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Statistical physics of learning in high-dimensional chaotic systems

Samantha J. Fournier1 and Pierfrancesco Urbani1

1Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, F-91191 Gif-sur-Yvette, France

In many complex systems, elementary units live in a chaotic environment and need to adapt their
strategies to perform a task, by extracting information from the environment and controlling the
feedback loop on it. One of the main example of systems of this kind is provided by recurrent neural
networks. In this case, recurrent connections between neurons drive chaotic behavior and when
learning takes place, the response of the system to a perturbation should take into account also its
feedback on the dynamics of the network itself. In this work, we consider an abstract model of a
high-dimensional chaotic system as a paradigmatic model and study its dynamics. We study the
model under two particular settings: Hebbian driving and FORCE training. In the first case, we
show that Hebbian driving can be used to tune the level of chaos in the dynamics and this reproduces
some results recently obtained in the study of more biologically realistic models of recurrent neural
networks. In the latter case, we show that the dynamical system can be trained to reproduce simple
periodic functions. To do this, we consider the FORCE algorithm –originally developed to train
recurrent neural networks– and adapt it to our high-dimensional chaotic system. We show that this
algorithm drives the dynamics close to an asymptotic attractor the larger the training time. All our
results are valid in the thermodynamic limit thanks to an exact analysis of the dynamics through
dynamical mean field theory.

I. INTRODUCTION

Biological neural networks can be described at a first approximation as elementary units, the neurons, which interact
through synaptic connections. Neurons are non-linear response units in the sense that only if their incoming input
current is larger than a threshold value, they spike an action potential which may trigger a spike train in other neurons
[1, 2]. Such intermittent non-linear dynamics is at the fundamental basis of all high level brain activities and the way
in which this micro-dynamics becomes the macro-response that triggers movements and actions in organisms is still
not understood. However, it is believed that biological neural networks are not randomly connected. The synaptic
connections between neurons are plastic and can be tuned (learned) to perform cognitive tasks. But the mechanism
allowing such control and adaptation is still largely unknown [3].

This is at odds with artificial neural networks (ANNs) at the basis of the deep learning revolution. ANNs are high-
dimensional networks typically trained to solve an optimization problem, be it to classify images [4], denoise them
[5], or generate synthetic images [6, 7]. Generally, the feedforward structure of the architecture is very helpful since
it allows the implementation of gradient based optimization algorithms, such as stochastic gradient descent through
backpropagation.

Conversely in loopy networks, such training strategies are much more hard to implement. When the output of
the neurons can be fed back into the neurons themselves, gradient based algorithms may become unstable because
feedback signals may amplify or diminish, leading to diverging or vanishing gradients and non-converging dynamics.
Since recurrent neural networks (RNNs) are closer (to some extent) to biological neural networks, the training problem
in this case has become central also as a benchmark to propose biologically inspired learning strategies, which may
be tested at the level of neurons’ interactions and biology.

Models of RNNs have been studied for a long time [8]. In the simplest of settings, synaptic connections are random
and no training is performed. In this case, one can observe that depending on the strength of the interactions between
neurons, the dynamics can be either quiescent or chaotic. It has been shown through numerical simulations in the
latter case that such RNNs can be successfully trained to perform a simple task [9]. This is done by considering
a special subset of the network as a readout device whose output is fed back into the network to allow its control.
Therefore, the training task aims at using the output device to suppress chaos and generate the desired response.

It is fair to say that this framework applies not only to recurrent neural networks. Biological systems as well as
other complex systems (the financial market for example) typically live in chaotic environments and adaptation can
be seen as a way to extract information from the (high-dimensional) chaos, and to adapt and control the feedback
loop on the environment itself. Therefore, how to control and learn in chaotic environments is an ubiquitous problem.
The purpose of this manuscript is to start the investigation of such problems in a simplified high-dimensional setting.

Instead of looking at specific models of RNNs or other complex chaotic systems, we consider an abstract high-
dimensional chaotic system. There are several reasons to perform this abstraction step: on the one hand, we will show
that the phenomenology found in specific realistic models can be found also in abstract ones, showing some degree of
universality. On the other hand, the abstract models we present here have the advantage to be simpler to study from
the statistical physics point of view. In particular, the dynamical mean field theory (DMFT) that we present will
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provide a set of equations which describe the dynamics of the models in the thermodynamic limit. These equations
can be integrated numerically more efficiently than in other systems. Since our primary goal is the application of these
abstract models to RNNs, we analyze them in two steps. First, we show that the class of models that we consider
share the same phenomenology as standard RNNs when untrained. In particular, we show that they can have a
quiescent-to-chaotic transition as a function of the interaction strength between the degrees of freedom [8], and that
the level of chaos in the chaotic phase can be tuned by Hebbian driving, analogously to what has been found in RNN
models [10]. This implies that the models we consider are perfectly equivalent from the collective dynamics point of
view to RNNs. Second, Sussillo and Abbott [9] have shown through numerical simulations that specific models of
RNNs in their chaotic phase can be trained to perform a simple task. They developed an algorithm called FORCE
to do this. We adapt their algorithm to our dynamical system and investigate the performances of this algorithm in
the thermodynamic limit. We achieve this using DMFT. The main advantage of using our abstract models rather
than standard RNNs (where the same analysis could be developed in principle) is that in order to study the learning
dynamics, one needs to get access to long transient timescales, which is hard to do in standard RNNs where the
DMFT analysis is much more complicated than in our case. The algebraic structure of our models is better suited
for this task and therefore we manage to study learning in this case.

The plan of the paper is the following. In Sec.II, we will describe a simple set of high-dimensional chaotic dynamical
systems which we will use as simplified abstract models. In Sec.III, we will discuss what happens when these dynam-
ical systems are subjected to Hebbian driving, namely when the dynamics of the system itself shapes the synaptic
interactions (with a simple form of the Hebb rule). In this case, we show that the abstract dynamical systems that we
consider displays the same phenomenology that has been found in the context of a standard, more biologically inspired
RNN under the same type of training. In particular, Clark and Abbott [10] have recently shown that Hebbian driving
can shape chaos and suppress it, up to the point that the plastic synaptic couplings become so strong that chaos is
completely frozen. We will review the phenomenology observed in [10] and develop a theory for it in the context of
our simplified setting. In Sec.IV, we will instead consider a proper learning strategy. We will follow Ref.[9] and add
to the dynamical system a readout unit which has to be trained such that its output matches a desired one. In order
to perform this task, we will consider the FORCE algorithm [9] and adapt it to our dynamical systems. We DMFT
analysis to show that the algorithm is effective in training the system also in the infinite size limit, and we track the
behavior of the dynamical system during learning as a function of time. We will show that the learning dynamics
bring the system closer to a dynamical attractor the longer the training time. Finally in Sec.V, we will discuss some
perspectives on how to extend our framework.

II. A SIMPLE HIGH-DIMENSIONAL CHAOTIC SYSTEM

The simplest model of a recurrent neural network (RNN) is defined by a set of N neurons identified by an index
i = 1, . . . , N . The state of each neuron is described by two variables, its membrane potential xi and its firing rate ri.
The firing rate is in general a non-linear function of the membrane potential, typically ri = tanh(xi). The dynamics
of the network is described by a set of ordinary differential equations

ẋi(t) = −xi(t) +
g√
N

∑
j(̸=i)

Jj
i rj(t) +Hi(t), (1)

where the dot denotes the derivative with respect to time. Here, the matrix Jj
i describes the interactions between

different neurons. Most importantly, this matrix is not supposed to be symmetric and therefore we will assume that
Jj
i ̸= J i

j . Finally, Hi(t) models some input current in neuron i. The model in Eq. (1) has been studied extensively
in the past, especially when the synaptic coupling matrix J is thrown at random and fixed. In the simplest setting,
one can assume that Jj

i are just independent Gaussian random variables with zero mean and unit variance. The
control parameter g describes the strength of the random interactions between neurons. In the absence of the external
current Hi and for g = 0, the dynamics of the network is described by a single stable attractor where xi = 0 for all
i = 1, . . . , N , meaning that all neurons are at rest. This attractor becomes unstable under linear perturbations as
soon as g > gc, where gc = 1. In this case, the dynamics of the network is chaotic and the transition to chaos has been
studied extensively in the past, see the pioneering work by Sompolinsky, Crisanti and Sommers [8] who developed
the dynamical mean field theory for Eq. (1). In this chaotic phase, it has been shown in [9, 11] through numerical
simulations on a finite system that the neural network can be efficiently trained. Therefore in the following, we will
mainly focus on the properties of the chaotic phase.

