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Invariant kernels on Riemannian symmetric spaces : a harmonic-analytic1

approach2

Nathaël Da Costa∗ , Cyrus Mostajeran∗ , Juan-Pablo Ortega∗ , and Salem Said†3

4

Abstract. This work aims to prove that the classical Gaussian kernel, when defined on a non-Euclidean sym-5
metric space, is never positive-definite for any choice of parameter. To achieve this goal, the paper6
develops new geometric and analytical arguments. These provide a rigorous characterization of the7
positive-definiteness of the Gaussian kernel, which is complete but for a limited number of scenarios8
in low dimensions that are treated by numerical computations. Chief among these results are the9
Lp-Godement theorems (where p = 1, 2), which provide verifiable necessary and sufficient conditions10
for a kernel defined on a symmetric space of non-compact type to be positive-definite. A celebrated11
theorem, sometimes called the Bochner-Godement theorem, already gives such conditions and is far12
more general in its scope, but is especially hard to apply. Beyond the connection with the Gaussian13
kernel, the new results in this work lay out a blueprint for the study of invariant kernels on symmetric14
spaces, bringing forth specific harmonic analysis tools that suggest many future applications.15
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1. Introduction. Positive-definite functions play a fundamental role in harmonic analysis19

and the theory of group representations, as well as in probability and statistical inference20

[22, 28, 43, 44]. In machine learning, these functions are of paramount importance in the21

context of kernel-based methods. Indeed, kernels are most often required to be positive-definite22

for Reproducing Kernel Hilbert Space (RKHS) methods and associated linear geometry and23

classification algorithms to apply [6, 38]. While many positive-definite kernels are known in24

Euclidean spaces, this is not yet true for non-Euclidean metric spaces, such as non-trivial25

Riemannian manifolds. Even when such kernels are known, they are far from easy to work26

with (in the first place, to evaluate). For example, just one evaluation of the heat kernel on a27

Riemannian symmetric space may require an elaborate Monte Carlo scheme [1, 2].28

This being the case, one hopes to develop a tractable means of constructing closed-form29

positive-definite kernels on Riemannian manifolds or at least to develop an explicit criterion30

to verify whether a given closed-form expression yields a positive-definite kernel or not. This31

should apply, in particular, to the so-called distance kernels, which are of the form k(x, y) =32

g(d(x, y)), with g a suitable function and d(x, y) the Riemannian distance.33

The results developed in this work serve exactly this purpose. They are motivated by the34

study of the Gaussian kernel35

(1.1) k(x, y) = exp (−λd2(x, y)) where λ > 0.36

In particular, they aim to show that this kernel is never positive-definite (meaning it is not37
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†Laboratoire Jean Kuntzman, Université Grenoble-Alpes, Grenoble, 38400, France

1

This manuscript is for review purposes only.



2 N. DA COSTA ET AL.

positive-definite for any value of λ) when defined on a non-Euclidean Riemannian symmetric38

space M . In general, when M is a non-Euclidean Riemannian manifold, it is known that39

there always exists some λ such that the Gaussian kernel is not positive-definite [26, 16, 15].40

However, whether there exists any subset of values of the parameter λ for which the Gaussian41

kernel is positive-definite is an open problem of theoretical and practical significance as noted42

in the literature [33]. For instance, [40] shows that the Gaussian kernel may be positive-43

definite for some non-trivial collection of parameters in certain non-Euclidean geometries.44

Recently, it has been shown that if M is compact and not simply connected (e.g. a torus or45

a real projective space), then the Gaussian kernel is never positive-definite [29]. While these46

general results rely on somewhat complicated geometric arguments, they will be considerably47

extended here, in the case of symmetric spaces, thanks to the introduction of new analytical48

tools.49

A typical result of choice in this circle of ideas is Bochner’s theorem, one of the most50

famous theorems in harmonic analysis [17]. It states that a function defined on a locally51

compact Abelian group is positive-definite if and only if it is the inverse Fourier transform52

of some positive measure. For example, this theorem guarantees the existence of a spectral53

power measure for any wide-sense stationary signal (Wiener-Khinchin theorem).54

The generalization of Bochner’s theorem to symmetric spaces is due to Godement [19]. It55

will be referred to as Godement’s theorem in this work, although it is sometimes called the56

Bochner-Godement theorem elsewhere. This theorem is recalled in Section 2, where we explain57

why it can be challenging to apply in practice. Focusing on non-compact symmetric spaces,58

the L2-Godement theorem (Section 3) and the L1-Godement theorem (Appendix A), both59

state that in the presence of additional integrability assumptions, the difficulties inherent in60

its application are greatly alleviated: it turns out that a function is positive-definite if and only61

if its spherical transform is positive and integrable (the definition of the spherical transform62

is recalled in Section 3).63

Basic examples of applications of the L2-Godement theorem are provided in Section 4.64

Sections 5 and 6 then return to the Gaussian kernel (1.1). Section 5 proves that the Gaussian65

kernel is never positive-definite on a compact symmetric space, expanding on [12] and [29],66

which prove the corresponding result on the circle and nonsimply connected closed Riemannian67

manifolds, respectively. Section 6 takes up the case of non-compact symmetric spaces (under68

the general assumptions of Sections 2 and 3, compact or non-compact have the same meaning69

as “ of compact or non-compact type ” — no Euclidean spaces are allowed).70

Section 6 provides a rigorous proof that deals with the case of non-compact symmetric71

spaces in all but a few limited scenarios in low dimensions, which are investigated compu-72

tationally instead. First, in the case of the hyperbolic plane, a numerical evaluation shows73

that the positivity condition in the L2-Godement theorem does not hold, for any λ within74

a certain continuous range, starting near λ = 0. However (Lemma 6.5), any non-compact75

symmetric space contains an isometrically embedded hyperbolic plane, and this implies the76

Gaussian kernel fails to be positive-definite on any non-compact symmetric space, for that77

same range of values of λ. Section 6 also proves (with no recourse to numerical work) that78

the Gaussian kernel is never positive-definite when defined on a three-dimensional hyperbolic79

space. Again, this extends to any symmetric space that contains an isometrically embed-80

ded hyperbolic space (e.g. the spaces of n× n real, complex, or quaternion, positive-definite81
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INVARIANT KERNELS ON SYMMETRIC SPACES 3

matrices, with the requirement that n ≥ 4 for the real case).82

Section 7 introduces an alternative to the Gaussian kernel (1.1) for hyperbolic spaces,83

giving it the name of hyperbolic secant or Herschel-Maxwell kernel. Once more, this is a84

distance kernel85

(1.2) k(x, y) = (cosh(d(x, y))−a where a > 0.86

This kernel is derived from first principles, similar to the famous Herschel-Maxwell derivation87

[27]. In contrast with the Gaussian kernel, it is shown to always be positive-definite on the88

hyperbolic plane and positive-definite on the hyperbolic space for integer values of a.89

The Lp-Godement theorems (where p = 1, 2) are most easily applied to distance kernels90

(for example, to the Gaussian or Herschel-Maxwell kernels). A detailed examination of their91

application to more general invariant kernels, which are not merely functions of distance, is92

one of the main tasks to be carried out in future work.93

2. Godement’s theorem. LetM be a set and let k :M×M → C. Assume that k satisfies94

95

(2.1)

N∑
i,j=1

k(xi, xj) ci c̄j ≥ 096

for all positive integer N , where xi ∈ M , ci ∈ C, and the bar denotes complex conjugation.97

Then, k is said to be a positive-definite kernel on M . Without loss of generality, it is enough98

to consider Hermitian kernels, that is, k(x, y) is the conjugate of k(y, x). In addition, assume99

that a group G acts transitively on M ; this action is denoted by g · x, for g ∈ G and x ∈ M .100

