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Abstract

Kernel methods are powerful tools in machine learning. Classical kernel methods are based
on positive definite kernels, which enable learning in reproducing kernel Hilbert spaces
(RKHS). For non-Euclidean data spaces, positive definite kernels are difficult to come
by. In this case, we propose the use of reproducing kernel Krein space (RKKS) based
methods, which require only kernels that admit a positive decomposition. We show that
one does not need to access this decomposition to learn in RKKS. We then investigate
the conditions under which a kernel is positively decomposable. We show that invariant
kernels admit a positive decomposition on homogeneous spaces under tractable regularity
assumptions. This makes them much easier to construct than positive definite kernels,
providing a route for learning with kernels for non-Euclidean data. By the same token, this
provides theoretical foundations for RKKS-based methods in general.

Keywords: kernel methods, geometric learning, Krein spaces, non-positive kernels, in-
variant kernels, Gaussian kernel, homogeneous spaces, symmetric spaces.
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1 Introduction

Kernel methods have proved to be successful in machine learning. Classically, kernel meth-
ods rely on a positive definite (PD) kernel on the data space. Such a PD kernel gives an
embedding of the data space into a reproducing kernel Hilbert space (RKHS), which is a
space of functions over the data space. Learning problems are then often phrased as learning
a function in the RKHS, which can be done effectively thanks to the Representer Theorem
(Schölkopf et al., 2001). This theorem makes kernels a particularly attractive paradigm as,
combined with universality results (Steinwart, 2001; Micchelli et al., 2006; Sriperumbudur
et al., 2011; Simon-Gabriel and Schölkopf, 2018), it provides a learning guarantee. In addi-
tion, kernels allow for uncertainty quantification by using Gaussian processes (Rasmussen
and Williams, 2005; Kanagawa et al., 2018).

Kernel methods on Euclidean data spaces have been thoroughly studied, and numer-
ous families of PD kernels have been proposed in Euclidean spaces, many of which have
universal approximation properties (Steinwart, 2001; Micchelli et al., 2006). However, in
many applications, it is important to capture the geometry of the data and view it as lying
on a non-Euclidean space, such as a manifold. There has been considerable recent interest
in constructing PD kernels on manifolds (Jayasumana et al., 2013; Feragen et al., 2014;
Borovitskiy et al., 2022; Azangulov et al., 2023a,b; Da Costa et al., 2023b). It has proved
difficult to find closed-form PD kernels that are easy to implement and evaluate on general
geometries.

Ong et al. (2004) proposed a different class of kernel algorithms that do not require
positive definiteness of the kernel. Instead, they require the existence of a positive (PD)
decomposition for the kernel, meaning that it can be written as a difference of PD kernels.
Such a kernel embeds the data space into a reproducing kernel Krein space (RKKS), con-
sisting of functions on the data space. As in the RKHS case, this allows for the solution of
learning problems from data (Schleif and Tino, 2015; Loosli et al., 2016; Oglic and Gaertner,
2018; Liu et al., 2021a,b) via, for instance, an adapted representer theorem.

We are interested in the problem of characterizing kernels that admit a PD decomposi-
tion, both on Euclidean and non-Euclidean data spaces. Providing such a characterization
promises to solve several open problems in the literature. More specifically, it achieves the
following.

1. It justifies the use of non-PD kernels for RKHS-based methods. In applied areas,
non-PD kernels have sometimes been used when restricted to a data set for which the
Gram matrix corresponding to this kernel is PD. This has, for example, been done
with the geodesic Gaussian kernel on non-Euclidean geometries (Calinon, 2020; Jousse
et al., 2021), which is known not to be PD in general (Feragen et al., 2014; Da Costa
et al., 2023a,b; Li, 2023). It seems that many RKHS-based methods (such as support
vector machines (Cristianini and Ricci, 2008)) may be generalized to RKKS-based
methods (Loosli et al., 2016), such that the solution to both learning problems are
the same when restricted to a finite data set on which the kernel is PD. Therefore
applying an RKHS-based method to a non-PD kernel, which is PD on a given finite
data set, can be justified by the existence of a PD decomposition for the kernel.
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2. It justifies the use of RKKS-based methods. Analogous to how a kernel may be PD
on a finite data set but not on the whole space, a kernel may be PD decomposable on
a finite data set but not on the whole space. Except that in this case, this subtlety
is even easier to ignore, as kernels are always PD decomposable on finite data sets.
However, if a kernel does not admit a PD decomposition on the whole data space,
then the solution to the learning problem has no guarantees to generalize to unseen
data. RKKS-based methods have so far largely ignored the issue of checking PD
decomposability of the kernels used. Only linear combinations of PD kernels were
truly known to admit a PD decomposition. Recently, a theoretical advance was made
by Liu et al. (2021a) by observing that invariant kernels on X = Rn admit a PD
decomposition if and only if they are the inverse Fourier transform of a finite signed
measure. We will generalize this result to many non-Euclidean data spaces X.

3. It motivates the use of RKKS-based methods for non-Euclidean data spaces. In the
Euclidean case X = Rn, many families of kernels are known to be PD. RKHS-based
methods are, therefore, usually sufficient in this case. In contrast, for non-Euclidean
data spaces X, PD kernels can be challenging to construct. For example, it has been
shown that the generalization of some of the most widely used kernels in Rn, such as
the Gaussian kernel, are often not PD on non-Euclidean geometries (Feragen et al.,
2014; Da Costa et al., 2023a,b; Li, 2023). The positive definiteness of a kernel is a
stringent condition and heavily depends on the specific geometry of the data space
in question. This makes it difficult to describe general families of kernels that are
PD on general classes of geometries. Such families can sometimes be expressed as
infinite series expansions on compact manifolds or as integrals on non-compact ones
(Borovitskiy et al., 2022; Azangulov et al., 2023a,b). Closed-form PD kernels, however,
have only been found on a handful of geometries (Feragen et al., 2014; Da Costa et al.,
2023b). In contrast, we will see that PD decomposability is a much weaker condition
to impose on a kernel, and it will be enough to require some symmetry and regularity
assumptions. Therefore, in non-Euclidean settings, RKKS-based methods become
particularly compelling.

Paper organization and contributions: This paper aims at providing verifiable suffi-
cient conditions for kernels to admit a positive decomposition, thereby justifying their use
for RKKS learning. We pay particular attention to invariant kernels on locally compact
groups G and their coset spaces G/H, and then look into the special case where G is a Lie
group, and G/H is a homogeneous space.

We start by briefly reviewing the theory of PD kernels and how they enable RKHS
learning in Section 2.1. We then describe the analogous theory of PD decomposable ker-
nels and RKKS learning in Section 2.2. In particular, we formalize a general representer
theorem for RKKS learning. Crucially, we show that, when the regularizer of the learning
problem is linear in the squared indefinite inner product, one does not need access to the
PD decomposition of the kernel in order to apply the representer theorem; one only needs to
know that it exists. We then discuss the extent to which RKHS methods can be adapted to
the RKKS framework. In Section 2.3 we review the few examples where PD decompositions
are known to exist.
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In Section 3 we focus on invariant kernels on homogeneous spaces of locally compact
groups and prove the correspondence between (PD/PD decomposable) invariant kernels on
G/H and (PD/PD decomposable) Hermitian functions on the double coset space H\G/H.
When H = {e}, this allows us to relate PD decomposable invariant kernels on G to real-
valued functions in the Fourier-Stieltjes algebra BC(G), which in turn allows us to leverage
results from harmonic analysis.

In Section 4, we study the case where G is commutative, where the situation simplifies
considerably. In particular, we review known sufficient conditions for functions to belong to
the spaces BC(Rn) and BC(S

1). As an example, we show that the Gaussian kernel, despite
failing to be PD, for instance, on the torus Tn, has a PD decomposition on any Abelian Lie
group.

In Section 5, we move to the case where G is not assumed to be commutative. In this
case the literature has focused on the space of functions BC(G), and not the more general
BC(H\G/H). To fill this gap, we show that any function that is invariant on (double)
cosets and is PD decomposable has a PD decomposition into functions that are invariant
on (double) cosets, i.e. BC(G) ∩ CC(G/H) = BC(G/H) and BC(G) ∩ CC(H\G/H) =
BC(H\G/H). This allows us to show in Section 5.1 that on a homogeneous space G/H,
with G a unimodular Lie group and H a compact Lie subgroup, smooth functions whose
derivatives decay appropriately at infinity admit PD decompositions. As an example, we
then show that the Gaussian kernel has a PD decomposition on non-compact symmetric
spaces.

2 Kernels and Learning

2.1 Learning with positive definite kernels

Definition 1 A kernel on a set X is a Hermitian map k : X ×X → C.

In practice, we are interested in real-valued kernels k : X ×X → R, but allowing kernels to
take complex values will be convenient in the following theoretical work.

Definition 2 A kernel k on a set X is said to be positive definite (PD) if for all N ∈ N,
x1, . . . , xN ∈ X and all c1, . . . , cN ∈ C,

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0

i.e. the matrix
(
k(xi, xj)

)
i,j
, which we call the Gram matrix of x1, . . . , xN , is Hermitian

positive semidefinite.

We refer to Berg et al. (1984, Chapter 3) for the general theory of PD kernels.
In machine learning, a key reason for the importance of PD kernels is the following

theorem (see Paulsen and Raghupathi (2016, Theorem 3.16)) that guarantees that PD
kernels have a natural associated reproducing kernel Hilbert space (RKHS):

Theorem 3 Let k be a PD kernel on a set X. Then there is a complex Hilbert space H
of complex-valued functions, which we call the reproducing kernel Hilbert space (RKHS)
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associated with k, with a map
Φ : X → H

x 7→ k(x, ·)
(1)

such that

1. ⟨Φ(x),Φ(y)⟩H = k(x, y) for all x, y ∈ X,

2. span(Φ(X)) = H.

In the above theorem span(Φ(X)) stands for the completion of span(Φ(X)) with respect to
the RKHS norm.

Any map Φ that satisfies the equality ⟨Φ(x),Φ(y)⟩H = k(x, y) in the first part of the
theorem is called a feature map of the RKHS H. The functions in the image of the feature
map Φ in (1) are called kernel sections, or canonical basis functions, of k. In practice,
kernels will be real-valued, so we will usually consider the induced real RKHS, defined as
the subspace of real-valued functions of H.

Suppose we are trying to learn a real or complex-valued function f over X from a finite
set of observations. One can try to find a good approximation for this function in the RKHS
associated with a particular kernel map k. This is particularly pertinent when the kernel in
question has universality properties (Steinwart, 2001; Micchelli et al., 2006; Sriperumbudur
et al., 2011; Simon-Gabriel and Schölkopf, 2018), that is, when its sections are dense, say,
in the set of continuous functions on compact subsets of X. The representer theorem in
RKHS (Schölkopf et al., 2001) tells us that, for a general class of learning problems, the
best approximation f∗ in the RKHS, given finitely many observations of the function, is a
finite linear combination of the kernel sections k(xi, ·). More specifically, given

1. D = {(x1, y1), . . . , (xN , yN )} ⊂ (X × R)N a finite data set,

2. g : [0,∞) → R a strictly increasing function,

3. L : H × (X × R)N → R a loss functional, determined exclusively through function
evaluations, i.e. if f, g ∈ H are such that f |D = g|D, then L(f,D) = L(g,D),

4. Ω(D) ⊂ H a feasible set, determined exclusively through function evaluations, i.e. if
f, g ∈ H are such that f |D = g|D, then f ∈ Ω(D) if and only if g ∈ Ω(D).