The purpose of this work is to investigate up to which point Eq. (1) can be simplified, while retaining its main
physical properties. For g > gc, Eq. (1) represents a chaotic high-dimensional non-linear dynamical system. Therefore,
we consider a different model still described by a set of N real dynamical variables x = {xi}i=1,...,N ∈ RN , but we
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avoid the introduction of the firing rates ri which complicate the DMFT analysis, see [8]. In order to introduce the
non-linearity in the equation we assume that

ẋi(t) = −µ(t)xi +
ĝ

N

∑
j,k

Jjk
i xjxk +Hi(t). (2)

The matrices Ji are chosen to be GOE random matrices which means that

Jjk
i = Jkj

i (3)

and

Jjk
i = 0

(
Jj ̸=k
i

)2
= 1

(
Jjj
i

)2
= 2 . (4)

We also assume that the matrices Ji and Jj(̸=i) are independent and identically distributed. We emphasize that
Eq. (2) has to be regarded as a non-linear, high-dimensional random dynamical system and the purpose of this paper
is to investigate how much it resembles more standard models of RNNs. A similar dynamical system has been used
to study driven glasses in [12], and the main difference with our current approach is that in [12] one adds to the lhs
of Eq. (2) a conservative random force term which we completely avoid. Here, we would like to consider the model
described by Eq. (2) as a simplified model of a RNN. Clearly, this model is not biologically plausible in the sense
that the microscopic form of the dynamics is rather far from standard models such as Eq. (1), which try to model
microscopic interactions between neurons. However, we will argue that the model has the same phenomenology as
the more standard model of RNNs described by Eq. (1). The main reason to choose a dynamical system of the
form of Eq. (2) is that it is simpler to study from the theoretical point of view. In particular, when we will come to
study learning dynamics, we will need to develop the DMFT analysis at large timescales and this is very difficult for
standard models of RNN such as Eq. (1).

We will study the behavior of the dynamical system described by Eq. (2) under different settings. First in Sec. III,
we follow the recent work by Clark and Abbott [10] and introduce a Hebbian driving term in the dynamical system.
We show that depending on the strength of the Hebbian couplings, one can either reduce the chaotic activity or freeze
it completely to lead the network to a random fixed point attractor. Second in Sec. IV, we will discuss how Eq. (2)
can be trained to reproduce a simple periodic function using the FORCE algorithm developed by Sussillo and Abbott
in [9] and originally described to train the system in Eq. (1). We will also consider the discrete time algorithm defined
by the Euler discretization of Eq. (2), defined as

xi(t+ dt) = xi(t) + dt

−µ(t)xi +
ĝ

N

∑
j,k

Jjk
i xjxk +Hi(t)

 . (5)

At variance with the continuous time dynamics, such dynamical system depends also on the learning rate dt. Both
dynamical systems in Eq. (2) and (5) depend also on a confining potential term proportional to µ(t) which is enforced
in order to avoid that the dynamics diverges to infinity.

In the following, we will develop a DMFT analysis which allows us to understand how the dynamical system behaves
in the infinite size limit N → ∞.

A. The statistical properties of the chaotic term

A crucial step to understand the behavior of Eq. (2) is to analyze the chaotic term defined by the random matrices
Ji. It is useful to study the statistical properties of this term

ξi(t) =
ĝ

N

∑
j,k

Jjk
i xj(t)xk(t) . (6)

It is clear that the average over the random matrix realization gives

ξi = 0 . (7)

However ξ has an interesting dynamical two point correlation function

ξi(t)ξj(t′) = 2ĝ2δijC
2(t, t′), (8)
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where the correlation function C(t, t′) is defined as

C(t, t′) =
1

N

N∑
i=1

xi(t)xi(t
′) . (9)

Higher order correlation functions factorize and can be computed through Wick contractions due to the Gaussian
nature of the matrices Ji.

Finally, we note that the form of the chaotic term is a particular case of a more general form. Indeed one can
generalize

ξi(t) =

∞∑
q=1

cq
Nq/2

J
j1...jq
i xj1(t) . . . xjq (t) . (10)

By tuning carefully the coefficients cq, one can get

ξi(t)ξj(t′) = Ξ(C(t, t′)), (11)

where Ξ(z) is an arbitrary positive function for z > 0. In particular one can show that c2q enters in the coefficient
of the q-th term of the Taylor expansion of Ξ(z). Note that both Eq. (6) and (10) describe a multibody interaction
potential term. This is certainly not so natural from the biological perspective. However, in this particular work we
use a multibody interaction because it is trivial to see that if Ξ is a linear function, the dynamical system becomes
linear itself and therefore it is fully integrable if µ(t) does not depend on x.

B. The confining potential term

Since the degrees of freedom in both Eq. (2) and (5) are continuous and real, one needs to enforce a confining
mechanism to avoid that the system explores an infinite phase space. In the following, we choose two options.

• A standard way to impose a compact phase space is to bound the norm of the vector x. Without losing generality,
we enforce

N∑
i=0

xi(t)
2 = N (12)

and we dub the corresponding model as a spherical model. This implies that coupling µ(t) is self consistently
determined to assure that at each infinitesimal time step the dynamical system never leaves the constraint in
Eq. (12). We anticipate that in this case, the DMFT equations track the dynamics only in the continuous
time limit, while the discrete time dynamics has a natural correction of order dt2 which is not properly taken
into account by the Euler discretization of the DMFT equations [13, 14]. We also note that this form of the
constraint is confining whatever the nature of the chaotic noise ξ and the corresponding form of its correlation
functions Ξ.

• A different way to impose a confining potential is to consider a term that penalizes wild fluctuations of the norm
of x. A simple way to do that is to consider [13]

µ(t) = f

[
1

N

N∑
i=1

xi(t)
2

]
, (13)

where the function f(z) is positive and diverging function for z → ∞. We dub the corresponding model a
confined model. In this case, the DMFT dynamics can be tracked also in the discrete time step case [14].
However, the confining capability of the form in Eq. (13) depends strictly on the nature of the chaotic noise. In
particular if we assume that both Ξ(z) and f(z) admit a polynomial expansion of finite degree, which degree
we indicate respectively as dΞ and df , then the resulting dynamics is confined if

dΞ < df . (14)
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FIG. 1. Transition to chaos for the confined model defined by Eqs. (15) and (16) with g = 1 and µ(t) = 1 + C(t, t). a)
Behavior of C(t, t). The system is randomly initialized such that C(0, 0) = 1. For g0 < gc0 = 1, the dynamics is attracted
by the fixed point x = 0. At the critical point g0 = 1, the dynamics relaxes on the attractor with a power law decay. For
g0 > gc0, the dynamics stays chaotic and stabilizes on a region of phase space characterized by a limiting value of the norm
|x(t)|2 = limt→∞ C(t, t). b) Behavior of C(t, t′) for different values of t′ as a function of t− t′, for g0 = 0.5 (top) and g0 = 1.5
(bottom). The chaotic regime (top) is characterized by fast decorrelation dynamics. c) Some traces of x obtained through
numerical simulations for g0 = 0.5 (top) and g0 = 1.5 (bottom). When g0 = 0.5, all the xi go to 0; while they display chaotic
dynamics for g0 = 1.5.

III. TRANSITION TO CHAOS AND HEBBIAN DRIVING

We would now like to investigate whether the prototypical model of Eq. (2) is a qualitatively good model for RNNs.
Specifically, we will focus on two aspects: first, we will show that the class of models in Eq. (2) can have a phase
transition from a quiescent attractor phase to a chaotic activity phase, as the model in Eq. (1). Second, we will follow
a recent work by Clark and Abbott [10] who showed that the level of chaos in a model of RNN described by Eq. (1)
can be tuned by Hebbian driving of synapses. We will show that we can recover the same phenomenology as in [10]
and we will analyze the corresponding dynamics in the thermodynamic limit through DMFT.