If k satisfies that101

(2.2) k(g · x, g · y) = k(x, y),102

for all g ∈ G and x, y ∈ M , then k is said to be a G-invariant (or just an invariant) positive-103

definite kernel. Let o ∈M and denote by H the stabiliser of o in G. A function f :M → C is104

called H-invariant if f(h · x) = f(x) for all h ∈ H and x ∈M . Using such a function, we can105

define kf :M ×M → C,106

(2.3) kf (x, y) = f(g−1
1 g2· o) for x = g1· o and y = g2· o.107

Indeed, H-invariance of f implies the right-hand side of (2.3) depends only on x and y (and not108

on the choice of g1 and g2 ). Now, kf is G-invariant (it satisfies (2.2)). If kf happens to be109

positive-definite (to satisfy (2.1)), then f is said to be a positive-definite function.110

All invariant positive-definite kernels can be represented in this way, since (2.1) and (2.2)111

imply that k = kf , where f(x) = k(o, x) and f is H-invariant and positive-definite. In112

particular, if k = kf , then k is positive-definite if and only if f is positive-definite.113

Note that the setup that we just presented implies that the setM is necessarily isomorphic114

to the homogeneous manifold G/H, where G is the group that acts transitively on M and H115

the isotropy group of some element o ∈ M . Conversely, given any group G and an arbitrary116

subgroupH, we can cast the homogeneous space G/H in this framework by settingM = G/H,117
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4 N. DA COSTA ET AL.

o = eH, and considering the transitive left action of G on G/H. Given these observations,118

in the sequel, M will be a Riemannian symmetric space and (G,H) a symmetric pair. G is119

assumed to be semisimple, of either compact or non-compact type, and with finite center [24].120

Godement’s theorem generalizes Bochner’s classical theorem to this setting [19]. Roughly121

speaking, it states that an H-invariant continuous function f is positive-definite if and only if122

it is a positive combination of positive-definite spherical functions. In [7], Godement’s theorem123

is called the Bochner-Godement theorem.124

Recall that a spherical function φ :M → C is an H-invariant function, such that φ(o) = 1125

and φ is moreover a joint eigenfunction of all the G-invariant differential operators on M [22].126

The set Φ of positive-definite spherical functions on M is locally compact for the topology127

of uniform convergence on compact subsets of M [19]. Godement’s theorem states that an128

H-invariant continuous f is positive-definite if and only if129

(2.4) f(x) =

∫
Φ
φ(x)µf (dφ)130

where µf is a unique finite positive measure on Φ.131

It is complicated to use Godement’s theorem to verify whether a given f is positive-132

definite. WhenM is non-compact, the set Φ may be challenging to determine [22] (Page 484),133

and there is no straightforward way of determining µf from f . The following section identifies134

a special case of Godement’s theorem where these issues do not arise.135

3. L2-Godement theorem. The idea is to combine Godement’s theorem with the so-called136

spherical transform. Roughly speaking, the spherical transform can be seen as a radial Fourier137

transform for H-invariant functions [41, 42]. When M = R2, it boils down to a zero-order138

Hankel transform.139

Assume that M is a non-compact symmetric space. Pick an Iwasawa decomposition of140

the Lie algebra g of G, say g = n+ a+ h (where n is nipotent, a is Abelian, and h is the Lie141

algebra of H [24]). For each g ∈ G, g = n(g) exp(a(g))h(g), where n(g) ∈ N , a(g) ∈ a and142

h(g) ∈ H are unique (N is the Lie subgroup of G with Lie algebra n).143

For each t ∈ a∗ (the dual of a as a real vector space), there is a spherical function144

φt :M → C, given by the following integral formula [22],145

(3.1) φt(g · o) =
∫
H
exp [(it+ ρ)(a(hg))] dh for g ∈ G.146

Here, ρ is half the sum of the positive roots of g with respect to a, and dh denotes the147

normalized Haar measure onH (a gentle introduction to these concepts is provided in [41, 42]).148

Define the spherical transform of an H-invariant f :M → C as f̂ : a∗ → C,149

(3.2) f̂(t) =

∫
M
f(x)φ−t(x)vol(dx)150

where vol denotes the volume measure of M . This is well-defined when f is continuous and151

compactly supported, in which case it admits an inversion formula,152

(3.3) f(x) = cM

∫
a∗
f̂(t)φt(x)|c(t)|−2dt153
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where c(t) is a certain function, called the Harish-Chandra function (for an overview, see [23]),154

dt denotes the Lebesgue measure, and cM is a constant that is independent of the function f .155

Defined as above, the spherical transform extends to the space L2
H(M) of H-invariant156

square-integrable functions (with respect to vol) and satisfies the Plancherel formula157

(3.4)

∫
M
|f(x)|2vol(dx) = cM

∫
a∗
|f̂(t)|2 |c(t)|−2dt158

for any f ∈ L2
H(M). Here, the following proposition will be called the L2-Godement theorem.159

It is a special case of Godement’s theorem, which holds for square-integrable functions.160

Theorem 3.1 (L2-Godement Theorem). A continuous function f ∈ L2
H(M) is positive-161

definite if and only if f̂(t) ≥ 0 for almost all t ∈ a∗ and f̂ is integrable with respect to the162

measure |c(t)|−2dt.163

The connection with Godement’s theorem, from the previous Section 2, comes from the fact164

that all of the functions φt in (3.1) are positive-definite [22] (Page 484). The set of φt where165

t ∈ a∗ is therefore a subset of Φ (in fact, it is a proper subset). The proof of Theorem 3.1 is166

given in Section 8.1, where a second alternative proof is also discussed.167

The following section spells out the spherical transform pair (3.2)−(3.3) in two basic cases,168

whereM is a hyperbolic plane or a hyperbolic space of dimension equal to three, and provides169

two examples of applications of Theorem 3.1.170

4. Basic examples.171

4.1. Hyperbolic plane. M is a two-dimensional simply connected space with constant172

negative curvature equal to −1. One may take G = SL(2,R) and H = SO(2) (in the usual173

notation, SL(2,R) = 2× 2 real unit-determinant matrices, SO(2) = 2× 2 rotation matrices).174

A detailed exposition may be found in [41]. For any H-invariant function f : M → C there175

exists g : R+ → C, with f(x) = g(r) where r = d(o, x), the distance in M between x and176

the “ point of origin ” o (the choice of this point is arbitrary). In particular, the spherical177

functions (3.1) are given in terms of Legendre functions [22, 41],178

(4.1) φt(x) = P− 1
2
+it(cosh(r))179

for t ∈ R (with regard to (3.1), a is one-dimensional, and therefore a ≃ a∗ ≃ R. Accordingly,180

t ∈ a∗ becomes t ∈ R), and it should be noted that φt = φ−t (see [41] (Page 141)).181

The spherical transform pair (3.2)−(3.3) can be expressed as follows (see [41] (Page 149))182

f̂(t) = 2π

∫ ∞

0
g(r)P− 1

2
+it(cosh(r)) sinh(r)dr,(4.2)183

g(r) =
1

2π

∫ ∞

0
f̂(t)P− 1

2
+it(cosh(r))α(t)dt,(4.3)184

where f(x) = g(r) as above, and α(t) = t tanh(πt). As pointed out in [41], (4.2)−(4.3) is185

known as a Mehler-Fock transform pair in the mathematical physics literature.186
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4.2. Hyperbolic space. M is now of dimension 3 instead of 2. One may takeG = SL(2,C)187

and H = SU(2) (in other words, SL(2,C) = 2 × 2 complex unit determinant matrices, and188

