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This work aims to prove that the classical Gaussian kernel, when defined on a non-Euclidean symmetric space, is never positive-definite for any choice of parameter. To achieve this goal, the paper develops new geometric and analytical arguments. These provide a rigorous characterization of the positive-definiteness of the Gaussian kernel, which is complete but for a limited number of scenarios in low dimensions that are treated by numerical computations. Chief among these results are the L p -Godement theorems (where p = 1, 2), which provide verifiable necessary and sufficient conditions for a kernel defined on a symmetric space of non-compact type to be positive-definite. A celebrated theorem, sometimes called the Bochner-Godement theorem, already gives such conditions and is far more general in its scope, but is especially hard to apply. Beyond the connection with the Gaussian kernel, the new results in this work lay out a blueprint for the study of invariant kernels on symmetric spaces, bringing forth specific harmonic analysis tools that suggest many future applications.

1. Introduction. Positive-definite functions play a fundamental role in harmonic analysis and the theory of group representations, as well as in probability and statistical inference [START_REF] Helgason | Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions[END_REF][START_REF] Kirillov | Elements of the theory of representations[END_REF][START_REF] Yaglom | Second-order homogeneous random fields[END_REF][START_REF] Yaglom | An introduction to the theory of stationary random functions[END_REF]. In machine learning, these functions are of paramount importance in the context of kernel-based methods. Indeed, kernels are most often required to be positive-definite for Reproducing Kernel Hilbert Space (RKHS) methods and associated linear geometry and classification algorithms to apply [START_REF] Berlinet | Reproducing-kernel Hilbert spaces in Probability and statistics[END_REF][START_REF] Schölkopf | Learning with kernels: support-vector machine, regularization, optimization, and beyond[END_REF]. While many positive-definite kernels are known in Euclidean spaces, this is not yet true for non-Euclidean metric spaces, such as non-trivial Riemannian manifolds. Even when such kernels are known, they are far from easy to work with (in the first place, to evaluate). For example, just one evaluation of the heat kernel on a Riemannian symmetric space may require an elaborate Monte Carlo scheme [START_REF] Azangulov | Stationary kernels and Gaussian processes on Lie groups and their homogeneous spaces I: the compact case[END_REF][START_REF] Azangulov | Stationary kernels and Gaussian processes on Lie groups and their homogeneous spaces II: non-compact symmetric spaces[END_REF]. This being the case, one hopes to develop a tractable means of constructing closed-form positive-definite kernels on Riemannian manifolds or at least to develop an explicit criterion to verify whether a given closed-form expression yields a positive-definite kernel or not. This should apply, in particular, to the so-called distance kernels, which are of the form k(x, y) = g(d(x, y)), with g a suitable function and d(x, y) the Riemannian distance.

The results developed in this work serve exactly this purpose. They are motivated by the study of the Gaussian kernel (1.1) k(x, y) = exp (-λd 2 (x, y)) where λ > 0.

In particular, they aim to show that this kernel is never positive-definite (meaning it is not positive-definite for any value of λ) when defined on a non-Euclidean Riemannian symmetric space M . In general, when M is a non-Euclidean Riemannian manifold, it is known that there always exists some λ such that the Gaussian kernel is not positive-definite [START_REF] Jayasumana | Kernel methods on Riemannian manifolds with Gaussian rbf kernels[END_REF][START_REF] Feragen | Geodesic exponential kernels: When curvature and linearity conflict[END_REF][START_REF] Feragen | Open problem: Kernel methods on manifolds and metric spaces. what is the probability of a positive definite geodesic exponential kernel?[END_REF].

However, whether there exists any subset of values of the parameter λ for which the Gaussian kernel is positive-definite is an open problem of theoretical and practical significance as noted in the literature [START_REF] Minh | Kernel Methods on Covariance Matrices[END_REF]. For instance, [START_REF] Sra | Positive definite matrices and the S-divergence[END_REF] shows that the Gaussian kernel may be positivedefinite for some non-trivial collection of parameters in certain non-Euclidean geometries.