A. Transition to chaotic dynamics

In Sect. III B, we will consider the spherical model with Ξ(z) = 2ĝ2z2. However in this case, given that the dynamics
is constrained to be on the sphere and that there is no confining term pushing the system to a stable quiescent fixed
point as in Eq. (1), one never encounters an attractor: the dynamics is always driven by the chaotic term whatever
the strength of ĝ, as far as ĝ > 0. Therefore –at variance with the more standard model in Eq. (1)– the present model
lacks a phase in which the dynamical system goes at rest to a stable attractor. In order to study this case, we consider
a slightly different model, namely a confined model with

µ(t) = 1 + C(t, t) . (15)

Furthermore, we choose the following form for the correlation of the chaotic noise term

Ξ(z) = g20z +
3g2

2
z2 (16)

and this corresponds to have a noise term of the form

ξi(t) =
g0√
N

N∑
j=1

Jj
i xj(t) +

ĝ

N

N∑
jk

Jjk
i xj(t)xk(t), (17)
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with 2ĝ2 = 3g2/2. We are interested in considering what happens to the dynamical system as a function of g0 at
fixed g. We assume that the dynamics starts from an initial condition that is drawn from the flat measure over the
sphere C(t, t) = 1. For g0 = 0, the dynamical system has a fixed point at x = 0 and a random initialization of the
dynamics leads to this fixed point, see Fig.1. As for the neural network in Eq. (1), one can have a chaotic transition
as a function of g0. This happens when the fixed point at the origin looses linear stability. Indeed, by linearizing
the dynamical system around x = 0, one sees that the dynamics is described by δẋ(t) = Hδx(t), with the matrix

Hij = −δij + g0J
j
i /

√
N controlling the relaxation of the system. If g0 = 0, the real part of the spectrum of H is

negative and therefore the fixed point x = 0 is attractive. Increasing g0, the spectrum ρ(λ) of H in the large N limit
consists in a flat density of complex eigenvalues contained in a circle centered at λ = −1 in the complex plane. The
circle invades the positive real axes at g0 = 1 and therefore at this point the attractor x = 0 looses stability. Beyond
this point, the dynamics is found to be confined but chaotic. At the critical point, the approach to the marginally
stable fixed point is algebraic and we show that C(t, t) ≃ 1/(2t) when t → ∞, see Fig.1. One can also show that
for g0 < gc0 and approaching the critical point, the dynamics relaxes exponentially to the fixed point x = 0 with
a characteristic time that diverges as τ ∼ |g0 − gc0|−1. The properties of the chaotic phase can be studied as well,
following [8]. We use as diagnostic of chaos the fact that C(t, t′) → 0 for t − t′ → ∞ and t′ → ∞, as we show in
Fig.1. In the same figure, we also show the behavior of some individual degrees of freedom as obtained from numerical
simulations, where it is clear that the dynamics is chaotic.

B. Hebbian driving of synaptic plasticity

Eq. (2) describes the dynamics of a network where the interaction couplings are random and fixed in time. In [10],
Clark and Abbott considered the case in which the activity of the neurons itself shapes the synaptic weights, which in
turn control the interaction between neurons. In our model, this is equivalent to say that the dynamics of x re-shapes
the interaction between degrees of freedom. In particular, following closely Clark and Abbott [10], we consider the
case where in Eq. (2) the current Hi(t) is a function of the state of the system through

Hi(t) =

N∑
j=1

Aj
i (t)xj(t) (18)

and the matrix Aj
i (t) follows the dynamical equation

pȦj
i (t) = −Aj

i (t) +
k

N
xi(t)xj(t) . (19)

It is clear that the evolution of the plastic couplings A depends on the overall activity of the system and the strength
of A depends on the coupling constant k, which is a control parameter. We note that the particular form chosen for
the plastic term is not mandatory. One can easily generalize the setting to the case where

Hi(t) =

N∑
j=1

A
j1j2...jq
i (t)xj1(t)xj2(t) . . . xjq (t)

pȦ
j1j2...jq
i (t) = −A

j1j2...jq
i (t) +

k

Nq
xi(t)xj1(t) . . . xjq (t) ,

(20)

and for q = 1 one gets back Eqs. (18) and (19)1. Eq. (20) can be rewitten as

A
j1j2...jq
i (t) = A

j1j2...jq
i (0) +

k

Nqp

∫ t

0

dse−(t−s)/pxi(s)xj1(s) . . . xjq (s) . (21)

In the following, we make the simplifying assumption that A
j1j2...jq
i (0) = 0. Inserting this form into the dynamical

equation for x, we get

ẋi(t) = −µ(t)xi + ξi(t) +
k

p

∫ t

0

dse−(t−s)/pCq(t, s)xi(s) . (22)

1 One could also consider the case in which Eq. (21) is replaced by a sum of terms of different order in q. We will not discuss this case
here but this generalization is straightforward.
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The DMFT equations can be easily derived from Eq (22). Using the statistical properties of ξi(t) one gets that the
dynamical system is described by an effective process given by

ẋ(t) = −µ(t)x(t) + ξ(t) +
k

p

∫ t

0

dse−(t−s)/pCq(t, s)x(s), (23)

where

ξ = 0 ξ(t)ξ(t′) = Ξ [C(t, t′)] . (24)

Multiplying Eq. (23) and averaging over the effective noise ξ(t), we get

∂tC(t, t′) = −µ(t)C(t, t′) +

∫ t′

0

dsΞ [C(t, s)]R(t′, s) +
k

p

∫ t

0

dse−(t−s)/pCq(t, s)C(t′, s) . (25)

The response function R(t, t′) is defined as

R(t, t′) =

〈
δx(t)

δξ(t′)

〉
(26)

and it obeys the following dynamical equation

∂tR(t, t′) = −µ(t)R(t, t′) + δ(t, t′) +
k

p

∫ t

t′
dse−(t−s)/pCq(t, s)R(s, t′) . (27)

At this point there are two options for the confining term µ(t). If we impose the spherical constraint of Eq. (12), this
implies that C(t, t) = 1 at all times and one gets an equation for µ(t) directly by considering the equation for C(t, t′)
and taking the limit t′ → t. In this way we get

µ(t) =

∫ t

0

dsΞ [C(t, s)]R(t, s) +
k

p

∫ t

0

dse−(t−s)/pCq(t, s)C(t, s) . (28)

If the chaotic noise is not too wild and the constraint in Eq. (14) holds, then we can fix µ(t) = f [C(t, t)]. In this case
we need to provide a dynamical equation for C(t, t) which is again easily derived from the one for C(t, t′). We get

dC(t, t)

dt
= 2 lim

t′→t
∂tC(t, t′)

= 2

[
µ(t)C(t, t) +

∫ t

0

dsΞ [C(t, s)]R(t, s) +
k

p

∫ t

0

dse−(t−s)/pCq(t, s)C(t, s)

]
.

(29)

In this case, we also need to provide an initial condition for C(0, 0) = C̃. It is easy to generalize the equations when
the Hebbian driving is done up to a time th which we call the halting time, after which the coupling matrix Aij is
fixed2. Summarizing, we have the following equations for the correlation and response function

∂tC(t, t′) = −µ(t)C(t, t′) +

∫ t′

0

dsΞ [C(t, s)]R(t′, s) +
k

p

∫ t̃

0

dse−(t̃−s)/pCq(t, s)C(t′, s)

∂tR(t, t′) = −µ(t)R(t, t′) + δ(t, t′) +
k

p

∫ t̃

t′
dse−(t̃−s)/pCq(t, s)R(s, t′)

(30)

and depending on whether we have a spherical or confined model we haveµ(t) =
∫ t

0
dsΞ [C(t, s)]R(t, s) + k

p

∫ t̃

0
dse−(t̃−s)/pCq(t, s)C(t, s) spherical

dC(t,t)
dt = 2

[
µ(t)C(t, t) +

∫ t

0
dsΞ [C(t, s)]R(t, s) + k

p

∫ t̃

0
dse−(t̃−s)/pCq(t, s)C(t, s)

]
confined

. (31)

The time t̃ is defined as t̃ = min(t, th) and controls the dependence of the dynamics on th. The equations above can
be easily integrated numerically. In the following, we will discuss the behavior of the solution for different values of
Hebbian learning coupling k.

