvalue M±l (z), Lemma 3.2 allows us to prove that

F±l (ζ±m(z)) = z and ζ±m
′
(z)F±l

′
(ζ±m(z)) = 1.

Thus, since Λ±l,q(z) = −λ±l,q, we have that

1 = ζ±m
′
(z)−1λ±l,q

−1
x±1 (z)

and we deduce (4.10). �

4.2 Choice of a precise basis of E±0 (z) for z near 1

Now that we have a better understanding of the spectrum ofM±(z), we are going to prove a lemma that is quite
similar to the geometric dichotomy. This lemma is a direct reference to [God03, Lemma 3.1], itself inspired by
[ZH98, Proposition 3.1].

Lemma 4.3. There exist a radius δ1 ∈]0, δ0] and two constants C, c > 0 such that for all m ∈ {1, . . . , d(p+ q)}
and z ∈ B(1, δ1), there exists a sequence (V ±m (z, j))j∈Z ∈ C(p+q)dZ such that :
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• The functions z ∈ B(1, δ1) 7→ (V +
m (z, j))j∈N ∈ `∞(N,C(p+q)d) and z ∈ B(1, δ1) 7→ (V −m (z, j))j∈−N ∈

`∞(−N,C(p+q)d) are holomorphic. Furthermore, up to considering a smaller radius δ1, those functions
and their derivatives are bounded on B(1, δ1).

• For z ∈ B(1, δ1), if we define W±m(z, j) := ζ±m(z)jV ±m (z, j) for all j ∈ Z, then W±m(z, ·) is a solution of
(3.3), i.e.

∀j ∈ Z, W±m(z, j + 1) = Mj(z)W
±
m(z, j).

• We have

∀z ∈ B(1, δ1),
∀j ∈ N, |V +

m (z, j)−R+
m(z)| ≤ Ce−c|j|,

∀j ∈ −N, |V −m (z, j)−R−m(z)| ≤ Ce−c|j|.

The proof of this lemma is fairly similar to the construction of Q±U (z) in Lemma 3.3.
Proof We will focus on the construction of (V +

m (z, j))j∈Z for an integer m ∈ {1, . . . , d(p+ q)}. Because of
(3.2), we have a constant C > 0 such that

∀j ∈ N,∀z ∈ B(1, δ0), |E+
j (z)| ≤ Ce−αj .

We fix ∆ := α
4 and define the sets

Ism =
{
ν ∈ {1, . . . , d(p+ q)} , |ζ+

ν (1)| < |ζ+
m(1)|e−∆

}
Ium =

{
ν ∈ {1, . . . , d(p+ q)} , |ζ+

ν (1)| ≥ |ζ+
m(1)|e−∆

}
.

Because the functions ζ+
ν depend holomorphicaly on z in B(1, δ0), there exists δ1 ∈]0, δ0[ such that

∀z ∈ B(1, δ1),

{
∀ν ∈ Ism, |ζ+

ν (z)| < |ζ+
m(z)|e−∆

∀ν ∈ Ium, |ζ+
ν (z)| > |ζ+

m(z)|e− 3
2 ∆.

(4.11)

We define for z ∈ B(1, δ1)
Esm(z) := Span (R+

ν (z), ν ∈ Ism)
Eum(z) := Span (R+

ν (z), ν ∈ Ium) .

We have that
C(p+q)d = Esm(z)⊕ Eum(z).

We define P sm(z) and Pum(z) the projectors defined by this decomposition of C(p+q)d. They depend holomorphi-
cally on z and commute with M+(z). Because of (4.11), there exists a constant C > 0 such that

∀z ∈ B(1, δ1),∀j ∈ N,

∣∣∣(ζ+
m(z)−1M+(z)

)j
P sm(z)

∣∣∣ ≤ C exp
(
−∆

2 j
)∣∣∣(ζ+

m(z)−1M+(z)
)−j

Pum(z)
∣∣∣ ≤ C exp (2∆j)

(4.12)

We fix J ∈ N and we will make a more precise choice later. For z ∈ B(1, δ1), we define ϕ(z) ∈ L
(
`∞
(
{j ∈ Z, j ≥ J} ,C(p+q)d

))
such that for Y ∈ `∞

(
{j ∈ Z, j ≥ J} ,C(p+q)d

)
and j ≥ J , we have

(ϕ(z)Y )j :=

j−1∑
k=J

(
ζ+
m(z)−1M+(z)

)j−1−k
P sm(z)ζ+

m(z)−1E+
k (z)Yk

−
+∞∑
k=j

(
ζ+
m(z)−1M+(z)

)j−1−k
Pum(z)ζ+

m(z)−1E+
k (z)Yk.

(4.13)

Using the inequalities (4.12), we have that

j−1∑
k=J

∣∣∣(ζ+
m(z)−1M+(z)

)j−1−k
P sm(z)ζ+

m(z)−1E+
k (z)Yk

∣∣∣ . ‖Y ‖∞ j−1∑
k=J

e−
∆
2 (j−k)e−αk

. ‖Y ‖∞ e−
∆
2 j

+∞∑
k=J

e(
∆
2 −α)k

. ‖Y ‖∞ e−
∆
2 (j−J)e−αJ

(4.14)
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and
+∞∑
k=j

∣∣∣(ζ+
m(z)−1M+(z)

)j−1−k
Pum(z)ζ+

m(z)−1E+
k (z)Yk

∣∣∣ . ‖Y ‖∞ e−αj
+∞∑
k=j

e(2∆−α)(k−j)

. ‖Y ‖∞ e−αj .

(4.15)

We have thus proved that ϕ(z) is in L
(
`∞
(
{j ∈ Z, j ≥ J} ,C(p+q)d

))
and there exists a constant C > 0 inde-

pendent from J such that
∀z ∈ B(1, δ1), ‖ϕ(z)‖L(`∞) ≤ Ce

−αJ .

Furthermore, ϕ depends holomorphically on z. We can choose J large enough so that there exists a constant
C ∈]0, 1[ such that

∀z ∈ B(1, δ1), ‖ϕ(z)‖L(`∞) ≤ C < 1.

We can thus define for z ∈ B(1, δ1)

V (z) := (Id− ϕ(z))−1
(
R+
m(z)

)
j≥J ∈ `

∞
(
{j ∈ Z, j ≥ J} ,C(p+q)d

)
which depends holomorphically on z. We have that

V (z) =
(
R+
m(z)

)
j≥J + ϕ(z)V (z).

Thus, for j ≥ J , we find that

(V (z))j+1 = R+
m(z) +

j∑
k=J

(
ζ+
m(z)−1M+(z)

)j−k
P sm(z)ζ+

m(z)−1E+
k (z) (V (z))k

−
+∞∑
k=j+1

(
ζ+
m(z)−1M+(z)

)j−k
Pum(z)ζ+

m(z)−1E+
k (z) (V (z))k

= ζ+
m(z)−1M+(z)

(
R+
m(z) +

j∑
k=J

(
ζ+
m(z)−1M+(z)

)j−1−k
P sm(z)ζ+

m(z)−1E+
k (z) (V (z))k

−
+∞∑
k=j+1

(
ζ+
m(z)−1M+(z)

)j−1−k
Pum(z)ζ+

m(z)−1E+
k (z) (V (z))k


= ζ+

m(z)−1M+(z)
(

(V (z))j +
(
ζ+
m(z)−1M+(z)

)−1
ζ+
m(z)−1E+

j (z) (V (z))j

)
= ζ+

m(z)−1Mj(z) (V (z))j .

Thus, for j ≥ J , we have
(V (z))j = ζ+

m(z)J−jXj(z)XJ(z)−1(V (z))J .

We define for z ∈ B(1, δ1) and j ∈ Z

V +
m (z, j) := ζ+

m(z)J−jXj(z)XJ(z)−1(V (z))J

and
W+
m(z, j) := ζ+

m(z)jV +
m (z, j).

The two first points are easily proved from the previous observations. There remains to prove the inequalities
in the third point. For z ∈ B(1, δ1) and j ≥ J , we have using (4.13)-(4.15)∣∣V +

m (z, j)−R+
m(z)

∣∣ = |(ϕ(z)V (z))j | . e−
∆
2 j + e−αj .

�

We recall that for z ∈ Oρ ∩B(1, δ1), we have for m ∈ {1, . . . , dp} that

|ζ+
m(z)| < 1.

Therefore, (W+
m(z, 0))m∈{1,...,dp} is a family of elements of E+

0 (z) = =Q(z) for z ∈ Oρ∩B(1, δ1). In the same way,
we prove that for all z ∈ Oρ∩B(1, δ1), (W−m(z, 0))m∈{dp+1,...,d(p+q)} is a family of elements of E−0 (z) = kerQ(z).
We are going to prove the following lemma.
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Lemma 4.4. For all z ∈ B(1, δ1) and j ∈ Z, (W+
m(z, j))m∈{1...,d(p+q)} and (W−m(z, j))m∈{1...,d(p+q)} are bases

of Cd(p+q). The same is then also true for the families (V +
m (z, j))m∈{1...,d(p+q)} and (V −m (z, j))m∈{1...,d(p+q)}.

Proof We will write the proof for the family of vectors (W+
m(z, j))m∈{1...,d(p+q)}. We consider z ∈ B(1, δ1)

and j ∈ Z such that the family of vectors (W+
m(z, j))m∈{1,...,d(p+q)} is not linearly independent. We can then

introduce a family (cm)m∈{1,...,d(p+q)} ∈ Cd(p+q)\ {0} such that

0 =

d(p+q)∑
m=1

cmW
+
m(z, j). (4.16)

Since the sequences (W+
m(z, j))j∈Z are solutions of (3.3), (4.16) is verified for all j ∈ Z. We define

In := {m ∈ {1, . . . , d(p+ q)} , cm 6= 0} 6= ∅,
R := max

m∈In
|ζ+
m(z)| > 0,

IR := argmaxm∈In |ζ
+
m(z)| 6= ∅.

Using (4.16), we obtain

0 =
∑
m∈In

cm
W+
m(z, j)

Rj

=
∑
m∈In

cm

(
ζ+
m(z)

R

)j
R+
m(z) +

∑
m∈In

cm
W+
m(z, j)− ζ+

m(z)jR+
m(z)

Rj
.

• Using Lemma 4.3, there exist two positive constants C, c such that we have for m ∈ In and j ∈ N∣∣∣∣W+
m(z, j)− ζ+

m(z)jR+
m(z)

Rj

∣∣∣∣ ≤ Ce−cj ( |ζ+
m(z)|
R

)j
≤ Ce−cj .

Thus,
W+
m(z, j)− ζ+

m(z)jR+
m(z)

Rj
→

j→+∞
0.

• For m ∈ In\IR, we have (
ζ+
m(z)

R

)j
R+
m(z) →

j→+∞
0.

Thus, we have that ∑
m∈IR

cm

(
ζ+
m(z)

R

)j
R+
m(z) →

j→+∞
0.

Since IR 6= ∅, we fixm0 ∈ IR. Because of Lemma 4.1, the projection of the previous expression on Span(R+
m0

(z))
along Span(R+

m(z),m 6= m0) implies that

cm0

(
ζ+
m0

(z)

R

)j
→

j→+∞
0.

But, m0 belongs to IR so |ζ+
m0

(z)| = R. This implies that cm0
= 0. However, m0 ∈ IR ⊂ In so cm0

6= 0. This is
a contradiction. �

For z ∈ Oρ ∩B(1, δ1), we recall that

dimE+
0 (z) = dp and dimE−0 (z) = dq.

Thus, Lemma 4.4 implies that, (W+
m(z, 0))m∈{1,...,dp} (resp. (W−m(z, 0))m∈{dp+1,...,d(p+q)}) is a basis of E+

0 (z)

(resp. E−0 (z)). We can then extend holomorphically the subspaces E+
0 (z) and E−0 (z) on the whole ball B(1, δ1)

as

∀z ∈ B(1, δ1), E+
0 (z) := Span

(
W+
m(z, 0)

)
m∈{1,...,dp} and E−0 (z) := Span

(
W−m(z, 0)

)
m∈{dp+1,...,d(p+q)} .

(4.17)
We will also define

Iss := I+
ss, Ics := I+

cs,
Icu := I−cu, Isu := I−su.
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4.3 Definition of the Evans function
In this section, we are going to define an Evans function and prove that 1 is a simple eigenvalue of the operator
L when it acts on `2(Z,Cd).

An important part of the study of the spatial Green’s function far from 1 was dedicated to introduce the pro-
jection Q of the geometric dichotomy. The main ingredient of the introduction of Q(z) has been to understand
when E+

0 (z) and E−0 (z) are supplementary, as it allowed to conclude via Lemma 3.7 which elements of O where
eigenvalues of the operator L . For z near 1, because of (4.17), studying whether the vector subspace E+

0 (z) and
E−0 (z) are supplementary comes down to knowing when

(
W+

1 (z, 0), . . . ,W+
dp(z, 0),W−dp+1(z, 0), . . . ,W−d(p+q)(z, 0)

)
is a basis of Cd(p+q). We define the Evans function as

∀z ∈ B(1, δ1), Ev(z) := det(W+
1 (z, 0), . . . ,W+

dp(z, 0),W−dp+1(z, 0), . . . ,W−d(p+q)(z, 0)). (4.18)

The function Ev is holomorphic on B(1, δ1). Furthermore, for z ∈ O ∩ B(1, δ1), (3.33) and the set equality
(4.17) imply that the function Ev vanishes when z is an eigenvalue of the operator L . Thus, Hypothesis 6
implies that the function Ev is not uniformly equal to 0. We will now prove the following lemma which links
the behavior at z = 1 of the Evans function Ev, the eigenspace associated with the eigenvalue 1 for the operator
L and the vector subspace

Span
(
W+
m(1, 0),m ∈ Iss

)
∩ Span

(
W−m(1, 0),m ∈ Isu

)
.

Lemma 4.5. We have that Ev(1) = 0 and

dim Span
(
W+
m(1, 0),m ∈ Iss

)
∩ Span

(
W−m(1, 0),m ∈ Isu

)
= 1. (4.19)

Furthermore, if we introduce V0 ∈ Cd(p+q)\ {0} such that

Span
(
W+
m(1, 0),m ∈ Iss

)
∩ Span

(
W−m(1, 0),m ∈ Isu

)
= SpanV0,

then
ker(Id`2 −L ) = Span(Π(Xj(z)V0))j∈Z (4.20)

where the operator Π defined by (3.34) is the linear map which extracts the center values of a vector of size
d(p+ q).

Proof The proof is separated in several steps.
• Step 1: We start by proving that

dim Span
(
W+
m(1, 0),m ∈ Iss

)
∩ Span

(
W−m(1, 0),m ∈ Isu

)
> 0.

We fix m ∈ {1, . . . , d(p+ q)}. For all j ∈ Z, we define W±m
−p

(1, j), . . . ,W±m
q−1

(1, j) ∈ Cd such that

W±m(1, j) =:

W
±
m
q−1

(1, j)
...

W±m
−p

(1, j)


and we notate u±m(j) := W±m

0
(1, j). Since W±m satisfies

∀j ∈ Z, W±m(1, j + 1) = Mj(1)W±m(1, j),

we have
∀j ∈ Z,∀k ∈ {−p, . . . , q − 2} , W±m

k
(1, j + 1) = W±m

k+1
(1, j) (4.21)

and

∀j ∈ Z,W±m
q−1

(1, j + 1) = −Aj,q(1)−1

 q−1∑
k=−p

Aj,k(1)W±m
k
(1, j)

 . (4.22)

The equality (4.21) implies that

∀j ∈ Z,∀k ∈ {−p, . . . , q − 1} , W±m
k
(1, j) = u±m(j + k).
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We then obtain using (4.22)
q∑

k=−p

Aj,k(1)u±m(j + k) = 0.

Using the definition (1.20) of Aj,k, we have that

∀j ∈ Z,
q−1∑
k=−p

Bj+1,ku
±
m(j + 1 + k) =

q−1∑
k=−p

Bj,ku
±
m(j + k).

Therefore, the sequence
(∑q−1

k=−pBj,ku
±
m(j + k)

)
j∈Z

is constant.

• If m ∈ I±ss, since ζ±m(1) = ζ±
m
∈ D, Lemma 4.3 implies that

W±m(1, j) →
j→+∞

0.

Therefore, u±m(j) tends to 0 as j tends to +∞.

• If m ∈ I±su, since ζ−m(1) = ζ−
m
∈ U, Lemma 4.3 implies that

W±m(1, j) →
j→−∞

0.

Therefore, u±m(j) tends to 0 as j tends to −∞.

Therefore, the two previous points imply that for m ∈ I±ss ∪ I±su

∀j ∈ Z,
q−1∑
k=−p

Bj,ku
±
m(j + k) = 0.

Therefore,

∀j ∈ Z, u±m(j − p) = Dj

u
±
m(j + q − 1)

...
u±m(j − p+ 1)


where

Dj :=
(
−B−1

j,qBj,q−1 . . . −B−1
j,qBj,−p+1

)
∈Md,(d−1)(p+q)(C).

This implies that

∀m ∈ I±ss ∪ I±su, W±m(1, 0) ∈
{(

V
D0V

)
, V ∈ C(d−1)(p+q)

}
and thus

Span
(
W+
m(1, 0),m ∈ Iss

)
∪ Span

(
W−m(1, 0),m ∈ Isu

)
⊂
{(

V
D0V

)
, V ∈ C(d−1)(p+q)

}
.

Also,

dim

{(
V
D0V

)
, V ∈ C(d−1)(p+q)

}
= (d− 1)(p+ q),

and Hypothesis 1 implies that
#Iss ∪ Isu = (d− 1)(p+ q) + 1.