Recently, it has been shown that if M is compact and not simply connected (e.g. a torus or a real projective space), then the Gaussian kernel is never positive-definite [START_REF] Li | Gaussian kernels on nonsimply connected closed Riemannian manifolds are never positive definite[END_REF]. While these general results rely on somewhat complicated geometric arguments, they will be considerably extended here, in the case of symmetric spaces, thanks to the introduction of new analytical tools.

A typical result of choice in this circle of ideas is Bochner's theorem, one of the most famous theorems in harmonic analysis [START_REF] Folland | A course in abstract harmonic analysis[END_REF]. It states that a function defined on a locally compact Abelian group is positive-definite if and only if it is the inverse Fourier transform of some positive measure. For example, this theorem guarantees the existence of a spectral power measure for any wide-sense stationary signal (Wiener-Khinchin theorem).

The generalization of Bochner's theorem to symmetric spaces is due to Godement [START_REF] Godement | Introduction aux travaux de Selberg[END_REF]. It will be referred to as Godement's theorem in this work, although it is sometimes called the Bochner-Godement theorem elsewhere. This theorem is recalled in Section 2, where we explain why it can be challenging to apply in practice. Focusing on non-compact symmetric spaces, the L 2 -Godement theorem (Section 3) and the L 1 -Godement theorem (Appendix A), both state that in the presence of additional integrability assumptions, the difficulties inherent in its application are greatly alleviated: it turns out that a function is positive-definite if and only if its spherical transform is positive and integrable (the definition of the spherical transform is recalled in Section 3).

Basic examples of applications of the L 2 -Godement theorem are provided in Section 4.

Sections 5 and 6 then return to the Gaussian kernel (1.1). Section 5 proves that the Gaussian kernel is never positive-definite on a compact symmetric space, expanding on [START_REF] Costa | The Gaussian kernel on the circle and spaces that admit isometric embeddings of the circle[END_REF] and [START_REF] Li | Gaussian kernels on nonsimply connected closed Riemannian manifolds are never positive definite[END_REF],

which prove the corresponding result on the circle and nonsimply connected closed Riemannian manifolds, respectively. Section 6 takes up the case of non-compact symmetric spaces (under the general assumptions of Sections 2 and 3, compact or non-compact have the same meaning as " of compact or non-compact type " -no Euclidean spaces are allowed).

Section 6 provides a rigorous proof that deals with the case of non-compact symmetric spaces in all but a few limited scenarios in low dimensions, which are investigated computationally instead. First, in the case of the hyperbolic plane, a numerical evaluation shows that the positivity condition in the L 2 -Godement theorem does not hold, for any λ within a certain continuous range, starting near λ = 0. However (Lemma 6.5), any non-compact symmetric space contains an isometrically embedded hyperbolic plane, and this implies the Gaussian kernel fails to be positive-definite on any non-compact symmetric space, for that same range of values of λ. Section 6 also proves (with no recourse to numerical work) that the Gaussian kernel is never positive-definite when defined on a three-dimensional hyperbolic space. Again, this extends to any symmetric space that contains an isometrically embedded hyperbolic space (e.g. the spaces of n × n real, complex, or quaternion, positive-definite
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matrices, with the requirement that n ≥ 4 for the real case).

Section 7 introduces an alternative to the Gaussian kernel (1.1) for hyperbolic spaces, giving it the name of hyperbolic secant or Herschel-Maxwell kernel. Once more, this is a distance kernel

(1.2) k(x, y) = (cosh(d(x, y)) -a
where a > 0.

This kernel is derived from first principles, similar to the famous Herschel-Maxwell derivation [START_REF] Jaynes | Probability theory, the logic of science[END_REF]. In contrast with the Gaussian kernel, it is shown to always be positive-definite on the hyperbolic plane and positive-definite on the hyperbolic space for integer values of a.