Then any solution to the minimization problem

minimize
f∈H

L(f,D) + g(∥f∥H)

s.t. f ∈ Ω(D)
(2)

has the form

f∗ =
N∑
i=1

αik(xi, ·)

for some α1, . . . , αN ∈ R.
The problem is therefore reduced to learning the coefficients αi. We have thus trans-

formed the infinite-dimensional problem of learning a function into a finite-dimensional
linear algebra problem.
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Example 4 Kernel ridge regression (KRR) is a learning algorithm for fitting a function in
the RKHS to noisy observations. Given a PD kernel k on a set X, H the RKHS associated
to k, and a finite data set D = {(x1, y1), . . . , (xN , yN )} ⊂ (X × R)N , the learning problem
solved by KRR is given by

minimize
f∈H

1

N

N∑
i=1

(f(xi)− yi)
2 + c∥f∥2H

for some c > 0. The representer theorem gives us a closed-form solution to this problem as
f∗ =

∑N
i=1 αik(xi, ·) for some αi ∈ R, namely α = (K +NcI)−1y, where K =

(
k(xi, xj)

)
i,j

is the Gram matrix and y = (yi)i.

Example 5 Support vector machines (SVM) (Cristianini and Ricci, 2008) are a class of
learning algorithms for classification. Given a finite data set D = {(x1, y1), . . . , (xN , yN )} ⊂
(X ×{−1, 1})N , and k, X, H as above, the learning problem solved by binary SVM can be
written as

minimize
f∈H, b∈R

∥f∥2H s.t.
N∑
i=1

max(0, 1− yi(f(xi) + b)) ≤ τ (3)

for some fixed parameter τ > 0. Once again, the representer theorem gives us a closed-form
solution to this problem. Note that to be precise, the parametric extension to the representer
theorem (Schölkopf et al., 2001, Theorem 2) is applied here, since the minimization is over
f and b, and not solely over f .

The field of positive definite kernel methods extends beyond the use of the representer
theorem. Gaussian processes (GPs) are the Bayesian analogue to frequentist kernel methods,
with the posterior mean of GP regression corresponding to the solution KRR being one of
many correspondences between the two paradigms (Kanagawa et al., 2018). Kernels can
also be used to define distances on the space of probability measures through maximum
mean discrepancy (Gretton et al., 2012).

2.2 Learning with positively decomposable kernels

A natural question that can be posed is whether the assumption on the kernel k being
positive definite is necessary. That is, can we still obtain a representer theorem while
dropping this assumption? It turns out that we can. For this, we need to define the notion
of a Krein space. We refer to Bognár (1974) for a thorough presentation of Krein spaces
and to Schwartz (1964) and Alpay (1991) for the study of their reproducing kernels. This
last reference contains a good summary of Schwartz’s contributions.

Definition 6 An indefinite inner product on a real vector space K is a Hermitian bilinear
map ⟨·, ·⟩ : X ×X → R which is non-degenerate, that is, for all f ∈ K,

⟨f, f⟩ = 0 implies that f = 0.

A complex vector space K equipped with an indefinite inner product ⟨·, ·⟩ is called a Krein
space if it can be written as the algebraic direct sum

K = H+ ⊕H− (4)
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such that

1. H+ equipped with ⟨·, ·⟩+ := ⟨·, ·⟩ is a Hilbert space,

2. H− equipped with ⟨·, ·⟩− := −⟨·, ·⟩ is a Hilbert space,

3. ⟨f+, f−⟩ = 0 for all f+ ∈ H+, f− ∈ H−.

In other words, there are complete inner products ⟨·, ·⟩+, ⟨·, ·⟩− on H+, H− respectively such
that

⟨f, g⟩ = ⟨f+, g+⟩+ − ⟨f−, g−⟩−
for all f = f+ + f−, g = g+ + g− with f, g ∈ K, f+, g+ ∈ H+, f−, g− ∈ H−.

K is equipped with the product topology on H+×H−, which can be shown to be indepen-
dent of the choice of decomposition (4).

Definition 7 Let k be a kernel on X. Then k is said to have a positive (PD) decomposition
if it can be written as

k = k+ − k−

where k+ and k− are PD kernels.

Remark 8 PD decompositions are also sometimes called fundamental decompositions (Bognár,
1974), or Kolmogorov decompositions (Mary, 2003).

With this notion, we obtain an analogous result to Theorem 3 (see Alpay (1991, Theorem
2.1)):

Theorem 9 Let k be a PD decomposable kernel on a set X. Then there is a complex
Krein space K of complex-valued functions, which we call the reproducing kernel Krein
space (RKKS) associated to k, with a map

Φ : X → K
x 7→ k(x, ·).

such that

1. ⟨Φ(x),Φ(y)⟩K = k(x, y) for all x, y ∈ X,

2. span(Φ(X)) = K.

Remark 10 As opposed to the PD case where the RKHS associated to a kernel is unique
(see Paulsen and Raghupathi (2016, Theorem 3.16 & following Remark)), the RKKS associ-
ated to a PD decomposable kernel k can, in some (arguably atypical) cases, be non-unique;
see Schwartz (1964) and Alpay (1991).

Theorem 9 can be made into an if and only if statement: k must admit a PD decomposition
in order to give rise to an RKKS, in the same way that k must be PD in order to give rise
to an RKHS. Indeed, a PD decomposition for k can be obtained given a decomposition of
the RKKS as in (4).
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As in the PD case, we will usually consider only the induced real RKKS of a real-valued
PD decomposable kernel, defined as the subspace of real-valued functions of K.

Now, as in the RKHS case, a representer theorem can be formulated in the context of
RKKS. Such a representer theorem in RKKS was formulated in Ong et al. (2004, Theorem
11). The indefinite nature of the inner product implies that the optimization problem (2)
is replaced by a critical point problem. More specifically, given

1. D = {(x1, y1), . . . , (xN , yN )} ⊂ (X × R)N a finite data set,

2. g : R → R a strictly monotonic differentiable function,

3. L : K × (X × R)N → R a loss functional, determined exclusively through function
evaluations, Fréchet differentiable in the first argument,

4. I : K×(X×R)N → Rm and E : K×(X×R)N → Rl functionals determined exclusively
through function evaluations and Fréchet differentiable in the first argument,

under some appropriate additional regularity condition on I and E (see Appendix A), any
solution to the stabilization (critical point) problem

stabilize
f∈K

L(f,D) + g(⟨f, f⟩K)

s.t. I(f,D) ≤ 0

E(f,D) = 0

(5)

has the form

f∗ =
N∑
i=1

αik(xi, ·),

for some α1, . . . , αN ∈ R. Specifically, f∗ is given in closed form by

f∗ = − 1

2g′(⟨f∗, f∗⟩K)

N∑
i=1

(
∂iL(f

∗,D) + λ⊤∂iI(f
∗,D) + µ⊤∂iE(f∗,D)

)
k(xi, ·)

for some Lagrange multipliers λ ∈ Rm, µ ∈ Rl, where the ∂i denotes the derivative with
respect to the ith evaluation. Importantly, note that in the generic case g(x) = cx for some
c ∈ R and all x ∈ R, we have g′(⟨f∗, f∗⟩K) = c, and hence the αi do not depend on the
choice of indefinite inner product ⟨·, ·⟩K associated to K. This means that in this case one
does not need to access the positive decomposition of the kernel in order to compute the
solution, one only needs to know of its existence.

We emphasize that, in view of this result, the situation for RKKS is analogous to the
RKHS case in the sense that the solution of the stabilization problem is in the span of the
data, although this adapted representer theorem is designed for the study of critical points,
as opposed to minima of a loss functional, and thus algorithms must be adapted to this
setting (Hassibi et al., 1999).

The reason for stabilizing, as opposed to minimizing, the regularized loss functional
L(f,D) + g(⟨f, f⟩K) is not that the proof of the RKKS representer theorem fails for mini-
mization; it doesn’t. Rather, the reason is that it is not expected that the regularized loss
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functional admits a minimum since ⟨f, f⟩K, as opposed to ∥f∥H, is not bounded below for
f ∈ K. Thus, solutions to learning problems in RKKS may take the form of a saddle point
instead.

Note that we have not described precisely what is meant by a critical point of the
learning problem (5). This is a subject that has not received much attention in the RKKS
learning literature, possibly due to the difficulty of defining a critical point of a constrained
optimization problem in function space. In Appendix A, we thus expand on the work from
Ong et al. (2004, Theorem 11) by providing a formal definition of such a critical point and
outlining a proof for the resulting representer theorem.

Below we present a few examples of the use of the RKKS representer theorem.

Example 11 Kernel ridge regression (c.f. Example 4) can be generalized to PD decom-
posable kernels (Ong et al., 2004). Given a PD decomposable kernel k on a set X, K the
RKKS associated to k, and a finite data set D = {(x1, y1), . . . , (xN , yN )} ⊂ (X × R)N , the
learning problem solved by KRR is given by

stabilize
f∈H

1

N

N∑
i=1

(f(xi)− yi)
2 + c⟨f, f⟩K

for some c ∈ R. The representer theorem gives us a closed-form solution to this problem as
f∗ =

∑N
i=1 αik(xi, ·) for some αi ∈ R, namely α = (K +NcI)−1y, where K =

(
k(xi, xj)

)
i,j

is the Gram matrix and y = (yi)i, assuming −Nc is not an eigenvalue of K.

Example 12 Support vector machines (c.f. Example 5) have been generalized to PD de-
composable kernels in Loosli et al. (2016). Given a finite data setD = {(x1, y1), . . . , (xN , yN )}
⊂ (X × {−1, 1})N , and k, X, K as above, the analogous version to the learning problem
(3) can be written as

stabilize
f∈K, b∈R

⟨f, f⟩K s.t.

N∑
i=1

max(0, 1− yi(f(xi) + b)) ≤ τ,

for some fixed parameter τ > 0. The representer theorem tells us that any solution (f, b)
to this problem has the form f =

∑N
i=1 αik(xi, ·) for some α1, . . . , αN ∈ R. We emphasize

again that we are applying here the semiparametric extension to the representer theorem
(Ong et al., 2004, Theorem 12), since the stabilization is over f and b, and not solely over
f .

See Figure 1 for an application.

Example 13 More generally, given an RKHS H and an RKKS K, and a learning problem

minimize
f∈H

L(f,D) + g(∥f∥2H)

s.t. I(f,D) ≤ 0

E(f,D) = 0,

9
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Figure 1: The Krein SVM algorithm (Loosli et al., 2016) applied on the hyperbolic plane
H2, with the geodesic Gaussian kernel k = exp(−λd(·, ·)2). The data is sampled
from a Riemannian Gaussian distribution (Said et al., 2018, 2022, 2023) centered
at the origin of the Poincare disc and is split into two classes according to geodesic
decision boundaries (dotted curves in the figure). The number of sampled data
points is 200, 200, and 500, respectively. The results of the classification are
displayed in the Poincare disc model of H2. We will show in Corollary 56 that
the Gaussian kernel admits a PD decomposition on H2, justifying its use in this
scenario.

one can consider the learning problem in RKKS

stabilize
f∈K

L(f,D) + g(⟨f, f⟩K)

s.t. I(f,D) ≤ 0

E(f,D) = 0.