2 One can also generalize the theory to more complex cases where the training is done with start and stop dynamics, namely when the
plasticity is repeatedly switched on and off. However we do not treat this case within the DMFT but the extension is straightforward.
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2
FIG. 2. A) The phase diagram of the model for q = 1 as a function of the strength of Hebbian plasticity k and of the strength
of the couplings between degrees of freedom g. B) The traces of a set of randomly chosen xi(t) for a numerical simulation
with N = 100 for the plots (i) and (iii), and N = 200 for plot (ii). The control parameters are tuned as in the points (i), (ii)
and (iii) in the phase diagram of panel A). In the chaotic phase, halting the synaptic plasticity does not change the dynamics
sufficiently enough to suppress chaos. In the semi-freezable chaotic phase instead, halting the synaptic plasticity leads the
system to a chaotic attractor correlated with the configuration visited at the halting time. In the freezable chaotic phase, the
dynamics converges to a fixed point attractor when the plasticity is halted. C) the behavior of a set of dynamical correlation
functions as extracted from the numerical integration of the DMFT integrated up to time tmax = 500 and fixing the halting
time th = 250. In particular with the red line we plot C(tmax, t < th) as a proxy for qr(th − t) and D) we plot with green lines
C(t, t′) for different t′ > th and as a function of t− t′. This shows that for t′ sufficiently larger than th the dynamics reaches a
TTI regime, and that the plateau for t− t′ → ∞ allows to distinguish between the SFCP and the FCP.

C. Freezable and semi-freezable chaos

We are now interested in the effect of plasticity on chaotic behavior. We will focus on the spherical model with

Ξ(z) =
3g2

2
z2, (32)

which is always chaotic for k = 0. Furthermore, we will consider the q = 1 case in Eq. (21) to start with. Following
Clark and Abbott, see [10], we consider the following protocol. Starting from a random initial condition on the sphere

C(0, 0) = 1, we allow plastic behavior only for t < th. For t ≥ th, the matrix Aj
i (t) is fixed to its last value Aj

i (th).
In [10], Clark and Abbott have identified three phases depending on the fate of the dynamical system after the

halting time th. Depending on the strength of the Hebbian learning k, one can distinguish three phases:

• Chaotic phase (CP). At k = 0 the system is chaotic and the halting time does not have any effect. The chaotic
phase survives also when k is small but finite. In this case, for t ≫ th the system completely decorrelates from
the configuration at th.

• Semi-freezable chaotic phase (SFCP). For an intermediate range of k, one observes that the dynamics is still
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chaotic but for t ≫ th the configurations explored are not completely decorrelated from the configuration of the
system at th. Therefore, the dynamics lands on a chaotic attractor dynamically correlated with the configuration
that the system had right before the halting time.

• Freezable chaotic phase (FCP). If k is sufficiently large, after the halting time, the dynamics settles to a point
attractor and stops. The attractor point is correlated with the configuration visited at time th.

In order to carefully identify the tree phases, we need to consider a set of order parameters. The two phases SFCP
and FCP can be identified by looking at

qr(0) ≡ lim
t→∞

C(t, th) . (33)

For both the SFCP and FCP we have that qr(0) > 0, while when the system is in the CP, qr(0) = 0. We can also
introduce a generalization of Eq. (33). Indeed, we can consider

qr(∆t) ≡ lim
t→∞

C(t, th −∆t) . (34)

In the FCP and in the SFCP, qr(∆t) is a positive decreasing function of ∆t while in the CP, we have qr(∆t) = 0
for all intervals ∆t. Therefore qr(∆t) allows to distinguish between the situation in which the system remains fully
chaotic (CP) and when chaos is reduced, either completely (FCP) or not completely (SFCP).

In order to distinguish between the last two cases we need a different order parameter. We define

qEA ≡ lim
t,t′→∞,t−t′→∞

C(t, t′) . (35)

In the FCP, we expect that qEA = 1 while 0 < qEA < 1 in the SFCP. The location of the boundary between the
different phases, depends on th. However, we will show that we can make some progress by looking at the asymptotic
solution th → ∞ (see Sect.III E).

The dynamical behavior in the three different phases can be visualized in the upper panel of Fig.2, where we show a
few traces of xi(t) for numerical simulations. The corresponding phase diagram, as obtained from the DMFT analysis,
is plotted in Fig.2, leftmost figure of the upper panel. All in all, the prototypical model of Eq. (2) under Hebbian
driving displays the same phenomenology obtained in [10] with the more standard model of Eq. (1).

D. The case q = 2.

Before looking at the asymptotic solution of the DMFT equations, we would like also to investigate the behavior of
the model with q = 2. In this case, we do not find evidence for a semi freezable chaotic phase: the system undergoes
an abrupt transition from chaos to a fixed point. The corresponding phase diagram and qualitative behavior is shown
in Fig.3.

diagram plasticity q=2.pdf
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FIG. 3. Left panel : The phase diagram of the spherical model for q = 2. In this case there is no semi-freezable chaotic phase
and the system undergoes a sharp transition from chaos to frozen chaos. In the middle and right panel, we show the traces of a
set of randomly chosen xi from a numerical simulation with N = 100, in the two phases at the control parameter points denoted
by (i) and (ii) in the phase diagram. We note that the release of plasticity in the chaotic phase accelerates the dynamics of the
variables xi.
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E. Asymptotic solution of the DMFT equations

While the DMFT allows to explore systematically the dynamics also away from stationarity, it is useful to provide
an asymptotic solution of the equations when the halting time diverges at infinity, th → ∞. It is clear that since the
dynamics is either chaotic (fully chaotic or restricted to a sub-manifold) or it goes to a fixed point, in the asymptotic
regime we expect that correlation functions become time translational invariant (TTI). Therefore we posit, with a
slight abuse of notation, that

lim
t,t′→∞

C(t, t) = C(t− t′)

lim
t,t′→∞

R(t, t′) = R(t− t′) .
(36)

We now consider three asymptotic regimes for th → ∞ and both t, t′ → ∞.

1. Regime 1: t, t′ ≪ th with t− t′ = ∆t ∼ O(1).

We first consider the regime in which t and t′ are both diverging at infinity but they are smaller than the halting
time (also diverging to infinity). In this regime we have that plasticity is never halted for the sake of t, t′. Using again
TTI, we consider the asymptotic scaling functions defined as

C1(∆t) = lim
t,t′→∞,t−t′=∆t

C(t, t′)

R1(∆t) = lim
t,t′→∞,t−t′=∆t

R(t, t′)

µ(1)
∞ = lim

t→∞,t<th
µ(t) .

(37)

Plugging this ansatz inside the dynamical equations we get

∂∆tC1(∆t) = −µ(1)
∞ C1(∆t) +

3g2

2

∫ ∞

0

dsC2
1 (s+∆t)R1(s) +

k

p

∫ ∞

−∆t

ds e−(∆t+s)/pC1(s+∆t)C1(s)

∂∆tR1(∆t) = −µ(1)
∞ R1(∆t) +

k

p

∫ ∞

−∆t

ds e−(∆t+s)/pC1(s+∆t)R1(s)

µ(1)
∞ =

3g2

2

∫ ∞

0

dsC2
1 (s)R1(s) +

k

p

∫ ∞

−∆t

ds e−s/pC2
1 (s) .

(38)

These equations have not a causal structure since their rhs depends on times larger than ∆t. However, they have a

self-consistent structure and therefore can be solved by an iterative algorithm. One starts with a first guess of µ
(1)
∞ , C1

and R1 and then uses these equations to produce an updated estimate of the same quantities. We verified that this
numerical procedure converges fast and is compatible with the solution of the DMFT equations, which provides a
first approximation of eqs. (38).

2. Regime 2: t′ < th ≪ t with th − t′ = ∆t ∼ O(1).

The second asymptotic regime is obtained by considering the situation in which one of the two times t and t′ is
smaller than the halting time, while the other is larger. This regime thus controls the connection between the two
stationary regimes, before and after the halting time. Since we always consider t′ < t, we have t′ < th and t > th.
Furthermore, the dynamics for t − th ∼ O(1) is not stationary. Therefore we consider the regime in which t → ∞
and t− th → ∞. Conversely, when th − t′ ∼ O(1), we are probing the asymptotic stationary regime of the dynamics
before the plasticity is halted and we have access to this regime thanks to Eqs. (38). In this case, the only scaling
function that we have to compute is therefore

qr(∆t) = lim
t,th→∞,∆t∼O(1)

C(t, th −∆t) . (39)

Furthermore, since t → ∞ we have

µ(2)
∞ = lim

t→∞,t>th
µ(t) . (40)
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The scaling equation for qr is found just by looking at the equations in this regime. We get

µ(2)
∞ qr(∆t) =

3g2

2

∫ ∞

0

dsq2r(s+∆t)R1(s) +
k

p

∫ ∞

−∆t

ds e−(∆t+s)/pqr(s+∆t)C1(s) (41)

This scaling equation is not autonomous since it depends on µ
(2)
∞ and C1 and R1. The equation for µ

(2)
∞ is found by

looking at the third and last asymptotic regime.