The L p -Godement theorems (where p = 1, 2) are most easily applied to distance kernels (for example, to the Gaussian or Herschel-Maxwell kernels). A detailed examination of their application to more general invariant kernels, which are not merely functions of distance, is one of the main tasks to be carried out in future work.

2. Godement's theorem. Let M be a set and let k :

M ×M → C. Assume that k satisfies (2.1) N i,j=1 k(x i , x j ) c i cj ≥ 0
for all positive integer N , where x i ∈ M , c i ∈ C, and the bar denotes complex conjugation.

Then, k is said to be a positive-definite kernel on M . Without loss of generality, it is enough to consider Hermitian kernels, that is, k(x, y) is the conjugate of k(y, x). In addition, assume that a group G acts transitively on M ; this action is denoted by g

• x, for g ∈ G and x ∈ M . If k satisfies that (2.2) k(g • x, g • y) = k(x, y),
for all g ∈ G and x, y ∈ M , then k is said to be a G-invariant (or just an invariant) positivedefinite kernel. Let o ∈ M and denote by

H the stabiliser of o in G. A function f : M → C is called H-invariant if f (h • x) = f (x) for all h ∈ H and x ∈ M . Using such a function, we can define k f : M × M → C, (2.3) k f (x, y) = f (g -1 1 g 2 • o) for x = g 1 • o and y = g 2 • o.
Indeed, H-invariance of f implies the right-hand side of (2.3) depends only on x and y (and not on the choice of g 1 and g 2 ). Now, k f is G-invariant (it satisfies (2.2)). If k f happens to be positive-definite (to satisfy (2.1)), then f is said to be a positive-definite function.

All invariant positive-definite kernels can be represented in this way, since (2.1) and (2.2)

imply that k = k f , where f (x) = k(o, x) and f is H-invariant and positive-definite. In particular, if k = k f , then k is positive-definite if and only if f is positive-definite.
Note that the setup that we just presented implies that the set M is necessarily isomorphic 

f (x) = Φ φ(x)µ f (dφ)
where µ f is a unique finite positive measure on Φ.

It is complicated to use Godement's theorem to verify whether a given f is positivedefinite. When M is non-compact, the set Φ may be challenging to determine [START_REF] Helgason | Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions[END_REF] (Page 484), and there is no straightforward way of determining µ f from f . The following section identifies a special case of Godement's theorem where these issues do not arise.

3. L 2 -Godement theorem. The idea is to combine Godement's theorem with the so-called spherical transform. Roughly speaking, the spherical transform can be seen as a radial Fourier transform for H-invariant functions [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF][START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF]. When M = R 2 , it boils down to a zero-order Hankel transform.

Assume that M is a non-compact symmetric space. Pick an Iwasawa decomposition of the Lie algebra g of G, say g = n + a + h (where n is nipotent, a is Abelian, and h is the Lie algebra of H [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF]). For each g ∈ G, g = n(g) exp(a(g))h(g), where n(g) ∈ N , a(g) ∈ a and h(g) ∈ H are unique (N is the Lie subgroup of G with Lie algebra n).

For each t ∈ a * (the dual of a as a real vector space), there is a spherical function φ t : M → C, given by the following integral formula [START_REF] Helgason | Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions[END_REF],

(3.1) φ t (g • o) = H exp [(it + ρ)(a(hg))] dh for g ∈ G.
Here, ρ is half the sum of the positive roots of g with respect to a, and dh denotes the normalized Haar measure on H (a gentle introduction to these concepts is provided in [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF][START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF]).