This gives a general recipe for turning an RKHS problem into an RKKS problem. While
Examples 11 and 12 follow this procedure, it appears to be an open question whether,
starting from an arbitrary RKHS problem, the solutions to the corresponding RKKS prob-
lem behave as one would hope from solutions to the RKHS problem (eg. provide a good
regression/classification rule).

Turning an RKHS problem into an RKKS problem achieves another goal: suppose that,
as in Calinon (2020); Jousse et al. (2021), we use a non-PD kernel, which has a PD Gram
matrix when restricted to a given dataset, and consider a representer solution, as if the kernel
was PD on the whole space. Through PD kernel theory, this has no theoretical backing:
the kernel has no underlying RKHS over the whole space, therefore one cannot write an
RKHS minimization problem that the representer solution solves. However, assuming that
the kernel has a PD decomposition and that the appropriate regularity conditions on L,
I, E are satisfied, the representer solution is actually a critical point of the corresponding
RKKS problem!

The vast majority of optimization research has focused on minimization or maximization
and rarely on stabilization. Stabilization problems are nonetheless common in fields such
as Lagrangian and Hamiltonian mechanics where the least action principles (Abraham and
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Marsden, 1978; Marsden and Ratiu, 1999) that are at the core of the formulation of various
physical theories adopt a stabilization rather than a minimization form. It is in contexts
of this type, that in addition are rarely Euclidean, where the RKKS framework could be
particularly appropriate.

Nevertheless, designing minimization problems in RKKS could allow one to leverage ex-
isting optimization and RKHS learning literature more easily. This is possible, by replacing
the regularizer g(⟨·, ·⟩K) = g(⟨·, ·⟩+ − ⟨·, ·⟩−) in (5) by a regularizer g+(⟨·, ·⟩+) + g−(⟨·, ·⟩−)
for some strictly increasing g+, g−. With respect to such a regularizer, one is then able
to solve minimization problems. However, this requires a choice of inner product ⟨·, ·⟩K for
the RKKS, i.e. a choice of PD decomposition for the kernel. Constructive choices of PD
decompositions for kernels are beyond the scope of the present work.

Example 14 Krein kernel ridge regression introduced in Oglic and Gaertner (2018), is an
alternative generalization of kernel ridge regression to Krein spaces (c.f. Example 11). It
refers to the learning problem

minimize
f∈K

N∑
i=1

(f(xi)− yi)
2 + c+⟨f, f⟩+ + c−⟨f, f⟩−

s.t.
N∑
i=1

1

N

f(xi)− N∑
j=1

1

N
f(xj)

2

= r2

for some r > 0.

We conclude this section by noting that it is unclear at present whether other PD kernel
non-representer-based approaches, such as Gaussian processes and maximum mean discrep-
ancy, have analogues in the PD decomposable context. This appears to be an interesting
avenue for future research.

2.3 Positive decompositions

Without a PD decomposition, we do not have a representer theorem. In that case, it
is not so much that the proof of the representer theorem fails; rather, we cannot state it
in the first place. Indeed, the kernel does not have a reproducing property as in Theorem
9, so there is no obvious concept of a space of functions we can stabilize over. Therefore,
a solution found, for instance, in Example 12, may not come with a guarantee to provide
a good classification rule for unseen data. This gives rise to the following fundamental
question:

Problem 15 When does a kernel k admit a PD decomposition?

Remark 16 Problem 15 was first studied by Schwartz (1964). His setting was more general
than ours, and only abstract conditions for PD decomposability were obtained. For instance,
it is stated in that reference that k has a PD decomposition if and only if there is a PD
kernel k+ such that k+ − k is PD (see Schwartz (1964, Proposition 38 & Proposition 23)).
However, if one wants to recognize PD decomposable kernels in practice, this condition does
not appear to be any easier to work with than Definition 7 itself.

11
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Example 17 If k1, . . . , kn are PD kernels and a1, . . . , an ∈ R, then the kernel

n∑
i=1

aiki

has the PD decomposition ∑
i:ai≥0

aiki −
∑
i:ai<0

(−ai)ki.

In fact, observe that the space of kernels that admit a PD decomposition is exactly the real
span of the PD kernels.

Example 18 The pointwise limit of PD kernels is PD. It follows that the pointwise limit
of PD decomposable kernels is PD decomposable.

Remark 19 PD kernels form a convex cone that is closed under pointwise convergence.
Now, Example 17 and Example 18 show that PD decomposable kernels are the real linear
span of these and thus form a real vector space closed under pointwise convergence.

Example 20 Similarly, since the pointwise product of PD kernels is PD (Berg et al., 1984,
Chapter 3 Theorem 1.12), so it follows that the pointwise product of PD decomposable
kernels is PD decomposable.

Example 21 Suppose X is finite. Then a kernel k can be viewed as a Hermitian matrix
K. By Sylvester’s law of inertia, we can write

K = A†EA

for some invertible real matrix A, where A† denotes the conjugate transpose of A, and E is
of the form

E =

IN+

−IN−

0M


for some N+, N−,M ∈ Z≥0, where IN+, IN− denote the identity matrices with the corre-
sponding sizes, and 0M is the zero matrix of size M ×M . Then E = E+ − E− where

E+ =

0N+

−IN−

0M

 , E− =

IN+

0N−

0M

 .
This implies that

K = A†E+A−A†E−A,

and hence k has a PD decomposition. However, when X is infinite, one should not expect
all kernels to admit a PD decomposition.

12
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Example 22 We present an example of a finite-dimensional RKKS associated with a non-
finite X, namely X = Hn, the n-dimensional hyperbolic space. To motivate our construc-
tion, we recall that when X = Rn, the standard inner product kernel ⟨·, ·⟩ : Rn × Rn → R
is PD and gives rise to the RKHS H = {⟨x, ·⟩ : x ∈ Rn}, which consists of all linear maps
Rn → R. So for f ∈ H, b ∈ R, the set {x ∈ Rn : f(x) = b} is a hyperplane in Rn.

Taking X = Hn, it is therefore natural to ask if there is a kernel that gives rise to
an RKHS of functions f such that for any b ∈ R, the sets {x ∈ Hn : f(x) = b} are
geodesic hyperplanes. This has practical relevance, as it would allow us to perform large-
margin classification with geodesic decision boundaries, as in Cho et al. (2019). This is
done naturally with a PD decomposable kernel giving rise to an RKKS. First consider the
Minkowski inner product on Rn+1:

(x, y) = x0y0 − x1y1 − · · · − xnyn

for all x = (x0, . . . , xn), y = (y0, . . . , yn) ∈ Rn+1. Then, we can view Hn as a hypersurface
in this Minkowski space:

Hn = {x ∈ Rn+1 : (x, x) = 1, x0 > 0}.

This is the hyperboloid model of Hn. The geodesic hyperplanes in Hn are given by

{x ∈ Hn : (y, x) = b}

for some y ∈ Rn+1, where the above is non-empty if and only if (y, y) < 0. These are the
intersection of planes through the origin with the hyperboloid model of Hn (see Figure 2).
So the kernel k : Hn × Hn → R of interest can be taken to be k = (·, ·). It has a PD
decomposition by definition of the Minkowski inner product, and the associated real RKKS
is the Minkowski space Rn+1 equipped with (·, ·).

Example 23 We now present a kernel that does not admit a PD decomposition. Let B be
a real reflexive Banach space whose norm does not arise from an inner product (for instance,
an Lp space with 1 < p < ∞, p ̸= 2), B∗ be its dual. Let X = B × B∗, and let the kernel
k : X ×X → R be given by

k(x, φ; y, ψ) := φ(y) + ψ(x).

Then k has no PD decomposition. This example was first presented in Schwartz (1964,
Page 243). A self-contained proof can be found in Alpay (1991, Theorem 2.2).

3 Group Actions and Invariant Kernels

To have at our disposal additional structure to address Problem 15, we shall restrict our
attention to kernels that possess certain symmetries, which we shall refer to as invariant
kernels. In the rest of the paper, G will be a locally compact (always assumed Hausdorff)
topological group, acting on the left on the set X.

13
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(0, 0, − 1)

z2 − x2 − y2 = 1
z

x2 + y2 < 1

+

+
−

−
𝔹2

𝔹2

ℍ2

Figure 2: A geodesic in the hyperboloid model of the hyperbolic plane H2, obtained as
the intersection of a plane with the hyperboloid. The corresponding geodesic on
the Poincare disc model B2 of the hyperbolic plane is obtained by stereographic
projection from the point (0, 0,−1).

Definition 24 A kernel k : X ×X → C is called invariant with respect to the action of G
if

k(g · x, g · y) = k(x, y)

for all g ∈ G and all x, y ∈ X, · denotes a left action of the elements of G on the elements
of X.

Remark 25 For notational convenience, we will, at times, drop the · all together and write
g · x = gx.

PD invariant kernels were first studied by Yaglom (1961), and more recently by Azangulov
et al. (2023a,b) in the context of Gaussian processes, and by Da Costa et al. (2023b).

Example 26 TakingX = G = Rn equipped with addition and acting on itself, an invariant
kernel on Rn is a translation-invariant or stationary kernel:

k(x+ g, y + g) = k(x, y)

for all x, y, g ∈ Rn. Standard invariant theory arguments show that translation-invariant
kernels are exactly those that depend only on the difference x− y, i.e. kernels k on Rn for
which there is a function f on Rn such that

k(x, y) = f(x− y)

for all x, y ∈ Rn.

In this paper, we shall study a generalization of this example, namely when the action of G
is transitive onX. In that case, if we pick a distinguished element o ofX, the orbit-stabilizer

14



Geometric Learning with Positively Decomposable Kernels

theorem gives us the bijection of sets

G/H → X

gH 7→ g · o

where H = Stab(o). In what follows, we will write X as G/H, where H is a subgroup of
G. This notation has the advantage of specifying both the group G acting on X and the
action (the canonical left action of G on G/H), so from here on, we will call an invariant
kernel on G/H one that is invariant with respect to that action. We will further make the
assumption thatH is closed, granting us with a locally compact Hausdorff quotient topology
for X = G/H, and making the action of G on X proper (see Folland (2015, Section 2.6) for
the theory of such homogeneous spaces).

Invariant kernels under transitive actions are particularly interesting for us because the
symmetries they respect allow us to view them as functions of a single variable instead of
two, as in Example 26. To see this, let us first give the analogues to Definitions 1 and 7 for
functions defined on the relevant spaces.

Definition 27 Write H\G/H := {HgH : g ∈ G} for the double coset space. A complex-
valued function f : H\G/H → C is said to be positive definite (PD) if for all N ∈ N and
g1, . . . , gN ∈ G, the matrix (

f(Hg−1
i gjH)

)
i,j

is positive semidefinite. f is said to have a positive (PD) decomposition if it can be written
as

f = f+ − f−

where f+ and f− are PD functions on H\G/H.

In particular, when H = {e}, f : G → C is PD if the matrices
(
f(g−1

i gj)
)
i,j

are positive

semidefinite for all N and all gi, gj ∈ G. Functions on H\G/H should be considered as
H-invariant functions on G/H. The relevance of double coset spaces in the kernel context
will become clear later in Proposition 32.