3. Regime 3: th ≪ t′, t with t− t′ = ∆t ∼ O(1).

We finally consider the last asymptotic regime in which t, t′ > th and are infinitely far from th, namely t− tH → ∞
and t′ − th → ∞. In this case we need to consider the following scaling functions:

C2(∆t) = lim
t,t′→∞,t−t′=∆t

C(t, t′)

R2(∆t) = lim
t,t′→∞,t−t′=∆t

R(t, t′)
(42)

which obey the following scaling equations

∂∆tC2(∆t) = −µ(2)
∞ C2(∆t) +

3g2

2

∫ ∞

0

dsC2
2 (s+∆t)R2(s) +

k

p

∫ ∞

−∆t

ds e−(∆t+s)/pqr(s+∆t)qr(s)

∂∆tR2(∆t) = −µ(2)
∞ R2(∆t)

µ(2)
∞ =

3g2

2

∫ ∞

0

dsC2
2 (s)R2(s) +

k

p

∫ ∞

−∆t

ds e−s/pq2r(s) .

(43)

The third scaling regime gives access to the order parameter which distinguishes between the SFCP and the FCP.
Indeed we have

qEA = lim
s→∞

C2(s) (44)

We also note that when one is in the FCP, we have C2(s) = 1 ∀s.

4. The overall structure of the asymptotic solution

It is clear that regime 1 is fully autonomous and alone determines C1, R1 and µ
(1)
∞ . Instead, we clearly see that

regimes 2 and 3 are coupled by the scaling function qr(s) and by µ
(2)
∞ . The way in which the third regime is coupled

to the second is through the memory of all configurations visited for times close to th and this is encoded in the
scaling function qr(∆t). We verified that these equations are satisfied by the approximate DMFT numerical solution.
However, we have not been able to turn Eq. (41) into an algorithmic scheme to solve self-consistently the second and
third regime. The naive iterative scheme suggested by the form of Eq. (41) seems not convergent to the right fixed
point. Nevertheless, we have checked that equations (41) and (43) are coherent with the numerical solution of the
DMFT equations. All in all, this analysis shows that Hebbian driving is a powerful way to control the level of chaos
in the dynamical system, as much as this happens in standard RNNs (see [10]).

IV. FORCE TRAINING

Up to now, we have analyzed how a random high-dimensional chaotic system responds when Hebbian plasticity
is switched on in the interactions between degrees of freedom. However for the moment, we did not treat the case
in which the dynamical system is trained to perform a task. The purpose of this section is to extend the formalism
developed before to address the question of how the dynamical system can be trained to produce a desired response.

It is well known that recurrent neural networks are difficult to train by energy minimization. Indeed, the recurrent
structure of the interactions between the degrees of freedom implies that gradient signals can be indefinitely amplified
due to feedback loops. Controlling this dynamics is therefore very complicated. Furthermore, it is fair to say that the
extent to which one can think about biological neural network as devices that perform a gradient descent minimization



12

is unclear [15]. This is also because the computation of the gradient of a cost function is a complex operation that
involves the so-called credit assignment problem, namely to select which control variables (or synapses) contribute
the most to the error and therefore have the priority to be updated.

In order to overcome these difficulties, a number of strategies have been proposed to train recurrent neural networks.
In the simplest setting, one would train a neural network such that a readout unit reproduces a complex periodic
function. In other words, one sees the dynamical system as an out-of-equilibrium (chaotic) bath which generates some
self-sustained dynamics and the main idea is to find a set of synaptic weights that connect the dynamical system to
the readout unit so that its output is a desired one.

In this setting, one can distinguish two cases. If the readout unit is not fed back into the dynamical system, then
the latter has a completely autonomous dynamics and therefore the problem of the explosion of gradients in a putative
energy minimization training dynamics is mostly solved. This idea has been exploited enormously in the past and it
is at the basis of Echo-state or Liquid-state networks [16–18].

A more complex setting consists in the situation where the output of the readout unit is re-injected into the
dynamical system itself. This setting can be seen as a simplified version of training a single neuron and leaving the
rest of the network unaltered. Given that the output of the readout neuron is fed back into the network, this setting
suffers of the same instabilities of more general recurrent neural networks. In 2009, Sussillo and Abbott [9] have
shown that one can efficiently train the readout unit coupled to the dynamical system in Eq. (1) via an algorithmic
strategy called FORCE, which stands for First-Order Reduced and Controlled Error. The main idea of the algorithm
is that the synaptic weights are updated always by keeping the error small along the whole training dynamics. The
algorithm can be extended in many more complex situations, and more recently, it has been also shown that one can
use it to train a set of Spiking Neural Networks (SNNs) [19] which differ from Eq. (1) because the dynamics of the
membrane potential is resolved in time and the rates are computed microscopically as the number of times an action
potential is fired.

It is fair to say that while numerical simulations have shown that FORCE can train recurrent neural networks with
thousands of neurons, it is anyway unclear how the algorithm behaves on instances of infinite system size. This may
be important for large scale neural networks and in particular for biological ones. The purpose of this section is to
explore the performance of the FORCE algorithm in the context of the high-dimensional chaotic systems of the form
represented in Eq. (2) and to construct a mean field theory analysis of such algorithms.

A. FORCE algorithm

We will first recall here the setting and the algorithm introduced in [9] and then we will adapt it to our setting.
We first consider the Eq. (1) and introduce an input current of the form

Hi(t) = w
(f)
i z(t) . (45)

The variable z(t) is the output of the readout unit. In the simplest setting we consider

z(t) =

N∑
i=1

w
(o)
i ri(t), (46)

so that the output unit performs a linear readout of the state of the system. We have two sets of weights: w
(o)
i are

the synaptic weights connecting the dynamical system to the readout unit and these are the variables that we want to

change in order to perform a task. The weights w
(f)
i are instead the feedback weights and are supposed to be fixed.

The taks we want the network to learn is to reproduce a function. Consider a periodic function f(t) with period T .
We would like to find that at the end of the training phase, the output of the readout neuron is z(t) = f(t). In this
way, learning will correspond to turn the chaotic noise of the dynamical activity of the untrained network to a more
structured response. This task is the simplest one that cannot be performed without a feedback of the output neuron
into the network itself3. In [9], Sussillo and Abbott have proposed the following training strategies to find a good set

of weights w
(o)
i . In order to define them properly, we assume that the dynamical system in Eq. (1) is discretize with

time step dt. Then we can define two algorithms:

3 Simpler tasks like classification can instead be performed without feedback from the readout unit.
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1. FORCE-I [9]: In this case we first define

z+(t) = w(o)(t) · r(t+ dt) (47)

and we update

w(o)(t+ dt) = w(o)(t)− η(t+ dt)
(
z+(t)− f(t+ dt)

)
r(t+ dt) . (48)

Therefore in order to run the dynamics, in this case one first needs to update the dynamical variables r(t) and
then the weights w(t). The learning rate η(t) is a control parameter of the problem. It is known that this
algorithm, while being more biologically plausible, suffers from instabilities and can learn only simple tasks [11].
These problems have been solved numerically by developing a different, more complex, and less biologically
plausible algorithm, which is FORCE-II.

2. FORCE-II [9]: The update rule for the output weights is different. We define the error

e−(t) = z+(t− dt)− f(t) (49)

and update the weights with the following scheme

w(o)(t+ dt) = w(o)(t)− e−(t+ dt)P (t+ dt)r(t+ dt) . (50)

The matrix P (t) is an N ×N matrix which follows a dynamical evolution given by the update rule

P (0) =
1

α
1

P (t+ dt) = P (t)− P (t)r(t)r(t)TP (t)

1 + r(t+ dt)TP (t)r(t+ dt)

(51)

and we have indicated by 1 the identity matrix. The parameter α is a control parameter of the algorithm. This
algorithm is naturally formulated in discrete time.

We now adapt both algorithms to train the dynamical system in Eq. (2). In order to simplify the formalism, we first

consider w
(f)
i = 1 for all i = 1, . . . , N . We underline that the formalism we are going to develop can be generalized

to the case in which w
(f)
i is taken to be random. In this way, we have only the set of weights that define the output

unit and we call them w. Therefore we define

z(t) =
1

N
w(t) · x(t) (52)

and we assume that the task of the learning protocol is to get z(t) = f(t) at the end of learning. Both FORCE
algorithms are formulated in terms of the variables x and r. However, the dynamical system in Eq. (2) has only the
x as degrees of freedom. In order to take into account this and the N → ∞ limit, we consider a modified version of
FORCE adapted to our setting.