Define the spherical transform of an H-invariant f : M → C as f :

a * → C, (3.2) f (t) = M f (x)φ -t (x)vol(dx)
where vol denotes the volume measure of M . This is well-defined when f is continuous and compactly supported, in which case it admits an inversion formula,

(3.3) f (x) = c M a * f (t)φ t (x)|c(t)| -2 dt
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where c(t) is a certain function, called the Harish-Chandra function (for an overview, see [START_REF] Helgason | Harish-Chandra's c-function, a mathematical jewel, in Noncompact Lie Groups and some of their applications[END_REF]), dt denotes the Lebesgue measure, and c M is a constant that is independent of the function f . Defined as above, the spherical transform extends to the space L 2 H (M ) of H-invariant square-integrable functions (with respect to vol) and satisfies the Plancherel formula

(3.4) M |f (x)| 2 vol(dx) = c M a * | f (t)| 2 |c(t)| -2 dt for any f ∈ L 2 H (M ).
Here, the following proposition will be called the L 2 -Godement theorem.

It is a special case of Godement's theorem, which holds for square-integrable functions. A detailed exposition may be found in [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF]. For any H-invariant function f : M → C there exists g : R + → C, with f (x) = g(r) where r = d(o, x), the distance in M between x and the " point of origin " o (the choice of this point is arbitrary). In particular, the spherical functions (3.1) are given in terms of Legendre functions [START_REF] Helgason | Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions[END_REF][START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF],

Theorem 3.1 (L 2 -Godement Theorem). A continuous function f ∈ L 2 H (M )
(4.1) φ t (x) = P -1 2 +it (cosh(r))

for t ∈ R (with regard to (3.1), a is one-dimensional, and therefore a ≃ a * ≃ R. Accordingly, t ∈ a * becomes t ∈ R), and it should be noted that φ t = φ -t (see [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 141)).

The spherical transform pair (3.2)-(3.3) can be expressed as follows (see [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 149))

f (t) = 2π ∞ 0 g(r)P -1 2 +it (cosh(r)) sinh(r)dr, (4.2) g(r) = 1 2π ∞ 0 f (t)P -1 2 +it (cosh(r))α(t)dt, (4.3)
where f (x) = g(r) as above, and α(t) = t tanh(πt). As pointed out in [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF], (4.2)-(4.3) is known as a Mehler-Fock transform pair in the mathematical physics literature.
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Hyperbolic space.

M is now of dimension 3 instead of 2. One may take G = SL(2, C) and H = SU (2) (in other words, SL(2, C) = 2 × 2 complex unit determinant matrices, and SU (2) = unitary matrices in SL(2, C)). As before, any H-invariant function f is of the form f (x) = g(r). The spherical functions (3.1) are given by [START_REF] Helgason | Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions[END_REF] (Page 432)

(4.4) φ t (x) = sin(tr) t sinh(r) Again, φ t = φ -t . The spherical transform pair (3.2)-(3.
3) is essentially a sine transform pair,

f (t) = 4π t ∞ 0 g(r) sinh(r) sin(tr)dr (4.5) g(r) sinh(r) = 1 2π 2 ∞ 0 t f (t) sin(tr)dt (4.6)
as can be seen using ( 4.4) and computing the integral (3.2) in geodesic spherical coordinates.

Distance kernels.

For the hyperbolic plane and space that we studied in the previous examples, any

H-invariant function f is of the form f (x) = g(d(o, x)). It follows from (2.3) that k f (x, y) = g(d(x, y)). But, as stated in Section 2, any invariant kernel k is of the form k = k f and it is hence a distance kernel (4.7) k(x, y) = g(d(x, y)),
for some g : R + → C. The positive-definiteness of k implies that g is necessarily real-valued.

In other words, any positive-definite kernel is a real-valued distance kernel. This statement holds whenever M is a rank-one symmetric space. This class of symmetric spaces includes spheres, hyperbolic spaces, projective and hyperbolic projective spaces of any dimension [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF].

Wishart kernel.