Therefore, since Lemma 4.4 implies that the families (W+
m(1, 0))m∈Iss and (W−m(1, 0))m∈Isu are both linearly

independent, this allows us to conclude that

dim Span
(
W+
m(1, 0),m ∈ Iss

)
∩ Span

(
W−m(1, 0),m ∈ Isu

)
≥ 1. (4.23)

• Step 2: The inequality (4.23) allows us to conclude that Ev(1) = 0. We recall that Hypothesis 7 implies
that

∂Ev

∂z
(1) 6= 0.
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Therefore, using (4.23) and the expression of the Evans function Ev, we easily deduce (4.19).
• Step 3: We introduce the vector V0 ∈ Cd(p+q)\ {0} defined in the statement of Lemma 4.5. Since V0

belongs to Span (W+
m(1, 0),m ∈ Iss) ∩ Span (W−m(1, 0),m ∈ Isu), we obviously have that (Π (Xj(1)V0))j∈Z has

exponential decay as j tends towards +∞ and −∞ and thus belongs to `2(Z). Furthermore, since (Xj(1)V0)j∈Z
is a solution of (3.3) for z = 1, we have that (Π (Xj(1)V0))j∈Z belongs to ker(Id`2 −L ). Thus,

Span (Π (Xj(1)V0))j∈Z ⊂ ker(Id`2 −L ).

We now consider w ∈ ker (Id`2 −L ) and define

W0 :=

wq−1

...
w−p

 ∈ Cd(p+q) and ∀j ∈ Z, Wj = Xj(1)W0 =

wj+q−1

...
wj−p

 .

If we decompose

W0 =

d(p+q)∑
m=1

cmW
+
m(1, 0) and thus ∀j ∈ Z, Wj =

d(p+q)∑
m=1

cmW
+
m(1, j)

with a family of complex scalars (cm)m∈{1,...,d(p+q)} ∈ Cd(p+q), since Wj →
j→+∞

0, we have that

∀m ∈ {1, . . . , d(p+ q)} \Iss, cm = 0.

This can be proved using a similar idea as in Lemma 4.4 by proving that the scalar

R := max
{∣∣∣ζ+

m

∣∣∣ , m ∈ {1, . . . , d(p+ q)} such that cm 6= 0
}

cannot be larger or equal than 1. Thus, using a similar proof with the family (W−m(1, 0))m∈{1,...,d(p+q)}, we
have that W0 belongs to Span(W+

m(1, 0),m ∈ Iss)∩Span(W−m(1, 0),m ∈ Isu) = SpanV0. Therefore, since for all
j ∈ Z we have wj = Π(Wj) = Π(Xj(1)W0), we conclude that the sequence w belongs to Span (Π (Xj(1)V0))j∈Z.
We can thus finally verify (4.20). �

First, as a consequence of Lemma 4.5, since the Evans function Ev is holomorphic on B(1, δ1) and not
uniformly equal to 0, the equality Ev(1) = 0 implies that we can consider δ1 small enough so that the Evans
function Ev only vanishes at z = 1.

Our new goal for the rest of this section will be to introduce will be to use Lemma 4.5 to introduce in (4.26)
below two new bases (Φm(z, 0))m∈{1,...,dp} and (Φm(z, 0))m∈{dp+1,...,d(p+q)} for the vector spaces E+

0 (z) and
E−0 (z) more suitable for the study of the spatial Green’s function when z is close to 1. We will also define in
(4.30c) a new Evans function DΦ associated with this new choice of bases which will share the same properties
as Ev.

The equality (4.19) of Lemma 4.5 implies that there exist two non zero families of complex numbers
(θs,m)m∈Iss and (θu,m)m∈Isu such that∑

m∈Iss

θs,mW
+
m(1, 0) =

∑
m∈Isu

θu,mW
−
m(1, 0). (4.24)

In the rest of the paper, we fix the choice of families of coefficients θs,m and θu,m. Even if we have to reindex
the eigenvalues ζ±

m
, we will suppose that θs,1, θu,d(p+q) 6= 0. Furthermore, we also define

θs,m := 0 for m ∈ {1, . . . , d(p+ q)} \Iss and θu,m := 0 for m ∈ {1, . . . , d(p+ q)} \Isu. (4.25)

We define for m ∈ {1, . . . , d(p+ q)}

∀z ∈ B(1, δ1),∀j ∈ Z, Φm(z, j) :=


∑
m∈Iss θs,mW

+
m(z, j), if m = 1,

W+
m(z, j), if m ∈ {2, . . . , dp} ,

W−m(z, j), if m ∈ {dp+ 1, . . . , d(p+ q)− 1} ,∑
m∈Isu θu,mW

−
m(z, j), if m = d(p+ q).

(4.26)
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Since θs,1, θu,d(p+q) 6= 0, we have that (Φm(z, 0))m∈{1,...,dp} and (Φm(z, 0))m∈{dp+1,...,d(p+q)} are respectively
bases of E+

0 (z) and E−0 (z). (4.24) implies that Φ1(1, 0) = Φd(p+q)(1, 0) and since Φ1(1, ·) and Φd(p+q)(1, ·) are
solutions of (3.3) for z = 1, we have

∀j ∈ Z, Φ1(1, j) = Φd(p+q)(1, j). (4.27)

Furthermore, using the expression of Φ1(z, j) and Φd(p+q)(z, j) as well as Lemma 4.3 and inequalities (4.1) and
(4.3), we prove that there exists a positive constant C such that

∀z ∈ B(1, δ1),∀j ∈ N, |Φ1(z, j)| ≤ Ce−2c∗|j|,

∀z ∈ B(1, δ1),∀j ∈ −N,
∣∣Φd(p+q)(z, j)

∣∣ ≤ Ce−2c∗|j|.
(4.28)

Using (4.20), we have that if we define

∀j ∈ Z, V (j) = Π(Φ1(1, j)) = Π(Φd(p+q)(1, j)) (4.29)

then V is a sequence in `2(Z,Cd)\ {0} such that (1.21) and (1.22) are verified. It will correspond to the sequence
V in Theorem 1.

If we summarize, for z ∈ B(1, δ1), we have five families to describe the solutions of the dynamical system
(3.3):

• The bases
(

Φ1(z, j),W+
2 (z, j), . . . ,W+

d(p+q)(z, j)
)
and

(
W+

1 (z, j),W+
2 (z, j), . . . ,W+

d(p+q)(z, j)
)
for which

we know the asymptotic behavior when j tends to +∞.

• The bases
(
W−1 (z, j), . . . ,W−d(p+q)−1(z, j),Φd(p+q)(z, j)

)
and

(
W−1 (z, j), . . . ,W−d(p+q)−1(z, j),W−d(p+q)(z, j)

)
for which we know the asymptotic behavior when j tends to −∞.

• The family (Φm(z, j))m∈{1,...,d(p+q)} which is linked to the solution which tend towards 0 as j tends towards
+∞ or −∞, at least when z ∈ O. It is a basis of Cd(p+q) if and only if E+

0 (z)⊕ E−0 (z) = Cd(p+q).

We introduce a few more notations. For z ∈ B(1, δ1) and j ∈ Z, we define

GΦ(z, j) :=
(
Φ1(z, j)| . . . |Φd(p+q)(z, j)

)
, DΦ(z) := det(GΦ(z, 0)), (4.30a)

G+(z, j) :=
(

Φ1(z, j)|W+
2 (z, j)| . . . |W+

d(p+q)(z, j)
)
, D+(z) := det(G+(z, 0)), (4.30b)

G−(z, j) :=
(
W−1 (z, j)| . . . |W−d(p+q)−1(z, j)|Φd(p+q)(z, j)

)
, D−(z) := det(G−(z, 0)), (4.30c)

G̃+(z, j) :=
(
W+

1 (z, j)|W+
2 (z, j)| . . . |W+

d(p+q)(z, j)
)
, (4.30d)

G̃−(z, j) :=
(
W−1 (z, j)|W−2 (z, j)| . . . |W−d(p+q)(z, j)

)
. (4.30e)

Those functions are holomorphic on B(1, δ1). Let us now conclude the section with a few observations:
• We observe using the definition (4.26) of Φ1 and Φd(p+q) that for z ∈ B(1, δ1) and j ∈ Z

G+(z, j) = G̃+(z, j)


θs,1
θs,2 1
...

. . .
θs,d(p+q) 1

 and G−(z, j) = G̃−(z, j)


1 θu,1

. . .
...

1 θu,d(p+q)−1

θu,d(p+q)

 . (4.31)

• Using (4.26) and (4.25), we have for z ∈ B(1, δ1)

GΦ(z, 0) =
(
W+

1 (z, 0)| . . . |W+
dp(z, 0)|W−dp+1(z, 0)| . . . |W−d(p+q)(z, 0)

)


θs,1 θu,1
θs,2 1 θu,2
...

. . .
...

θs,d(p+q)−1 1 θu,d(p+q)−1

θs,d(p+q) θu,d(p+q)


and thus

DΦ(z) = θs,1θu,d(p+q)Ev(z).
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The function DΦ thus shares the same properties as the Evans function Ev, i.e. the function DΦ is holomorphic
on B(1, δ1), vanishes only at z = 1 and 1 is a simple zero of DΦ. We will thus also call DΦ Evans function.
• For z ∈ B(1, δ1)\ {1}, the functionDΦ does not vanish at z and thus (Φm(z, 0))m∈{1,...,d(p+q)} is a basis. We

can define form ∈ {1, . . . , (p+ q)d} the projector Πm(z) on Span(Φm(z, 0)) along Span(Φν(z, 0))ν∈{1,...,(p+q)d}\{m}.
We observe that

Πm(z) = GΦ(z, 0)PmGΦ(z, 0)−1 (4.32)

where Pm = (δi,mδj,m)i,j∈{1,...,(p+q)d} ∈M(p+q)d(C). The function Πm is holomorphic on B(1, δ1)\ {1}.

4.4 Behavior of the spatial Green’s function near 1

We have now introduced all the tools necessary to study the spatial Green’s function near 1. In Section 4.4.1,
we will use the families of vectors previously indicated to decompose the expressions (3.41a) and (3.41b) proved
on the spatial Green’s function in Section 3 and obtain the expressions (4.35) of the spatial Green’s function
on B(1, δ1) ∩ Oρ. Since the sequence W±m are holomorphic on the whole ball B(1, δ1), this will allow us to to
extend the spatial Green’s function meromorphically on B(1, δ1) with a pole of order 1 at 1. The calculations
performed in this section will be fairly inspired by [God03, Section 3] and the expression (4.35) corresponds to
the result of [God03, Proposition 3.1]. However, we will need a more accurate description of the spatial Green’s
function to improve on the result of [God03]. Those calculations will be performed in Sections 4.4.2 and 4.4.3.

4.4.1 Meromorphic extension of the spatial Green’s function near 1

We observe that for z ∈ Oρ ∩B(1, δ1), we have that Q(z) is the projector on E+
0 (z) along E−0 (z), so

Q(z) =

dp∑
m=1

Πm(z) and Id−Q(z) =

(p+q)d∑
m=dp+1

Πm(z).

Since the equalities (3.41a) and (3.41b) are still verified for z ∈ Oρ∩B(1, δ1), if we define form ∈ {1, . . . , d(p+ q)}
the functions

∀z ∈ B(1, δ1)\ {1} ,∀j0, j ∈ Z,∀~e ∈ Cd, νm(z, j0, j, ~e) := Xj(z)Πm(z)Xj0+1(z)−1


A−1
j0,q

~e

0
...
0


then, we have that for z ∈ Oρ ∩B(1, δ1)

∀j ≥ j0 + 1, W (z, j0, j, ~e) = −
dp∑
m=1

νm(z, j0, j, ~e), (4.33a)

∀j ≤ j0, W (z, j0, j, ~e) =

(p+q)d∑
m=dp+1

νm(z, j0, j, ~e). (4.33b)

Since the right hand terms of (4.33) are holomorphic on B(1, δ1)\ {1}, we can extend holomorphically the spatial
Green’s function on B(1, δ1)\ {1}.

We observe that (4.32) implies for z ∈ B(1, δ1)\ {1} and m ∈ {1, . . . , (p+ q)d},

νm(z, j0, j, ~e) =
GΦ(z, j)

DΦ(z)
Pmcom(GΦ(z, 0))TXj0+1(z)−1


A−1
j0,q

~e

0
...
0

 .

If we define  D̂1(z, j0, ~e)
...

D̂d(p+q)(z, j0, ~e)

 := com(GΦ(z, 0))TXj0+1(z)−1


A−1
j0,q

~e

0
...
0

 , (4.34)
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then the functions D̂m(·, j0, ~e) is holomorphic on B(1, δ1) and we have

νm(z, j0, j, ~e) =
D̂m(z, j0, ~e)

DΦ(z)
Φm(z, j).

Therefore, (4.33a) and (4.33b) can be rewritten for z ∈ B(1, δ1)\ {1} as

∀j ≥ j0 + 1, W (z, j0, j, ~e) = −
dp∑
m=1

D̂m(z, j0, ~e)

DΦ(z)
Φm(z, j), (4.35a)

∀j ≤ j0, W (z, j0, j, ~e) =

(p+q)d∑
m=dp+1

D̂m(z, j0, ~e)

DΦ(z)
Φm(z, j). (4.35b)

Thus, recalling that 1 is a simple zero of the Evans function DΦ, the expressions (4.35a) and (4.35b) allow
us to conclude that the spatial Green’s function has been meromorphically extended on B(1, δ1)\ {1} with a
pole of order 1 at 1.

Now that we have found the meromorphic extension of the spatial Green’s function near 1 using the family
(Φm(z, j))m∈{1,...,d(p+q)}, we will use the other families

(
W±1 (z, j), . . . ,W±d(p+q)(z, j)

)
for which we know pre-

cisely the behavior as j tends towards ±∞ to find a new improved expression of the spatial Green’s function
with terms that we can estimate more easily.

4.4.2 Decomposing the function D̂m

We begin this section by introducing the vectors

∀z ∈ B(1, δ1),∀j0 ∈ Z,∀~e ∈ Cd, C±(z, j0, ~e) =

 C±1 (z, j0, ~e)
...

C±d(p+q)(z, j0, ~e)

 := G±(z, j0 + 1)−1


A−1
j0,q

~e

0
...
0

 , (4.36a)

∀z ∈ B(1, δ1),∀j0 ∈ Z,∀~e ∈ Cd, C̃±(z, j0, ~e) =


C̃±1 (z, j0, ~e)

...
C̃±d(p+q)(z, j0, ~e)

 := G̃±(z, j0 + 1)−1


A−1
j0,q

~e

0
...
0

 . (4.36b)

Using (4.31) and (4.25), we obtain that for z ∈ B(1, δ1), j0 ∈ Z and ~e ∈ Cd

C̃ +
1 (z, j0, ~e) = θs,1C

+
1 (z, j0, ~e), (4.37a)

∀m ∈ Iss\ {1} , C̃ +
m (z, j0, ~e) = C +

m (z, j0, ~e) + θs,mC +
1 (z, j0, ~e), (4.37b)

∀m ∈ {1, . . . , d(p+ q)} \Iss, C̃ +
m (z, j0, ~e) = C +

m (z, j0, ~e), (4.37c)

∀m ∈ {1, . . . , d(p+ q)} \Isu, C̃−m (z, j0, ~e) = C−m (z, j0, ~e), (4.37d)

∀m ∈ Isu\ {d(p+ q)} , C̃−m (z, j0, ~e) = C−m (z, j0, ~e) + θu,mC−d(p+q)(z, j0, ~e), (4.37e)

C̃−d(p+q)(z, j0, ~e) = θu,d(p+q)C
−
d(p+q)(z, j0, ~e). (4.37f)

In Section 4.4.4, we will prove estimates to bound C̃±m . However, the functions C̃±m will be put on the side
for now and will naturally reappear later on in Section 4.4.3 using (4.37). For now, we will mainly focus on
properties linked to the functions C±m .

We introduce the matrices

∀z ∈ B(1, δ1), M±(z) := G±(z, 0)−1GΦ(z, 0) and
(
g±m′,m(z)

)
(m′,m)∈{1,...,d(p+q)}

:= com
(
M±(z)

)
.

(4.38)
Using the definition (4.34) of D̂m and a Laplace expansion of the determinant, we prove that

∀m ∈ {1, . . . , d(p+ q)} ,∀z ∈ B(1, δ1),∀j0 ∈ Z,∀~e ∈ Cd, D̂m(z, j0, ~e) = D±(z)

d(p+q)∑
m′=1

g±m′,m(z)C±m′(z, j0, ~e).

(4.39)
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Looking at (4.35), we are interested in studying the quotient of D̂m(·, j0, ~e) and DΦ. In order to have less
crowded expressions later on, we also introduce the functions

∀m,m′ ∈ {1, . . . , d(p+ q)} ,∀z ∈ B(1, δ1)\ {1} , g̃±m′,m(z) := D±(z)
g±m′,m(z)

DΦ(z)
. (4.40)

The function g̃±m′,m is meromorphic on B(1, δ1)\ {1} with a pole of order less than 1 at 1 since 1 is a simple zero
of the Evans function DΦ. If g±m′,m(1) = 0, it can thus be extended holomorphically on the whole ball B(1, δ1).

This decomposition of the functions D̂m will be used in Section 4.4.3 with (4.35) to obtain a better expression
of the spatial Green’s function. We end this section by proving the following lemma using (4.27).

Lemma 4.6. 1. For m′ ∈ {1, . . . , dp} and m ∈ {1, . . . , d(p+ q)}, we have

∀z ∈ B(1, δ1), g+
m′,m(z) = δm′,m

DΦ(z)

D+(z)
.

2. For m /∈ {1, d(p+ q)} and m′ ∈ {1, . . . , d(p+ q)}, we have

g+
m′,m(1) = 0.

3. For m′ ∈ {dp+ 1, . . . , d(p+ q)} and m ∈ {1, . . . , d(p+ q)}, we have

∀z ∈ B(1, δ1), g−m′,m(z) = δm′,m
DΦ(z)

D−(z)
.

4. For m /∈ {1, d(p+ q)} and m′ ∈ {1, . . . , d(p+ q)}, we have

g−m′,m(1) = 0.

5. We have
g+

1,1(1) = g+
1,d(p+q)(1) = 0 and g−d(p+q),d(p+q)(1) = g−d(p+q),1(1) = 0.