Example 28 The n-dimensional sphere Sn may be viewed as the coset space

Sn ∼= SO(n+ 1)/SO(n).

Moreover, viewed as a submanifold Sn ⊂ Rn+1, SO(n + 1) acts transitively on Sn by
rotations. Picking o = (1, 0, . . . , 0) ∈ Sn, the stabilizer of o is the subgroup of SO(n + 1)
leaving the first coordinate untouched, which is isomorphic to SO(n). Now the double coset
space SO(n)\SO(n+1)/SO(n) is obtained by quotienting out each orbit (see Figure 3), so
we see

SO(n)\SO(n+ 1)/SO(n) ∼= [−π, π].

Functions on SO(n)\SO(n + 1)/SO(n) are functions of the geodesic distance on Sn, or
equivalently of the inner product of Rn+1 restricted to Sn.
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π

e ⋅ O(2)

det(X) = λ1λ2

trace(X) = λ1 + λ2

σ (g . O(2)) = {λ1, λ2}
g . O(2)

O(2)\GL(2)/O(2) ≅ {(x, y) ∈ ℝ2 : x ≥ y > 0}

e ⋅ SO(2)
g ⋅ SO(2)

π

S2 ≅ SO(3)/SO(2)

(1, 1)
(λ1, λ2)

x

y

O(2) ⋅ g ⋅ O(2)
O(2) ⋅ e ⋅ O(2)SO(2) ⋅ g ⋅ SO(2) SO(2) ⋅ e ⋅ SO(2)

SO(2)\SO(3)/SO(2)

𝕊2++ ≅ GL(2)/O(2)

Figure 3: A visualisation of the projections to the double coset spaces π : S2 ∼=
SO(3)/SO(2) → SO(2)\SO(3)/SO(2) and π : S2++

∼= GL(2)/O(2) →
O(2)\GL(2)/O(2). In each case, we have in red an orbit HgH. In the case
of S2, it is obtained by rotating gSO(2) around a horizontal axis. In the case of
S2++, it is the set of matrices with eigenvalues equal to the ones of gO(2), obtained
as the intersection of the constant-trace plane and the constant-determinant sur-
face. In each case, we have in dark blue a set transversal to such orbits, and
homeomorphic to H\G/H.

Example 29 The space of n × n real symmetric positive definite matrices Sn++ may be
viewed as the coset space

Sn++
∼= GL(n)/O(n).

Indeed, GL(n) acts transitively on Sn++ by G · X := GXG⊤ for G ∈ GL(n) and X ∈
Sn++. The stabilizer of the the identity I consists of the matrices G such that GG⊤ = I,
i.e. Stab(I) = O(n). Now, for X ∈ Sn++, O(n)XO(n) ∈ O(n)\GL(n)/O(n) consists of
{HXH⊤ : H ∈ O(n)}, which is fully determined by the n eigenvalues of X. So

O(n)\GL(n)/O(n) ∼= {(λ1, . . . , λn) : λi > 0 ∀ i}/ ∼

where (λ1, . . . , λn) ∼ (λ′1, . . . , λ
′
n) if and only if {λ1, . . . , λn} = {λ′1, . . . , λ′n} (see Figure 3).

Functions on O(n)\GL(n)/O(n) are functions of the eigenvalues on Sn++.

Let us generalize the concept of Hermitian functions to complex-valued functions on double
coset spaces:

Definition 30 f : H\G/H → C is called Hermitian if

f(Hg−1H) = f(HgH)

for all g ∈ G.

Since G is a topological group, G/H and H\G/H are equipped with natural quotient
topologies. In the rest of the paper, we shall make the following continuity assumption:
we will consider continuous kernels k, and ask whether they admit PD decompositions
into continuous PD kernels k = k+ − k−. We call such a decomposition a continuous PD
decomposition.
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Remark 31 The continuity assumption is non-trivial: see Schaback and Wendland (2003,
Section 3) for a construction of an everywhere discontinuous PD kernel. Note, however,
that at least for functions on groups, a continuous function on G has a continuous PD
decomposition if and only if it has a PD decomposition (Kaniuth and Lau, 2018, Corollary
2.2.2).

The reason for considering functions on the double coset space H\G/H as opposed to the
regular coset space G/H is made apparent in the following important result.

Proposition 32 There is a bijection between the continuous Hermitian functions on H\G/H
and the continuous invariant kernels on G/H. This bijection restricts to:

1. A bijection between the continuous Hermitian PD functions and the continuous PD
invariant kernels.

2. An injection between the continuous Hermitian PD functions with continuous PD
decompositions and the continuous kernels with continuous PD decompositions.

Proof Given a continuous invariant kernel k : G/H × G/H → C, define the function
f : H\G/H → C by

f(HgH) := k(gH, eH)

for all g ∈ G, where e is the identity of G. Note that

f(Hg−1H) = k(g−1H, e) = k(g−1H, eH) = k(eH, gH) = k(gH, eH) = f(HgH)

i.e. if k is Hermitian then f is necessarily Hermitian. Finally, the continuity of f follows
from the continuity of k. Conversely, given a Hermitian function f : H\G/H → C, define
the invariant kernel k : G/H ×G/H → C by

k(gH, g′H) := f(Hg−1g′H)

for all g, g′ ∈ G where the continuity of and the Hermitian character of f imply the same
properties for k.

These correspondences are inverses of each other and thus provide a bijection. More-
over, we can see that k is PD if and only if f is PD. Also, this correspondence is linear,
which implies that if f admits a continuous PD decomposition, so does k.

Remark 33 In the caseH = {e}, the correspondence above is simply the bijection between
Hermitian functions on G and invariant kernels on G. Example 26 is an instance of this
case.

Remark 34 Note that in the second part of Proposition 32, we have only proved the injec-
tivity of the correspondence between continuous Hermitian PD functions with continuous
PD decompositions and the continuous kernels with continuous PD decompositions. The
difficulty in proving surjectivity is that k may not admit a continuous PD decomposition
k = k+ − k− with k+ and k− invariant. In Appendix B we provide a partial solution by
showing that the correspondence in part 2 is indeed surjective when G is compact. In any
case, the injectivity in this part will be enough for us to provide sufficient conditions for a
kernel k to have a continuous PD decomposition.
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Being able to handle invariant kernels as functions will allow us to leverage tools from
harmonic analysis and representation theory to address Problem 15.

In the sequel, we shall use the following spaces in relation with the locally compact
group G and the closed subgroup H:

B+(G) := {continuous PD functions G→ C}
BR(G) := spanR(B+(G))

= {continuous functions with continuous PD decompositions G→ C}
BC(G) := spanC(B+(G))

and, more generally,

B+(H\G/H) := {PD functions H\G/H → C}
BR(H\G/H) := spanR(B+(H\G/H))

= {continuous functions with continuous PD decompositions H\G/H → C}
BC(H\G/H) := spanC(B+(H\G/H)).

Remark 35 While BR(G) and BR(H\G/H) are defined as the real span of B+(G) and
B+(H\G/H), note that the latter contain complex-valued functions that are not real-valued,
hence so do the former.

The space BC(G) is called the Fourier-Stieltjes algebra of G in the literature and has been
studied thoroughly; see, for example, Kaniuth and Lau (2018). We will present and extend
some of these results to BC(H\G/H).

Motivated by Proposition 32, our goal is to characterize BR(H\G/H) and consider
Hermitian elements in this space. In fact, since we are interested in real-valued kernels and
hence in real-valued functions, the following proposition shows that it suffices to characterize
BC(H\G/H) and consider real-valued even (f(HgH) = f(Hg−1H) for all g) elements in
this space.

Proposition 36 If f ∈ BC(G) or f ∈ BC(H\G/H) is real-valued, then f ∈ BR(G) or
f ∈ BR(H\G/H) respectively.

Proof Observe that if f ∈ B+(G), then Re f = f+f
2 ∈ B+(G), and Im f = f−f

2 ∈ BR(G).

If f ∈ BC(G) we can write

f = f+ − f− + if+i − if−i

with f+, f−, f+i, f−i ∈ B+(G). If f is real-valued,

f = Re f = Re f+ − Re f− +Re(if+i)− Re(if−i) = Re f+ − Re f− − Im f+i + Im f−i

so f ∈ BR(G). The proof is identical for functions in BC(H\G/H).
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4 Positive Decompositions for Invariant Kernels: Commutative Case

In this section, we focus on invariant kernels that are invariant with respect to the action
of an Abelian locally compact group G. The commutativity hypothesis will simplify the
theory considerably.

First, observe that in this case, any closed subgroup H of G is automatically a normal
subgroup, so X = G/H is itself a group. Equipped with the quotient topology, G/H is
actually a locally compact group (Folland, 2015, Proposition 2.2). Therefore without loss
of generality, we can set X = G.

In view of the results in the previous section, we shall focus in this case on BC(G),
which is a well-studied object in standard commutative abstract harmonic analysis. For the
sake of completeness, we recall here a few facts in relation to this theory that are needed
in our developments. We refer to Folland (2015) for a more detailed exposition and proofs.
Folland (2015, Chapter 4) is particularly relevant to this section.

G has a dual group, Ĝ, which is defined as the group of continuous irreducible unitary
representations of G (see Definition 59 in Appendix C where the concept of representations
becomes much more central). G being Abelian implies that irreducible unitary represen-
tations of G are one-dimensional, so Ĝ consists of the continuous group homomorphisms
ξ : G → S1 ⊂ C, i.e. Ĝ = Hom(G,S1). Equipped with the open-compact topology, Ĝ is
itself a locally compact group. Moreover, we have a natural topological group isomorphism̂̂
G ∼= G. This is the Pontryagin Duality Theorem.

Now define
M+(G) := {finite positive Radon measures on G}
MR(G) := spanR(M+(G))

= {finite signed Radon measures on G}
MC(G) := spanC(M+(G))

= {finite complex Radon measures on G}

and M+(Ĝ), MR(Ĝ), MC(Ĝ) analogously. Importantly for us, we can define the Fourier
transform F :MC(G) → CC(Ĝ) by

Fµ(ξ) =

∫
G
ξ(g)dµ(g)

for all ξ ∈ Ĝ. Here CC(Ĝ) is the space of continuous complex-valued functions on Ĝ.
Similarly, we can define the inverse Fourier transform F−1 :MC(Ĝ) → CC(G) by

F−1ν(g) =

∫
G
ξ(g)dν(ξ)

for all g ∈ G. F and F−1 are injective linear maps.

Fourier transforms are often thought of as acting on functions. Our description of Fourier
transforms encompasses this: note that G comes equipped with a Haar measure µ. This
is a translation-invariant Radon measure on G, which is unique up to multiplication by a
positive constant. Then, for f a µ-integrable function on G, fµ ∈MC(G), so we can define
the Fourier transform of f as F (fµ).
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Remark 37 F and F−1 will only be inverse to each other with the right choice of Haar
measures on G and Ĝ. Indeed, as described above, the actions of the operators F , F−1 on
L1(G), L1(Ĝ) depend on the choice of Haar measures. See Folland (2015, Theorem 4.22).