SU(2) = unitary matrices in SL(2,C)). As before, any H-invariant function f is of the form189

f(x) = g(r). The spherical functions (3.1) are given by [22] (Page 432)190

(4.4) φt(x) =
sin(tr)

t sinh(r)
191

Again, φt = φ−t . The spherical transform pair (3.2)−(3.3) is essentially a sine transform pair,192

f̂(t) =
4π

t

∫ ∞

0
g(r) sinh(r) sin(tr)dr(4.5)193

g(r) sinh(r) =
1

2π2

∫ ∞

0
tf̂(t) sin(tr)dt(4.6)194

as can be seen using (4.4) and computing the integral (3.2) in geodesic spherical coordinates.195

4.3. Distance kernels. For the hyperbolic plane and space that we studied in the previous196

examples, any H-invariant function f is of the form f(x) = g(d(o, x)). It follows from (2.3)197

that kf (x, y) = g(d(x, y)). But, as stated in Section 2, any invariant kernel k is of the form198

k = kf and it is hence a distance kernel199

(4.7) k(x, y) = g(d(x, y)),200

for some g : R+ → C. The positive-definiteness of k implies that g is necessarily real-valued.201

In other words, any positive-definite kernel is a real-valued distance kernel. This statement202

holds whenever M is a rank-one symmetric space. This class of symmetric spaces includes203

spheres, hyperbolic spaces, projective and hyperbolic projective spaces of any dimension [24].204

4.3.1. Wishart kernel. Let M be the hyperbolic plane, and let g(r) = exp(−2a cosh(r)),
where a > 0, in (4.7). It is well known that M can be identified with the space of 2 × 2
unit-determinant positive-definite matrices [41]. Thinking of x ∈M as a matrix of this kind,
and choosing o the identity matrix, d(o, x) = r implies the trace of x is tr(x) = 2 cosh(r) [41]
(Page 149, Exercice 20). Thus, by (4.7)

k(o, x) = exp (−atr(x))

Recalling the action g ·x = gxg† (a matrix product, with † the transpose [41]) and o = identity,
and setting x = g1· o and y = g2· o, it follows from (2.2) that

k(x, y) = k(o, g−1
1 g2· o) = exp(−atr(x−1y))

This is the unnormalized density of a Wishart distribution and k is the Wishart kernel. Now,205

the L2-Godement theorem can be used to show that this kernel is not positive-definite, for any206

value of a. The spherical transform f̂(t) is given in [41] (Page 151),207

(4.8) g(r) = exp(−2a cosh(r)) in (4.2) =⇒ f̂(t) =

(
4π

a

)1
2

Kit(2a)208
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where Kit is a modified Bessel function of the second kind with imaginary order. For fixed209

a, Kit(2a) has infinitely many simple zeros in t [3]. In particular, f̂(t) does not satisfy the210

positivity condition in the L2-Godement theorem (Theorem 3.1), so k is not positive-definite211

(the theorem can be applied because f(x) = k(o, x) is continuous and in L2
H(M) for any a).212

Furthermore, since the Wishart kernel is never positive-definite on the hyperbolic plane,213

and since a hyperbolic space contains infinitely many isometric copies of the hyperbolic plane,214

the Wishart kernel is never positive-definite on the hyperbolic space. This statement can be215

made rigorous using the embedding lemma below (Lemma 5.2).216

4.3.2. Hyperbolic secant kernel. Let M be the hyperbolic plane and g(r) = (cosh(r))−a

where a > 1/2. Then, f(x) = g(d(o, x)) is clearly continuous, and f ∈ L2
H(M), because∫

M
|f(x)|2vol(dx) = 2π

∫ ∞

0
(cosh(r))−2a sinh(r)dr = 2π

∫ ∞

1
u−2adu <∞

as follows by integrating in geodesic spherical coordinates. From [41] (Page 151)217

(4.9) g(r) = (cosh(r))−a in (4.2) =⇒ f̂(t) = 2a−1

√
π

Γ(a)
|Γ((a− 1/2 + it)/2)|2218

which is positive for all t (Γ is the Gamma function). Now, by the L2-Godement theorem, the
hyperbolic secant kernel

k(x, y) = (cosh(d(x, y)))−a

is positive-definite on the hyperbolic plane for any a > 1/2. This example of a positive-definite219

kernel on the hyperbolic plane does not seem to be known in the literature. We believe it is220

reasonable to name it the hyperbolic secant kernel.221

The case whereM is the hyperbolic space, rather than the hyperbolic plane, is investigated222

in Appendix B. Positive-definiteness seems to be, once more, the general rule.223

5. Compact symmetric spaces. This section considers the case in which M is a compact224

symmetric space (for example, a sphere, a projective space, or a Grassmannian). The following225

proposition will now be proved.226

Proposition 5.1. Let M be a compact symmetric space. The Gaussian kernel (1.1) is not227

positive-definite on M , for any value of λ.228

In other words, the Gaussian kernel is never positive-definite on a compact symmetric space.229

The case where M is not simply connected (real projective space or real Grassmannian, etc)230

is already taken care of in [29]. The case where M is simply connected will now be proved.231

First, we prove the following result, referred to as the Embedding Lemma.232

Lemma 5.2 (Embedding Lemma). Assume Mo and M are metric spaces, with Mo isomet-233

rically embedded in M . Let k be a distance kernel (i.e. a kernel of the form (4.7)). If k is234

positive-definite on M , then it is positive-definite on Mo.235

Here, isometric embedding means that the distance function in Mo is the restriction of the236

distance function in M (this is the isometric embedding of metric spaces, a stronger property237

than the isometric embedding of Riemannian manifolds). Due to (4.7), this implies the kernel238
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k onMo is just the restriction of the same kernel k fromM . The fact that positive-definiteness239

is hereditary from M to Mo is immediate from (2.1).240

A corollary of the embedding lemma is that the Gaussian kernel (1.1) cannot be positive-241

definite on M if it is not positive-definite on Mo .242

Lemma 5.3. Any compact simply connected symmetric space M contains an isometrically243

embedded circle σ (the embedding being an isometric embedding of metric spaces).244

Proof. Assume that M is an irreducible symmetric space [24, Chapter VIII]. Denote κ2245

the maximum of the sectional curvatures of M . Then, M admits a simple periodic geodesic246

σ of length 2π/κ [24] (Page 334). Let x be a point on σ and choose a parameterisation247

σ : [0, 2π]→M with σ(0) = x. Then, let σ(π) = x′.248

It can be show that σ is length-minimising from x to x′ (when restricted to [0, π]) and249

also from x′ to x (when restricted to [π, 2π]). Recall that the cut-locus of x in M is identical250

to its first conjugate locus [11]. By definition of κ, x has no conjugate points along σ before251

σ(π) = x′ [9, Morse-Schönberg Theorem, Page 86]. Thus σ is length-minimising from x to x′.252

An identical argument shows σ is also length-minimising from x′ to x.253

Denote σ = σ([0, 2π]) (the image of the geodesic curve σ in M). This is the isometrically254

embedded circle announced in Lemma 5.3. To see this, choose any y ∈ σ, y = σ(t). If255

t ∈ [0, π] the distance in M between x and y is d(x, y) = t. On the other hand, if t ∈ [π, 2π],256

d(x, y) = 2π − t (note both of these claims result from the length-minimising property of σ,257

just obtained). In other words, the restriction of the distance function fromM to σ is the same258

as the distance function of a circle (identified with the interval [0, 2π] with glued endpoints).259