6. For m′ ∈ {1, . . . , d(p+ q)}, we have

g+
m′,1(1) = −g+

m′,d(p+q)(1) and g−m′,1(1) = −g−m′,d(p+q)(1). (4.41)

Lemma 4.6 determines the couple of indexes m,m′ ∈ {1, . . . , d(p+ q)} such that g±m′,m is equal to 0. This
allows us to remove many terms in (4.39). It also determines the couple of indexes m,m′ ∈ {1, . . . , d(p+ q)}
such that g±m′,m vanishes at z = 1 which implies that the function g̃m′,m defined by (4.40) can be holomorphically
extended on the whole ball B(1, δ1).
Proof We will focus on proving the statements involving g+

m′,m since every statement involving g−m′,m will have
similar proofs. We observe that the definition (4.26) of Φm(z, 0) implies that if we define for z ∈ B(1, δ1) and
m ∈ {1, . . . , d(p+ q)}

C+
m(z) := G+(z, 0)−1Φm(z, 0)

then, for m ∈ {1, . . . , dp}, we have
C+
m(z) = em

where (ej)j∈{1,...,d(p+q)} is the canonical basis of Cd(p+q). The equality (4.27) also implies that

C+
d(p+q)(1) = e1 = C+

1 (1). (4.42)

Thus,

M+(z) =

(
Idp
0

C+
dp+1(z) . . . C+

d(p+q)(z)

)
. (4.43)

For m,m′ ∈ {1, . . . , d(p+ q)}, we recall that g+
m′,m(z) is the (m′,m)-cofactor of the matrix above.

We observe that

com(M+(z))TM+(z) =
DΦ(z)

D+(z)
Id(p+q). (4.44)

43



Looking at the first dp columns ofM+(z) in (4.43), we then conclude that the first dp lines of com(M+(z)) are
equal to (

DΦ(z)
D+(z)Idp 0

)
which implies Point 1.

We observe that the equality (4.42) implies

M+(1) =

 Idp
0

C+
dp+1(1) . . . C+

d(p+q)−1(1)

1
0
...
0

 .

Points 2 and 5 are then easily deduced by equality between the first and last columns of the matrix above.
There just remains to prove Point 6. We observe that

M+(1)com(M+(1))T = 0.

Looking at the coefficient at the first line and m′-th column, we have that

g+
m′,1(1) +

d(p+q)−1∑
m=dp+1

(C+
m(1))1g

+
m′,m(1) + g+

m′,d(p+q)(1) = 0.

Using Point 2, we easily conclude the proof of Point 6. �

4.4.3 Final expression of the spatial Green’s function

Depending on the sign of j0 and on the localization of j depending on j0 and 0, we will exhibit an expression of
the spatial Green’s function which will be useful to study the temporal Green’s function. We will only present
the expressions for j0 ≥ 0. The case where j0 < 0 would be handled similarly and give another expression of the
spatial Green’s function on B(1, δ1) that would be necessary to prove a decomposition of the temporal Green’s
function similar to (1.30) when j0 < 0.

Case where j0 ≥ 0 and j ≥ j0 + 1:
Using (4.35a) and (4.39), we have

W (z, j0, j, ~e) = −
dp∑
m=1

d(p+q)∑
m′=1

g̃+
m′,m(z)C +

m′(z, j0, ~e)Φm(z, j).

Point 1 of Lemma 4.6 then implies that

W (z, j0, j, ~e) = −
dp∑
m=1

C +
m (z, j0, ~e)Φm(z, j)−

dp∑
m=1

d(p+q)∑
m′=dp+1

g̃+
m′,m(z)C +

m′(z, j0, ~e)Φm(z, j).

Using the definition (4.26) of Φ1, we then have that

W (z, j0, j, ~e) = −θs,1C +
1 (z, j0, ~e)W

+
1 (z, j)−

∑
m∈Iss\{1}

(C +
m (z, j0, ~e) + θs,mC +

1 (z, j0, ~e))W
+
m(z, j)

−
∑
m∈Ics

C +
m (z, j0, ~e)W

+
m(z, j)−

dp∑
m=1

d(p+q)∑
m′=dp+1

g̃+
m′,m(z)C +

m′(z, j0, ~e)Φm(z, j).

Using (4.37a)-(4.37c) which links the functions C±m and C̃±m and the definition (4.26) of Φm for m ∈ {2, . . . , dp},
we obtain that

W (z, j0, j, ~e) = −
dp∑
m=1

C̃ +
m (z, j0, ~e)W

+
m(z, j)−

dp∑
m=2

d(p+q)∑
m′=dp+1

g̃+
m′,m(z)C̃ +

m′(z, j0, ~e)W
+
m(z, j)

−
d(p+q)∑
m′=dp+1

g̃+
m′,1(z)C̃ +

m′(z, j0, ~e)Φ1(z, j). (4.45)
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Remark 2. If m ∈ {2, . . . , dp} and m′ ∈ {dp+ 1, . . . , d(p+ q)}, we have that g+
m′,m(1) = 0 because of Lemma

4.6. Thus, the function
z ∈ B(1, δ1)\ {1} 7→ g̃+

m′,m(z)C̃ +
m′(z, j0, ~e)Φm(z, j)

can be holomorphically extended on the whole ball B(1, δ1).
Case where j0 ≥ 0 and j ∈ {0, . . . , j0}:
For m ∈ {dp+ 1, . . . , d(p+ q)}, using the respective definitions (4.30a), (4.30b) and (4.38) of the ma-

trices GΦ, G+ and M+, we have the following expression of the vector Φm(z, j) depending on the family
(W+

k (z, j))k∈{1,...,d(p+q)}:

Φm(z, j) = G+(z, j)(M+(z)k,m)k∈{1,...,d(p+q)} =M+(z)1,mΦ1(z, j) +

d(p+q)∑
k=2

M+(z)k,mW
+
k (z, j).

Thus, using (4.39) and the fact that Lemma 4.6 implies g+
m′,m = 0 for m′ ∈ {1, . . . , dp}, we have

D̂m(z, j0, ~e)

DΦ(z)
Φm(z, j) =

D+(z)

DΦ(z)

d(p+q)∑
m′=dp+1

g+
m′,m(z)C +

m′(z, j0, ~e)

M+(z)1,mΦ1(z, j) +

d(p+q)∑
k=2

M+(z)k,mW
+
k (z, j)

 .

Using (4.35b), we then have that

W (z, j0, j, ~e)

=

d(p+q)∑
m′=dp+1

 d(p+q)∑
m=dp+1

M+(z)1,mg
+
m′,m(z)

Φ1(z, j) +

d(p+q)∑
k=2

 d(p+q)∑
m=dp+1

M+(z)k,mg
+
m′,m(z)

W+
k (z, j)


D+(z)

DΦ(z)
C +
m′(z, j0, ~e).

Let us find expressions for the sums
∑d(p+q)
m=dp+1M+(z)k,mg

+
m′,m(z) when m′ ∈ {dp+ 1, . . . , d(p+ q)} and

k ∈ {1, . . . , d(p+ q)}. We recall that g+
m′,m(z) is the (m′,m)-cofactor of the matrix M+(z). Furthermore, by

definition (4.38) of the matrixM+, we have that

M+(z)com(M+(z))T =
DΦ(z)

D+(z)
Id. (4.46)

Thus, by observing (4.43) implies that for k ∈ {dp+ 1, . . . , d(p+ q)} and m ∈ {1, . . . , dp} we haveM+(z)k,m =
0, we conclude looking at the k-th line and m′-th column of (4.46) that

∀k ∈ {dp+ 1, . . . , d(p+ q)} ,∀m′ ∈ {dp+ 1, . . . , d(p+ q)} ,
d(p+q)∑
m=dp+1

M+(z)k,mg
+
m′,m(z) =

DΦ(z)

D+(z)
δk,m′ .

Furthermore, (4.43) implies that

∀k ∈ {1, . . . , dp} ,∀m ∈ {1, . . . , dp} , M+(z)k,m = δk,m.

Thus, looking once again at the k-th line and m′-th column of (4.46), we have

∀k ∈ {1, . . . , dp} ,∀m′ ∈ {dp+ 1, . . . , d(p+ q)} ,
d(p+q)∑
m=dp+1

M+(z)k,mg
+
m′,m(z) = −g+

m′,k(z).

We finally conclude using (4.37a)-(4.37c) which links the functions C±m and C̃±m that

W (z, j0, j, ~e) =

d(p+q)∑
m=dp+1

C̃ +
m (z, j0, ~e)W

+
m(z, j)−

dp∑
m=2

d(p+q)∑
m′=dp+1

g̃+
m′,m(z)C̃ +

m′(z, j0, ~e)W
+
m(z, j)

−
d(p+q)∑
m′=dp+1

g̃+
m′,1(z)C̃ +

m′(z, j0, ~e)Φ1(z, j). (4.47)
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Remark 3. We observe that some terms in (4.47) are equal to terms of (4.45). We will see later on that they
contribute to the reflected waves in the decomposition of Theorem 1.

Case where j0 ≥ 0 and j < 0:
Using (4.35b) and (4.39),

W (z, j0, j, ~e) =

d(p+q)∑
m=dp+1

d(p+q)∑
m′=1

g̃+
m′,m(z)C +

m′(z, j0, ~e)Φm(z, j).

Lemma 4.6 implies that

∀m ∈ {dp+ 1, . . . , d(p+ q)} ,∀m′ ∈ {1, . . . , dp} , g+
m′,m = 0.

Thus, using (4.37a)-(4.37c) which links the functions C±m and C̃±m ,

W (z, j0, j, ~e) =

d(p+q)−1∑
m=dp+1

d(p+q)∑
m′=dp+1

g̃+
m′,m(z)C̃ +

m′(z, j0, ~e)W
−
m(z, j)

+

d(p+q)∑
m′=dp+1

g̃+
m′,d(p+q)(z)C̃

+
m′(z, j0, ~e)Φd(p+q)(z, j). (4.48)

Remark 4. If m ∈ {dp+ 1, . . . , d(p+ q)− 1} and m′ ∈ {dp+ 1, . . . , d(p+ q)}, we have that g+
m′,m(1) = 0. Thus,

the function
z ∈ B(1, δ1)\ {1} 7→ g̃+

m′,m(z)C̃ +
m′(z, j0, ~e)Φm(z, j)

can be holomorphically extended on the whole ball B(1, δ1).

4.4.4 Useful estimates

In this section, we will introduce the necessary observations to properly bound the terms appearing in the
decomposition of the spatial Green’s function of Section 4.4.3. We will in particular introduce a new expression
of the functions C̃±m (z, j0, ~e), prove that they roughly act like ζ±m(z)−j0 and determine their behavior as j0 tends
towards ±∞.

For z ∈ B(1, δ1) and j ∈ Z, we recall that Lemma 4.4 implies that (V ±m (z, j))m∈{1,...,d(p+q)} is a basis of
Cd(p+q). Thus, we can define for z ∈ B(1, δ1), j0 ∈ Z and ~e ∈ Cd

N±(z, j0) :=
(
V ±1 (z, j0) . . . V ±d(p+q)(z, j0)

)
and

 ∆±1 (z, j0, ~e)
...

∆±d(p+q)(z, j0, ~e)

 := N±(z, j0)−1


A−1
j0,q

~e

0
...
0

 .

(4.49)
We observe that (4.36b) implies that for all z ∈ B(1, δ1), j0 ∈ Z and ~e ∈ Cd, we have

d(p+q)∑
m=1

ζ±m(z)j0+1C̃±m (z, j0, ~e)V
±
m (z, j0 + 1) =


A−1
j0,q

~e

0
...
0

 .

Thus, we have that for m ∈ {1, . . . , d(p+ q)}, z ∈ B(1, δ1), j0 ∈ Z and ~e ∈ Cd

C̃±m (z, j0, ~e) = ζ±m(z)−j0−1∆±m(z, j0, ~e). (4.50)

We now prove the following lemma which gives us the asymptotic behavior of ∆±m(z, j0, ~e).
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Lemma 4.7. There exist a radius δ2 ∈]0, δ1] and two constants C, c > 0 such that for all z ∈ B(1, δ2),
m = l + (k − 1)d ∈ {1, . . . , d(p+ q)} with k ∈ {1, . . . , p+ q} and l ∈ {1, . . . , d} and ~e ∈ Cd, we have

∀j ∈ N,
∣∣V +
m (z, j)− V +

m (1, j)
∣∣ ≤ C|z − 1|, (4.51a)

∀j ∈ −N,
∣∣V −m (z, j)− V −m (1, j)

∣∣ ≤ C|z − 1|, (4.51b)

∀j ∈ N, |Φ1(z, j)− Φ1(1, j)| ≤ C|z − 1|e−
3c∗
2 |j|, (4.51c)

∀j ∈ −N,
∣∣Φd(p+q)(z, j)− Φd(p+q)(1, j)

∣∣ ≤ C|z − 1|e−
3c∗
2 |j|, (4.51d)

∀j0 ∈ N,
∣∣∣∆+

m(z, j0, ~e)− ζ+
m
′
(z)l+l

T
~e
∣∣∣ ≤ C|~e|e−c|j0|, (4.51e)

∀j0 ∈ −N,
∣∣∣∆−m(z, j0, ~e)− ζ−m

′
(z)l−l

T
~e
∣∣∣ ≤ C|~e|e−c|j0|, (4.51f)

∀j0 ∈ N,
∣∣∆+

m(z, j0, ~e)
∣∣ ≤ C|~e|, (4.51g)

∀j0 ∈ −N,
∣∣∆−m(z, j0, ~e)

∣∣ ≤ C|~e|. (4.51h)

∀j0 ∈ N,
∣∣∆+

m(z, j0, ~e)−∆+
m(1, j0, ~e)

∣∣ ≤ C|z − 1||~e|, (4.51i)

∀j0 ∈ −N,
∣∣∆−m(z, j0, ~e)−∆−m(1, j0, ~e)

∣∣ ≤ C|z − 1||~e|. (4.51j)

Proof The first two inequalities are direct consequences from the fact that z ∈ B(1, δ1) 7→ ∂V ±m
∂z (z, ·) ∈

`∞(±N,Cd(p+q)) is bounded (see Lemma 4.3).
We will prove (4.51c). The proof of (4.51d) would be similar. Using the definition (4.26) of Φ1, we conclude

that we only have to prove that for all m ∈ Iss that there exists a constant C > 0 and a radius δ2 ∈]0, δ1] such
that

∀z ∈ B(1, δ2),∀j ∈ N,
∣∣W+

m(z, j)−W+
m(1, j)

∣∣ ≤ C|z − 1|e−
3c∗
2 |j|.

We observe that for z ∈ B(1, δ1) and j ∈ N, we have∣∣W+
m(z, j)−W+

m(1, j)
∣∣ ≤ ∣∣ζ+

m(z)
∣∣j ∣∣V +

m (z, j)− V +
m (1, j)

∣∣+
∣∣V +
m (1, j)

∣∣ ∣∣ζ+
m(z)j − ζ+

m(1)j
∣∣ .

Using (4.51a), (4.1) and the fact that dζ+
m

dz is bounded on B(1, δ2) for δ2 ∈]0, δ2[, we easily conclude.
We observe that (4.51g) and (4.51h) are direct consequences of (4.51e) and (4.51f). We will focus on (4.51e)

as (4.51f) would be proved in a similar way. We observe that Lemma 4.9, (1.14) and (1.5) imply that

L+
m(z)T


A+
q
−1
~e

0
...
0

 = λ+
l,qζ

+
m
′
(z)l+

l

T
A+
q
−1
~e = ζ+

m
′
(z)l+

l

T
~e.

Thus, ∆+
m(z, j0, ~e)− ζ+

m
′
(z)l+

l

T
~e is the m-th coefficient of the vector

N+(z, j0)−1


A−1
j0,q

~e

0
...
0

−N+,∞(z)−1


A+
q
−1
~e

0
...
0

 .

We then just have to find bounds for this difference of vectors. We have

N+(z, j0)−1


A−1
j0,q

~e

0
...
0

−N+,∞(z)−1


A±q
−1
~e

0
...
0



=N+(z, j0)−1
(
N+,∞(z)−N+(z, j0)

)
N+,∞(z)−1


A−1
j0,q

~e

0
...
0

+N+,∞(z)−1


(A−1

j0,q
−A+

q
−1

)~e

0
...
0

 .

(4.52)
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We wish to bound each term in the right-hand side of the equality (4.52). Let us start by looking at the
first term. Lemma 4.3 implies that the functions N+(·, j0)−1 are bounded on B(1, δ1) and that the bound can
considered to be uniform for j0 ∈ N. The function N+,∞(·)−1 is also bounded on B(1, δ1). Since A−1

j0,q
converges

towards A+
q
−1 as j0 converges towards +∞, we also have that the family of matrices (A−1

j0,q
)j0∈N is bounded.

Finally, using Lemma 4.3, we have that there exist two constants C, c > 0 such that

∀z ∈ B(1, δ1),∀j0 ∈ N,
∣∣N+,∞(z)−N+(z, j0)

∣∣ ≤ Ce−cj0 .
Thus, we have that there exists another constant C > 0 such that

∀z ∈ B(1, δ1),∀~e ∈ Cd,∀j0 ∈ N,

∣∣∣∣∣∣∣∣∣N
+(z, j0)−1

(
N+,∞(z)−N+(z, j0)

)
N+,∞(z)−1


A−1
j0,q

~e

0
...
0


∣∣∣∣∣∣∣∣∣ ≤ C|~e|e

−cj0 .

We now focus on the second term. The function N±,∞(·)−1 is bounded on B(1, δ1). Furthermore, Hypothesis
3 allows us to determine that there exist two constants C, c > 0 such that

∀j0 ∈ N,
∣∣∣A−1

j0,q
−A+

q
−1
∣∣∣ ≤ Ce−cj0 .