Example 38 When G = Rn, we have Ĝ ∼= Rn, and the Fourier transform can be written
as

Fµ(ξ) =

∫
Rn

e−i⟨ξ,x⟩dµ(x)

for µ ∈MC(Rn) and ξ ∈ Rn. The inverse Fourier transform can be written as

F−1ν(x) =

∫
Rn

ei⟨ξ,x⟩dν(ξ)

for ν ∈MC(Rn) and x ∈ Rn.

Example 39 When G = S1, we have Ĝ ∼= Z, and the Fourier transform corresponds to
the discrete Fourier transform, and can be written as

Fµ(k) =

∫
S1

e−ik[x]dµ(x)

for µ ∈ MC(S
1) and k ∈ Z, where [x] ∈ [−π, π) is the argument of x. The inverse Fourier

transform can be written as

Fν(x) =

∫
S1

eik[x]dν(x)

for ν ∈MC(S
1) and x ∈ S1.

We are now able to state the key theorem of this section (Folland, 2015, Theorem 4.19).

Theorem 40 (Bochner’s Theorem) f ∈ B+(G) is PD if and only if there is ν ∈M+(Ĝ)
such that f = F−1ν. Moreover, such ν is unique.

In other words, F−1 is a linear isomorphism betweenM+(Ĝ) and B+(G) (which are convex
cones, not vector spaces). Therefore, tensoring by R and then by C in Bochner’s Theorem,
we also get that F−1 is a linear isomorphism between MR(Ĝ), MC(Ĝ) and BR(G), BC(G),
respectively. In other words, we have the commutative diagram

M+(Ĝ) B+(G)

MR(Ĝ) BR(G)

MC(Ĝ) BC(G)

CC(G)
F−1

∼

∼

∼
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where ∼ denote linear isomorphisms and ↪→ denote the inclusions. In other words, PD
decomposable functions on G are the functions that are the inverse Fourier transforms of
finite signed measures on Ĝ. This description of BR(G) and BC(G) is in some sense the
best we have, as being the inverse Fourier transform of a finite measure does not appear
to be a reducible property. However, what we can do is provide sufficient conditions for a
function to be in BR(G) and BC(G).

First, let us state two important results.

Theorem 41 The map F−1 : M(Ĝ) → CC(G) is surjective if and only if G is finite. So,
BC(G) = CC(G) if and only if G is finite.

See Graham and McGehee (1979). We showed the if direction in Example 21, and this
proposition provides a converse. It also provides a glimpse at the fact that characterizing
BC(G) is a deep problem.

We have, however, the following positive result:

Theorem 42 BC(G) ∩ CcC(G) is dense in CcC(G), the space of compactly supported con-
tinuous functions, with the uniform norm. As a consequence, BC(G) ∩ Lp(G) is dense in
Lp(G) for all 1 ≤ p <∞.

See Folland (2015, Proposition 3.33). Theorem 48 below is the general version of this result
for the non-commutative case.

For the commutative case, there are, in practice, two examples of interest: R and S1.
This is reflected by the fact that any Abelian Lie group G is a product of these. In Example
38 and Example 39, we have already given expressions for the Fourier transform in these
cases. Let us study the implications in each case.

Example 43 G = Rn, Ĝ = Rn. In this case, it is well-known that F is an automorphism
of the Schwartz space S (Rn). So, in particular, S (Rn) ⊂ BC(Rn), where we recall that

S (Rn) :=

{
f ∈ C∞

C (Rn) : sup
x∈Rn

∣∣∣xα (Dβf
)
(x)

∣∣∣ <∞ ∀ α, β ∈ Nn

}
.

In other words, S (Rn) is the space of complex-valued smooth functions on Rn whose values
and derivatives decay faster at infinity than any reciprocal of a polynomial.

Example 44 We can view S1 as G = R/Z, and we have Ĝ = Z. As described in Example
39, the Fourier transform in this case is the discrete Fourier transform. We have thatMC(Z)
is l1C(Z), and BC(R/Z) is the space of absolutely continuous Fourier series. This is called the
Wiener algebra, and we have that the Hölder continuous functions Cα

C(R/Z) ⊂ BC(R/Z)
for α > 1/2. This is Bernstein’s Theorem, see for example Katznelson (2004, Theorem 6.3).
Recall that for α < 1,

Cα
C(R/Z) :=

{
f ∈ CC(R/Z) : sup

x,y∈R/Z, x ̸=y

|f(x)− f(y)|
|x− y|α

<∞

}
,

where the absolute value |x− y| in the denominator is taken modulo 1.
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Example 45 The Gaussian kernel on the circle S1

k(x, y) = exp(−λ|x− y|2)

for all x, y ∈ R/Z ∼= S1, where λ > 0 and the absolute value is taken modulo 1, is not
PD for any λ > 0 (see Da Costa et al. (2023a)). However, note that it is invariant, and
under Proposition 32 corresponds to the Gaussian function f(x) = exp(−λ|x|2) for all
x ∈ R/Z ∼= S1, where the absolute value is taken modulo 1. f is Lipschitz, so by Example
44, f ∈ BC(S

1), and since it is real-valued, f ∈ BR(S
1) by Proposition 36. So k, despite

not being PD, has a PD decomposition.

From Example 45, we obtain the following result.

Proposition 46 The Gaussian kernel k = exp(−λd(·, ·)2) has a PD decomposition on any
Abelian Lie group (with appropriate choice of the metric d) for any λ > 0.

Proof Any Abelian Lie group G is a product of copies of R and S1, say G ∼= Rn ×
(S1)m. Taking the product Riemannian metric on the right-hand side of this induced by
the standard Riemannian metrics on R and S1, we can write the Gaussian kernel k on G as

k(x, y) = exp(−λd(x, y)2) =
n+m∏
i=1

exp(−λ|xi − yi|2)

for all x, y ∈ G ∼= Rn × (S1)m, where the last m absolute values are taken modulo 1. By
positive definiteness of the Gaussian kernel on R and PD decomposability of the Gaussian
kernel on S1 (Example 45), k is a product of PD decomposable kernels, so has a PD
decomposition by Example 20.

We conclude this section with the following example.

Example 47 Suppose f̃ ∈ Cα
C(R) for some α > 1/2 and that f̃ is periodic, with period T ,

say. Then, if π : R → R/TZ is the projection, there is a function f ∈ Cα
C(R/TZ) such that

f ◦ π = f̃ . Then, f ∈ BR(R/TZ), assuming for simplicity that f̃ is real-valued. Writing its
PD decomposition f = f+ − f−, we have that f̃ = f+ ◦ π − f− ◦ π is a PD decomposition,
so that f̃ ∈ BR(R).

PD decompositions behave well with respect to quotients. We will prove a general
version of this phenomenon, as well as its converse, in Section 5.

5 Positive Decompositions for Invariant Kernels: Non-Commutative Case

Armed with an understanding of the commutative case, we are now in a position to tackle
the non-commutative case. Recall that we aim to characterize sufficient conditions for an
invariant kernel to admit a PD decomposition, which by Proposition 32 and Proposition 36,
comes down to characterizing sufficient conditions for a function to belong to BC(H\G/H).
Here the only assumptions are that G is a locally compact group and H is a closed subgroup
of G.

We begin by observing that, just as in the commutative case (Theorem 42), PD de-
composable functions on G are plentiful and are, in fact, dense in the space of compactly
supported continuous functions:
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Theorem 48 BC(G) ∩ CcC(G) is dense in CcC(G), the space of compactly supported con-
tinuous functions, with the uniform norm. As a consequence, BC(G) ∩ Lp(G) is dense in
Lp(G) for all 1 ≤ p <∞.

See Kaniuth and Lau (2018, Corollary 2.3.5) for a proof.
To obtain more specific descriptions of BC(G) and BC(H\G/H), there are multiple

different possible approaches. Firstly, Fourier transforms can be defined on general compact
groupsG analogously to the circle: they can be described as Fourier series, see Folland (2015,
Chapter 5). The non-compact case is more difficult. Additional regularity assumptions must
be placed on the group, for example, that it is of type I, see for instance Yaglom (1961).
This latter reference provides Bochner-like theorems for the homogeneous spaces of type I
groups, which include symmetric spaces. The most general version of Bochner’s Theorem is
known as the Bochner-Godement Theorem, see Faraut and Harzallah (1974, Theorem 3.1),
which describes PD H-invariant functions on G/H, i.e. PD functions on H\G/H, with
some additional mild regularity assumptions on G/H.

All of these references are quite technical. In this paper, we will take a different route.
Describing a general Bochner Theorem for non-Abelian groups will not get us much closer
to characterizing BC(H\G/H). What we are really after are concrete sufficient conditions
for a function to belong to BC(H\G/H) on spaces of interest, for instance, when G is a Lie
group and H is a Lie subgroup. Therefore, we will proceed as follows.

As exemplified by Theorem 48, BC(G) has been more extensively studied than the more
general BC(H\G/H). We will, therefore, start by describing how the latter relates to the
former. After this, we will be in a position in Section 5.1 to describe sufficient conditions for
a function to belong to BC(H\G/H) for general classes of Lie groups G and Lie subgroups
H.

Suppose that f ∈ CC(H\G/H). If f ∈ BR(H\G/H) and π : G → H\G/H is the
projection, write

f = f+ − f−

with f+, f− ∈ B+(H\G/H). Then

f ◦ π = f+ ◦ π − f− ◦ π

with f+ ◦ π, f− ◦ π ∈ B+(H\G/H), so f ◦ π ∈ BR(G).
If we can characterize BR(G) well, then it is the converse we would like to show: that

if f ∈ CC(H\G/H) and f ◦ π ∈ BR(G), then f ∈ BR(H\G/H). This is not obvious: from
the fact that f admits a PD decomposition with functions on G and is invariant on double
cosets, we would like to show that we can choose a PD decomposition for f for which the
terms are themselves invariant on double cosets.

One idea may be, given f ∈ CC(H\G/H) with f ◦ π ∈ BR(G) and a PD decomposition
f ◦ π = f̃+ − f̃−, to “average out” values of f̃+ and f̃− along each double coset, in order
to find PD f+, f− ∈ CC(H\G/H) such that f = f+ − f−. This argument works if H is
compact.

For the general case, the situation is more difficult, as we cannot simply average over
the non-compact double cosets. We will only need the case H compact in Section 5.1, thus
we only prove this case here. Moreover, the case H compact is sufficient for Riemannian
homogeneous spaces by the Myers-Steenrod Theorem (Gallot et al., 2004, Theorem 2.35).
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The reader may refer to Appendix C for a full proof of Theorem 49, using the language of
representation theory.

In the statement and the proof of Theorem 49 we will view CC(H\G/H) as a subset of
CC(G), which will simplify notation.

Theorem 49 We have

1. BR(G) ∩ CC(H\G/H) = BR(H\G/H),

2. BC(G) ∩ CC(H\G/H) = BC(H\G/H).

Proof when H compact ⊇ : For part 1, if f ∈ BR(H\G/H) then f ∈ CC(H\G/H)
by definition, and f has a PD decomposition, so f ∈ BR(G) (or see the argument at the
beginning of this section). Part 2 is similar.