• FORCE-I: we define

z+(t) =
1

N
w(t) · x(t+ dt) (53)

and we update the weights according to

w(t+ dt) = w(t)− η(t+ dt)
(
z+(t)− f(t+ dt)

)
x(t+ dt) (54)

It is very easy to show that at each time step, this algorithm is built in such a way that f(t) = z(t) if η(t) is
carefully chosen (see below).

• FORCE-II: also in this case we define

e−(t) = z+(t− dt)− f(t) (55)

and we update the weights according to

w(t+ dt) = w(t)− e−(t+ dt)P (t+ dt)x(t+ dt) . (56)
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(d) (d)

FIG. 4. The performance of FORCE-II to train the confined model. Left panel : Performances when training a periodic
perturbation of varying amplitude around a constant. The blue curve is the network output z(t), while the orange curve is
the norm of the weight vector variation dw = w(t + dt) − w(t). (a): Before training: Chaotic dynamics. The weights wi are
randomly uniformly initialised in [−5, 5] so the network output z(t) oscillates around 0. (b): Training phase. FORCE-II drives
quickly the output z(t) to generate the target one so the weight update ∥dw∥ is big initially and then decreases. In the left
panel, ∥dw∥ has been re-scaled by a factor 0.1 to allow the plot to fit better into the figure. Only the beginning of training
is plotted. (c): After training. Once ∥dw∥ is sufficiently small (ideally of order 10−5), training can be switched off. The
output weight w is then fixed to its last value during training and z(t) autonomously produces the target output (which is not
plotted given that it superimposes to z(t)). Instead the plot of ∥dw∥ (orange curve) is constant equal to 0 since w is fixed. (d):
Evolution of w during the training phase. Training lasted in total 1500 time units (t.u.) in all the plots to allow for comparison.
Right panel: Same analysis as in the left panel but with the target being a periodic function with varying frequency.

The matrix P (t) follows the dynamical evolution

P (0) =
1

α
1

P (t+ dt) = P (t)− 1

N

P (t)x(t+ dt)x(t+ dt)TP (t)

1 + 1
N x(t+ dt)TP (t)x(t+ dt)

. (57)

This algorithm works by keeping the error, namely z(t) − f(t), small as time increases. In particular, we will
study how the error decreases during learning.

B. Numerical simulations

In this section, we present a set of numerical simulations to show that the FORCE algorithm –as detailed in
Sec. IVA and adapted to a random dynamical system– works to train it efficiently. We will focus on FORCE-II since
FORCE-I can only be used to train simple functions [9]. We consider the confined model in Eq. (2) with µ(t) = C(t, t)
and integrate numerically the dynamical equations at fixed learning rate equal to dt = 0.01. In particular, we consider
N = 100, α = 0.001 and ĝ = 0.7

√
3/4 for all the data-set plotted in this section.

In Fig. 4 left panel, we consider the task of learning first a constant output f(t) = 1 and progressively add a small
periodic perturbation around the constant value. Specifically, we choose f(t) = A + Bg(t, ω∗) with A = 1, and B
changes on each row of the figure. In the first row we have B = 0, while for the second row B = 0.1, and the last
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B = 1. The function g(t, ω) is defined as

g(t, ω) =
1√

a2 + b2
(a sin(2πω0t) + b sin(2πω1t))

ω∗ = {ω0 = 0.1, ω1 = 0.2}
a = 0.6

b = 1.2 .

(58)

In the right panel of Fig.4, we play the same game as learning a periodic function, this time changing the frequency
and without any constant offset. In particular, we learn f(t) = 2g(t, yω∗) with y = 0.5, 1, 2 from bottom to top.

If the strength of the chaotic term is not too large (see Sect. IVC5 for a precise way to quantify how strong it
can be), we see that learning is possible. In this case when learning is switched on, the output of the network almost
instantly matches the target function, which is a necessary condition for a successful FORCE-training [9]. As learning
proceeds, the readout weights wi should reach time-independent values. In practice however, we observe that reaching
∥w(t + dt) − w(t)∥ ≈ 10−4 at the end of training gives satisfying performances in the testing phase after training.
We also note that the amplitude and frequency of the target function influence the training process. In the left panel
of Fig.4, the larger the amplitude B of the periodic perturbation, the slower learning takes place; while in the right
panel of Fig.4, a periodic function with an intermediate frequency characterized by y = 1 is learned faster than one
with y = 0.5 or 2.

Fig.5 instead sheds light on the small region of phase space reached by the dynamical system during training and
shows how stable that region is after training, as a function of training time. We consider one learning episode during
which the output z(t) is trained to reproduce the target f(t) = 3 sin(t/2)/2. In the left panel, we plot the projection
of w(t) during training on the first two principal components (PCs) of the auto-correlation matrix ⟨xT (t)x(t)⟩t, which
is computed once f(t) has been learned. The dots on this plot represent the position in the projected PC space of
the dynamics after 8, 40, 60, 80 and 100 periods of f(t). Thus, we see that the dynamics converges very fast to a
small region of phase space where z(t) matches f(t), and then moves very slowly in that region. In the right panel of
the same figure, we also plot the performance of the network if –during the same learning episode– we stop training
after nh = 8, 40, 60, 80 and 100 periods of f(t). The performance of the network is measured with the error ϵ(n),
defined as the temporal average of the squared difference between f(t) and z(t) evaluated along the n-the period of
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FIG. 5. Left Panel : Trajectory of the weight vector w (gray trace) during one learning episode, projected on the first two
principal components (PCs) of the dynamically averaged correlation matrix ⟨xT (t)x(t)⟩t (explained variance of the first two
PCs, 0.978). Each component wi is initialized randomly from a uniform distribution in [−15, 15]. As training proceeds, the
dynamics reaches quickly a small region of phase space yielding good performances. The blue dots indicate the state of the
system after learning for nh = 8, 40, 60, 80, 100 periods of the target function f(t). The indent figure is a zoom on the end
of the trajectory, showing mild fluctuations even after learning has converged satisfyingly. Note that the dots for nh = 40 and
nh = 60 are superimposed. Right Panel : The error after training as a function of time, measured in the number n of periods
of f(t). The blue curves show the errors after training for different periods of f(t). If the training time is not large enough,
soon after training the dynamics is not able to stay close to the desired output. Instead for larger training times, one reaches
a configuration where the performance fluctuates also due to finite size.
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the target function f(t)

ϵ(n) =

∫ (n+1)T

nT

ds|f(s)− z(s)|2 . (59)

In the right panel of Fig. 5, we see that the earlier we stop learning, the worst the performances. But after a while
(nh ≥ 40), performance fluctuates as the dynamics wanders in the small region of phase space yielding small errors.
All in all, Fig. 4 shows that the dynamical system in Eq. (2) can be trained with the FORCE-II algorithm that we
have described in Sec. (IVA), see Eqs. (53)-(57).

C. Dynamical mean field theory of FORCE training

In recent years, there has been a growing interest in trying to apply DMFT to study learning in ANNs, especially
in supervised learning settings with feed-forward networks [20–23]. In this section, we develop a DMFT analysis of
both FORCE algorithms, which to the best of our knowledge has not been performed before. Since both algorithms
are defined in the discrete time setting, we use the confined model for the dynamical system in order to follow its
trajectory exactly in the large N limit.

1. The DMFT equations for the dynamical system

We first describe the DMFT for the dynamical system in Eq. (2) when the input current is given by Hi(t) = z(t).
We assume that time is discretized by a time step dt. Using the same arguments as before, one can show that the
DMFT equations are

C(t+ dt, t′)− C(t, t′) = dt

−C(t, t)C(t, t′) +
3g2

2

t′/dt∑
i=0

C2(t, idt)R(t′, idt) + z(t)m(t′)


C(t+ dt, t+ dt)− C(t, t) = 2dt

−C(t, t)2 +
3g2

2

t/dt∑
i=0

C2(t, idt)R(t, idt) + z(t)m(t)− dtC(t, t)z(t)m(t)


+ dt2

3g2
2

C2(t, t) + C3(t, t) + z2(t)− 3g2C(t, t)

t/dt∑
i=0

C2(t, idt)R(t, idt)


R(t+ dt, t′)−R(t, t′) = −µ(t)R(t, t′)dt+ δt/dt,t′/dt

m(t+ dt)−m(t) = dt [−µ(t)m(t) + z(t)]

with C(0, 0) = C̃

R(0, 0) = m(0) = z(0) = 0 .