Therefore, there exists a new constant C such that

∀z ∈ B(1, δ1),∀~e ∈ Cd,∀j0 ∈ N,

∣∣∣∣∣∣∣∣∣N
+,∞(z)−1


(A−1

j0,q
−A+

q
−1

)~e

0
...
0


∣∣∣∣∣∣∣∣∣ ≤ C|~e|e

−cj0 .

There remains to prove (4.51i) as (4.51j) would be proved similarly. We observe that for z ∈ B(1, δ2) and
j0 ∈ N, we have

N+(z, j0)−1 −N+(1, j0)−1 = N+(z, j0)−1
(
N+(1, j0)−N+(z, j0)

)
N+(1, j0)−1.

Using (4.51a) and the observations above which claimed that N+(z, j0)−1 is bounded uniformly for z ∈ B(1, δ2)
and j0 ∈ N, we have that there exists a positive constant C such that

∀z ∈ B(1, δ2),∀j0 ∈ N, |N+(z, j0)−1 −N+(1, j0)−1| ≤ C|z − 1|.

The definition (4.49) and the fact that the family of matrices (A−1
j0,q

)j0∈N is bounded imply that (4.51i) is verified
for some constant C > 0. �

5 Temporal Green’s function and proof of Theorem 1
The previous Sections 3 and 4 served respectively to describe the spatial Green’s function far from 1 and
near 1. Our objective is now to focus on the core of the article: the study of temporal Green’s function and
the proof of Theorem 1. In the present section, we will express the temporal Green’s function with the spatial
Green’s function using functional analysis. We will then use the different results of the previous sections (mainly
Proposition 2 and the decompositions (4.45), (4.47) and (4.48) of the spatial Green’s function near 1) to obtain
the result of Theorem 1. Just as when proved the decompositions (4.45), (4.47) and (4.48) of the spatial Green’s
function near 1, the proof of Theorem 1 will be done whilst assuming that j0 is larger than 0 to obtain (1.30).
The case where j0 < 0 would be handled similarly and would necessitate to prove expressions of the spatial
Green’s function on B(1, δ1) similar to (4.45)-(4.48) when j0 < 0.

5.1 Link between the spatial and temporal Green’s function
First, we recall that in Sections 3 and 4, we studied the vectors W (z, j0, j, ~e) defined in Section 3.5 which are
composed of several components of the spatial Green’s function. The inverse Laplace transform implies that if
we introduce a path Γ̃ that surrounds the spectrum σ(L ), for instance Γ̃r := rS1 where r > 1, then we have

G (n, j0, j)~e =
1

2iπ

∫
Γ̃r

znG(z, j0, j)~edz =
1

2iπ

∫
Γ̃r

znΠ(W (z, j0, j, ~e))dz
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where Π is the linear application defined by (3.34) which extracts the center values of a large vector. We consider
the change of variables z = exp(τ). If we define Γr = {r + it, t ∈ [−π, π]}, then we have

G (n, j0, j)~e =
1

2iπ

∫
Γr

enτeτΠ(W (eτ , j0, j, ~e))dτ. (5.1)

The goal will now be to use Cauchy’s formula and/or the residue theorem to modify our choice of path Γ and
to use at best the properties we proved on the spatial Green’s function.

In Section 4, we have found a decomposition and meromorphically extended the spatial Green’s function on
a ball B(1, δ1) with a pole of order 1 at 1 and introduced an even smaller ball B(1, δ2) on which we have more
precise bounds (Lemma 4.7) that will help us later on in the proof. We consider a radius ε?0 ∈]0, π[ such that

∀τ ∈ B(0, ε?0), eτ ∈ B(1, δ2).

Lemma 5.1. For all radii ε ∈]0, ε?0[, there exists a width ηε > 0 such that if we define

Ωε := {τ ∈ C, <τ ∈]− ηε, π],=τ ∈ [−π, π]} ∪B(0, ε),

then for all j, j0 ∈ Z and ~e ∈ Cd, the function τ 7→W (eτ , j0, j, ~e) is meromorphically defined on Ωε\ {0} with a
pole of order 1 at 0 and there exist two positive constants Cε, cε such that

∀τ ∈ Ωε\B(0, ε),∀j, j0 ∈ Z,∀~e ∈ Cd, |W (eτ , j0, j, ~e)| ≤ Cε|~e|e−cε|j−j0|. (5.2)

Defining this width ηε is important for the following calculations since we have defined a set Ωε on which
we can change the path of integration of (5.1) using the residue theorem. Furthermore, for τ ∈ Ωε, either
τ ∈ B(0, ε) which implies that eτ ∈ B(1, δ2) and that we can thus use the decomposition of the spatial Green’s
function we obtained in Section 4.4, or τ /∈ B(0, ε) and we can use (5.2) to obtain exponential bounds on the
spatial Green’s function.
Proof The proof is identical as [Coe23, Lemma 5.2] and will thus not be detailled. It just relies on observing
that for any radius ε ∈]0, ε?0[, the results of Section 4 imply that for all j0, j ∈ Z and ~e ∈ Cd, the function
τ 7→ W (eτ , j0, j, ~e) is meromorphically extended on B(0, ε)\ {0} with a pole of order 1 at 0. We then use
Proposition 2 on a neighborhood of each point of the set

Uε := {τ ∈ C, <τ ∈ [0, π],=τ ∈ [−π, π]} \B(0, ε)

and conclude via a compactness argument on the existence of a width ηε ∈]0, ε[ and of two positive constants
Cε, cε such that (5.2) is verified. �

Let us observe that for all m ∈ I±cs ∪ I±cu, we have that the function ζ±m (which we recall are defined in
Section 4.1 and are eigenvalues of the matrices M±(z)) is holomorphic and ζ±m(1) = 1. Therefore, there exists
a radius ε?1 ∈]0, ε?0[ so that for all m ∈ I±cs ∪ I±cu that we write as m = l + (k − 1)d with k ∈ {1, . . . , p+ q} and
l ∈ {1, . . . , d}, there exists an holomorphic function $±l : B(0, ε?1)→ C such that $±l (0) = 0 and

∀τ ∈ B(0, ε?1), ζ±m(eτ ) = exp($±l (τ)). (5.3)

Since ζ±m(eτ ) is an eigenvalue of M±l (eτ ), Lemma 3.2 implies that

∀τ ∈ B(0, ε?1), F±l (e$
±
l (τ)) = eτ .

If we define the holomorphic function

ϕ±l : C → C
τ 7→ − τ

α±l
+ (−1)µ+1 β±l

α±l
2µ+1 τ

2µ , (5.4)

then, up to considering ε?1 to be slightly smaller, the asymptotic expansion (1.18) implies that there exists a
bounded holomorphic function ξ±l : B(0, ε?1)→ C such that

∀τ ∈ B(0, ε?1), $±l (τ) = ϕ±l (τ) + τ2µ+1ξ±l (τ). (5.5)

Lemma 5.2. There exists a radius ε?2 ∈]0, ε?1[ and two positive constants AR, AI such that for all l ∈ {1, . . . , d}

∀τ ∈ C, α±l <(ϕ±l (τ)) ≤ −<(τ) +AR<(τ)2µ −AI=(τ)2µ, (5.6)

∀τ ∈ B(0, ε?2), α±l <($±l (τ)) + |α±l ξ
±
l (τ)τ2µ+1| ≤ −<(τ) +AR<(τ)2µ −AI=(τ)2µ. (5.7)
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The proof is identical as [Coe23, Lemma 5.3] and will thus not be detailed here.

Choice of the radius ε and of the width η

We will now fix choices for a radius ε > 0 and a width η > 0 which will satisfy a list of conditions. Those
conditions will be are centralized here in order to fix the notations and are especially important to prove some
technical lemmas in Section 5.2.1. We will try to indicate at best where those conditions are used.

First, we fix a choice of radius ε ∈
]
0,min

(
ε?2,
(

1
2µAR

) 1
2µ−1

)[
where the radius ε?2 is defined in Lemma

5.2. This choice for ε will allow us to use the results of Lemmas 5.1 and 5.2. Furthermore, if we introduce the
function

Ψ : R → R
τp 7→ τp −ARτp2µ (5.8)

which we will use to define a family of parameterized curve later on in Lemma 5.4, then the function Ψ is
continuous and strictly increasing on ]−∞, ε]. This conclusion on the function Ψ will be essential in the proof
of Lemma 5.4 to construct the path Γ appearing in (5.17c).

We now introduce the function
rε : ]0, ε[ → R

η 7→
√
ε2 − η2

(5.9)

which serves to define the extremities of the curve −η + iR ∩ B(0, ε). We recall that we defined a width ηε in
Lemma 5.1. We claim that there exists a width η ∈]0, ηε[ that we fix for the rest of the paper such that:

• The following inequality is satisfied:
η

2
> ARη

2µ. (5.10)

It is used for instance in the proof of Lemma 5.4.

• We have
η +ARη

2µ − AI
2
rε(η)2µ < 0. (5.11)

It is quite clear that we can choose η small enough to satisfy this condition since, when η tends towards 0,
the first two terms on the left hand side converge towards 0 and the third converges towards −AI2 ε. The
condition (5.11) is used in Lemma 5.4 to prove (5.17b). A consequence of (5.11) is that

∀n ∈ N,∀x ∈
[n

2
, 2n
]
,∀t ∈ [−η, η] , (n− x)t+ xARt

2µ − xAIrε(η)2µ

2
≤ 0. (5.12)

Indeed, using the convexity with regards to t of the left hand side of (5.12), we have that

(n− x)t+ xARt
2µ − xAIrε(η)2µ

2
≤ |n− x|η + xARη

2µ − xAIrε(η)2µ

2
.

We observe that n ∈
[
x
2 , 2x

]
and thus, using (5.11), we have

(n− x)t+ xARt
2µ − xAIrε(η)2µ

2
≤ x

(
η +ARη

2µ − AIrε(η)2µ

2

)
≤ 0.

The consequence (5.12) of (5.11) will be used in the proof of Lemma 5.6.

• There exists a radius ε# ∈]0, ε[ such that if we define

lextr :=

(
Ψ(ε#)−Ψ(−η)

AI

) 1
2µ

, (5.13)

then −η + ilextr ∈ B(0, ε). It is used in the proof of Lemma 5.4.

We introduce the paths Γout(η), Γ±in(η), Γ0
in(η), Γin(η), Γ(η), Γd(η) represented on Figure 2 and defined as

Γout(η) := [−η − iπ,−η − irε(η)] ∪ [−η + irε(η),−η + iπ],

Γ±in(η) := [−η ± irε(η), η ± irε(η)] ,

Γ0
in(η) := [η − irε(η), η + irε(η)] ,

Γin(η) := Γ−in(η) ∪ Γ0
in(η) ∪ Γ+

in(η)

Γ(η) := Γin(η) ∪ Γout(η),

Γd(η) := [−η − irε(η),−η + irε(η)] .

(5.14)
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<(τ)

=(τ)

×

Bε(0)

•
iπ

•−iπ

•
−η

•
η

>

Γout(η) >
>

>Γd(η)

>

Γ−in(η)

<

Γ+
in(η)

>
>

Γ0
in(η)

Figure 2: A representation of the path described in (5.14): Γout(η) (in red), Γ±in(η) (in blue), Γ0
in(η) (in purple)

and Γd(η) (in green)

We observe that those paths lie in Ωε. Using the Cauchy formula and acknowledging the "2iπ"-periodicity
of τ 7→W (eτ , j0, j, ~e), we can prove via the equality (5.1) that

G (n, j0, j)~e =
1

2iπ

∫
Γ(η)

enτeτΠ(W (eτ , j0, j, ~e))dτ

=
1

2iπ

∫
Γout(η)

enτeτΠ(W (eτ , j0, j, ~e))dτ +
1

2iπ

∫
Γin(η)

enτeτΠ(W (eτ , j0, j, ~e))dτ.

(5.15)

Lemma 5.3. There exist two positive constants C, c such that for all n ∈ N, j0, j ∈ Z and ~e ∈ Cd we have that∣∣∣∣∣ 1

2iπ

∫
Γout(η)

enτeτΠ(W (eτ , j0, j, ~e))dτ

∣∣∣∣∣ ≤ C|~e|e−nη.
Proof The conclusion of the lemma directly follows from (5.2) and the definition of Γout(η) which implies that

∀τ ∈ Γout(η), |enτ | = e−nη.

�

The equality (5.15) and the sharp exponential bounds on

1

2iπ

∫
Γout(η)

enτeτΠ(W (eτ , j0, j, ~e))dτ,

we just proved imply that this term will belong to the residual term R(n, j0, j) in (1.30). There just remains to
handle the term

1

2iπ

∫
Γin(η)

enτeτΠ(W (eτ , j0, j, ~e))dτ (5.16)

to have the description (1.30) of the temporal Green’s function expected in Theorem 1. We recall that Γin(η) is
a path that lies inside the set B(0, ε) by construction and that we chose the radius ε ∈]0, ε∗2[ to be small enough
so that

∀τ ∈ B(0, ε), eτ ∈ B(1, δ2).

Thus, recalling that we consider j0 ≥ 0, we can use the expressions (4.45), (4.47) and (4.48) to decompose
the integral (5.16) into different terms depending on the position of j with respect to 0 and j0. Our goal is
to associate those terms with the different behaviors of the temporal Green’s function presented in (1.30) of
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Theorem 1 using Lemmas 5.7-5.11 that we will proven below. To clarify, let us give details on one of the cases.
If we consider j ≥ j0 + 1, then (4.45) implies that

1

2iπ

∫
Γin(η)

enτeτΠ (W (eτ , j0, j, ~e)) dτ =−
dp∑
m=1

1

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π

(
W+
m(eτ , j)

)
dτ

−
dp∑
m=2

d(p+q)∑
m′=dp+1

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m′(e
τ , j0, ~e)Π

(
W+
m(eτ , j)

)
dτ

−
d(p+q)∑
m′=dp+1

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π (Φ1(eτ , j)) dτ.

Using Lemma 5.7 proved below, we can prove that the first terms are either belonging to the residual terms
R(n, j0, j, ~e) when m ∈ Iss or, when m ∈ Ics, they are a combination of a generalized Gaussian waves
S+
l (n, j0, j)~e for some l ∈ {1, . . . , I} and residual terms R(n, j0, j, ~e). In a similar manner, using Lemmas

5.8, 5.10 and 5.11 proven below, the second and third terms can be shown to relate to the reflected waves
R+
l′,l(n, j0, j)~e, the excited eigenvector E+

l′ (n, j0)~eVj and residual terms R(n, j0, j, ~e). We observe that the trans-
mitted waves T+

l′,l(n, j0, j)
~e) and the generalized Gaussian waves S+

l (n, j0, j)~e for l ∈ {I + 1, . . . , d} are equal to
0 in this setting. Thus, we obtain the decomposition (1.30).

Thus, once we will have proved Lemmas 5.7-5.11, the proof of Theorem 1 will be concluded.

5.2 Decomposition of the integral within B(0, ε)

This section will be mainly devoted to the proof of Lemmas 5.7-5.11 that will allow to study each term that can
appear in the decomposition of the integral (5.16) using the expressions (4.45), (4.47) and (4.48). However, we
are first going to need to introduce a few more technical lemmas that will be used relentlessly throughout the
rest of the paper.

5.2.1 Gaussian estimates

First and foremost, we define the set X of the paths going from −η− irε(η) to −η+ irε(η) whilst remaining in
B(0, ε). We observe in particular that Γd(η),Γin(η) ∈ X.

Lemma 5.4. We consider an integer k ∈ N.

• There exist two positive constants C, c such that for all n ∈ N\ {0} and x ∈
[
0, n2

]
∫

Γd(η)

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ Ce−cn. (5.17a)

• There exist two positive constants C, c such that for all n ∈ N\ {0} and x ∈ [2n,+∞[∫
Γin(η)

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ Ce−cn. (5.17b)

• There exist two positive constants C, c such that for all n ∈ N\ {0} and x ∈
[
n
2 , 2n

]
, there exists a path

Γ ∈ X such that∫
Γ

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |

≤ C

n
k+1
2µ

exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
. (5.17c)

Lemma 5.4 will allow us to obtain generalized Gaussian bounds for several terms throughout the proof of
Theorem 1. The inequalities (5.17a)-(5.17c) separate different cases depending on x. An important point to
observe is that the path Γ appearing in (5.17c) depends on n and x whereas the constants C, c are uniform.

The way Lemma 5.4 will be used is to first observe that the integral of some holomorphic function over
some path of X is equal by Cauchy’s formula to the integral of the same function over any path of X. We then
prove that the integrand can be well bounded and use the result of the lemma. The proof of Lemma 5.4 can be
adapted from [CF22, CF21, Coe22, Coe23] and will be done in the Appendix (Section 6).
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Lemma 5.5. There exists a constant C > 0 such that for all l ∈ {1, . . . , d}, n ∈ N\ {0} and x ∈ [0, 2n]∣∣∣exα±l $±l (τ) − exα
±
l ϕ
±
l (τ)

∣∣∣ ≤ Cn|τ |2µ+1 exp
(
x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
.

The proof of Lemma 5.5 is similar to the proof of [Coe22, Lemma 16] and will not be detailed here. We
recall that the functions $±l and ϕ±l respectively defined by (5.3) and (5.4) are linked by the equality (5.5).
Lemma 5.5 will allow us to "extract" the principal part ϕ±l of the function $±l . This principal part will then
appear in terms that can be studied using the following lemma.