The assumption that M is irreducible can now be removed since any simply connected260

symmetric space is a direct product of irreducible symmetric spaces [24, Page 381].261

We recall now (see [12]) that the Gaussian kernel is never positive-definite on the circle.262

With this in mind, Lemmas 5.2 and 5.3 yield Proposition 5.1.263

Even though it should be possible to prove Proposition 5.1 using an analytic approach264

via Godement’s theorem, the geometric approach used above is more elementary and easier265

to visualise.266

6. Non-compact symmetric spaces. In this section, M will be a non-compact symmetric267

space, as in Section 3 (for example, a hyperbolic space, a space of positive-definite matrices,268

etc). Using a mixture of numerical and analytical results, we show that the Gaussian kernel269

systematically fails to be positive-definite on M . First, the L2-Godement theorem is applied270

to the two basic cases where M is a hyperbolic plane or a three-dimensional hyperbolic space.271

Specifically, from (1.1), the Gaussian kernel corresponds to g(r) = e−λr2 , and upon replacing272

this into (4.2) and (4.5), the following observations are made:273

• In both cases, the spherical transform f̂(t) is positive when t is small in comparison274

to λ (Proposition 6.1, and the remark after Formula (6.1)).275

• In (4.2), a numerical evaluation shows that f̂(t) oscillates between positive and negative276

values, for any λ within a certain continuous range, starting near λ = 0 (Figure 1).277

• In (4.5), f̂(t) has the same sign as sin(t/2λ). The Gaussian kernel is, therefore, never278

positive-definite on the hyperbolic space (Proposition 6.3).279

Second, the general case uses the Embedding Lemma 5.2.280
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(a) Sign of f̂ at a grid of points in the (t, λ)-plane
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(b) Plot of f̂(t) when λ = 0.05

Figure 1: Spherical transform for the Gaussian kernel on the hyperbolic plane

6.1. Hyperbolic plane. For the Gaussian kernel on the hyperbolic plane, the behavior of281

the spherical transform f̂(t), when t is small in comparison to λ, is the following.282

Proposition 6.1. Let g(r) = e−λr2 in (4.2). For any T > 0, there exists λT > 0 such that283

λ > λT implies f̂(t) ≥ 0 for all t ≤ T .284

The proof of Proposition 6.1 is given in Section 8.2. The behavior of f̂(t) for larger values of285

t was investigated numerically, with the results reported in Figure 1.286

Figure 1a shows the sign of f̂ in the (t, λ)-plane. The blue (positive) area on the left287

confirms Proposition 6.1. It is followed to the right by an alternation of red and blue areas,288

which shows that f̂(t) oscillates between positive and negative values (note that the λ axis289

begins at λ = 0.2, since the numerical evaluation of the integral (4.2) becomes unstable for290

much smaller values of λ). Figure 1b shows an individual plot of f̂(t), obtained for a fixed291

λ = 0.05.292

It is clear from Figure 1a that the L2-Godement theorem implies the Gaussian kernel is293

not positive-definite on the hyperbolic plane, for any λ in the range of the λ-axis of this figure.294

Remark 6.2. Proposition 6.1 continues to hold for a general non-compact M , as above.295

The proof of this general statement is not provided in order to maintain a reasonable length.296

6.2. Hyperbolic space. In this case, f̂(t) can be found in closed form.297

(6.1) g(r) = e−λr2 in (4.5) =⇒ f̂(t) =

(
2π

t

)(π
λ

)1
2
e(1−t2)/4λ sin

(
t

2λ

)
298

This shows that the sign of f̂(t) is determined by sin(t/2λ). This remains positive for t ≤ 2πλ,299

and then oscillates indefinitely. From the L2-Godement theorem, the following is immediate.300

Proposition 6.3. The Gaussian kernel (1.1) is not positive-definite on the hyperbolic space301

for any value of λ.302
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10 N. DA COSTA ET AL.

The expression (6.1) can be obtained from the following general lemma, proved in Section 8.3.303

Lemma 6.4. In (4.5), assume that g(r) is an even function. Then,304

(6.2) f̂(t) =
π

t
Im {G(it+ 1)−G(it− 1)}305

where Im denotes the imaginary part and G is the moment-generating function

G(s) =

∫ +∞

−∞
g(r)esrdr

Indeed, (6.1) follows from (6.2) using the expression of the moment-generating function of a
univariate normal distribution,

G(s) =
(π
λ

)1
2
es

2/4λ

6.3. The general case. Let M be any non-compact symmetric space, as in Section 3306

(so the isometry group G ofM is semisimple, of non-compact type, and has finite center [24]).307

The following lemma will be proved in Section 8.4.308

Lemma 6.5. Under the assumptions just stated, M contains an isometrically embedded309

hyperbolic plane.310

The numerical results of Paragraph 6.1 show that the Gaussian kernel is not positive-definite311

on the hyperbolic plane, at least for any λ in the range appearing in Figure 1a. The Embedding312

Lemma 5.2 and Lemma 6.5 therefore imply that the Gaussian kernel is not positive-definite313

on any non-compact Riemannian symmetric space, for λ in this same range (the additional314

assumptions of Lemma 6.5 merely serve to prevent M from being Euclidean).315

On the other hand, Proposition 6.3 shows the Gaussian kernel is never positive-definite316

on the hyperbolic space. By the Embedding Lemma, it is therefore never positive-definite on317

symmetric spaces that contain an isometrically embedded hyperbolic space. Examples of such318

symmetric spaces include all spaces of n × n real, complex, or quaternion, positive-definite319

matrices (with the requirement that n ≥ 4 for the real case) [30].320

Hopefully, the numerical treatment of the hyperbolic plane case in Paragraph 6.1 will soon321

be replaced with a complete analytical treatment, similar to the one that we conducted for322

the hyperbolic space case in Paragraph 6.2. This is the only step still missing to obtain a323

fully analytical proof of the statement that the Gaussian kernel is never positive-definite on324

any non-Euclidean symmetric space.325

7. The hyperbolic secant revisited: non-Euclidean Herschel-Maxwell distributions. Re-326

call the hyperbolic secant kernel on the hyperbolic plane from Section 4.3.2, which was shown327

to be positive-definite in contrast to the Gaussian kernel. Here, we will present a new inter-328

pretation of the hyperbolic secant kernel as the Herschel-Maxwell kernel on the hyperbolic329

plane. In Euclidean space, the Herschel-Maxwell theorem is an elegant characterization of330

the Gaussian distribution originally due the astronomer J.F.W. Herschel who was studying331

two-dimensional errors in astronomical observations. Ten years later, James Clerk Maxwell332

presented a three-dimensional version of the same argument to show that the stationary prob-333

ability distribution of the velocities of molecules in a gas follows a Gaussian distribution under334
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the assumptions that (P1) the components of the random vector in an orthogonal coordinate335

system are independent, and (P2) the distribution only depends on the magnitude of the336

vector [21, 27, 31]. A modern statement of the theorem is that if the distribution of a random337

vector with independent components is invariant under rotations, then the components must338

be identically distributed as a Gaussian distribution.339

Here, we will follow the Herschel-Maxwell derivation as it appears in Jaynes [27], which340

relies on the assumption of the existence of densities of the components of the random variables341

and solving a functional equation. This derivation follows closely Maxwell’s own argument.342

Let (u, v) be a Cartesian coordinate system in the Euclidean plane. We seek to determine a343

joint probability distribution p(u, v)dudv that satisfies assumptions P1 and P2. By assumption344