(60)

The function m(t) controls the magnetization of the system and it corresponds to

m(t) =
1

N

N∑
i=1

xi(t) . (61)

In the large N limit, m(t) concentrates on its average (over the initial conditions of the dynamics and over the random
realization of the chaotic noise term). Finally, the initial conditions for the dynamical correlators are due to the fact
that we assume that the initial condition for xi(0) is extracted from a Gaussian measure with variance Cd and that

w(0) is a vector with zero mean and uncorrelated with x(0). In all our numerical integration we considered C̃ = 1.

From the point of view of the dynamical system of the x variables, the dynamics of the output unit is fully encoded
in the variable z(t). Therefore, the rest of the DMFT analysis concerns the characterization of the dynamical evolution
of z(t). Since we have two FORCE algorithms, we will now describe their corresponding DMFTs.
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2. DMFT of FORCE-I

We need to consider both Eq. (53) and Eq. (54). Eq. (53) defines a scalar function, z+(t) which concentrates in the
high dimensional limit. The goal of the DMFT analysis is to provide an equation for z(t) and z+(t). Using Eq. (54)
it is easy to show that

z(t+ dt) = z+(t)− η(t+ dt)(z+(t)− f(t+ dt))C(t+ dt, t+ dt) (62)

In particular, this implies that if we choose η(t + dt) = 1/C(t + dt, t + dt) the dynamics during training runs on
an error free trajectory since z(t) = f(t) at all times. In order to close the DMFT analysis, we need to provide an
equation for z+(t). This can be obtained by noting that the equation for w(t) can be rewritten as

w(t) = w(0)−
(t−dt)/dt∑

i=0

η((i+ 1)dt)
(
z+(idt)− f((i+ 1)dt)

)
x((i+ 1)dt) t ≥ dt (63)

Therefore, if we assume that w(0) = 0, it is easy to show that

z+(t) = −
(t−dt)/dt∑

i=0

η((i+ 1)dt)
(
z+(idt)− f((i+ 1)dt)

)
C(t+ dt, (i+ 1)dt) t ≥ dt . (64)

So Eqs. (60), Eq. (62) and Eq. (64) define a causal system of equations that can be integrated numerically. They
describe the behavior of the FORCE-I algorithm in the N → ∞ limit. It is interesting to see that the behavior of the
function z+(t) depends on C(t, t′) and therefore somehow has a memory of the system’s history.

3. DMFT of FORCE-II

This case is more complicated due to the fact that the dynamics of the weights of the output unit depends on the
dynamics of the matrix P which has a more complex flow equation. However, we will show that this change can
be anyway taken into account in the high-dimensional limit. First of all, we consider Eq. (56) and multiply it by
x(t+ dt)/N . We get

z(t+ dt) = z+(t)− e−(t+ dt)P(t+ dt, t+ dt, t+ dt), (65)

where we have denoted

P(t, t′, t′′) =
1

N
x(t)TP (t′)x(t′′) . (66)

Using the same argument as for FORCE-I, we can also write

z+(t) = −
t/dt∑
i=1

e−(idt)P(t+ dt, idt, idt) t ≥ dt . (67)

It is clear that the exact solubility of the DMFT relies on the ability to find a recursion relation for the matrix elements
of the operators P (t). We will now show that such matrix elements can be obtained by recursive relations in terms
of the correlation functions C(t, t′). First of all we have that

P(t, 0, t′) =
1

α
C(t, t′) . (68)

Furthermore, the dynamical equation for P gives

P(t, s+ dt, t′) = P(t, s, t′)− P(t, s, s+ dt)P(s+ dt, s, t′)

1 + P(s+ dt, s, s+ dt)
. (69)

It is easy to convince oneself that this system of equations has a causal structure and therefore can be integrated
numerically very easily. Therefore together with Eq. (60), we have the full DMFT equations given by

z(t+ dt) = z+(t)− e−(t+ dt)P(t+ dt, t+ dt, t+ dt)

z+(t) = −
t/dt∑
i=1

e−(idt)P(t+ dt, idt, idt){
P(t, 0, t′) = 1

αC(t, t′)

P(t, s+ dt, t′) = P(t, s, t′)− P(t,s,s+dt)P(s+dt,s,t′)
1+P(s+dt,s,s+dt) .

(70)
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It is also clear that we can consider a continuous time limit leading to partial differential equations. We do not
investigate this point in this work.

4. Generalizations

It is also useful to generalize the formalism presented above to the case in which there are k output neurons
performing a linear readout of the system. In this case we consider that we have the input currents in the dynamical
system given by

Hi(t) =

k∑
l=1

clzl(t) (71)

where cl are constants that are fixed and of order one. We denote by zl(t) the output of the l unit and

zl(t) =
1

N
wl · x(t) (72)

where wl are the weights of the l readout unit. We assume that there is no connection between the linear readout
units and that they interact only via their feedback loops onto the dynamical system. In this case, the task would be
that each readout unit produces a target function fl(t) for l = 1, . . . k. It is clear that the DMFT equations for the
dynamical system can be straightforwardly generalized. We get

C(t+ dt, t′)− C(t, t′) = dt

−C(t, t)C(t, t′) +
3g2

2

t′/dt∑
i=0

C2(t, idt)R(t′, idt) +m(t′)

k∑
l=1

clzl(t)


C(t+ dt, t+ dt)− C(t, t) = 2dt

−C(t, t)2 +
3g2

2

t/dt∑
i=0

C2(t, idt)R(t, idt) +m(t)

k∑
l=1

clzl(t)


+ dt2

3g2
2

C2(t, t) + C3(t, t) +

(
k∑

l=1

zl(t)

)2

− 3g2C(t, t)

t/dt∑
i=0

C2(t, idt)R(t, idt)


R(t+ dt, t′)−R(t, t′) = −µ(t)R(t, t′)dt+ δt/dt,t′/dt

m(t+ dt)−m(t) = dt

[
−µ(t)m(t) +

k∑
l=1

clzl(t)

]
with C(0, 0) = C̃

R(0, 0) = m(0) = zl(0) = 0 .

(73)

Since we know that there is no direct interaction between the readout units, it is easy to perform the FORCE algorithm
on all of them. We focus on FORCE-II. It is easy to show that for each l = 1, . . . k we have a generalization of the
DMFT equations for FORCE-II given by

zl(t+ dt) = z+l (t)− e−(t+ dt)Pl(t+ dt, t+ dt, t+ dt)

z+l (t) = −
t/dt∑
i=1

e−(idt)Pl(t+ dt, idt, idt){
Pl(t, 0, t

′) = 1
αC(t, t′)

Pl(t, s+ dt, t′) = Pl(t, s, t
′)− Pl(t,s,s+dt)Pl(s+dt,s,t′)

1+Pl(s+dt,s,s+dt) .

(74)

It is clear that if cl = c and fl(t) = f(t) for all l = 1, . . . , k the system has a mode collapse where all output
neurons become the same. An interesting question would be how does the system behaves as soon as there is some
small deviation from this rather symmetric situation. Can we understand the solution of the DMFT in terms of
perturbation theory? This is left for future work. We note that the integration of the DMFT equations in this case
is highly parallelizable. Indeed, each output neuron runs independently of the other and the only inputs needed are
the dynamical correlation functions C(t, t′).
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FIG. 6. Left Panel : the output of the network is trained to reproduce a constant function for times t < th. After th, training is
stopped. If the chaos level is sufficiently small the network can be trained to stay close to the target output. Right Panel : the
difference of z(t)−z+(t−dt) as a function of time for different values of g. If g is larger than 0.64, the difference z(t)−z+(t−dt)
stays large and the network cannot be successfully trained.

5. Numerical integration of the DMFT dynamics: performance of the algorithms

In this section we show the results of the numerical integration of the DMFT equations describing FORCE-II, see
Eqs. (60) and (65)-(70). We separate two cases, a simple case where the network needs to learn a constant function
and the case in which it has to learn a periodic function. In all numerical integration we work with dt = 0.1 and
α = 0.001.