Lemma 5.6. We consider l, l′ ∈ {1, . . . , d} and ?, ?′ ∈ {−,+}. There exist two constants C, c > 0 such that for
all n ∈ N\ {0}, we have:

• For x, y ∈ [0,+∞[ such that x+ y ∈
[
n
2 , 2n

]
and Γ ∈ X∣∣∣∣∣ 1

2iπ

∫
Γ

exp
(
nτ + xα?

lϕ
?
l (τ) + yα?′

l′ ϕ
?′

l′ (τ)
)
dτ − |α

?
l |

n
1

2µ

H2µ

(
x

n
β?
l +

y

n
β?′

l′

(
α?
l

α?′
l′

)2µ

;
α?
l (n− (x+ y))

n
1

2µ

)∣∣∣∣∣
≤ Ce−cn. (5.18a)

• For x ∈
[
n
2 , 2n

]
and Γ ∈ X∣∣∣∣ 1

2iπ

∫
Γ

exp
(
nτ + xα?

lϕ
?
l (τ)

)
dτ − |α

?
l |

n
1

2µ

H2µ

(
β?
l ;
α?
l (n− x)

n
1

2µ

)∣∣∣∣ ≤ C

n
1
µ

exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
. (5.18b)

• For x ∈
[
n
2 , 2n

]
,∣∣∣∣∣ 1

2iπ

∫
Γin(η)

exp
(
nτ + xα?

lϕ
?
l (τ)

)
τ

dτ − E2µ

(
β?
l ;
−|α?

l |(n− x)

n
1

2µ

)∣∣∣∣∣ ≤ C

n
1

2µ

exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
.

(5.18c)

The proof of Lemma 5.6 is a summary of calculations performed in [Coe22, Coe23] and will be done in the
Appendix (Section 6). Let us consider that there is no condition on the paths on integration in (5.18a) and
(5.18b). However, since the integrand is only meromoprhic in (5.18a), we only consider the path Γin(η).

5.2.2 Outgoing and entering waves

We will start by looking at the outgoing and entering waves by proving the following lemma.

Lemma 5.7. We consider m ∈ {1, . . . , d(p+ q)} and write it as m = l+(k−1)d with k ∈ {1, . . . , p+ q} and l ∈
{1, . . . , d}. There exists a constant c > 0 such that for all n ∈ N\ {0}, j0, j ∈ N such that j−j0 ∈ {−nq, . . . , np}
and ~e ∈ Cd we have:
• If m ∈ I+

cs ∪ I+
cu and j−j0

α+
l

∈
[
n
2 , 2n

]
, we have

−
sgn(α+

l )

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ − S+
l (n, j0, j)~e

= exp

−c

∣∣∣n− ( j−j0

α+
l

)∣∣∣
n

1
2µ


2µ

2µ−1

(O( |~e|e−c|j|
n

1
2µ

)
+Os

(
|~e|e−c|j0|

n
1

2µ

)
r+
l +Os

(
1

n
1
µ

)
l+l
T
~er+
l

)
. (5.19a)

• If m ∈ I+
cs ∪ I+

cu,
j−j0
α+
l

/∈
[
n
2 , 2n

]
and j−j0

α+
l

≥ 0, we have

−
sgn(α+

l )

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ − S+
l (n, j0, j)~e = O

(
|~e|e−cn

)
. (5.19b)

• If m ∈ I+
ss and j ≥ j0 + 1 or if m ∈ I+

su and j ∈ {0, . . . , j0}

1

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ = O
(
|~e|e−cn

)
. (5.19c)
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Proof • We start by proving (5.19a). The proofs of (5.19b) and (5.19c) will be done afterwards as they are
fairly less complicated. We consider m ∈ I+

cs ∪ I+
cu such that j−j0

α+
l

∈
[
n
2 , 2n

]
.

Using the expression of W+
m given by Lemma 4.3 and (4.50), we have using Cauchy’s formula that for any

Γ ∈ X∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ =

∫
Γ

enτζ+
m(eτ )j−j0−1eτ∆+

m(eτ , j0, ~e)Π(V +
m (eτ , j))dτ. (5.20)

Using Cauchy’s formula once again, (5.3) since the eigenvalue we consider is central and the definition (1.29a)
of the function S+

l , we then have that

−
sgn(α+

l )

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ − S+
l (n, j0, j)~e = E1 + E2r+

l + (E3 + E4 + E5) l+
l

T
~er+

l

(5.21)
where E1 is a vector and E2, . . . , E5 are complex scalars defined by

E1 = −
sgn(α+

l )

2iπ

∫
Γ1

enτe(j−j0−1)$+
l (τ)eτ∆+

m(eτ , j0, ~e)Π(V +
m (eτ , j)−R+

m(eτ ))dτ

E2 = −
sgn(α+

l )

2iπ

∫
Γ2

enτe(j−j0−1)$+
l (τ)eτ

(
∆+
m(eτ , j0, ~e)− ζ+

m
′
(eτ )l+

l

T
~e
)
dτ

E3 = −
sgn(α+

l )

2iπ

∫
Γ3

enτe(j−j0)$+
l (τ)

(
eτζ+

m(eτ )−1ζ+
m
′
(eτ ) +

1

α+
l

)
dτ

E4 =
1

2iπ|α+
l |

∫
Γ4

enτ
(
e(j−j0)$+

l (τ) − e(j−j0)ϕ+
l (τ)

)
dτ

E5 =
1

2iπ|α+
l |

∫
Γ5

enτe(j−j0)ϕ+
l (τ)dτ − 1

n
1

2µ

H2µ

(
β+
l ;
nα+

l + j0 − j
n

1
2µ

)
and Γ1, . . . ,Γ5 are paths belonging to X. We just have to prove correct bounds on the terms E1, . . . , E5

appearing in (5.21) to obtain (5.19a). In particular, we will use good choices of paths Γ1, . . . ,Γ5 to optimize
the bounds using Lemma 5.4.
I Using (4.51g), (5.7) and Lemma 4.3 which claims that the vectors V +

m (z, j) converge exponentially fast
towards R+

m(eτ ), we have that there exist two positive constants C, c independent from n, j0, j and ~e such that

|E1| ≤ Ce−c|j||~e|
∫

Γ1

exp

(
n<(τ) +

(
j − j0
α+
l

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I Using (4.51e) and (5.7), we have that there exist two positive constants C, c independent from n, j0, j
and ~e such that

|E2| ≤ Ce−c|j0||~e|
∫

Γ2

exp

(
n<(τ) +

(
j − j0
α+
l

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I We notice that ζ+
m(1) = 1 and ζ+

m
′
(1) = − 1

α+
l

. Using a Taylor expansion and (5.7), we have that there
exists a positive constant C independent from n, j0 and j such that

|E3| ≤ C
∫

Γ3

|τ | exp

(
n<(τ) +

(
j − j0
α+
l

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I Since j−j0
α+
l

∈
[
n
2 , 2n

]
, we can use Lemma 5.5 and prove that there exists a positive constant C independent

from n, j0 and j such that

|E4| ≤ Cn
∫

Γ4

|τ |2µ+1 exp

(
n<(τ) +

(
j − j0
α+
l

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

Using Lemma 5.4 which gives a good choices of path Γ1, . . . ,Γ4 ∈ X depending on n, j0 and j to handle
the integrals in the terms above as well as Lemma 5.6 to take care of the term E5, there exist new constants
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C, c > 0 independent from n, j0, j and ~e such that

|E1| ≤
Ce−c|j||~e|
n

1
2µ

exp

−c

∣∣∣n− ( j−j0

α+
l

)∣∣∣
n

1
2µ


2µ

2µ−1

 |E2| ≤
Ce−c|j0||~e|

n
1

2µ

exp

−c

∣∣∣n− ( j−j0

α+
l

)∣∣∣
n

1
2µ


2µ

2µ−1



|E3| ≤
C

n
1
µ

exp

−c

∣∣∣n− ( j−j0

α+
l

)∣∣∣
n

1
2µ


2µ

2µ−1

 |E4| ≤
C

n
1
µ

exp

−c

∣∣∣n− ( j−j0

α+
l

)∣∣∣
n

1
2µ


2µ

2µ−1



|E5| ≤
C

n
1
µ

exp

−c

∣∣∣n− ( j−j0

α+
l

)∣∣∣
n

1
2µ


2µ

2µ−1

 .

We have thus obtained (5.19a).
• We now focus on (5.19b). We thus consider m ∈ I+

cs and j ≥ j0 + 1 or m ∈ I+
cu and j ∈ {0, . . . , j0} such

that j−j0
α+
l

/∈
[
n
2 , 2n

]
. We observe that in particular, S+

l (n, j0, j) = 0. Using (5.20), (5.3) since the eigenvalue we

consider is central, Lemma 4.3 which claims that the vectors V +
m (z, j) are uniformly bounded for z ∈ B(1, δ1)

and j ∈ N, (4.51g) and (5.7), there exists a positive constant C independent from n, j0, j and ~e such that for
all Γ ∈ X∣∣∣∣∣− sgn(α+

l )

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ − S+
l (n, j0, j)~e

∣∣∣∣∣
≤ C|~e|

∫
Γ

exp

(
n<(τ) +

(
j − j0
α+
l

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

We then use Lemma 5.4 to prove that there exist two new positive constants C, c independent from n, j0, j and
~e such that ∣∣∣∣∣− sgn(α+

l )

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ − S+
l (n, j0, j)~e

∣∣∣∣∣ ≤ C|~e|e−cn.
• We now focus on (5.19c). We will consider the case where the integer m belongs to I+

cs and j ≥ j0 + 1.
The second case considered in (5.19c) would be handled similarly. Using (5.20), Lemma 4.3 which claims that
the vectors V +

m (z, j) are uniformly bounded for z ∈ B(1, δ1) and j ∈ N, (4.51g) and (4.1) whilst noticing that
j ≥ j0 + 1, there exists a positive constant C independent from n, j0, j and ~e such that∣∣∣∣∣ 1

2iπ

∫
Γin(η)

enτeτ C̃ +
m (eτ , j0, ~e)Π(W+

m(eτ , j))dτ

∣∣∣∣∣ ≤ C|~e|e−2c∗|j−j0|
∫

Γd(η)

en<(τ)|dτ |

≤ 2rε(η)C|~e|e−nη−2c∗|j−j0|.

�

5.2.3 Reflected waves

We now look at the reflected waves.

Lemma 5.8. We consider m ∈ {2, . . . , dp} and m′ ∈ {dp+ 1, . . . , d(p+ q)} and write them as m = l+ (k− 1)d
and m′ = l′ + (k′ − 1)d with k, k′ ∈ {1, . . . , p+ q} and l, l′ ∈ {1, . . . , d}. There exists a positive constant c such
that for all n ∈ N\ {0}, j0, j ∈ N such that j − j0 ∈ {−nq, . . . , np} and ~e ∈ Cd, we have:
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• If m ∈ I+
cs, m′ ∈ I+

cu and j

α+
l

− j0
α+

l′
∈
[
n
2 , 2n

]
, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ −

α+
l

α+
l′
g̃+
m′,m(1)R+

l′,l(n, j0, j)~e

= exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1

(
O

(
|~e|e−c|j|

n
1

2µ

)
+Os

(
|~e|e−c|j0|

n
1

2µ

)
r+
l +Os

(
1

n
1
µ

)
l+l′
T
~er+
l

)
.

(5.22a)

• If m ∈ I+
cs, m′ ∈ I+

cu and j

α+
l

− j0
α+

l′
/∈
[
n
2 , 2n

]
, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ −

α+
l

α+
l′
g̃+
m′,m(1)R+

l′,l(n, j0, j)~e = O(|~e|e−cn). (5.22b)

• If m ∈ I+
ss, m′ ∈ I+

cu and − j0
α+

l′
∈
[
n
2 , 2n

]
, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ = O

 |~e|e−c|j|n
1

2µ

exp

−c

∣∣∣∣n+ j0

α+

l′

∣∣∣∣
n

1
2µ


2µ

2µ−1

 .

(5.22c)
• If m ∈ I+

ss, m′ ∈ I+
cu and − j0

α+

l′
/∈
[
n
2 , 2n

]
, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ = O

(
|~e|e−cn

)
. (5.22d)

• If m ∈ I+
cs, m′ ∈ I+

su and j

α+
l

∈
[
n
2 , 2n

]
, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ

= O(|~e|e−cn) +Os

 |~e|e−c|j0|
n

1
2µ

exp

−c

∣∣∣n− j

α+
l

∣∣∣
n

1
2µ


2µ

2µ−1


 r+

l . (5.22e)

• If m ∈ I+
cs, m′ ∈ I+

su and j

α+
l

/∈
[
n
2 , 2n

]
, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ = O

(
|~e|e−cn

)
. (5.22f)

• If m ∈ I+
ss, m′ ∈ I+

su, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ = O

(
|~e|e−cn

)
. (5.22g)

We observe that since we consider m ∈ {2, . . . , dp} and m′ ∈ {dp+ 1, . . . , d(p+ q)}, Lemma 4.6 implies that
g̃+
m′,m can be holomorphically extended on the whole ball B(1, δ1) and thus the term g̃+

m′,m(1) is well defined.
Proof • We start by proving (5.22a). We consider that m ∈ I+

cs, m′ ∈ I+
cu and j

α+
l

− j0
α+

l′
∈
[
n
2 , 2n

]
.

Since the function g̃+
m′,m can be holomorphically extended on the whole ball B(1, ε), using the expression of

W+
m given by Lemma 4.3 and (4.50), we have using Cauchy’s formula that for any Γ ∈ X∫

Γin(η)

eτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ

=

∫
Γ

enτ g̃+
m′,m(eτ )ζ+

m(eτ )jζ+
m′(e

τ )−j0−1eτ∆+
m′(e

τ , j0, ~e)Π(V +
m (eτ , j))dτ. (5.23)
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Using Cauchy’s formula once again, (5.3) since the eigenvalues we consider are central and (1.29b), we then
have that

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ −

α+
l

α+
l′
g̃+
m′,m(1)R+

l′,l(n, j0, j)~e

= E1 + E2r+
l + (E3 + E4 + E5 + E6) l+

l′
T
~er+

l (5.24)

where E1 is a vector and E2, . . . , E6 are complex scalars defined by

E1 = − 1

2iπ

∫
Γ1

enτ g̃+
m′,m(eτ )ej$

+
l (τ)e−(j0+1)$+

l′ (τ)eτ∆+
m′(e

τ , j0, ~e)Π(V +
m (eτ , j)−R+

m(eτ ))dτ

E2 = − 1

2iπ

∫
Γ2

enτ g̃+
m′,m(eτ )ej$

+
l (τ)e−(j0+1)$+

l′ (τ)eτ
(

∆+
m′(e

τ , j0, ~e)−
(
ζ+
m′

)′
(eτ )l+

l′
T
~e
)
dτ

E3 = − 1

2iπ

∫
Γ3

enτej$
+
l (τ)e−j0$

+

l′ (τ)

(
g̃+
m′,m(eτ )eτζ+

m′(e
τ )−1

(
ζ+
m′

)′
(eτ ) +

g̃+
m′,m(1)

α+
l′

)
dτ

E4 =
g̃+
m′,m(1)

2iπα+
l′

∫
Γ4

enτ
(
ej$

+
l (τ) − ejϕ

+
l (τ)

)
e−j0$

+

l′ (τ)dτ

E5 =
g̃+
m′,m(1)

2iπα+
l′

∫
Γ5

enτejϕ
+
l (τ)

(
e−j0$

+

l′ (τ) − e−j0ϕ
+

l′ (τ)
)
dτ

E6 =
g̃+
m′,m(1)

2iπα+
l′

∫
Γ5

enτejϕ
+
l (τ)e−j0ϕ

+

l′ (τ)dτ −
α+
l

α+
l′
g̃+
m′,m(1)

1

n
1

2µ

H2µ

 j

nα+
l

β+
l −

j0

nα+
l′
β+
l′

(
α+
l

α+
l′

)2µ

,
nα+

l + j0
α+
l

α+

l′
− j

n
1

2µ


and Γ1, . . . ,Γ6 are paths belonging to X. We just have to prove bounds on the terms E1, . . . , E6. In particular,
we will use good choices of paths Γ1, . . . ,Γ6 to optimize the bounds using Lemma 5.4.
I Using (4.51g), (5.7) and Lemma 4.3 which claims that the vectors V +

m (z, j) converge exponentially fast
towards R+

m(eτ ), we have that there exist two positive constants C, c independent from n, j0, j and ~e such that

|E1| ≤ Ce−c|j||~e|
∫

Γ1

exp

(
n<(τ) +

(
j

α+
l

− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I Using (4.51e) and (5.7), we have that there exist two positive constants C, c independent from n, j0, j
and ~e such that

|E2| ≤ Ce−c|j0||~e|
∫

Γ2

exp

(
n<(τ) +

(
j

α+
l

− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I We notice that ζ+
m′(1) = 1 and ζ+

m′
′
(1) = − 1

α+
′
. Using a Taylor expansion and (5.7), we have that there

exists a positive constant C independent from n, j0 and j such that

|E3| ≤ C
∫

Γ3

|τ | exp

(
n<(τ) +

(
j

α+
l

− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I We observe that j

α+
l

and − j0
α+

l′
are positive and j

α+
l

− j0
α+

l′
∈
[
n
2 , 2n

]
. Thus, we have that j

α+
l

∈ [0, 2n]. We

can then use Lemma 5.5 and (5.7) to prove that there exists a positive constant C independent from n, j0 and
j such that

|E4| ≤ Cn
∫

Γ4

|τ |2µ+1 exp

(
n<(τ) +

(
j

α+
l

− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

Furthermore, we also have that and − j0
α+

l′
∈ [0, 2n]. We can also use Lemma 5.5 and (5.6) to prove that there

exists a positive constant C independent from n, j0 and j such that

|E5| ≤ Cn
∫

Γ5

|τ |2µ+1 exp

(
n<(τ) +

(
j

α+
l

− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.
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Using Lemma 5.4 which gives a good choices of path Γ1, . . . ,Γ5 ∈ X depending on n, j0 and j to handle
the integrals in the terms above as well as Lemma 5.6 to take care of the term E6, there exist new constants
C, c > 0 independent from n, j0, j and ~e such that

|E1| ≤
Ce−c|j||~e|
n

1
2µ

exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1
 |E2| ≤

Ce−c|j0||~e|
n

1
2µ

exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1


|E3| ≤
C

n
1
µ

exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1
 |E4| ≤

C

n
1
µ

exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1


|E5| ≤
C

n
1
µ

exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1
 |E6| ≤

C

n
1
µ

exp

−c

∣∣∣∣n− ( j

α+
l

− j0
α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1
 .