P1, we have345

(7.1) p(u, v)dudv = h(u)duh(v)dv346

for some function h. By assumption P2, we have347

(7.2) p(u, v)dudv = g(r)rdrdθ348

as the density cannot depend on the angle θ when expressed in polar coordinates (r, θ). (7.1)349

and (7.2) combine to give the functional equation350

(7.3) h(u)h(v) = g
(√

u2 + v2
)
,351

which admits the general solution352

(7.4) h(u) =

√
λ

π
e−λu2

, p(u, v) =
λ

π
e−λ(u2+v2),353

for any λ > 0 upon insisting that the distribution be normalized.354

To replicate this derivation in the hyperbolic plane, we must first specify what we mean355

by an ‘orthogonal coordinate system’ in the hyperbolic plane. The most natural choice for356

such a coordinate system seems to be Lobachevsky coordinates, determined by specifying a357

directed geodesic (u-axis) through the origin. The Lobachevsky coordinates of a point x are358

then found by dropping a perpendicular to the u-axis. The signed distance from the foot of the359

perpendicular to the origin is the u-coordinate of the point and the v-coordinate is the signed360

distance along the perpendicular to the u-axis (with the distance taken to be positive on one361

side of the u-axis and negative on the other). With respect to such a coordinate system, we362

seek a joint probability distribution p(x)vol(dx) = p(u, v)vol(dx) = h(u)h(v)vol(dx), where363

vol(dx) denotes the Riemannian volume form in the hyperbolic plane (P1). Moreover, (P2)364

generalizes to the assumption that p(x) can only depend on the Riemannian distance to the365

origin r = d(o, x), which once again yields the functional equation h(u)h(v) = g(r). As this366

equation holds for all (u, v), we can take any point on the u-axis to obtain g(u) = h(u)h(0).367

That is, we have the functional equation368

(7.5) h(u)h(v) = h(0)h(r)369
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12 N. DA COSTA ET AL.

where (u, v) and r are related by370

(7.6) cosh(r) = cosh(u) cosh(v)371

according to the hyperbolic Pythagorean theorem. Setting h̃ = (h ◦ arcosh)/h(0), (7.5) be-372

comes h̃(coshu)h̃(cosh v) = h̃(coshu cosh v), which admits the general solution h̃(coshu) =373

(coshu)−a, for a ∈ R (i.e., h̃ is a power function). Thus,374

h(r) = h(0)(cosh(r))−a,375

which yields the probability density376

p(x)vol(dx) = h(0)2(cosh(r))−avol(dx) = h(0)2(cosh(r))−a sinh(r)drdθ,377

in geodesic polar coordinates. Note that this density is normalizable only if a > 1. The378

constant h(0) can be determined through normalizing the distribution, which yields379

(7.7) p(x)vol(dx) =
1

π

Γ
(
a+1
2

)
Γ
(
a−1
2

) (cosh(d(o, x))−a vol(dx).380

We call this distribution the Herschel-Maxwell distribution in the hyperbolic plane. It can381

be viewed as one of several possible generalizations of the Gaussian distribution centered at382

the point o to the hyperbolic plane alongside the distinct distributions derived from the heat383

kernel interpretation of the Gaussian [20, 32] and384

(7.8) p(x)vol(dx) =
1

π

√
λ

π

e−
1
4λ

erf
(

1
2
√
λ

)e−λ d(o,x)2vol(dx),385

which inherits an important characteristic property of Euclidean Gaussian distributions from386

statistical inference: the maximum likelihood estimate of the mean reduces to a (Riemannian)387

center of mass computation [34, 35, 37, 36, 10]. Figure 2 compares plots of the density functions388

p(r)vol(dx) in (7.7) and (7.8) as functions of r = d(o, x) for parameters a = 4 and λ = 1.66.389

Finally, we note that the hyperbolic Herschel-Maxwell distribution can be generalized390

to n-dimensional hyperbolic space if we insist that the components of the point x in any391

Lobachevsky coordinate system in any hyperbolic plane containing o and x are independent392

and the distribution only depends on the geodesic distance r = d(o, x). Reasoning as before,393

we obtain394

(7.9) p(x)vol(dx) =
1

ωn−1

Γ
(
a+1
2

)
Γ
(
a+1−n

2

)
Γ
(
n
2

) (cosh(d(o, x))−a vol(dx),395

where ωn−1 denotes the area of the unit sphere in Rn and the normalization factor in (7.9) is396

determined by integration with respect to the volume form vol(dx) in n-dimensional hyperbolic397

space. The distribution is well-defined for a > n− 1.398
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Figure 2: Plots of the normalized hyperbolic Herschel-Maxwell (solid curve, 7.7) and Gaussian
(dashed curve, 7.8 ) densities as functions of r = d(o, x) for parameters a = 4 and λ = 1.66.

Remark 7.1. We can repeat the derivation of the hyperbolic Herschel-Maxwell distribution399

presented here in the case of spherical geometry with the main difference being the replacement400

of the hyperbolic Pythagorean theorem with the spherical Pythagorean theorem401

(7.10) cos(θ) = cos(u) cos(v)402

where o, x denote points on the 2-sphere S2, θ = d(o, x), and (u, v) is an orthogonal coordinate403

system centered on o, whereby the coordinates of a point x are obtained by dropping a404

perpendicular to a specified geodesic through o and measuring the signed lengths u along the405

geodesic from o to the foot of the perpendicular and v along the perpendicular to the geodesic406

from x. This yields the spherical Herschel-Maxwell kernel407

(7.11) k(x, y) = | cos(d(x, y))|a,408

where a > 0 to ensure the corresponding distribution is normalizable. Note that by represent-409

ing x, y ∈ S2 by unit vectors wx, wy ∈ R3, we have cos(d(x, y)) = ⟨wx, wy⟩, and thus (7.11)410

takes the form k(x, y) = |⟨wx, wy⟩|a. That is, the spherical Herschel-Maxwell distribution can411

be identified with a homogeneous polynomial kernel, which is known to be positive-definite if412

and only if the power a is a positive integer [39].413

8. Proofs of the main results.414

8.1. Proof of Theorem 3.1.415

8.1.1. Notation. The following notation will be used in the proof.416

• Let W denote the Weyl group, which arises from the adjoint action of H on a [24].417

Also, let α denote the measure on a∗, which is given by α(dt) = cM |c(t)|−2dt. Then,418

L2
W (a∗) stands for the space of W -invariant square-integrable functions (with respect419

to the measure α).420

• Denote Φ∗ the set of functions φt in (3.1) where t ∈ a∗. This is a proper subset of the421

set Φ of all positive-definite spherical functions, which appears in Godement’s theorem422

(Section 2, in particular (2.4)).423
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14 N. DA COSTA ET AL.