⊆ : For g ∈ G, define Lg and Rg to be the operators acting on functions f : G→ C by

Lgf(a) = f(ga)

and
Rgf(a) = f(ag)

for all a ∈ G. Suppose f ∈ BR(G) ∩ CC(H\G/H). Then, by invariance of f on double
cosets,

f(g) =
1

ν(H)2

∫
H

∫
H
Rh′Lhf(g)dν(h)dν(h

′)

for g ∈ G, where ν is a translation bi-invariant Haar measure on H, which exists and is
finite by compactness of H. So writing the PD decomposition of f as f = f+ − f−, we get

f =
1

ν(H)2

∫
H

∫
H
Rh′Lhf+dν(h)dν(h

′)− 1

ν(H)2

∫
H

∫
H
Rh′Lhf−dν(h)dν(h

′).

Both the first term and minus the second term are PD, and they are invariant on double
cosets by bi-invariance of the Haar measures. Continuity of the terms is easy to check, and
the proof for BC(G) and BC(H\G/H) is similar.

5.1 Geometry and sufficient conditions for positive decomposability

Assuming some geometry on G and H, we are now in a position to describe sufficient
conditions for a function to be in BC(H\G/H). Specifically, we assume in this section that
G is a connected Lie group. Furthermore, we assume that G is unimodular, meaning it
possesses a Haar measure that is bi-invariant. This includes all Abelian and all compact Lie
groups, but also many non-compact Lie groups of interest, such as GLR(n) and GLC(n).

Then, we have the following powerful characterization.

Theorem 50 Fix a left-invariant Riemannian metric on the connected unimodular Lie
group G, and let ∆ be the Laplace-Beltrami operator with respect to this metric. Suppose
f ∈ C∞

C (G) is such that
∆kf = ∆ · · · ·∆︸ ︷︷ ︸

k times

f
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is L2-integrable with respect to the Haar measure on G for any integer k ≥ 0. Then f ∈
BC(G).

Proof When G is compact, the assumption can be reduced to f ∈ C∞
C (G), and the result

follows from Sugiura (1971), or from Gaudry and Pini (1986). For non-compact G, the result
is a special case of Gaudry et al. (1990, Theorem 1), which proves the inclusion of certain
Besov spaces in Fourier algebras. See also the remark after Gaudry et al. (1990, Equation
12), as well as the containment of the Fourier algebra A2(G) in the Fourier-Stieltjes algebra,
for example in Kaniuth and Lau (2018, Proposition 2.3.3). We should note that the de-
scription of the Laplacian in Gaudry et al. (1990) as the sum of the squares of vector fields
generating the Lie algebra g of G is non-standard, but we prove in Appendix D, that the
Laplace-Beltrami operator arising from a left-invariant metric on a unimodular Lie group
can be formulated in these terms.

Remark 51 For simplicity, Theorem 50 relaxes the results from the works referred to in
its proof. For instance, by Gaudry and Pini (1986) we can show that when G is compact,
Ck
C(G) ⊂ BC(G) for k > n/2, where n = dimG. This still does not capture the full strength

of the result in this reference, which is a generalization of Bernstein’s Theorem (see Example
44). On the other hand, when G is non-compact, Gaudry et al. (1990) shows, in particular,
that it suffices that ∆kf is weakly in L2 for k ≤ (n2 + n)/4 (see also Varopoulos (1988,
Equation 2.6)).

Remark 52 Compare this with Example 44. In both cases, for a function f to belong to
BC(G) it suffices that

1. f is smooth enough,

2. f and its derivatives decay fast enough at infinity.

We would now like to generalize Theorem 50 from BC(G) to BC(H\G/H) with the help
of Theorem 49. For this, we assume H is a compact Lie subgroup of G. Then, G/H is a
homogeneous space, which inherits the structure of a manifold from the one on G. Moreover,
observe that if the left-invariant Riemannian metric on G is also right-H-invariant, then
it gives rise to a natural Riemannian metric on the homogeneous space G/H, making the
projection map πR : G → G/H into a Riemannian submersion (see Besse (1987, Chapter
9)). The ‘R’ in πR stands for ‘right’, and we will write πL : G/H → H\G/H for this other
projection map, and π = πL ◦ πR : G→ H\G/H.

Remark 53 While G/H inherits the structure of a manifold from the one on G, H\G/H
does not. See Example 28 and Example 29.

Theorem 54 Suppose that the connected unimodular Lie group G is equipped with a left-
invariant right-H-invariant Riemannian metric, where H is a compact Lie subgroup of G.
Equip G/H with the Riemannian metric induced by the one on G. Suppose f̃ ∈ C∞

C (G/H)
is such that there is f ∈ CC(H\G/H) with f̃ = f ◦ πL, i.e. f̃ is H-invariant. If ∆kf̃
is L2-integrable with respect to the Haar measure on G/H for any integer k ≥ 0, then
f ∈ BC(H\G/H).
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Proof f ∈ CC(H\G/H), so by Theorem 49, to show that f ∈ BC(H\G/H) we only need
to prove that f ◦ π = f̃ ◦ πR ∈ BC(G). Noting that compact groups are unimodular, we
see by Folland (2015, Equation 2.52) that ∆kf̃ is L2-integrable with respect to the Haar
measure on G/H if and only ∆kf̃ ◦ πR is L2-integrable with respect to the Haar measure
on G. Now, we show in Appendix D that (∆kf̃) ◦ πR = ∆k(f̃ ◦ πR), so Theorem 50 tells us
that f̃ ◦ πR ∈ BC(G).

Example 55 By Corollary 54, any kernel k = f(⟨·, ·⟩) that is a smooth function of the inner
product has a PD decomposition on Sn (see Example 28 for the description of functions on
the double coset space of the sphere Sn ∼= SO(n + 1)/SO(n), i.e. of invariant kernels on
Sn ∼= SO(n+ 1)/SO(n)). For instance, the hyperbolic tangent kernel k = tanh(a⟨·, ·⟩+ b)
on a sphere Sn, for a, b ∈ R, has a PD decomposition, despite the fact that it is not PD in
general (see Smola et al. (2000, Example 5)).

We now consider the case where M = G/H is a symmetric space of the non-compact type.
We may choose G and H such that G is connected, semisimple, has a finite center, and is
non-compact, and H is compact. The Riemannian metric on such a non-compact symmetric
space is G-invariant and always arises from a left-invariant right-H-invariant metric on G
(Helgason, 1962). In Corollary 56 and its proof below, we will use a shorthand and say a
function “decays like” or “grows like” another function if it decays at least as fast or grows
at most as fast as another function.

Corollary 56 Suppose G/H is a non-compact semisimple symmetric space, with G and
H chosen as above. Suppose f ∈ CC(H\G/H) is a function of the Riemannian distance
squared, i.e.

f ◦ πL = f̃ = g(d(eH, ·)2).

If g ∈ C∞
C ([0,∞)) is such that it and its derivatives decay exponentially at infinity, i.e.

g(k)(x) = o(e−ckx) as x→ ∞

for all k ≥ 0 and some ck > 0 possibly depending on k, then f ∈ BC(H\G/H). In particular,
the Gaussian function exp(−λd(eH, ·)2) ∈ BR(H\G/H), and the corresponding Gaussian
kernel k = exp(−λd(·, ·)2) has a PD decomposition for any λ > 0.

Proof This follows from Theorem 54 combined with two of Helgason’s formulas for non-
compact semisimple symmetric spaces, the first one for integration and the other for the
radial part of the Laplace-Beltrami operator. Observe that since G is semisimple, it is also
unimodular (Helgason, 1962, Chapter IV Proposition 1.4), so we are in a position to apply
Theorem 54. Also note that since the metric on G/H is left-invariant, any function of the
distance squared g(d(eH, ·))2 defines a function in CC(H\G/H).

Using the notation from Said et al. (2018, Equation 13), for f̃ an integrable function on
G/H, ∫

G/H
f̃(x)dν(x) = C

∫
H

∫
a
f̃(x(a, h))D(a)da dµ(h)
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for some constant C independent of f̃ . Here a is an Abelian subalgebra of g resulting from
the Iwasawa decomposition g = h+a+n where g, h are the Lie algebras of G, H respectively,
n is a nilpotent subalgebra of g, da is the Lebesgue measure on a, dν is a Haar measure on
G/H, dµ is the normalized Haar measure of H, x(a, h) := exp(Ad(h)a)H and

D(a) :=
∏
λ>0

sinhmλ(|λ(a)|)

where the product is over positive roots λ : a → R and mλ is the dimension of the root
space corresponding to λ. See Helgason (1962, Chapter IV Proposition 1.17). Few details
will be important for us, only the form of the integral and the growth rate of D at infinity.

Let f̃ and g be as in the statement of the corollary. We first show that f̃ is L2-integrable.
We have ∫

G/H
|f̃(x)|2dν(x) = A

∫
a
|f̃(x(a, e))|2D(a)da = A

∫
a
|g(∥a∥2)|2D(a)da

for some constant A, where we have noted that the integrand does not depend on h and
have integrated out that variable. The integrand is continuous, so to show that it is finite
we only need to consider its behavior at infinity. Since g decays exponentially and D grows
exponentially (by using that the roots are linear maps), the integrand decays like a Gaussian
at infinity. We deduce that f̃ is L2-integrable.

Now since f̃ is a function of distance only, ∆f̃ = ∆rf̃ where

∆r =

r∑
i=1

∂2

∂a2i
+

∑
λ>0

mλ coth(λ(a))
∂

∂aλ
(6)

is the radial part of the Laplace-Beltrami operator, where the ai form an orthonormal basis
of a, the second sum is over positive roots λ, and λ = B(aλ, ·) where B : g× g → R is the
Killing form. See Helgason (1984, Chapter II Theorem 5.24).

Since g and d(eH, ·)2 are smooth, so is f̃ . Thus, to show that for k ≥ 0, ∆kf̃ is L2-
integrable, it suffices to consider its behavior at infinity. It is not too hard to see from (6)
that since f̃(x(a, h)) = g(∥a∥2) = g(a21+ · · ·+a2r) and the derivatives of g and of coth decay
exponentially at infinity, ∆kf̃ decays like a Gaussian at infinity. Hence, arguing as above
we deduce that ∆kf̃ is L2-integrable. So we are done by Theorem 54.

Remark 57 We can show the PD decomposability of the Gaussian kernel for reductive
non-compact symmetric spaces too. For instance, the space of n × n symmetric positive
definite matrices Sn++

∼= GL(n)/O(n) is not a semisimple symmetric space. However, we
can also write it as Sn++

∼= SL(n)/SO(n)× R>0, with the diffeomorphism

Sn++ → SL(n)/SO(n)× R>0

X 7→ (X/ det(X)n, det(X))
(7)

where SL(n)/SO(n) is viewed as the space of symmetric positive definite matrices with unit
determinant. Then, if we write d for the Riemannian distance on Sn++

∼= GL(n)/O(n), some-
times called the affine-invariant Riemannian distance, and d′ for the Riemannian distance
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on SL(n)/SO(n), we can view the map (7) as an isometry:

d(X,Y ) = d′(X/ det(X)n, Y/det(Y )n) + | log(det(X))− log(det(Y ))|

for all X,Y ∈ Sn++. Therefore, the Gaussian kernel on Sn++ can be viewed as

exp(−λd(X,Y )2)

= exp(−λd′(X/ det(X)n, Y/det(Y )n)2) exp(−λ| log(det(X))− log(det(Y ))|2)

a product of a PD decomposable kernel by Corollary 56 with a PD kernel, which is PD
decomposable by Example 20.