Learning a constant function – We consider the dynamical system trained with FORCE-II to reproduce a constant
function f(t) = 1. In the left panel of Fig.6 we plot the output of the network z(t) as a function of time across the
end of the training phase and at the beginning of the post-training phase, for different values of the coupling constant
g tuning the strength of the chaotic noise term. We clearly see that as soon as g is smaller than a critical value which
is reasonably estimated between 0.64 and 0.65, the post-training phase is good and the system has been able to go
to a fixed point. Conversely, if chaos is too strong the network is not able to stay close to the constant output. In
the right panel of the same figure we plot the difference between the output z(t) and z+(t − dt). This difference is
actually proportional to dw(t) = w(t)−w(t− dt) and therefore, if it decays to zero, it means that ∥dw∥ → 0 and the
output unit is reaching a fixed point. For small values of g it seems that this is the case, while for larger values of g,
the output is not converging to a fixed point. In order to understand the critical value of g at which learning becomes
possible, we can easily argue as follows. FORCE-II drives the dynamical system to f(t) = 1 ≡ f0 across the training
phase. If this drive is sufficient to let the dynamical system approach a fixed point, then the post-training phase will
be such that the system stays at the attractor induced by the constant force z(t) = f0. Therefore, the phase diagram
can be drawn by looking at whether a constant force z(t) = f(t) = f0 is sufficient to suppress chaos and induce an
attractor in the dynamical system. This will be possible only if the level of chaos is sufficiently small with respect to
f0.

To understand the critical chaos strength, we assume that for z(t) = f0 the dynamical system goes to a fixed point.
The equations describing the fixed point are easily derived from the statistical properties of the chaotic noise term.
Denoting

Cd = lim
t→∞

C(t, t) (75)

we get that

Cd =
1

C2
d

(
3g2

2
C2

d + f2
0

)
. (76)

In order to understand if this equation describes a fixed point, we need to compute its stability. Let us denote the
coordinates of the fixed point as x(0). Assuming that dt → 0 and expanding the dynamical system around this point,

xi = x
(0)
i + δi we get

δ̇i = −
N∑
j=1

Mijδj (77)
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The stability of the fixed point is controlled by the real part of the spectrum of M . The matrix M is given by

Mij = Cdδij +
2

N
x
(0)
i x

(0)
j +

2ĝ

N

N∑
k=1

J i
jkx

(0)
k . (78)

It is easy to show that the real part of the spectrum of this random matrix touches zero when4

Cd = 2ĝ
√

Cd (79)

and therefore learning can take place only for

g < gc =

√
Cd

3
. (80)

Using Eq. (76) we get

gc =
1√
3

(
2f2

0

)1/6
. (81)

Therefore if g < gc(f0), the dynamical system can learn a constant function f0. If f0 = 1 we get gc ≃ 0.648 which
agrees with the numerical integration of the DMFT equations (see Fig. 6).

0 10 20 30 40

t

�1.0

�0.5

0.0

0.5

1.0

z,
f

nh = 4

nh = 14

nh = 24

FIG. 7. The output z(t) as obtained from the numerical integration of the DMFT equations, as a function of time in the
post-training phase. The black line is the target output function f(t). In lighter colors, the output for different values of the
total learning time measured in number of periods of the function f(t).
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FIG. 8. Right Panel : the error during training and post training for different values of the training time measured in the
number of periods of f(t) for f(t) = 3 sin(t)/2. Left Panel : the difference between z(t) and z+(t − dt) which confirms that
during training the dynamics is converging to a fixed point.

4 Note that the matrix Mij contains a low rank projector. However, depending on g this term may give rise to an isolated eigenvalue on
the right of the bulk of the spectrum, and since here we are mostly focusing on the left side of the spectrum, this term is harmless.
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Learning a periodic function – In Fig.7, we plot the output of the network in the post-training phase, as obtained
by numerically integrating the DMFT equations, when the network is trained with different training times (measured
in terms of periods of the periodic function f(t)). We choose to train the network on a simple sinusoidal function. We
clearly see that the output stays closer to the black line (the function f(t)) the larger the number of training periods.
In order to better characterize this behavior, in the right panel of Fig.8 we plot the error ϵ(n) as a function of

training periods, for different values of the training time measured in the number of periods of the function f(t). We
see that as soon as the training stops, the error increases exponentially, albeit with a rate that is smaller the larger
the training time. Furthermore in the right panel, we plot the difference z(t)− z+(t− dt) ∝ (w(t)−w(t− dt)) during
training. We clearly see that FORCE-II is exponentially converging to an attractor and therefore this algorithm is
effective in training the dynamical system in the infinite system size limit.

V. CONCLUSION AND PERSPECTIVES

We considered a simple set of high-dimensional chaotic systems and compared their dynamical behavior to standard
RNNs under various driving forces and mechanisms. We showed in Sec. III that this class of models has chaotic
properties and phases analogous to what was shown by Sompolinsky et al. [8] and Clark and Abbott [10] in more
standard models of RNNs, thus establishing these models as good abstract models of more biologically grounded
RNNs. We then showed in Sec. IV that the prototypical models we analyzed could also be trained via the FORCE
algorithm to generate simple periodic patterns and we believe that this opens the way to study in detail the learning
dynamics of more standard RNNs.

We now list a number of possible extensions of our approach, which can be studied using the methods developed
in this work.

1. The phase space of the readout weights w.– The DMFT analysis of FORCE can be simply closed on the dynamics
of the scalars z(t) and z+(t). However it would be very interesting to understand the dynamics of the weights
w. This is accessible from our formalism but we leave a detailed investigation for future work. Looking at this
would clarify what is the feasible phase space of the linear readout vectors and how this space is explored by
the learning algorithms. A complementary question is also related to the complexity of the function the system
needs to learn. While for supervised learning tasks such as image classification it has been shown that a good
measure of complexity is the intrinsic dimension of the manifold of the images of the dataset [24], here the
situation is more unclear and a systematic study from DMFT seems possible.

2. Possible interplay between Hebbian and FORCE training.– It is well known that standard RNN can learn a task
only if the level of chaos is within some working range (which may be dependent on the complexity of the task)
[9, 11]. The same happens also if we use the dynamical system in Eq. (2). This is reasonable: if the level of
chaos is too small, the endogenous dynamics is not sufficient to sustain the activity needed to produce a target
function. Conversely, if the level of chaos is too strong, the system experiences wild fluctuations which prevent
training. It would be very interesting if one could use Hebbian training as a way to tune the level of chaos
during FORCE learning, in such a way that the learning task could be performed optimally.

3. Hebbian learning: node perturbation and variants.– FORCE learning, while being very effective, lacks of bio-
logical plausibility. For example, the algorithm relies on the computation of the matrices P (t) which needs to
be done off-line. It is clear that if one wants to use RNNs to model biological neural networks, it is crucial to
engineer training strategies that are closer to be biologically plausible. In recent years, such line of research has
been started and a few training strategies with varying degree of biological plausibility have been proposed, see
[25–27]. A number of them is based on the use of an eligibility trace to solve the credit assignment problem.
While in some cases there is a clear theoretical foundation for the working mechanisms of the algorithm [25],
in others, the working principles are less understood and very limited [27]. A possible perspective is to try to
adapt and use these training strategies in the context of the models we have been studying in this work.

4. The high-dimensional competitive limit of linear readout units.– We generalized our framework to the case in
which there are many linear readout units. They are not directly interacting (there is no synaptic connection
between them) but their interaction is mediated by the dynamical system itself. In this setting, there are two
interesting perspectives to be investigated. On the one hand, it would be interesting to understand how two
readout units can be trained to perform competitive tasks (which are tasks that are mutually exclusive to some
degree) and what is the resulting dynamics. The other interesting limit to look at is when the number of the
readout units is sent to infinity (but after the thermodynamic limit of the dynamical system itself). This would
be an approximation for the situation in which the size of the central neural network is huge as compared to
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the peripheric neural network (and it is the same setting that one encounters in low dimensional activities such
as motor control).

5. High-dimensional optimal control and generative modeling.– In the previous sections, we have refereed to the
endogenous drive term in Eq. (2) as a chaotic noise, see Eq. (6). An interesting perspective is to use this out-of-
equilibrium noise as a bath to drive the readout units to explore target probability distributions. This would be
the same strategy as in [7]. Given that the process of biasing a stochastic process to sample a given probability
distribution can be recast into an optimal control problem [28], it is clear that this perspective is directly linked
to high-dimensional version of optimal control [29] and the key point will be to control the statistics of the
readout weights. It is also important to note that in this case the goal of the network is not to suppress chaos
as in the learning tasks we have discussed in this work, but rather to control it.

6. Spiking neural networks.– This work has focused on a random high-dimensional chaotic system as a simplified
and abstract model of a RNN. It would be interesting to investigate if this work can be generalized to spiking
dynamics to model spiking neural networks [30].

Therefore, we believe that this work opens a set of interesting directions that we plan to explore in forthcoming works.
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