We have thus obtained (5.22a).
• We now focus on (5.22b). We consider that m ∈ I+

cs, m′ ∈ I+
cu and j

α+
l

− j0
α+

l′
/∈
[
n
2 , 2n

]
. We observe that in

particular, R+
l′,l(n, j0, j) = 0. Using (5.23), (5.3) since the eigenvalue we consider is central, Lemma 4.3 which

claims that the vectors V +
m (z, j) are uniformly bounded for z ∈ B(1, δ1) and j ∈ N, (4.51g) and (5.7), there

exists a positive constant C independent from n, j0, j and ~e such that for all Γ ∈ X∣∣∣∣∣− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ −

α+
l

α+
l′
g̃+
m′,m(1)R+

l′,l(n, j0, j)~e

∣∣∣∣∣
≤ C|~e|

∫
Γ

exp

(
n<(τ) +

(
j

α+
l

− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

We then use Lemma 5.4 to prove that there exist two new positive constants C, c independent from n, j0, j and
~e such that∣∣∣∣∣− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ −

α+
l

α+
l′
g̃+
m′,m(1)R+

l′,l(n, j0, j)~e

∣∣∣∣∣ ≤ C|~e|e−cn.
• We now focus on (5.22c) and (5.22d). We consider that m ∈ I+

ss, m′ ∈ I+
cu. Using (5.23), (4.1) to bound

ζ+
m, (5.3) since the index m′ belongs to I+

cu, Lemma 4.3 which claims that the vectors V +
m (z, j) are uniformly

bounded for z ∈ B(1, δ1) and j ∈ N, (4.51g) and (5.7), there exists a positive constant C independent from n,
j0, j and ~e such that for all Γ ∈ X∣∣∣∣∣− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ −

α+
l

α+
l′
g̃+
m′,m(1)R+

l′,l(n, j0, j)~e

∣∣∣∣∣
≤ Ce−2c?|j||~e|

∫
Γ

exp

(
n<(τ) +

(
− j0

α+
l′

)(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

We observe that − j0
α+

l′
is positive since m′ belongs to I+

cu. Using (5.17c) when − j0
α+

l′
∈
[
n
2 , 2n

]
and (5.17a) and

(5.17b) else, we end up proving (5.22c) and (5.22d).
• We now focus on (5.22e) and (5.22f). We consider that m ∈ I+

cs, m′ ∈ I+
su. Using (5.23), (5.3) since the

index m belongs to I+
cs and Cauchy’s formula, we have that

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ = E1 + E2r+

l
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where the vector E1 and the complex scalar E2 are defined by

E1 :=

∫
Γ1

enτeτ g̃+
m′,m(eτ )ej$

+
l (τ)ζ+

m′(e
τ )−j0−1∆+

m′(e
τ , j0, ~e)Π(V +

m (eτ , j)−R+
m(eτ ))dτ

E2 :=

∫
Γ2

enτeτ g̃+
m′,m(eτ )ej$

+
l (τ)ζ+

m′(e
τ )−j0−1∆+

m′(e
τ , j0, ~e)dτ

where Γ1,Γ2 are paths belonging to X. Using (4.3) to bound ζ+
m′ , Lemma 4.3 which claims that the vectors

V +
m (z, j) converge exponentially fast towards R+

m(eτ ), (4.51g) and (5.7), we prove that there exist two positive
constants C, c independent from n, j0, j, ~e, Γ1 and Γ2 such that

|E1| ≤C|~e|e−c|j|e−c|j0|
∫

Γ1

exp

(
n<(τ) +

j

α+
l

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |,

|E2| ≤C|~e|e−c|j0|
∫

Γ2

exp

(
n<(τ) +

j

α+
l

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

Whilst observing that j

α+
l

is positive since m belongs to I+
cs, when

j

α+
l

/∈
[
n
2 , 2n

]
, Lemma 5.4 allows us to prove

exponential bounds with regard to n on the terms E1 and E2 and to thus immediately conclude the proof of
(5.22f). When j

α+
l

∈
[
n
2 , 2n

]
, Lemma 5.4 allows us to choose Γ1 and Γ2 depending on n, j0, j and ~e so that

there exist new constants C, c > 0 independent from n, j0, j and ~e such that

|E1| ≤
C|~e|e−c|j|e−c|j0|

n
1

2µ

exp

−c

∣∣∣n− j

α+
l

∣∣∣
n

1
2µ


2µ

2µ−1

 |E2| ≤
C|~e|e−c|j0|

n
1

2µ

exp

−c

∣∣∣n− j

α+
l

∣∣∣
n

1
2µ


2µ

2µ−1

 .

Since j ∈
[
n
2 , 2n

]
, we have that there exist two other constants C, c > 0 independent from n, j0, j and ~e such

that
|E1| ≤ C|~e|e−cn.

This allows us to conclude (5.22e).
• There only remains to prove (5.22g). We observe using (5.23) with Γ = Γd(η) ∈ X, (4.1) and (4.3) to

bound ζ+
m and ζ+

m′ , (4.51g) and Lemma 4.3 which claims that the vectors V +
m (z, j) are uniformly bounded for

z ∈ B(1, δ1) and j ∈ N, we have that there exist a positive constant C independent from n, j0, j and ~e such
that ∣∣∣∣∣− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W+
m(eτ , j))dτ

∣∣∣∣∣ ≤ C|~e|e−2c∗(|j|+|j0|)−nη.

�

5.2.4 Transmitted waves

We now look at the transmitted waves.

Lemma 5.9. We consider m ∈ {dp+ 1, . . . , d(p+ q)− 1} and m′ ∈ {dp+ 1, . . . , d(p+ q)} and write them as
m = l+ (k− 1)d and m′ = l′+ (k′− 1)d with k, k′ ∈ {1, . . . , p+ q} and l, l′ ∈ {1, . . . , d}. There exists a positive
constant c such that for all n ∈ N\ {0}, j0 ∈ N, j ∈ −N such that j − j0 ∈ {−nq, . . . , np} and ~e ∈ Cd, we have:
• If m ∈ I−cu, m′ ∈ I+

cu and j

α−l
− j0

α+

l′
∈
[
n
2 , 2n

]
, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ −
α−l
α+
l′
g̃+
m′,m(1)T+

l′,l(n, j0, j)~e

= exp

−c

∣∣∣∣n− ( j

α−l
− j0

α+

l′

)∣∣∣∣
n

1
2µ


2µ

2µ−1

(
O

(
|~e|e−c|j|

n
1

2µ

)
+Os

(
|~e|e−c|j0|

n
1

2µ

)
r−l +Os

(
1

n
1
µ

)
l+l′
T
~er−l

)
.

(5.25a)
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• If m ∈ I−cu, m′ ∈ I+
cu and j

α−l
− j0

α+

l′
/∈
[
n
2 , 2n

]
, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ −
α−l
α+
l′
g̃+
m′,m(1)T+

l′,l(n, j0, j)~e = O
(
|~e|e−cn

)
. (5.25b)

• If m ∈ I−su, m′ ∈ I+
cu and − j0

α+

l′
∈
[
n
2 , 2n

]
, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ = O

e−c|j||~e|n
1

2µ

exp

−c

∣∣∣∣n+ j0

α+

l′

∣∣∣∣
n

1
2µ


2µ

2µ−1

 .

(5.25c)
• If m ∈ I−su, m′ ∈ I+

cu and − j0
α+

l′
/∈
[
n
2 , 2n

]
, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ = O
(
|~e|e−cn

)
. (5.25d)

• If m ∈ I−cu, m′ ∈ I+
su and j

α−l
∈
[
n
2 , 2n

]
, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ

= O(|~e|e−cn) +Os

 |~e|e−c|j0|
n

1
2µ

exp

−c

∣∣∣n− j

α−l

∣∣∣
n

1
2µ


2µ

2µ−1


 r−l . (5.25e)

• If m ∈ I−cu, m′ ∈ I+
su and j

α−l
/∈
[
n
2 , 2n

]
, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ = O
(
|~e|e−cn

)
. (5.25f)

• If m ∈ I−su, m′ ∈ I+
su, we have

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ = O
(
|~e|e−cn

)
. (5.25g)

Just like in the case of the reflected waves, since we consider m ∈ {dp+ 1, . . . , d(p+ q)− 1} and m′ ∈
{dp+ 1, . . . , d(p+ q)}, Lemma 4.6 implies that g̃+

m′,m can be holomorphically extended on the whole ball B(1, δ1)

and thus the term g̃+
m′,m(1) is well defined.

Proof The proof of Lemma 5.9 is sensibly the same one as for Lemma 5.8 so the proof is left to the reader.
Let us just point out that in order to prove (5.25a), we have using Cauchy’s formula that

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,m(eτ )C̃ +

m (eτ , j0, ~e)Π(W−m(eτ , j))dτ −
α−l
α+
l′
g̃+
m′,m(1)T+

l′,l(n, j0, j)~e

= E1 + E2r−l + (E3 + E4 + E5 + E6) l+
l′
T
~er−l
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where E1 is a vector and E2, . . . , E6 are complex scalars defined by

E1 =
1

2iπ

∫
Γ1

enτ g̃+
m′,m(eτ )ej$

−
l (τ)e−(j0+1)$+

l′ (τ)eτ∆+
m′(e

τ , j0, ~e)Π(V −m (eτ , j)−R−m(eτ ))dτ

E2 =
1

2iπ

∫
Γ2

enτ g̃+
m′,m(eτ )ej$

−
l (τ)e−(j0+1)$+

l′ (τ)eτ
(

∆+
m′(e

τ , j0, ~e)−
(
ζ+
m′

)′
(eτ )l+

l′
T
~e
)
dτ

E3 =
1

2iπ

∫
Γ3

enτej$
−
l (τ)e−j0$

+

l′ (τ)

(
g̃+
m′,m(eτ )eτζ+

m′(e
τ )−1

(
ζ+
m′

)′
(eτ ) +

g̃+
m′,m(1)

α+
l′

)
dτ

E4 = −
g̃+
m′,m(1)

2iπα+
l′

∫
Γ4

enτ
(
ej$

−
l (τ) − ejϕ

−
l (τ)

)
e−j0$

+

l′ (τ)dτ

E5 = −
g̃+
m′,m(1)

2iπα+
l′

∫
Γ5

enτejϕ
−
l (τ)

(
e−j0$

+

l′ (τ) − e−j0ϕ
+

l′ (τ)
)
dτ

E6 = −
g̃+
m′,m(1)

2iπα+
l′

∫
Γ5

enτejϕ
−
l (τ)e−j0ϕ

+

l′ (τ)dτ −
α−l
α+
l′
g̃+
m′,m(1)

1

n
1

2µ

H2µ

 j

nα−l
β−l −

j0

nα+
l′
β+
l′

(
α−l
α+
l′

)2µ

,
nα−l + j0

α−l
α+

l′
− j

n
1

2µ


and Γ1, . . . ,Γ6 are paths belonging to X. We just have to prove bounds on the terms E1, . . . , E6 just like in the
proof of (5.22a). �

5.2.5 Unstable excited mode

Lemma 5.10. There exists a positive constant c such that for all m′ ∈ I+
su, n ∈ N\ {0}, j0 ∈ N, j ∈ Z such

that j − j0 ∈ {−nq, . . . , np} and ~e ∈ Cd, we have
• For j ∈ N,

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ = Os

(
|~e|e−c|j0|

)
V (j) +O

(
|~e|e−cn

)
. (5.26)

• For j ∈ −N,
1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,d(p+q)(e

τ )C̃ +
m′(e

τ , j0, ~e)Π(Φd(p+q)(e
τ , j))dτ = Os

(
|~e|e−c|j0|

)
V (j) +O

(
|~e|e−cn

)
. (5.27)

We recall that the sequence V is defined by (4.29).
Proof We are going to prove (5.26). We consider m′ ∈ I+

su, n ∈ N\ {0}, j0 ∈ N. For j ∈ N, using the residue
theorem and the equality (4.50), we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ

= − 1

2iπ

∫
Γd(η)

enτζ+
m′(e

τ )−j0−1eτ g̃+
m′,1(eτ )∆+

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ

− ζ+
m′(1)−j0−1∆+

m′(1, j0, ~e)Res(g̃+
m′,1, 1)V (j).

We observe using (4.3) and (4.51g) that there exists a positive constant C independent from n, j0, j and ~e such
that ∣∣∣ζ+

m′(1)−j0−1∆+
m′(1, j0, ~e)Res(g̃+

m′,1, 1)
∣∣∣ ≤ C|~e|e−2c∗|j0|.

Furthermore, (4.3) and (4.28) imply that there exists another positive constant C independent from n, j0, j
and ~e such that∣∣∣∣∣− 1

2iπ

∫
Γd(η)

enτζ+
m′(e

τ )−j0−1eτ g̃+
m′,1(eτ )∆+

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ

∣∣∣∣∣
≤ C|~e|

∫
Γd(η)

en<(τ)|dτ | ≤ 2rε(η)C|~e|e−nη.

We thus obtain (5.26). The proof of (5.27) is fairly similar and is left to the reader. The only point to observe
is that we have to use the equality (4.27). �
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5.2.6 Central excited mode

Lemma 5.11. We consider m′ ∈ I+
cu and write it as m′ = l′ + (k′ − 1)d with k′ ∈ {1, . . . , p+ q} and l′ ∈

{1, . . . , d}. There exists a positive constant c such that for all n ∈ N\ {0}, j0 ∈ N, j ∈ Z such that j − j0 ∈
{−nq, . . . , np} and ~e ∈ Cd, we have
• For − j0

α+

l′
∈
[
n
2 , 2n

]
and j ≥ 0,

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ −

Res(g̃+
m′,1, 1)

α+
l′

E+
l′ (n, j0)~eV (j) =

O

 |~e|e−c|j|
n

1
2µ

exp

−c

∣∣∣n+ j0

α+
l

∣∣∣
n

1
2µ


2µ

2µ−1


+Os

(
|~e|e−c|j0|

)
V (j). (5.28a)

• For − j0
α+

l′
/∈
[
n
2 , 2n

]
and j ≥ 0,

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ −

Res(g̃+
m′,1, 1)

α+
l′

E+
l′ (n, j0)~eV (j) =

O(|~e|e−cn). (5.28b)

• For − j0
α+

l′
∈
[
n
2 , 2n

]
and j ≥ 0,

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,d(p+q)(e

τ )C̃ +
m′(e

τ , j0, ~e)Π(Φd(p+q)(e
τ , j))dτ −

Res(g̃+
m′,1, 1)

α+
l′

E+
l′ (n, j0)~eV (j) =

O

 |~e|e−c|j|
n

1
2µ

exp

−c

∣∣∣n+ j0

α+
l

∣∣∣
n

1
2µ


2µ

2µ−1


+Os

(
|~e|e−c|j0|

)
V (j). (5.28c)

• For − j0
α+

l′
/∈
[
n
2 , 2n

]
and j < 0,

1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,d(p+q)(e

τ )C̃ +
m′(e

τ , j0, ~e)Π(Φd(p+q)(e
τ , j))dτ −

Res(g̃+
m′,1, 1)

α+
l′

E+
l′ (n, j0)~eV (j) =

O(|~e|e−cn). (5.28d)

We recall once again that the sequence V is defined by (4.29).
Proof We will focus on proving (5.28a) and (5.28b) as the proof of (5.28c) and (5.28d) would be similar whilst
observing that (4.27) implies that

∀j ∈ Z, Φ1(1, j) = Φd(p+q)(1, j)

and the definition (4.40) of g̃±m′,m and (4.41) which imply that

Res(g̃+
m′,d(p+q), 1) = −Res(g̃+

m′,1, 1).

• Proof of (5.28a):
Using Cauchy’s formula, (4.50) and (5.3) since the eigenvalue ζ+

m′ is central, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ −

Res(g̃+
m′,1, 1)

α+
l′

E+
l′ (n, j0)~eΠ (Φ1(1, j))

= E1 + E2Π(Φ(1, j)) + (E3 + E4 + E5)∆+
m′(1, j0, ~e)Π(Φ(1, j)) + E6Π(Φ(1, j)) (5.29)

62



where

E1 :=− 1

2iπ

∫
Γ1

enτeτ g̃+
m′,1(eτ )e−(j0+1)$+

l′ (τ)∆+
m′(e

τ , j0, ~e)Π(Φ1(eτ , j)− Φ1(1, j))dτ

E2 :=− 1

2iπ

∫
Γ2

enτeτ g̃+
m′,1(eτ )e−(j0+1)$+

l′ (τ)
(
∆+
m′(e

τ , j0, ~e)−∆+
m′(1, j0, ~e)

)
dτ

E3 :=− 1

2iπ

∫
Γ3

enτe−j0$
+

l′ (τ)

(
eτ g̃+

m′,1(eτ )ζ+
m′(e

τ − 1)−
Res(g̃+

m′,1, 1)

τ

)
dτ

E4 :=−
Res(g̃+

m′,1, 1)

2iπ

∫
Γ4

enτ
e−j0$

+

l′ (τ) − e−j0ϕ
+

l′ (τ)

τ
dτ

E5 :=− Res(g̃+
m′,1, 1)

(
1

2iπ

∫
Γin(η)

enτ
e−j0ϕ

+

l′ (τ)

τ
dτ − E2µ

(
β+
l′ ;
nα+

l′ + j0

n
1

2µ

))

E6 :=− Res(g̃+
m′,1, 1)E2µ

(
β+
l′ ,
nα+

l′ + j0

n
1

2µ

)(
∆+
m′(1, j0, ~e) +

l+
l′
T
~e

α+
l′

)
and Γ1, . . . ,Γ4 ∈ X. Let us observe that, since the function g̃+

m′,1 has a simple pole of order 1 at 1, we have the
right to use the Cauchy’s formula for the first 4 terms as the functions inside the integrals can be holomorphically
extended on the whole ball B(1, ε).
I Using (4.51g) to bound ∆+

m′(e
τ , j0, ~e), (4.51c) to bound g̃+

m′,1(eτ )Π (Φ1(eτ , j)− Φ1(1, j)) and (5.7), there
exists a constant C > 0 independent from n, j0, j, ~e and Γ1 such that

|E1| ≤ C|~e|e−
3c∗
2 |j|

∫
Γ1

exp

(
n<(τ)− j0

α+
l′

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I Using (4.51i) to bound g̃+
m′,1(eτ )

(
∆+
m′(e

τ , j0, ~e)−∆+
m′(1, j0, ~e)

)
and (5.7), there exists a constant C > 0

independent from n, j0, j, ~e and Γ2 such that

|E2| ≤ C|~e|
∫

Γ2

exp

(
n<(τ)− j0

α+
l′

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I Using (5.7), there exists a constant C > 0 independent from n, j0, j, ~e and Γ3 such that

|E3| ≤ C
∫

Γ3

exp

(
n<(τ)− j0

α+
l′

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

I Using Lemma 5.2, there exists a constant C > 0 independent from n, j0, j, ~e and Γ4 such that

|E4| ≤ Cn
∫

Γ4

|τ |2µ exp

(
n<(τ)− j0

α+
l′

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

Using Lemma 5.4 which gives a good choices of path Γ1, . . . ,Γ4 ∈ X depending on n, j0 and j to handle the
integrals in the terms above, there exist new constants C, c > 0 independent from n, j0, j and ~e such that

|E1| ≤
Ce−c|j||~e|
n

1
2µ

exp

−c

∣∣∣∣n+ j0

α+

l′

∣∣∣∣
n

1
2µ


2µ

2µ−1
 |E2| ≤

C|~e|
n

1
2µ

exp

−c

∣∣∣∣n+ j0

α+

l′

∣∣∣∣
n

1
2µ


2µ

2µ−1


|E3| ≤
C

n
1

2µ

exp

−c

∣∣∣∣n+ j0

α+

l′

∣∣∣∣
n

1
2µ


2µ

2µ−1
 |E4| ≤

C

n
1

2µ

exp

−c

∣∣∣∣n+ j0

α+

l′

∣∣∣∣
n

1
2µ


2µ

2µ−1
 .