6 Conclusion

We have seen that kernel methods can be applied with non-PD kernels that admit a PD
decomposition and that knowledge of the specific form of the decomposition is not necessary
for RKKS learning. We have argued that RKKS-based methods are particularly interesting
in non-Euclidean settings where PD kernels are challenging to construct. We have then
related PD decomposable invariant kernels on locally compact quotient spaces G/H to
Hermitian PD decomposable functions on the double coset space H\G/H. This allowed
us to leverage the extensive harmonic analytic literature on the Fourier-Stieltjes algebra
BC(G) to describe the invariant kernels that admit a PD decomposition. In particular,
assuming some geometry on G/H, we showed that smoothness and appropriate decay of
the derivatives at infinity is sufficient for the PD decomposability of a kernel, providing
weak and verifiable sufficient conditions for a kernel to admit a PD decomposition. This
work provides a theoretical foundation for applications of kernel methods on non-Euclidean
data spaces.
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Appendix A.

In this appendix we expand on the RKKS representer theorem described in Section 2.2.
Recall that we are given

1. D = {(x1, y1), . . . , (xN , yN )} ⊂ (X × R)N a finite data set,

2. g : R → R a strictly monotonic differentiable function,

3. L : K × (X × R)N → R a loss functional, determined exclusively through function
evaluations, Fréchet differentiable in the first argument,

4. I : K×(X×R)N → Rm and E : K×(X×R)N → Rl functionals determined exclusively
through function evaluations and Fréchet differentiable in the first argument,

For any hope at formulating, let alone proving, an RKKS representer theorem, a key addi-
tional requirement is that the set defined by the constraints

M := {f ∈ K : I(f,D) ≤ 0 and E(f,D) = 0}

is an infinite-dimensional submanifold (with boundary) of K. By infinite-dimensional sub-
manifold we mean here a Hilbert manifold with Fréchet differentiable transition maps, since
K is given the topology of the Hilbert space H+ × H− (see Definition 6). Given this, we
have a well-defined notion of a solution to the problem

stabilize
f∈K

L(f,D) + g(⟨f, f⟩K)

s.t. f ∈ M.

Namely a solution f∗ is one for which the Fréchet derivative of the regularized lossD[L(·,D)+
g(⟨·, ·⟩K)]|M(f∗) vanishes on any tangent vector to the manifold M.

Moreover, we assume that the map (I×E)(·,D) : K → Rm+l is a submersion. Note that
when there are no inequality constraints I, this automatically implies that M is a manifold
(Abraham et al., 1988, Theorem 3.5.4).

Given these assumptions, we can apply (Abraham et al., 1988, Corollary 3.5.29) to
conclude that for each critical point f∗ ∈ K of the restriction of L(·,D) + g(⟨·, ·⟩K) to M,
there exist constants λ ∈ Rm, µ ∈ Rl such that f∗ is a critical point of the corresponding
Lagrange function defined by

L(f) = L(f,D) + g(⟨f, f⟩K) + λ⊤I(f,D) + µ⊤E(f,D),

that is the Fréchet derivative DL(f∗) = 0. We recall that λiIi(f
∗,D) = 0 for all i ∈

{1, . . . ,m}, this implies that λi is non-zero only when the corresponding inequality con-
straint is active, that is Ii(f

∗,D) < 0.
By the Fréchet differentiability of the various functions, we can apply the Fréchet deriva-

tive chain rule:

0 = DL(f∗) =
N∑
i=1

∂f(xi)(L(f
∗, X)+λT I(f∗,D)+µTE(f∗,D))k(xi, ·)+2f∗∂⟨f,f⟩g(⟨f∗, f∗⟩K)
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where on the RHS, the derivatives are classical derivatives. So we get

f∗ = − 1

2∂⟨f,f⟩g(⟨f∗, f∗⟩K)

N∑
i=1

∂f(xi)(L(f
∗,D) + λT I(f∗,D) + µTE(f∗,D))k(xi, ·)

where we used g strictly monotonic to deduce ∂⟨f,f⟩g(⟨f∗, f∗⟩K) ̸= 0. In particular, when
g(x) = cx for all x ∈ R we get

f∗ = −1

c

N∑
i=1

∂f(xi)(L(f
∗,D) + λT I(f∗,D) + µTE(f∗,D))k(xi, ·).

Appendix B.

In this appendix, we show that when G is compact, the correspondence from Proposition 32
between Hermitian functions on H\G/H with continuous PD decompositions and kernels
on G/H with continuous PD decompositions is a surjection. As explained in Remark 34,
this requires PD decomposable invariant kernels to admit invariant PD decompositions.

Theorem 58 If the locally compact group G is compact and H is a closed subgroup of G,
then an invariant kernel k on G/H has a PD decomposition if and only if it has a PD
decomposition into invariant kernels.

Proof For g ∈ G, define Tg to be the operator acting on maps k : G/H ×G/H → C by

Tgk(aH, bH) = k(gaH, gbH)

for all a, b ∈ G. Let k be an invariant PD decomposable kernel on G/H. Then, by invariance
of k,

k(aH, bH) =
1

µ(G)

∫
G
Tgk(aH, bH)dµ(g)

for a, b ∈ G, where µ is a Haar measure for G, which is finite by compactness of G. So
writing the PD decomposition of k as k = k+ − k−, we get

k =
1

µ(G)

∫
G
Tgk+dµ(g)−

1

µ(G)

∫
G
Tgk−dµ(g).

Both the first term and minus the second term are PD, and they are invariant by left-
invariance of the Haar measure, so this is a PD decomposition into invariant kernels.

Appendix C.

The aim of this appendix is to provide an alternative general proof of Theorem 49 using
the language of representation theory.

Definition 59 A representation of G is a group homomorphism

π : G→ GLC(V )
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for some complex vector space V . A representation is called unitary if V is a Hilbert
space and the range of π consists of unitary operators, and it is called continuous if π is
continuous.

Proposition 60 f ∈ B+(G) if and only if there is a continuous unitary representation
π : G→ GLC(V ) and a vector v ∈ V such that

f = ⟨π(·)v, v⟩. (8)

Proof ⇐= : For f as in (8), g1, . . . , gN ∈ G and c1, . . . , cN ∈ C,

N∑
i=1

N∑
j=1

cicjf(g
−1
i gj) =

N∑
i=1

N∑
j=1

cicj⟨π(g−1
i gj)v, v⟩

=

N∑
i=1

N∑
j=1

⟨cjπ(gj)v, ciπ(gi)v⟩

=

〈
N∑
j=1

cjπ(gj)v,
N∑
i=1

ciπ(gi)v

〉
≥ 0

using the fact that π is a unitary representation. Moreover, f is continuous and bounded
since π is, so f ∈ B+(G).

=⇒ : It can be obtained by combining Theorem 3.20 and Proposition 3.35 in Folland
(2015).

Proposition 61 f ∈ BC(G) if and only if there is a continuous unitary representation
π : G→ GLC(V ) and vectors v, w ∈ V such that

f = ⟨π(·)v, w⟩. (9)

Proof =⇒ : We show that functions f of the form (9) form a complex linear space. Closure
under scalar multiplication can be obtained by scaling v. For closure under addition, observe
that

⟨π1(·)v1, w1⟩+ ⟨π2(·)v2, w2⟩ = ⟨(π1 ⊕ π2)(·)(v1 ⊕ v2), w1 ⊕ w2⟩

and π1 ⊕ π2 is a continuous unitary representation if π1 and π2 are. Thus, functions of
the form (9) form a complex linear space, and contain B+(G) by Proposition 60, so they
contain BC(G).

⇐= : See Kaniuth and Lau (2018, Lemma 2.1.4).

We have described PD and PD decomposable functions on G in the language of represen-
tation theory. What about their analogues on H\G/H?

Lemma 62 For f ∈ B+(G),
f = ⟨π(·)v, v⟩

as in (8), we have that f ∈ CC(H\G/H) if and only if π(h)v = v for all h ∈ H.
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Proof ⇐= : If π(h)v = v for all h ∈ H, then

f(hgh′) = ⟨π(hgh′)v, v⟩ = ⟨π(g)π(h′)v, π(h−1)v⟩ = ⟨π(g)v, v⟩ = f(g)

for all g ∈ G and h, h′ ∈ H. Thus, f ∈ CC(H\G/H).
=⇒ : If f ∈ CC(H\G/H), for h ∈ H,

⟨π(h)v, π(h)v⟩ = ⟨v, v⟩ = f(e) = f(h) = ⟨π(h)v, v⟩

where the left most equality uses the fact that π(h) is unitary. Thus,

⟨π(h)v, v⟩ =
√
⟨π(h)v, π(h)v⟩⟨v, v⟩

and by the equality condition of Cauchy-Schwarz’s inequality, we deduce that π(h)v = v.

For π a linear representation of G into GLC(V ), write

W := {w ∈ V : π(h)w = w ∀ h ∈ H} (10)

and let p : V → W denote the orthogonal projection. In Lemma 62, we have shown
p(v) = v for the corresponding π and v. For the more general setting f ∈ BC(G), we do
not necessarily have p(v) = v or p(w) = w, but rather the following weaker lemma.

The proof for the forward direction of this lemma is technical, requires quite a bit of
work to prove, and relies on Zorn’s lemma. The reason for this difficulty is the generality
of the setting we are working in, and specifically the generality of the locally compact
group G. With such generality, there are few results that we can use about its continuous
unitary representations. However, this will pay off with the generality that we shall obtain
in Theorem 49.

Lemma 63 For f ∈ BC(G),
f = ⟨π(·)v, w⟩

as in (9), we have that f ∈ CC(H\G/H) if and only if we can also write f as

f = ⟨π(·)p(v), p(w)⟩

with p as defined above.

Proof ⇐= : If g ∈ G and h, h′ ∈ H,

f(hgh′) = ⟨π(hgh′)p(v), p(w)⟩ = ⟨π(g)π(h′)p(v), π(h−1)p(w)⟩ = ⟨π(g)p(v), p(w)⟩ = f(g)

so f ∈ CC(H\G/H).
=⇒ : fix g ∈ G and consider the set

P := {Z :W ≤ Z ≤ V s.t. Z = Z and ⟨π(g)v, w⟩ = ⟨π(hgh′)v, q(w)⟩
∀ h, h′ ∈ H where q : V → Z is the orthogonal projection}.

P is partially ordered by inclusion. We want to apply Zorn’s lemma to P. So we break
down our proof into two steps: we first show in step I that every chain—i.e. totally ordered
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subset—of P has a lower bound in P. Zorn’s lemma then tells us that P has a minimal
element. Then we show in step II that this minimal element is W . It may seem obvious,
but it requires some care since a chain may be uncountable and need not be well-ordered.
II, on the other hand, will require us to look more closely at the representation π. We will
expand it in irreducible components along a cyclic subgroup of H.