• Functions or measures on a∗ can be pulled back to Φ∗, assuming they areW -invariant.424

This is because φt′ = φt if and only if t′ = w · t for some w ∈ W . Accordingly, the425

measure α on a∗ can be identified with a measure on Φ∗ , also denoted α. Similarly,426

if f̂(t) is a spherical transform, as in (3.2), f̂(φ) is just f̂(t) when φ ∈ Φ∗ and φ = φt427

for some t ∈ a∗.428

• Finally, C c
H(M) is the space ofH-invariant continuous, compactly supported functions,429

with complex values, defined on M .430

8.1.2. The if part. For square-integrable functions, the spherical transform is only defined431

in an abstract sense. It is a linear isometry between the Hilbert spaces L2
H(M) and L2

W (a∗),432

f 7→ f̂ [22][42]. However, if f̂ is integrable, the inversion formula (3.3) holds433

(8.1) f(x) =

∫
a∗
f̂(t)φt(x)α(dt) for all x ∈M434

and this implies that f is continuous, since each φt is continuous and verifies |φt(x)| ≤ 1,435

being a positive-definite function with φt(o) = 1. The fact that f is positive-definite follows436

from Godement’s theorem. Indeed, (8.1) can be written437

(8.2) f(x) =

∫
Φ∗

φ(x)(f̂α)(dφ)438

where (f̂α)(dφ) = f̂(φ)α(dφ). Then, since f̂(φ) ≥ 0 for almost all φ ∈ Φ∗ and f̂ is integrable,439

with respect to α, f̂α is a finite positive measure on Φ∗ . Moreover, since Φ∗ is a (measurable)440

subset of Φ, (8.2) is exactly of the form (2.4), but with the measure µf supported on Φ∗ ,441

where it is equal to f̂α. This shows that f is positive-definite, and even determines the finite442

positive measure µf (recall that µf is unique).443

8.1.3. The only-if part. If f is H-invariant, continuous and positive-definite, then one444

has445

(8.3)

∫
M
(ψ ∗ ψ†)(x)f(x)vol(dx) ≥ 0446

for any ψ ∈ C c
H(M), where ∗ denotes the convolution and ψ†(g · o) = ψ̄(g−1 · o) [14] (Page447

286). This yields a scalar product on C c
H(M),448

(8.4) ⟨ψ1, ψ2⟩f =

∫
M
(ψ1∗ ψ†

2)(x)f(x)vol(dx)449

It will shortly be proved that this scalar product admits a spectral representation,450

(8.5) ⟨ψ1, ψ2⟩f = ⟨ψ̂1, ψ̂2⟩f̂451

where the scalar product on the righ-hand side is the usual “L2” scalar product, with respect452

to the measure f̂α on Φ∗. By [19] (Plancherel theorem, Page 101), this implies the measure453

µf (in (2.4)) is supported on Φ∗, where it is equal to f̂α. Since µf is a finite positive measure,454

f̂(t) ≥ 0 for almost all t and f̂ is integrable.455
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To prove (8.5), consider the left-hand side of (8.3). Both ψ and ψ† belong to C c
H(M).456

The same is therefore true of their convolution. The spherical transform of ψ† being the457

complex conjugate of the spherical transform of ψ, it follows by the convolution property of458

spherical transforms [42] (Page 88)459

(8.6) ψ̂ ∗ ψ†(t) = |ψ̂(t)|2460

Since both f and ψ ∗ ψ† are in L2
H(M), the Plancherel formula (3.4) yields461

(8.7)

∫
M
(ψ ∗ ψ†)(x)f(x)vol(dx) =

∫
a∗
|ψ̂(t)|2f̂(t)α(dt) =

∫
a∗
|ψ̂(t)|2(f̂α)(dt)462

By (8.4), and by pulling back the integral of the right-hand side to Φ∗ , this is463

(8.8) ⟨ψ,ψ⟩f =

∫
Φ∗

|ψ̂(φ)|2 (f̂α)(dφ) = ⟨ψ̂, ψ̂⟩f̂464

so that (8.5) follows immediately, using the polarization identity for scalar products.465

8.1.4. Alternative proof of Theorem 3.1. The only-if part of the proposition admits at466

least one more proof. Indeed [14] (Page 302), for any continuous positive-definite f ∈ L2
H(M),467

it is possible to construct ϕ ∈ L2
H(M) such that f = ϕ ∗ ϕ†. If one can apply the convolution468

property as in (8.6), it would follow that f̂(t) = |ϕ̂(t)|2, so f̂(t) is positive for all t (not just469

for almost all t), and f̂ is integrable.470

The convolution property does not apply directly, because ϕ is not integrable. Lettting471

(ϕn;n = 1, 2, . . .) belong to C c
H(M) and converge to ϕ in L2

H(M), the functions fn = ϕn ∗ ϕ̃n472

belong to C c
H(M) and converge uniformly to f , as can be shown by using Young’s convolution473

inequality [25] (Page 296).474

Now, as in (8.6), one has f̂n(t) = |ϕ̂n(t)|2 for each n. However, since ϕ̂n converge to ϕ̂475

in L2
W (a∗), it follows that |ϕ̂n|2 converge to |ϕ̂|2 in L1

W (a∗) (this is the space of W -invariant476

integrable functions) [8] (Page 289).477

Therefore, a representation of f under the form (3.3) can be obtained by noting, for x ∈M ,

lim fn(x) = lim

∫
a∗
φt(x)|ϕ̂n(t)|2α(dt) =

∫
a∗
φt(x)|ϕ̂(t)|2α(dt)

where the first equality follows from (3.3) and f̂n(t) = |ϕ̂n(t)|2, and the second equality from478

|ϕ̂n|2 −→ |ϕ̂|2 in L1
W (a∗) and |φt(x)| ≤ 1 (this is a consequence of φt being positive-definite).479

However, the limit of fn(x) is just f(x), since the fn converge uniformly to f . Thus,

f(x) =

∫
a∗
φt(x)|ϕ̂(t)|2α(dt)

Comparing to (3.3), it follows that f̂(t) = |ϕ̂(t)|2, as required.480
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8.2. Proof of Proposition 6.1. Let R be such that r ≤ R implies | cosh(r) − 1| < 1.481

Then [41] (Page 142)482

(8.9) P− 1
2
+it(cosh(r)) = 1−

(
1/4 + t2

)
(r2/4) + ε(t, r) for r ≤ R483

with remainder |ε(t, r)| ≤ C(T,R)r4 for all t ≤ T and r ≤ R, where C(T,R) > 0 is a constant.484

Replacing this into (4.2), the following decomposition is obtained,485

(8.10) f̂(t) = f̂a(t) + f̂b(t) + f̂c(t)486

in terms of the following integrals487

f̂a(t) =

∫ R

0
e−λr2

[
1−

(
1/4 + t2

)
(r2/4)

]
sinh(r)dr(8.11)488

f̂b(t) =

∫ R

0
e−λr2ε(t, r) sinh(r)dr(8.12)489

f̂c(t) =

∫ ∞

R
e−λr2P− 1

2
+it(cosh(r)) sinh(r)dr(8.13)490

Noting that |P− 1
2
+it(cosh(r))| ≤ 1 [41] (Page 161), a simple calculation yields491

(8.14) |f̂c(t)| ≤
∫ ∞

R
e−λr2 sinh(r)dr = O

(
e−λR2

)
492

On the other hand,

(C(T,R))−1 |f̂b(t)| ≤
∫ R

0
e−λr2r4 sinh(r)dr ≤

∫ ∞

0
e−λr2r4 sinh(r)dr

However, by performing an elementary change of variables, and then assuming that λ ≥ 1,
this implies the following bound,

(C(T,R))−1 |f̂b(t)| ≤ λ−
5
2

∫ ∞

0
e−u2

u4 sinh(u)du

which means that493

(8.15) |f̂b(t)| = O
(
λ−

5
2

)
494

Finally, f̂a(t) can be extended to an integral from 0 to ∞, with an exponentially small error,495

(8.16) f̂a(t) = Z(λ)−
(
1/4 + t2

)
V (λ) +O

(
e−λR2

)
496

where Z(λ) and V (λ) are the following integrals

Z(λ) =

∫ ∞

0
e−λr2 sinh(r)dr V (λ) =

1

4

∫ ∞

0
e−λr2r2 sinh(r)dr
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By a direct evaluation497

(8.17) Z(λ) =
1

2

√
π

λ
exp

(
1

4λ

)
erf

(
1

2
√
λ

)
=
λ−1

2
+
λ−2

6
+O

(
λ−3

)
498

where erf denotes the error function [5] (Page 35), and then by noting that 4V (λ) = −Z ′(λ)499