Using (5.18c) of Lemma 5.6 to handle E5 and using (4.51i) and the fact that the function E2µ(β+
l′ ; ·) is bounded

to handle E6, we can also consider that we chose the constants C, c so that

|E5| ≤ C

n
1

2µ
exp

−c

∣∣∣∣∣n+

j0

α
+
l′

∣∣∣∣∣
n

1
2µ


2µ

2µ−1

 |E6| ≤ C|~e|e−c|j0|.
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Using (4.28) and (4.51g) to bound Φ1(1, j) and ∆+
m′ in (5.29), we can conclude the proof of (5.28a).

• Proof of (5.28b):
We will separate this proof into two parts.
I Let us assume that − j0

α+
′
∈
[
0, n2

]
. We recall that g̃+

m′,1 is a meromorphic function with a pole of order 1

at 1. Using the Residue Theorem, we have

− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ −

Res(g̃+
m′,1, 1)

α+
l′

E+
l′ (n, j0)~eΠ (Φ1(1, j)) =

− 1

2iπ

∫
Γd(η)

enτeτ g̃+
m′,1(eτ )e−(j0+1)$+

l′ (τ)∆+
m′(e

τ , j0, ~e)Π(Φ1(eτ , j))dτ

−
Res(g̃+

m′,1, 1)

α+
l′

(
1− E2µ

(
β+
l′ ;
nα+

l′ + j0

n
1

2µ

))
l+
l′
T
~eΠ (Φ1(1, j)) .

We need to obtain exponential bounds on both terms on the right hand side of the equality above. First, we
observe that since − j0

α+

l′
belongs to

[
0, n2

]
, we have

nα+
l′ + j0

n
1

2µ

≤
α+
l′

2
n

2µ
2µ−1 .

We have that α+
l′ < 0 since m′ belongs to I+

cu and thus, using (1.28c) and (4.28), we have that there exist two
positive constants C, c such that for all n ∈ N\ {0}, j0, j ∈ N, ~e ∈ Cd∣∣∣∣∣Res(g̃+

m′,1, 1)

α+
l′

(
1− E2µ

(
β+
l′ ;
nα+

l′ + j0

n
1

2µ

))
l+
l′
T
~eΠ (Φ1(1, j))

∣∣∣∣∣ ≤ C|~e|e−c|j|e−cn.
We now observe that using (4.51g), (4.28) and (5.7), we can prove that there exist two positive constants

C, c such that such that for all n ∈ N\ {0}, j0, j ∈ N, ~e ∈ Cd∣∣∣∣∣− 1

2iπ

∫
Γd(η)

enτeτ g̃+
m′,1(eτ )e−(j0+1)$+

l′ (τ)∆+
m′(e

τ , j0, ~e)Π(Φ1(eτ , j))dτ

∣∣∣∣∣
≤ C|~e|e−c|j|

∫
Γd(η)

exp

(
n<(τ)− j0

α+
l′

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

Using (5.17a), we can find exponential bounds for the integral in the right hand term above. This allows us to
conclude the proof of (5.28b) when − j0

α+

l′
belongs to

[
0, n2

]
.

I Let us assume that − j0
α+
′
∈ [2n,+∞[. Since − j0

α+

l′
belongs to [2n,+∞[, we have

nα+
l′ + j0

n
1

2µ

≥ −α+
l′ n

2µ
2µ−1 .

We have that α+
l′ < 0 since m′ belongs to I+

cu and thus, using (1.28b) and (4.28), we have that there exist two
positive constants C, c such that for all n ∈ N\ {0}, j0, j ∈ N, ~e ∈ Cd∣∣∣∣∣Res(g̃+

m′,1, 1)

α+
l′

E2µ

(
β+
l′ ;
nα+

l′ + j0

n
1

2µ

)
l+
l′
T
~eΠ (Φ1(1, j))

∣∣∣∣∣ ≤ C|~e|e−c|j|e−cn.
Furthermore, using (4.51g), (4.28) and (5.7), we can prove that there exist two positive constants C, c such that
such that for all n ∈ N\ {0}, j0, j ∈ N, ~e ∈ Cd∣∣∣∣∣− 1

2iπ

∫
Γin(η)

enτeτ g̃+
m′,1(eτ )C̃ +

m′(e
τ , j0, ~e)Π(Φ1(eτ , j))dτ

∣∣∣∣∣
≤ C|~e|e−c|j|

∫
Γin(η)

exp

(
n<(τ)− j0

α+
l′

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ |.

Using (5.17b), we can find exponential bounds for the integral in the right hand term above. This allows us to
conclude the proof of (5.28b) when − j0

α+

l′
belongs to [2n,+∞[. �

Acknowledgements: A faire
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6 Appendix

Proof of Lemma 3.5
Proof We define recursively

∀j ∈ N, z0
j := yj

and

∀n ∈ N,∀j ∈ N, zn+1
j := CHe

−cHj + Θ

+∞∑
k=0

e−cH |j−1−k|znk . (6.1)

We then prove recursively that for all n ∈ N, the sequence zn is bounded, has non negative coefficients and

‖zn‖∞ ≤
CH

1− θ
and ∀j ∈ N, znj ≤ zn+1

j .

Indeed, this property is obviously true for n = 0 using the inequality (3.24) since z0 = y. We now consider
n ∈ N for which the property is verified we will prove that the property for n+ 1 is satisfied. We first observe
using the equality (6.1) that for all j ∈ N the coefficient zn+1

j is non negative and

zn+1
j ≤ CH + θ ‖zn‖∞ .

Thus, we have that zn+1 ∈ `∞(N) and ∥∥zn+1
∥∥
∞ ≤

CH
1− θ

.

Finally, we observe that using the equality (6.1) for n and n+ 1, we have

zn+2
j − zn+1

j = Θ

+∞∑
k=0

e−cH |j−1−k|(zn+1
k − znk )︸ ︷︷ ︸
≥0

≥ 0.

This concludes the recurrence. We now observe that, for p, q ∈ N\ {0}, using the equality (6.1), we have

zpj − z
q
j = Θ

+∞∑
k=0

e−cH |j−1−k|(zp−1
k − zq−1

k ).

This implies that
‖zp − zq‖∞ ≤ θ

∥∥zp−1 − zq−1
∥∥
∞ .

Thus, we have that

∀p ≥ q ≥ 0, ‖zp − zq‖∞ ≤ θ
q
∥∥zp−q − y∥∥∞ ≤ θq 2CH

1− θ
.

Since θ < 1, the sequence (zn)n∈N is a Cauchy sequence of `∞(N), thus it converges towards a sequence
z∞ ∈ `∞(N). Since we have yj ≤ znj for all n, j ∈ N, we obviously have

∀j ∈ N, yj ≤ z∞j .

Also, the equality (6.1) implies that

∀j ∈ N, z∞j = CHe
−cHj + Θ

+∞∑
k=0

e−cH |j−1−k|z∞k . (6.2)

Thus, there just remain to prove that there exists only one bounded sequence that satisfies (6.2) and that it
has the form z∞ = (ρrj)j∈N where ρ and r satisfies the properties we expected.

We write (6.2) for j, j + 1 and j + 2 and reassemble the terms z∞j , z∞j+1 and z∞j+2 on the left side. We then
have(

1− e−cHΘ
)
z∞j − e−2cHΘz∞j+1 − e−3cHΘz∞j+2

= CHe
−cHj + Θ

j−1∑
k=0

e−cH |j−1−k|z∞k +

+∞∑
k=j+3

e−cH |j−1−k|z∞k

 (6.3a)
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−Θz∞j +
(
1− e−cHΘ

)
z∞j+1 − e−2cHΘz∞j+2

= e−cHCHe
−cHj + Θ

e−cH j−1∑
k=0

e−cH |j−1−k|z∞k + ecH
+∞∑
k=j+3

e−cH |j−1−k|z∞k

 (6.3b)

− e−cHΘz∞j −Θz∞j+1 +
(
1− e−cHΘ

)
z∞j+2

= e−2cHCHe
−cHj + Θ

e−2cH

j−1∑
k=0

e−cH |j−1−k|z∞k + e2cH

+∞∑
k=j+3

e−cH |j−1−k|z∞k

 . (6.3c)

We consider α, β, γ ∈ R such that {
α+ βe−cH + γe−2cH = 0
α+ βecH + γe2cH = 0.

A solution is α = γ = 1 and β = − e
2cH−e−2cH

ecH−e−cH = − sinh(2cH)
sinh(cH) = −2 cosh(cH). We then have that

α−Θ
(
αe−cH + β + γe−cH

)
= 1− θ e

cH
2 − e−

cH
2

e
cH
2 + e−

cH
2

(
2e−cH − 2 cosh(cH)

)
= 1 + 2θ sinh(cH)

sinh
(
cH
2

)
cosh

(
cH
2

)
= 1 + 4θ sinh2

(cH
2

)
.

Multiplying the equalities (6.3) respectively by α, β, γ and summing them, we obtain that

∀j ∈ N, z∞j+2 − 2 cosh(cH)z∞j+1 +
(

1 + 4θ sinh2
(cH

2

))
z∞j = 0.

We are thus led to study the polynomial P := X2 − 2 cosh(cH)X +
(
1 + 4θ sinh2

(
cH
2

))
. Its discriminant is

∆ = 4 sinh2(cH)− 16θ sinh2
(cH

2

)
= 16 sinh2

(cH
2

)(
cosh2

(cH
2

)
− θ
)
> 0.

Its roots are

r± := cosh(cH)± 2 sinh
(cH

2

)√
cosh2

(cH
2

)
− θ.

We observe that evaluating the polynomial P at 0 and 1 gives us

P (0) = 1 + 4θ sinh2
(cH

2

)
> 0

and
P (1) = 2− 2 cosh(cH) + 4θ sinh2

(cH
2

)
= −4(1− θ) sinh2

(cH
2

)
< 0.

Thus, r+ > 1 and r := r− ∈]0, 1[. We have that ρ, ρ̃ ∈ R such that

∀j ∈ N, z∞j = ρrj + ρ̃rj+.

Since the sequence z∞ is bounded, we have that ρ̃ = 0, i.e.

∀j ∈ N, z∞j = ρrj .

We are now going to be using the equality (6.2) to determine ρ. We first observe that r > e−cH . Indeed, we
have

r = cosh(cH)− 2 sinh
(cH

2

)√
cosh2

(cH
2

)
− θ

> cosh(cH)− 2 sinh
(cH

2

)
cosh

(cH
2

)
= cosh(cH)− sinh(cH)

= e−cH .
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Now, using the equality (6.2), we obtain

ρrj = CHe
−cHj + Θρ

+∞∑
k=0

e−cH |j−1−k|rk

= CHe
−cHj + Θρ

(
e−cH(j−1) (recH )j − 1

recH − 1
+ ecH(j−1) (re−cH )j

1− re−cH

)
= e−cHj

(
CH −Θρ

ecH

recH − 1

)
+ rjΘρ

(
ecH

recH − 1
+

e−cH

1− r−cH

)
.

Using the definition (3.21) of Θ, we have that

Θ

(
ecH

recH − 1
+

e−cH

1− r−cH

)
= θ

sinh
(
cH
2

)
cosh

(
cH
2

) 2 sinh(cH)

−r2 + 2 cosh(cH)− 1

= θ
sinh

(
cH
2

)
cosh

(
cH
2

) 2 sinh(cH)

4θ sinh2
(
cH
2

)
= 1.

Thus,

ρrj = e−cHj
(
CH −Θρ

ecH

recH − 1

)
+ ρrj

i.e.
CH = Θρ

ecH

recH − 1
.

Therefore,

ρ =
CH
Θ

(r − e−cH ).

�

Proof of Lemma 5.4
Proof • Proof of (5.17a)

We consider n ∈ N\ {0} and x ∈
[
0, n2

]
. Noticing that Γd(η) ⊂ B(0, ε) and using (5.10), we have∫

Γd(η)

|τ |k exp
(
n<(τ) + x(−<(τ) +AR<(τ)2µ −AI=(τ)2µ)

)
|dτ | ≤ εk

∫ rε(η)

−rε(η)

exp
(
−(n− x)η + xARη

2µ − xAIt2µ
)
dt

≤ 2rε(η)εk exp
(
−n

2

(
η −ARη2µ

))
≤ 2rε(η)εk exp

(
−nη

4

)
.

• Proof of (5.17b):
We consider n ∈ N\ {0} and x ∈ [2n,+∞[. We will separate the integral on the path Γin(η) using the paths

Γ0
in(η) and Γ±in(η) introduced in (5.14).
I Noticing that Γd(η) ⊂ B(0, ε) and that n− x ≤ −x2 , we have using condition (5.10)∫

Γ0
in(η)

|τ |k exp
(
n<(τ) + x(−<(τ) +AR<(τ)2µ −AI=(τ)2µ)

)
|dτ | ≤ εk

∫ rε(η)

−rε(η)

exp
(
(n− x)η + xARη

2µ − xAIt2µ
)
dt

≤ 2rε(η)εk exp
(
−x
(η

2
−ARη2µ

))
≤ 2rε(η)εk exp

(
−2n

(η
2
−ARη2µ

))
.

We have proved exponential bounds on this first term.
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I We have that using (5.11) and that x ≥ 2n∫
Γ±in(η)

|τ |k exp
(
n<(τ) + x(−<(τ) +AR<(τ)2µ −AI=(τ)2µ)

)
|dτ | ≤ εk

∫ η

−η
exp

(
(n− x)t+ xARt

2µ − xAIrε(η)2µ
)
dt

≤ 2ηεk exp
(
(x− n)η + xARη

2µ − xAIrε(η)2µ
)

≤ 2ηεk exp
(
x
(
η +ARη

2µ −AIrε(η)2µ
))

≤ 2ηεk exp
(
−AIrε(η)2µn

)
.

We have proved exponential bounds on this second term.
We can then easily conclude the proof of (5.17b)
• Proof of (5.17c):
We consider n ∈ N\ {0} and x ∈

[
n
2 , 2n

]
. We start by observing that

∀x ∈
[n

2
, 2n
]
,

(
|n− x|
n

1
2µ

) 2µ
2µ−1

≤ n. (6.4)

Thus, obtaining exponential bounds on certain terms when x ∈ [n2 , 2n] would also allow to conclude on the
proof of (5.17c).

We will now follow a strategy developed in [ZH98] in a continuous setting, which has also been used in
[God03, CF22, CF21, Coe22, Coe23] in the discrete case, and introduce a family of parameterized curves.

We recall that we introduced in (5.8) the function Ψ defined by

∀τp ∈ R, Ψ(τp) := τp −ARτp2µ.

and that we chose ε small enough so that the function Ψ is continuous and strictly increasing on ]−∞, ε]. We
can therefore introduce for τp ∈ [−η, ε] the curve Γp defined by

Γp :=
{
τ ∈ C,−η ≤ <(τ) ≤ τp, <(τ)−AR<(τ)2µ +AI=(τ)2µ = Ψ(τp)

}
.

It is a symmetric curve with respect to the axis R which intersects this axis on the point τp. If we introduce `p =(
Ψ(τp)−Ψ(−η)

AI

) 1
2µ

, then −η+ i`p and −η− i`p are the end points of Γp. We can also introduce a parametrization
of this curve by defining γp : [−`p, `p]→ C such that

∀τp ∈ [−η, ε] ,∀t ∈ [−`p, `p], =(γp(t)) = t, <(γp(t)) = hp(t) := Ψ−1
(
Ψ(τp)−AIt2µ

)
. (6.5)

The above parametrization immediately yields that there exists a constant C > 0 such that

∀τp ∈ [−η, ε],∀t ∈ [−`p, `p], |h′p(t)| ≤ C. (6.6)

Also, there exists a constant cp > 0 such that

∀τp ∈ [−η, ε],∀τ ∈ Γp, <(τ)− τp ≤ −cp=(τ)2µ. (6.7)

For τ ∈ Γp, it follows from (6.7) that

n<(τ) + x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

)
≤ −ncp=(τ)2µ + (n− x) τp + xARτ

2µ
p . (6.8)

There remains to make an appropriate choice of τp depending on n and x that minimizes the right-hand side of
the inequality (6.8) whilst the paths Γp have to remain within the ball B(0, ε). We recall that when we fixed
our choice of width η, we defined a radius ε# ∈]0, ε[ such that −η+ ilextr ∈ B(0, ε) where the real number lextr
is defined by (5.13). This implies that the curve Γp associated with τp = ε# intersects the axis −η + iR within
B(0, ε). We let

ζ =
x− n
2µn

, γ =
xAR
n

, ρ

(
ζ

γ

)
= sgn(ζ)

(
|ζ|
γ

) 1
2µ−1

.