Let M be the hyperbolic plane, and let g(r) = exp(-2a cosh(r)), where a > 0, in (4.7). It is well known that M can be identified with the space of 2 × 2 unit-determinant positive-definite matrices [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF]. Thinking of x ∈ M as a matrix of this kind, and choosing o the identity matrix, d(o, x) = r implies the trace of x is tr(x) = 2 cosh(r) [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 149, Exercice 20). Thus, by (4.7)

k(o, x) = exp (-atr(x))
Recalling the action g•x = gxg † (a matrix product, with † the transpose [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF]) and o = identity, and setting

x = g 1 • o and y = g 2 • o, it follows from (2.2) that k(x, y) = k(o, g -1 1 g 2 • o) = exp(-atr(x -1 y
)) This is the unnormalized density of a Wishart distribution and k is the Wishart kernel. Now, the L 2 -Godement theorem can be used to show that this kernel is not positive-definite, for any value of a. The spherical transform f (t) is given in [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 151),

(4.8) g(r) = exp(-2a cosh(r)) in (4.2) =⇒ f (t) = 4π a 1 2 K it (2a)
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where K it is a modified Bessel function of the second kind with imaginary order. For fixed a, K it (2a) has infinitely many simple zeros in t [START_REF] Bagirova | On zeros of the modified Bessel function of the second kind[END_REF]. In particular, f (t) does not satisfy the positivity condition in the L 2 -Godement theorem (Theorem 3.1), so k is not positive-definite (the theorem can be applied because f (x) = k(o, x) is continuous and in L 2 H (M ) for any a).

Furthermore, since the Wishart kernel is never positive-definite on the hyperbolic plane, and since a hyperbolic space contains infinitely many isometric copies of the hyperbolic plane, the Wishart kernel is never positive-definite on the hyperbolic space. This statement can be made rigorous using the embedding lemma below (Lemma 5.2).

Hyperbolic secant kernel.

Let M be the hyperbolic plane and g(r) = (cosh(r)) -a where a > 1/2. Then,

f (x) = g(d(o, x)) is clearly continuous, and f ∈ L 2 H (M ), because M |f (x)| 2 vol(dx) = 2π ∞ 0 (cosh(r)) -2a sinh(r)dr = 2π ∞ 1 u -2a du < ∞
as follows by integrating in geodesic spherical coordinates. From [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 151) (4.9)

g(r) = (cosh(r)) -a in (4.2) =⇒ f (t) = 2 a-1 √ π Γ(a) |Γ((a -1/2 + it)/2)| 2
which is positive for all t (Γ is the Gamma function). Now, by the L 2 -Godement theorem, the hyperbolic secant kernel

k(x, y) = (cosh(d(x, y))) -a
is positive-definite on the hyperbolic plane for any a > 1/2. This example of a positive-definite kernel on the hyperbolic plane does not seem to be known in the literature. We believe it is reasonable to name it the hyperbolic secant kernel.

The case where M is the hyperbolic space, rather than the hyperbolic plane, is investigated in Appendix B. Positive-definiteness seems to be, once more, the general rule.

5. Compact symmetric spaces. This section considers the case in which M is a compact symmetric space (for example, a sphere, a projective space, or a Grassmannian). The following proposition will now be proved.

Proposition 5.1. Let M be a compact symmetric space. The Gaussian kernel (1.1) is not positive-definite on M , for any value of λ.

In other words, the Gaussian kernel is never positive-definite on a compact symmetric space.

The case where M is not simply connected (real projective space or real Grassmannian, etc) is already taken care of in [START_REF] Li | Gaussian kernels on nonsimply connected closed Riemannian manifolds are never positive definite[END_REF]. The case where M is simply connected will now be proved.

First, we prove the following result, referred to as the Embedding Lemma. A corollary of the embedding lemma is that the Gaussian kernel (1.1) cannot be positivedefinite on M if it is not positive-definite on M o .

Lemma 5.3. Any compact simply connected symmetric space M contains an isometrically embedded circle σ (the embedding being an isometric embedding of metric spaces).