I : Let C ⊂ P be a chain. We want to show that C has a lower bound in P. This lower
bound will, of course, be Y :=

⋂
Z∈C Z, so we only need to show Y ∈ P. Note that for

Z ∈ C, Y ⊂ Z so Y ⊥ ⊃ Z⊥, thus taking finite sums of elements and closure over such Z

we get Y ⊥ ⊃
∑

Z∈C Z
⊥. We can also see that for Z ′ ∈ C, Z ′ ⊃

(∑
Z∈C Z

⊥)⊥, so taking

the intersection over such Z ′ we get Y ⊃
(∑

Z∈C Z
⊥)⊥ and taking orthogonal complements

Y ⊥ ⊂
∑

Z∈C Z
⊥. So we have shown

Y ⊥ =
∑
Z∈C

Z⊥. (11)

Let r : V → Y , r⊥ : V → Y ⊥ be the orthogonal projections, and for Z ∈ C, let qZ : V → Z,
q⊥Z : V → Z⊥ be the orthogonal projections. We have for such Z and h, h′ ∈ H,

⟨π(hgh′)v, qZ(w)⟩ = ⟨π(g)v, w⟩ = ⟨π(hgh′)v, w⟩ = ⟨π(hgh′)v, qZ(w)⟩+ ⟨π(hgh′)v, q⊥Z (w)⟩

so ⟨π(hgh′)v, q⊥Z (w)⟩ = 0. Similarly, to show Y ∈ P, we only need to show ⟨π(hgh′)v, r⊥(w)⟩ =
0. Now by (11), r⊥(w) can be written as a series of countably many elements of the Z⊥ for
Z ∈ C, so q⊥Z (r⊥(w)) gets arbitrarily close to r⊥(w) as Z decreases (we don’t use the notion
of limit here as C may be uncountable). Now q⊥Z (w) = q⊥Z (r

⊥(w)), so ⟨π(hgh′)v, q⊥Z (w)⟩ = 0
for all Z ∈ C implies ⟨π(hgh′)v, r⊥(w)⟩ = 0, and we are done.

II : By Zorn’s lemma, P has a minimal element, which we denote by Z and write
q : V → Z for the corresponding orthogonal projection. If q(w) = p(w), then by minimality
of Z we have Z = W . Otherwise, suppose first q(w) ̸= p(w). Then there is h ∈ H such
that π(h)q(w) ̸= q(w). Let Ch be the cyclic group generated by h. For conciseness, we will
treat the cases Ch finite and Ch infinite together and only use the fact that Ch is Abelian.
Indeed, Folland (2015, Theorem 4.45) tells us that we can decompose π|Ch

into irreducible
components in the form

π(hk) =

∫
Ĉh

ξ(hk)dP (ξ)

for all k ∈ Z, for some regular V -projection-valued measure P on Ĉh (see Folland (2015,
Theorem 1.38) and the following discussion for the definition of a projection-valued mea-
sure). Then

⟨π(g)v, w⟩ = ⟨π(h′gh′′)v, π(hk)q(w)⟩

=

〈
π(h′gh′′)v,

∫
Ĉh

ξ(hk)dP (ξ)q(w)

〉
=

∫
Ĉh

ξ(hk)dPπ(h′gh′′)v,q(w)(ξ)

= F−1Pπ(h′gh′′)v,q(w)(h
k)
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for all k ∈ Z, where Pπ(h′gh′′)v,q(w) is a finite complex Radon measure, i.e. Pπ(h′gh′′)v,q(w) ∈
MC(Ĉh), and F−1 is the inverse Fourier transform. Then by injectivity of F−1 we must
have

Pπ(h′gh′′)v,q(w) = ⟨π(g)v, w⟩δ1

where δ1 is the Dirac measure at ξ = 1.

Now consider

Y := {z ∈ Z : π(h)z = z}

where h is as before. So for all h′, h′′ ∈ H,

⟨π(g)v, w⟩ = Pπ(h′gh′′)v,q(w)(1)

=

∫
{1}

dPπ(h′gh′′)v,q(w)(ξ)

=

〈
π(h′gh′′)v,

∫
{1}

dP (ξ)q(w)

〉
= ⟨π(h′gh′′)v, P (1)q(w)⟩
= ⟨π(h′gh′′)v, r(w)⟩

where r : V → Y is the orthogonal projection. Hence, Y ∈ P. But π(h)q(w) ̸= q(w) so
r(w) ̸= q(w), which implies Y < Z. This contradicts the minimality of Z. Thus, Z = W ,
and hence W ∈ P.

Now by noting that

⟨π(hgh′)v, p(w)⟩ = ⟨q(v), π((hgh′)−1)p(w)⟩ = ⟨π(h′−1g−1h−1)p(w), v⟩,

for all h, h′ ∈ H, we can apply the same argument on v to obtain

⟨π(g)v, w⟩ = ⟨π(h′gh′′)p(v), p(w)⟩

for all h′, h′′ ∈ H. Finally, g ∈ G was arbitrary, so we are done..

We are now in a position to prove Theorem 49 in its full generality, which we restate here
for convenience.

Theorem 49 We have

1. BR(G) ∩ CC(H\G/H) = BR(H\G/H),

2. BC(G) ∩ CC(H\G/H) = BC(H\G/H).

Proof ⊇ : For part 1, if f ∈ BR(H\G/H) then f ∈ CC(H\G/H) by definition, and f has
a PD decomposition, so f ∈ BR(G). Part 2 is similar.

⊆ : For part 1, let f ∈ BR(G) ∩ CC(H\G/H). By Proposition 60, there are continuous
unitary representations π± : G→ GLC(V±), and v± ∈ V± such that

f = ⟨π+(·)v+, v+⟩ − ⟨π−(·)v−, v−⟩ = ⟨(π+ ⊕ π−)(·)(v+ ⊕ v−), v+ ⊕ (−v−)⟩.
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Define W± ≤ V± as
W± := {w ∈ V± : π±(h)w = w ∀ h ∈ H}

and p± : V± → W± the orthogonal projections. For W as in (10) and p : V → W the
orthogonal projection, observe that W = W+ ⊕W− and p = p+ ⊕ p−. Then by Lemma 63
we have

f = ⟨(π+ ⊕ π−)(·)p(v+ ⊕ v−), p(v+ ⊕ (−v−))⟩
= ⟨(π+ ⊕ π−)(·)(p+(v+)⊕ p−(v−)), p+(v+)⊕ p−(−v−)⟩
= ⟨π+(·)p+(v+), p+(v+)⟩ − ⟨π−(·)p−(v−), p−(v−)⟩.

Now ⟨π±(·)p±(v±), p±(v±)⟩ ∈ B+(H\G/H) by Lemma 62, so f ∈ BR(H\G/H) and we are
done.

For part 2, the proof follows in a similar way by first writing f as

f = ⟨π+(·)v+, v+⟩ − ⟨π−(·)v−, v−⟩+ i⟨π+i(·)v+i, v+i⟩ − i⟨π−i(·)v−i, v−i⟩.

Remark 64 Note that the proof of Lemma 63 also gives us the results BR(G)∩CC(G/H) =
BR(G/H) and BC(G) ∩ CC(G/H) = BC(G/H).

Appendix D.

In this appendix we investigate properties of the Laplace-Beltrami operator on the Lie group
G equipped with a left-invariant Riemannian metric, which are needed in Section 5.1. We
will use the following definition of the Laplace-Beltrami operator:

∆ :=
n∑

i=1

(X2
i −∇XiXi)

locally around a point g ∈ G, where X1, . . . , Xn is a local orthonormal frame of vector
fields around g and ∇ is the Levi-Civita connection with respect to the metric on G. This
definition of ∆ is independent of the choice of local orthonormal frame.

In the proof of Theorem 50, we implicitly use the following:

Proposition 65 Let G be a connected unimodular Lie group. If X1, . . . , Xn is a basis of
left-invariant vector fields for G, and we equip G with the left-invariant Riemannian metric
making X1, . . . , Xn orthonormal, then the Laplace-Beltrami operator ∆ can be written as

∆ =
n∑

i=1

X2
i .

Proof We have

∆ =
n∑

i=1

(X2
i −∇XiXi),

so we need to show that
∑n

i=1∇XiXi = 0.
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G being unimodular is equivalent to the adjoint representation ad : g → Lie(Aut(g)) of
the Lie algebra g of G having vanishing trace at every X ∈ g (Milnor, 1976, Lemma 6.3),
where Lie(Aut(g)) is the Lie algebra of Aut(g), the Lie group of linear automorphisms of g.
So for all i,

0 = tr(ad(Xi))

=

n∑
j=1

⟨[Xi, Xj ], Xj⟩g

=

n∑
j=1

(⟨∇XiXj , Xj⟩g︸ ︷︷ ︸
=0

−⟨∇XjXi, Xj⟩g)

= −
n∑

j=1

⟨∇XjXi, Xj⟩g

=

n∑
j=1

⟨∇XjXj , Xi⟩g

=

〈
n∑

j=1

∇XjXj , Xi

〉
g

where we used the orthonormality of theXj in the fourth and fifth equality. So
∑n

i=1∇XiXi =
0 at e, and thus everywhere on G by left-invariance.

Now in the proof of Theorem 54, we need the following:

Proposition 66 Let G be a Lie group and let H be a compact Lie subgroup of G. Suppose
G is equipped with a left-invariant, right-H-invariant Riemannian metric. Equip G/H with
the Riemannian metric induced by the one on G. Then, for f̃ ∈ C∞

C (G/H),

∆(f̃ ◦ πR) = ∆f̃ ◦ πR

where πR : G→ G/H is the projection, and ∆ is the Laplace-Beltrami operator with respect
to the respective metrics.

Proof This follows many of the steps of Bergery and Bourguignon (1982, proof of Theorem
1.5). Write n and m for the dimensions of G and H, respectively. For g ∈ G, take a local
orthonormal frame X̃1, . . . , X̃n−m for TgHG/H around gH. This lifts to a local orthonormal
frame X1, . . . , Xn−m for Ker(πR∗)

⊥ around g, subbundle of TG. So πR∗Xi = X̃i for all i.
Also take a local orthonormal frame U1, . . . , Um for Ker(πR∗) around g. Then, the Laplace-
Beltrami operator on G can be locally written as

∆ =
n−m∑
i=1

(X2
i −∇XiXi) +

m∑
i=1

(U2
i −∇UiUi)

and the Laplace-Beltrami operator on G/H can be locally written as

∆ =
n−m∑
i=1

(X̃2
i −∇X̃i

X̃i)
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where ∇ are the Levi-Civita connections induced by the respective metrics. By the chain
rule, U(f̃ ◦ πR) = πR∗U(f̃) ◦ πR = 0 for all U ∈ Ker(πR∗). Similarly, the chain rule
gives X2

i (f̃ ◦ πR∗) = πR∗XiπR∗Xi(f̃) ◦ πR = X̃2
i (f̃) ◦ πR for all i. Now by Besse (1987,

Theorem 9.80) if U ∈ Ker(πR∗) then ∇UU ∈ Ker(πR∗) (we use here the left-invariance
and right-H-invariance of the metric on G, and the compactness of H). Finally, by Besse
(1987, Definition 9.23 & following discussion), ∇XiXi(f̃ ◦ πR) = πR∗(∇XiXi)(f̃) ◦ πR =
∇X̃i

X̃i(f̃) ◦ πR for all i. Thus, we obtain

∆(f̃ ◦ πR) =
n−m∑
i=1

(X2
i −∇XiXi)(f̃ ◦ πR) +

m∑
i=1

(U2
i −∇UiUi)(f̃ ◦ πR) (12)

=

n−m∑
i=1

(X̃2
i −∇X̃i

X̃i)(f̃) ◦ πR (13)

= ∆f̃ ◦ πR. (14)
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