(the prime denotes derivation),500

(8.18) V (λ) =
λ−2

8
+O(λ−3)501

Therefore, replacing (8.17) and (8.18) into (8.16),502

(8.19) f̂a(t) =
λ−1

2
−
(
t2 − 13

12

)
λ−2

8
+O

(
λ−3

)
503

To conclude the proof, replace (8.14), (8.15) and (8.19) into (8.10). This yields504

(8.20) f̂(t) ∼ λ−1

2
−
(
t2 − 13

12

)
λ−2

8
as λ→∞505

(a ∼ b means a/b converges to 1), where the convergence is uniform in t ≤ T . It is now enough506

to note that the right-hand side of (8.20) is positive for all t ≤ T when λ ≥ T 2/4.507

8.3. Proof of Lemma 6.4. Note that sinh(r) sin(tr) is an even function of r. Moreover,508

since g(r) is also even, (4.5) can be written509

f̂(t) =
4π

t

∫ ∞

0
g(r) sinh(r) sin(tr)dr510

=
2π

t

∫ +∞

−∞
g(r) sinh(r) sin(tr)dr511

In other words,

f̂(t) =
2π

t
Im

{∫ +∞

−∞
g(r) sinh(r)eitrdr

}
Using the definition of the hyperbolic sine, this becomes

f̂(t) =
π

t
Im

{∫ +∞

−∞
g(r)e(it+1)rdr −

∫ +∞

−∞
g(r)e(it−1)rdr

}
and then, by definition of the moment-generating function G,

f̂(t) =
π

t
Im {G(it+ 1)−G(it− 1)}

which is the same as (6.2).512
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8.4. Proof of Lemma 6.5. It will be enough to prove that there exists a totally-geodesic513

submanifoldMo ofM , such thatMo is a hyperbolic plane. Indeed,M is a Hadamard manifold514

(a simply connected complete Riemannian manifold with negative sectional curvatures [24]515

(Chapter VI)). Therefore, if Mo is a totally geodesic submanifold, it is also an isometrically516

embedded metric space. The proof will rely very heavily on the algebraic description of517

symmetric spaces, detailed in [24] (in particular Chapters V and VI).518

Recall that M is determined by a symmetric pair (G,H). The Lie algebra g of G is a519

real semisimple Lie algebra, and admits a Cartan involution θ with corresponding Cartan520

decompositon g = h+ p (h the Lie algebra of H). If B is the Killing form of g, then521

(8.21) ⟨ξ, η⟩ = −B(ξ, θ(η)) ξ, η ∈ g522

defines a scalar product on g. Let a be a maximal Abelian subspace of p. The linear maps523

ada : g → g where ada(ξ) = [a, ξ] for a ∈ a are jointly diagonalisable, with real eigenvalues.524

These eigenvalues are linear forms λ : a→ R, called the roots of g with respect to a.525

Fix a non-zero root λ, and aλ ∈ a such that λ(a) = B(aλ , a) for a ∈ a. Then, let ξλ be a526

joint eigenvector, ada(ξλ) = λ(a)ξλ for a ∈ a. Note that527

(8.22) [a, θ(ξλ)] = θ ([θ(a), ξλ]) = −θ ([a, ξλ])528

for any a ∈ a, where the first equality follows because θ is an involution, and the second529

because a ∈ a, a subspace of p, and p is by definition the (−1)-eigenspace of θ. However,530

(8.23) θ ([a, ξλ]) = λ(a)θ(ξλ)531

by the definition of ξλ and linearity of θ. Thus, (8.22) and (8.23) imply that ada(θ(ξλ)) =532

−λ(a)θ(ξλ) for any a ∈ a. Denoting θ(ξλ) by ξ−λ and recalling the definition of aλ ∈ a, it is533

now seen that the following commutation relations hold534

(8.24) [aλ, ξλ] = ∥aλ∥2ξλ [aλ, ξ−λ] = −∥aλ∥2ξ−λ535

where ∥ · ∥ is the norm with respect to the scalar product (8.21). It will now be proved that536

(8.25) [ξλ , ξ−λ] = −∥ξλ∥2aλ537

First, any a ∈ a commutes with [ξλ , ξ−λ]. Indeed,538

[a, [ξλ , ξ−λ]] = [[a, ξλ], ξ−λ] + [ξλ , [a, ξ−λ]]539

= λ(a)[ξλ , ξ−λ]− λ(a)[ξλ , ξ−λ]540

where the first equality follows from Jacobi’s identity for Lie brackets, and the second because541

ξλ and ξ−λ are joint eigenvectors with eigenvalues λ(a) and −λ(a). Second, [ξλ , ξ−λ] ∈ p.542

Indeed, θ([ξλ , ξ−λ]) = [θ(ξλ), θ(ξ−λ)], but θ(ξλ) = ξ−λ by definition, and θ(ξ−λ) = ξλ since θ543

is an involution. Therefore, θ([ξλ , ξ−λ]) = − [ξλ , ξ−λ] which means [ξλ , ξ−λ] ∈ p. However, a544

is maximal Abelian in p, and this yields [ξλ , ξ−λ] ∈ a.545
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Finally, to obtain (8.25), note that

B([ξλ , ξ−λ], a) = B(ξ−λ , [a, ξλ]) = B(ξ−λ , ξλ)λ(a)

where the first equality holds since B is ad-invariant, and the second since ξλ is a joint
eigenvector with eigenvalue λ(a). Now, the fact that B is symmetric and the definition of aλ
imply B([ξλ , ξ−λ], a) = B(ξλ , ξ−λ)B(aλ , a), so that

[ξλ , ξ−λ] = B(ξλ , ξ−λ) aλ

and (8.25) follows after recalling (8.21) and ξ−λ = θ(ξλ).546

Moving on, let go denote the Lie subalgebra of g, generated by {ξ−λ, aλ, ξλ}. The Lie547

bracket of go is completely determined by (8.24) and (8.25). It is straightforward to see that548

go ≃ sl(2,R) (the Lie algebra of 2× 2 zero-trace real matrices). The isomorphism is given by549

(8.26) ξ−λ ←→

(
0 0

−1 0

)
; aλ ←→

(
1 0

0 −1

)
; ξλ ←→

(
0 1

0 0

)
550

after proper rescaling of {ξ−λ, aλ, x−λ} (this needs to ensure that ∥aλ∥2 = 2 and ∥ξλ∥2 = 1).551

Let Go be the connected subgroup of G with Lie algebra go and let Mo be the orbit of o552

under Go (recall that o ∈ M has stabiliser H in G and can be thought of as the “ point of553

origin ”). Then, Mo is a totally geodesic submanifold of M , because go is a Lie subalgebra of554

g [24] (Page 189). Moreover, Mo is a Riemannian homogeneous space under the action of Go ,555

Mo ≃ Go/Ho where Ho = Go ∩H is the stabiliser of o in Go . To see that Mo is a hyperbolic556

plane (up to an irrelevant scaling factor), note first that Go ≃ SL(2,R). It then remains to557

check tha Ho ≃ SO(2), since the Riemannian homogeneous space SL(2,R)/SO(2) is just a558

hyperbolic plane [41]. To do so, let ho be the Lie algebra of Ho . Then, ho = go ∩ h. However,559

since h is the (+1)-eigenspace of θ, it is easy to see that ho is generated by τ = ξλ + ξ−λ .560

Since τ corresponds to the generator of SO(2) ⊂ SL(2,R), under the isomorphism (8.26),561