Proof. Assume that M is an irreducible symmetric space [24, Chapter VIII]. Denote κ 2 the maximum of the sectional curvatures of M . Then, M admits a simple periodic geodesic σ of length 2π/κ [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF] (Page 334). Let x be a point on σ and choose a parameterisation

σ : [0, 2π] → M with σ(0) = x. Then, let σ(π) = x ′ .
It can be show that σ is length-minimising from x to x ′ (when restricted to [0, π]) and also from x ′ to x (when restricted to [π, 2π]). Recall that the cut-locus of x in M is identical to its first conjugate locus [START_REF] Crittenden | Minimum and conjugate points in symmetric spaces[END_REF]. By definition of κ, x has no conjugate points along σ before

σ(π) = x ′ [9, Morse-Schönberg Theorem, Page 86]. Thus σ is length-minimising from x to x ′ .
An identical argument shows σ is also length-minimising from x ′ to x.

Denote σ = σ([0, 2π]) (the image of the geodesic curve σ in M ). This is the isometrically embedded circle announced in Lemma 5.3. To see this, choose any y ∈ σ, y = σ(t).

If t ∈ [0, π] the distance in M between x and y is d(x, y) = t. On the other hand, if t ∈ [π, 2π],
d(x, y) = 2π -t (note both of these claims result from the length-minimising property of σ, just obtained). In other words, the restriction of the distance function from M to σ is the same as the distance function of a circle (identified with the interval [0, 2π] with glued endpoints).

The assumption that M is irreducible can now be removed since any simply connected symmetric space is a direct product of irreducible symmetric spaces [24, Page 381].

We recall now (see [START_REF] Costa | The Gaussian kernel on the circle and spaces that admit isometric embeddings of the circle[END_REF]) that the Gaussian kernel is never positive-definite on the circle.

With this in mind, Lemmas 5.2 and 5.3 yield Proposition 5.1.

Even though it should be possible to prove Proposition 5.1 using an analytic approach via Godement's theorem, the geometric approach used above is more elementary and easier to visualise.

6. Non-compact symmetric spaces. In this section, M will be a non-compact symmetric space, as in Section 3 (for example, a hyperbolic space, a space of positive-definite matrices, etc). Using a mixture of numerical and analytical results, we show that the Gaussian kernel systematically fails to be positive-definite on M . First, the L 2 -Godement theorem is applied to the two basic cases where M is a hyperbolic plane or a three-dimensional hyperbolic space.

Specifically, from (1.1), the Gaussian kernel corresponds to g(r) = e -λr 2 , and upon replacing this into (4.2) and (4.5), the following observations are made:

• In both cases, the spherical transform f (t) is positive when t is small in comparison to λ (Proposition 6.1, and the remark after Formula (6.1)).

• In (4.2), a numerical evaluation shows that f (t) oscillates between positive and negative values, for any λ within a certain continuous range, starting near λ = 0 (Figure 1).

• In (4.5), f (t) has the same sign as sin(t/2λ). The Gaussian kernel is, therefore, never positive-definite on the hyperbolic space (Proposition 6.3).

Second, the general case uses the Embedding Lemma 5.2.
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Proposition 6.1. Let g(r) = e -λr 2 in (4.2). For any T > 0, there exists λ T > 0 such that λ > λ T implies f (t) ≥ 0 for all t ≤ T .

The proof of Proposition 6.1 is given in Section 8.2. The behavior of f (t) for larger values of t was investigated numerically, with the results reported in Figure 1.

Figure 1a shows the sign of f in the (t, λ)-plane. The blue (positive) area on the left confirms Proposition 6.1. It is followed to the right by an alternation of red and blue areas, which shows that f (t) oscillates between positive and negative values (note that the λ axis begins at λ = 0.2, since the numerical evaluation of the integral (4.2) becomes unstable for much smaller values of λ). Figure 1b shows an individual plot of f (t), obtained for a fixed λ = 0.05.