Inequality (6.8) thus becomes

n<(τ) + x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

)
≤ −ncp=(τ)2µ + n(γτ2µ

p − 2µζτp). (6.9)
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Our limiting estimates will come from the case where ζ is close to 0. We observe that the condition x ≥ n
2

implies

γ ≥ AR
2
. (6.10)

Then, we take

τp :=


ρ
(
ζ
γ

)
, if ρ

(
ζ
γ

)
∈ [−η2 , ε#], (Case A)

ε#, if ρ
(
ζ
γ

)
> ε#, (Case B)

−η2 , if ρ
(
ζ
γ

)
< −η2 . (Case C)

The case A corresponds to the choice to minimize the right-hand side of (6.9) since ρ
(
ζ
γ

)
is the unique real

root of the polynomial
γX2µ−1 = ζ.

The cases B and C allow the path Γp to stay within B(0, ε).
We now define the paths:

Γp,res := {−η + it, t ∈ [−rε(η),−`p] ∪ [`p, rε(η)]} ,
Γp,in :=Γp ∪ Γp,res,

where the function rε is defined by (5.9). We observe that Γp,in belongs to the set of paths X. We will
decompose the integral ∫

Γp,in

|τ |k exp(n<(τ) + x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

)
)|dτ |

using the paths Γp and Γp,res and we will then bound each term.
I Let us assume that x and n are such that we are in Case A. Since τp = ρ

(
ζ
γ

)
is the unique root of

γX2µ−1 − ζ, we have
γτ2µ
p − 2µζτp = −(2µ− 1)γτ2µ

p ≤ 0. (6.11)

Thus, the inequality (6.9) becomes for τ ∈ Γp

n<(τ) + x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

)
≤ −ncp=(τ)2µ − (2µ− 1)γnτ2µ

p .

Therefore, we have∫
Γp

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤

∫
Γp

|τ |k exp
(
−ncp=(τ)2µ

)
|dτ | exp

(
−(2µ− 1)γnτ2µ

p

)
.

Using the parametrization (6.5) and the inequality (6.6), we have that∫
Γp

|τ |k exp
(
−ncp=(τ)2µ

)
|dτ | .

∫ −`p
−`p

(|τp|k + tk)e−ncpt
2µ

dt.

The change of variables u = n
1

2µ t and the fact that the functions y ≥ 0 7→ yk exp
(
− 2µ−1

2 γy2µ
)
are uniformly

bounded with respect to γ ≥ AR
2 imply∫ −`p
−`p

|t|ke−ncpt
2µ

dt .
1

n
k+1
2µ∫ −`p

−`p
|τp|ke−ncpt

2µ

dt .
1

n
k+1
2µ

exp

(
2µ− 1

2
γnτ2µ

p

)
.

Thus, ∫
Γp

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | . 1

n
k+1
2µ

exp

(
−2µ− 1

2
γnτ2µ

p

)
.
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Furthermore, since we are in the Case A

−2µ− 1

2
γnτ2µ

p = − 2µ− 1

2(2µAR)
2µ

2µ−1

AR

(
|n− x|
x

1
2µ

) 2µ
2µ−1

.

Therefore, there exist two positive constants C, c independent from n and x such that if we are in Case A,∫
Γp

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ C

n
k+1
2µ

exp

(
−c
(
|n− x|
x

1
2µ

) 2µ
2µ−1

)
.

Since x ∈ [n2 , 2n], this gives us two new constants C, c independent from n and x such that if we are in Case A
and x ∈ [n2 , 2n], then as expected

∫
Γp

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ C

n
k+1
2µ

exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
.

I Let us assume that x and n are such that we are in Case B. Since τp = ε# < ρ
(
ζ
γ

)
, we have

−ζ ≤ −γε2µ−1
#

and thus using (6.10)

γτ2µ
p − 2µζτp ≤ −(2µ− 1)γε2µ

# ≤ −
2µ− 1

2
ARε

2µ
# . (6.12)

Therefore, the inequality (6.9) becomes for τ ∈ Γp

n<(τ) + x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

)
≤ −ncp=(τ)2µ − 2µ− 1

2
ARnε

2µ
#

≤ −2µ− 1

2
ε2µ

# ARn.

We conclude that there exist two positive constants C, c independent from n and x such that if we are in Case
B, ∫

Γp

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ Ce−cn.

Using (6.4) if necessary, we obtain the bound expected in the statement of the lemma.
I Let us assume that x and n are such that we are in Case C. Since τp = −η2 > ρ

(
ζ
γ

)
, we have

ζ ≤ −γ
(η

2

)2µ−1

and thus using (6.10)

γτ2µ
p − 2µζτp = γ

(η
2

)2µ

+ 2µζ
η

2
≤ −(2µ− 1)γ

(η
2

)2µ

≤ −2µ− 1

2
AR

(η
2

)2µ

. (6.13)

Therefore, the inequality (6.9) becomes for τ ∈ Γp

n<(τ) + x
(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

)
≤ −ncp=(τ)2µ − 2µ− 1

2
ARn

(η
2

)2µ

≤ −2µ− 1

2

(η
2

)2µ

ARn.

We then conclude that there exist two positive constants C, c independent from n and x such that if we are in
Case C, ∫

Γp

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ Ce−cn.

Using (6.4) if necessary, we obtain the bound expected in the statement of the lemma.
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I We recall that −η ± `p belongs to Γp. For τ ∈ Γp,res, we have that

<(τ) = −η and |=(τ)| ≥ `p.

Thus,

n<(τ) + x(−<(τ) +AR<(τ)2µ −AI=(τ)2µ) ≤ −nη + x(η +ARη
2µ −AI`2µp )

≤ −nη + x(−τp +ARτ
2µ
p )

≤ −n(η + τp) + n(γτ2µ
p − 2µζτp).

In each cases A, B and C, we have that

η + τp ≥
η

2
and γτ2µ

p − 2µζτp ≤ 0.

Therefore, for all τ ∈ Γp,res,

n<(τ) + x(−<(τ) +AR<(τ)2µ −AI=(τ)2µ) ≤ −nη
2
.

We then conclude that∫
Γp,res

|τ |k exp
(
n<(τ) + x

(
−<(τ) +AR<(τ)2µ −AI=(τ)2µ

))
|dτ | ≤ 2πεke−n

η
2 .

Using (6.4) if necessary, we obtain the bound expected in the statement of the lemma.
Combining all the results we encountered, we easily conclude the proof of (5.17c). �

Proof of Lemma 5.6
Proof We will prove the statement of Lemma 5.6 with ? =?′ = + in order to alleviate the notations.
• Proof of (5.18a):
I We start by defining the paths

Γ0 := {it, t ∈ [−rε(η), rε(η)]} and Γ±comp := {t± irε(η), t ∈ [−η, 0]} .

For all Γ ∈ X, Cauchy’s formula implies that∣∣∣∣∫
Γ

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ −

∫
Γ0

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

∣∣∣∣
≤

∣∣∣∣∣
∫

Γ+
comp

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

∣∣∣∣∣+

∣∣∣∣∣
∫

Γ−comp

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

∣∣∣∣∣ .
We observe that (5.6) implies that∣∣∣∣∣
∫

Γ±comp

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

∣∣∣∣∣
≤
∫ 0

−η
exp

(
(n− (x+ y))t+ (x+ y)ARt

2µ − (x+ y)AIrε(η)2µ
)
dt.

Using (5.12) since t ∈ [−η, 0] and x+ y ∈
[
n
2 , 2n

]
, we have that

(n− (x+ y))t+ (x+ y)ARt
2µ − (x+ y)AIrε(η)2µ ≤ −AIrε(η)2µ

4
n.

Combining the observations above, we have thus proved that for all path Γ ∈ X, n ∈ N\ {0}, x, y ∈ [0,+∞[
such that x+ y ∈

[
n
2 , 2n

]
∣∣∣∣∫

Γ

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ −

∫
Γ0

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

∣∣∣∣
≤ 2η exp

(
−AIrε(η)2µ

4
n

)
. (6.14)
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I Since x+ y ≥ n
2 ≥

1
2 , we observe that∫ +∞

rε(η)

exp
(
−(x+ y)AIt

2µ
)
dt ≤ exp

(
−AIrε(η)2µ

4
n

)∫ +∞

rε(η)

exp

(
−AIt

2µ

4

)
dt.

Therefore, if we introduce the path
Γ∞0 := {it, t ∈ R}

then, using (5.6), the integral ∫
Γ∞0

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

is defined and we have that∣∣∣∣∣
∫

Γ0

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ −

∫
Γ∞0

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ

∣∣∣∣∣
≤ 2

∫ +∞

rε(η)

exp

(
−AIt

2µ

4

)
dt exp

(
−AIrε(η)2µ

4
n

)
. (6.15)

I Using the change of variables u = n
1

2µ

α+
l

t, we obtain

1

2iπ

∫
Γ∞0

exp
(
nτ + xα+

l ϕ
+
l (τ) + yα+

l′ϕ
+
l′ (τ)

)
dτ =

1

2π

∫ +∞

−∞
exp

(
it(n− (x+ y))−

(
xβ+

l

α+
l

2µ +
yβ+

l′

α+
l′

2µ

)
t2µ

)
dt

=
|α+
l |

n
1

2µ

H2µ

(
x

n
β+
l +

y

n
β+
l′

(
α+
l

α+
l′

)2µ

;
α+
l (n− (x+ y))

n
1

2µ

)
.

Combining (6.14), (6.15) and the observation above, we obtain the inequality (5.18a).
• Proof of (5.18b):

We observe using the change of variables u = x
1

2µ

α+
l

t that

1

2iπ

∫
Γ∞0

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
dτ =

1

2π

∫ +∞

−∞
exp

(
it(n− x)−

xβ+
l

α+
l

2µ t
2µ

)
dt

=
|α+
l |

x
1

2µ

H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)
.

Combining (6.14), (6.15) and the observation above, we have proved that there exist two constants C, c > 0
such that

∀x ∈
[n

2
, 2n
]
,

∣∣∣∣ 1

2iπ

∫
Γ

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
dτ −

|α+
l |

x
1

2µ

H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)∣∣∣∣ ≤ Ce−cn. (6.16)

Using (6.4), we can obtain the same generalized Gaussian bound as the one expected in (5.18b).
I We observe that

1

x
1

2µ

H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)
− 1

n
1

2µ

H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

)
=

1

x
1

2µ

(
H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)
−H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

))
+H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

)(
1

x
1

2µ

− 1

n
1

2µ

)
. (6.17)

We want to prove generalized Gaussian bounds for the two terms on the right hand side of (6.17). Applying the
mean value inequality and (1.28a), we have that there exist two constants C, c > 0 such that for all x ∈ [n2 , 2n]∣∣∣∣ 1

x
1

2µ

(
H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)
−H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

))∣∣∣∣ ≤ C

n
1

2µ

|n−x|
∣∣∣∣ 1

x
1

2µ

− 1

n
1

2µ

∣∣∣∣ exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
.
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Since x ∈
[
n
2 , 2n

]
, we also have using the mean value inequality that∣∣∣∣ 1

x
1

2µ

− 1

n
1

2µ

∣∣∣∣ ≤ |n− x|2µ
sup
t∈[x,n]

1

|t|1+ 1
2µ

≤ 2
1

2µ

µ

|n− x|
n1+ 1

2µ

. (6.18)

Therefore, since the function y 7→ y2 exp
(
− c

2y
2µ

2µ−1

)
is bounded, there exist two new constants C, c > 0 such

that for all x ∈ [n2 , 2n]∣∣∣∣ 1

x
1

2µ

(
H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)
−H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

))∣∣∣∣ ≤ C

n
exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
. (6.19)

We have thus proved generalized Gaussian bounds for the first term of the right hand side in (6.17). We
now focus on the second term. Using (1.28a), (6.18) and the fact that, for any constant c > 0, the function
y 7→ y exp

(
−cy

2µ
2µ−1

)
is bounded, we have that there exist two constants C, c > 0 such that

∣∣∣∣H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

)(
1

x
1

2µ

− 1

n
1

2µ

)∣∣∣∣ ≤ C

n
exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
. (6.20)

Combining (6.17), (6.19) and (6.20), we have proved generalized Gaussian bounds for the difference

1

x
1

2µ

H2µ

(
β+
l ;
α+
l (n− x)

x
1

2µ

)
− 1

n
1

2µ

H2µ

(
β+
l ;
α+
l (n− x)

n
1

2µ

)
.

With (6.16), we easily conclude the proof of (5.18b).
• Proof of (5.18c):
I We observe that (5.6) implies that∣∣∣∣∣

∫
Γ±in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ

∣∣∣∣∣ ≤ 1

rε(η)

∫ η

−η
exp

(
(n− x)t+ xARt

2µ − xAIrε(η)2µ
)
dt.

Using (5.12) since t ∈ [−η, η] and x ∈
[
n
2 , 2n

]
, we have that

(n− x)t+ xARt
2µ − xAIrε(η)2µ ≤ −AIrε(η)2µ

4
n.

Using the observations above and Cauchy’s formula, we have thus proved that for all n ∈ N\ {0}, x ∈
[
n
2 , 2n

]
and paths Γ ∈ X∣∣∣∣∣

∫
Γin(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ −
∫

Γ0
in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ

∣∣∣∣∣ ≤ 4η

rε(η)
exp

(
−AIrε(η)2µ

4
n

)
. (6.21)

I Since x ≥ n
2 ≥

1
2 , we observe that∫ +∞

rε(η)

exp
(
(n− x)η + xARη

2µ − xAIt2µ
)

|η + it|
dt ≤ 1

η

∫ +∞

rε(η)

exp

(
−AIt

2µ

8

)
dt︸ ︷︷ ︸

<+∞

exp

(
(n− x)η + xARη

2µ − x3

4
AIrε(η)2µ

)
.

Furthermore, using (5.12) since x ∈
[
n
2 , 2n

]
, we have that

exp

(
(n− x)η + xARη

2µ − x3

4
AIrε(η)2µ

)
≤ exp

(
−AIrε(η)2µ

8
n

)
.

Therefore, if we introduce the path
Γ∞in(η) := {η + it, t ∈ R}

then, using (5.6), the integral ∫
Γ∞in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ
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is defined and we have that∣∣∣∣∣
∫

Γ0
in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ −
∫

Γ∞in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ

∣∣∣∣∣
≤ 2

η

∫ +∞

rε(η)

exp

(
−AIt

2µ

8

)
dt exp

(
−AIrε(η)2µ

8
n

)
. (6.22)

I We observe that using the change of variables t = − |α
+
l |

x
1

2µ
u, we have

1

2iπ

∫
Γ∞in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ =
1

2iπ

∫ +∞

−∞

exp

(
i(n− x)(t− iη)− x β+

l

α+
l

2µ (η + it)2µ

)
t− iη

dt

= − 1

2iπ

∫ +∞

−∞

exp

(
i
−|α+

l |(n−x)

x
1

2µ

(
u+ ix

1
2µ η

|α+
l |

)
− β+

l

(
u+ ix

1
2µ η

|α+
l |

)2µ
)

u+ ix
1

2µ η

|α+
l |

du.

Furthermore, we can prove that

∀s ∈]0,+∞[,∀x ∈ R, − 1

2iπ

∫ +∞

−∞

exp
(
ix (u+ is)− β+

l (u+ is)
2µ
)

u+ is
du = E2µ

(
β+
l ;x

)
.

The proof is done in [Coe23, (5.65)]. Therefore,

1

2iπ

∫
Γ∞in(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ = E2µ

(
β+
l ;
−|α+

l |(n− x)

x
1

2µ

)
.

Combining this observation with (6.21), (6.22) and (6.4), we have that there exist two positive constants C, c
such that for all n ∈ N\ {0} and x ∈

[
n
2 , 2n

]
∣∣∣∣∣ 1

2iπ

∫
Γin(η)

exp
(
nτ + xα+

l ϕ
+
l (τ)

)
τ

dτ − E2µ

(
β+
l ;
−|α+

l |(n− x)

x
1

2µ

)∣∣∣∣∣ ≤ C

n
1

2µ

exp

(
−c
(
|n− x|
n

1
2µ

) 2µ
2µ−1

)
.

I We notice that ∂xE2µ

(
β+
l ; ·
)

= −H2µ

(
β+
l ; ·
)
. Therefore, we have using the mean value inequality and

(1.28a) that there exist two positive constants C, c such that for all n ∈ N\ {0} and x ∈
[
n
2 , 2n

]
∣∣∣∣E2µ

(
β+
l ;
−|α+

l |(n− x)

x
1

2µ

)
− E2µ

(
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l ;
−|α+

l |(n− x)

n
1

2µ
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x
1

2µ

− 1

n
1

2µ

∣∣∣∣ exp

(
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(
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1
2µ

) 2µ
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)
.

Using (6.18) and the fact that y 7→ y2 exp
(
− c

2y
2µ

2µ−1

)
is bounded, we have that there exist two new positive

constants C, c such that for all n ∈ N\ {0} and x ∈
[
n
2 , 2n

]
∣∣∣∣E2µ

(
β+
l ;
−|α+

l |(n− x)

x
1

2µ

)
− E2µ

(
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l ;
−|α+
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n
1
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n1− 1
2µ

exp

(
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2

(
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1
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.

This allows us to conclude the proof of (5.18c). �
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