Ho ≃ SO(2), as required.562
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Appendix A. L1-Godement theorem. The L2-Godement theorem, stated back in Sec-664

tion 3, has the following variant, which will be called the L1-Godement theorem. It seems665

useful to have this at hand, to deal with kernels k such that the function f(x) = k(o, x)666

is integrable but not square-integrable.667

Theorem A.1 (L1-Godement theorem). A continuous function f ∈ L1
H(M) is positive def-668

inite if and only if f̂(t) ≥ 0 for all t ∈ a∗ and f̂ is integrable with respect to the measure669

|c(t)|−2dt.670

Here, L1
H(M) denotes the space of H-invariant integrable functions (with respect to vol). The671

following proof is modelled on the one in Section 8.1. In particular, the notation is the same672

as in Paragraph 8.1.1.673

A.1. The if part. It will be enough to prove that the inversion formula (3.3) holds674

(A.1) f(x) =

∫
a∗
φt(x)f̂(t)α(dt) for all x ∈M675

The fact that f is continuous and positive-definite then follows exactly as in Paragraph 8.1.2.676

Denote Gs(x) = Gs(o, x) the heat kernel of M . For s > 0, Gs has spherical transform [18]677

(A.2) Ĝs(t) = (Z(s))−1 exp
[
−s
(
∥t∥2 + ∥ρ∥2

)]
678

where Z(s) is a normalizing constant, which guarantees Gs integrates to 1 over M , and where
ρ is half the sum of positive roots (as in Formula (3.1)). Recall that the heat semigroup is
strongly continuous on L1

H(M) [13] (Page 148). This means the convolutions fs = Gs ∗ f
converge to f in L1

H(M) as s→ 0. Of course, Gs satisfies the inversion formula (3.3),

Gs(x) =

∫
a∗
φt(x)Ĝs(t)α(dt)

Therefore, by taking the convolution under the integral679

(A.3) fs(x) =

∫
a∗
(f ∗ φt)(x)Ĝs(t)α(dt) =

∫
a∗
φt(x)f̂(t)Ĝs(t)α(dt)680

where the second equality follows because φt is an eigenfunction of convolution operators [42]
(Page 67). Now, from the assumption that f̂ is integrable (i.e. f̂ ∈ L1

W (a∗)), and from (A.2),
the dominated convergence theorem can be applied in (A.3), in order to obtain

lim fs(x) =

∫
a∗
φt(x)f̂(t)α(dt)

as s→ 0. But this limit is identical to f(x), so (A.1) is proved.681

A.2. The only-if part. As in Paragraph 8.1.3, the aim is to prove (8.7),682

(A.4)

∫
M
(ψ ∗ ψ†)(x)f(x)vol(dx) =

∫
a∗
|ψ̂(t)|2f̂(t)α(dt)683
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which then implies the spectral representation (8.5). Since ψ ∗ ψ† ∈ C c
H(M), it follows from

(3.3) and (8.6) that

(ψ ∗ ψ†)(x) =

∫
a∗
φt(x)|ψ̂(t)|2α(dt)

Replacing this under the integral on the left-hand side of (A.4), the righ-hand side is obtained684

by using the definition (3.2) of f̂ . Now, everything follows from (8.5) as in Paragraph 8.1.3.685

686

Appendix B. The hyperbolic secant in three dimensions. Recall the hyperbolic secant687

kernel from 4.3.2. This is here considered in the case where M is a hyperbolic space. The aim688

is to apply the L2-Godement theorem, with the help of the spherical transform pair (4.5).689

Setting g(r) = (cosh(r))−a and f(x) = g(d(o, x)), it follows that f is continuous and in
L2
H(M) when a > 1. This is because,∫

M
|f(x)|2 = 4π

∫ ∞

0
(cosh(r))−2a sinh2(r)dr =

∫ ∞

1
u−2a(u2 − 1)

1
2du <∞

as follows by integrating in geodesic spherical coordinates. Thus, the L2-Godement theorem
can be applied to f . The spherical transform f̂ can be found from Lemma 6.4, at least for
integer values of a. Indeed, the moment-generating function G, required in the lemma, reads

G(s) =

∫ +∞

−∞
(cosh(r))−a esrdr

When a is (of course, positive) integer, this can be obtained using the residue theorem [4].690

Precisely, if a is odd, a = 2n+ 1,691

(B.1) G(iσ) =
π sech(πσ/2)

(2n)!

n−1∏
m=0

[
σ2 + (2m+ 1)2

]
692

and if a is even, a = 2n,693

(B.2) G(iσ) =
πσ csch(πσ/2)

(2n− 1)!

n−1∏
m=1

[
σ2 + (2m)2

]
694

where sech = 1/ cosh and csch = 1/ sinh are the hyperbolic secant and cosecant, and where695

the imaginary part of σ is ≥ −1. With G given by (B.1) and (B.2), the spherical transform f̂696

can be computed using (6.2). Letting H(σ) = G(iσ), this yields697

(B.3) f̂(t) =
π

t
Im {H(t− i)−H(t+ i)}698

Lemma B.1. If z ∈ C \ Z and n is a positive integer, then699

Γ(n+ z)Γ(n− z) = − π

z sin(πz)

n−1∏
m=0

(
m2 − z2

)
700

Γ

(
n+

1

2
+ z

)
Γ

(
n+

1

2
− z
)

=
π

cos(πz)

n−1∏
m=0

[(
m+

1

2

)2

− z2
]

701
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Proof. The proof of the first equality follows by induction using Euler’s reflection formula702

Γ(z)Γ(1 − z) = π/ sin(πz) for z /∈ Z and the identity Γ(z + 1) = zΓ(z). The second equality703

follows in the same manner using the formula Γ(1/2+ z)Γ(1/2− z) = π/ cos(πz), which itself704

follows from replacing z with z + 1/2 in Euler’s reflection formula.705

Proposition B.2. The hyperbolic secant kernel is positive definite in three-dimensional hy-706

perbolic space whenever a is a positive integer.707

Proof. If a is odd with a = 2n+ 1, then708

H(σ) = G(iσ) =
4nπ sech(πσ/2)

(2n)!

n−1∏
m=0

[(
m+

1

2

)2

−
(
iσ

2

)2
]

709

=
4n

(2n)!
Γ

(
n+

1

2
+ i

σ

2

)
Γ

(
n+

1

2
− iσ

2

)
710

using Lemma B.1 with z = iσ/2. Thus,711

H(t− i)−H(t+ i) =
4n

(2n)!

[
Γ

(
n+ 1 +

it

2

)
Γ

(
n− it

2

)
− Γ

(
n+

it

2

)
Γ

(
n+ 1− it

2

)]
712

=
4n

(2n)!

[(
n+

it

2

)
Γ

(
n+

it

2

)
Γ

(
n− it

2

)
−
(
n− it

2

)
Γ

(
n+

it

2

)
Γ

(
n− it

2

)]
713

= i
4nt

(2n)!
Γ

(
n+

it

2

)
Γ

(
n− it

2

)
= i

4nt

(2n)!

∣∣∣∣Γ(n+
it

2

)∣∣∣∣2714

where we have used the fact that t ∈ R and Γ(z) = Γ(z) for z ∈ C. Thus, (B.3) reduces to715

f̂(t) =
4nπ

(2n)!

∣∣∣∣Γ(n+
it

2

)∣∣∣∣2 ≥ 0716

for any t ∈ R. If a is even with a = 2n, a similar calculation using Lemma B.1 yields717

f̂(t) =
4nnπ

(2n)!

∣∣∣∣Γ(n− 1

2
+
it

2

)∣∣∣∣2 ≥ 0,718

for any t ∈ R, which completes the proof.719
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