It is clear from Figure 1a that the L 2 -Godement theorem implies the Gaussian kernel is not positive-definite on the hyperbolic plane, for any λ in the range of the λ-axis of this figure.

Remark 6.2. Proposition 6.1 continues to hold for a general non-compact M , as above.

The proof of this general statement is not provided in order to maintain a reasonable length.

6.2. Hyperbolic space. In this case, f (t) can be found in closed form.

(6.1)

g(r) = e -λr 2 in (4.5) =⇒ f (t) = 2π t π λ 1 2 e (1-t 2 )/4λ sin t 2λ
This shows that the sign of f (t) is determined by sin(t/2λ). This remains positive for t ≤ 2πλ, and then oscillates indefinitely. From the L 2 -Godement theorem, the following is immediate.

Proposition 6.3. The Gaussian kernel (1.1) is not positive-definite on the hyperbolic space for any value of λ.
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The expression (6.1) can be obtained from the following general lemma, proved in Section 8.3.

Lemma 6.4. In (4.5), assume that g(r) is an even function. Then,

(6.2) f (t) = π t Im {G(it + 1) -G(it -1)}
where Im denotes the imaginary part and G is the moment-generating function

G(s) = +∞ -∞
g(r)e sr dr Indeed, (6.1) follows from (6.2) using the expression of the moment-generating function of a univariate normal distribution,

G(s) = π λ 1 2 e s 2 /4λ
6.3. The general case. Let M be any non-compact symmetric space, as in Section 3

(so the isometry group G of M is semisimple, of non-compact type, and has finite center [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF]).

The following lemma will be proved in Section 8.4.

Lemma 6.5. Under the assumptions just stated, M contains an isometrically embedded hyperbolic plane.

The numerical results of Paragraph 6.1 show that the Gaussian kernel is not positive-definite on the hyperbolic plane, at least for any λ in the range appearing in Figure 1a. The Embedding Lemma 5.2 and Lemma 6.5 therefore imply that the Gaussian kernel is not positive-definite on any non-compact Riemannian symmetric space, for λ in this same range (the additional assumptions of Lemma 6.5 merely serve to prevent M from being Euclidean).

On the other hand, Proposition 6.3 shows the Gaussian kernel is never positive-definite on the hyperbolic space. By the Embedding Lemma, it is therefore never positive-definite on symmetric spaces that contain an isometrically embedded hyperbolic space. Examples of such symmetric spaces include all spaces of n × n real, complex, or quaternion, positive-definite matrices (with the requirement that n ≥ 4 for the real case) [START_REF] Lopez | Symmetric spaces for graph embeddings: a Finsler-Riemannian approach[END_REF].

Hopefully, the numerical treatment of the hyperbolic plane case in Paragraph 6.1 will soon be replaced with a complete analytical treatment, similar to the one that we conducted for the hyperbolic space case in Paragraph 6.2. This is the only step still missing to obtain a fully analytical proof of the statement that the Gaussian kernel is never positive-definite on any non-Euclidean symmetric space. This manuscript is for review purposes only.

the assumptions that (P1) the components of the random vector in an orthogonal coordinate system are independent, and (P2) the distribution only depends on the magnitude of the vector [START_REF] Gyenis | Maxwell and the normal distribution: A colored story of probability, independence, and tendency toward equilibrium[END_REF][START_REF] Jaynes | Probability theory, the logic of science[END_REF][START_REF] Maxwell | Illustrations of the dynamical theory of gases[END_REF]. A modern statement of the theorem is that if the distribution of a random vector with independent components is invariant under rotations, then the components must be identically distributed as a Gaussian distribution.

Here, we will follow the Herschel-Maxwell derivation as it appears in Jaynes [START_REF] Jaynes | Probability theory, the logic of science[END_REF], which relies on the assumption of the existence of densities of the components of the random variables and solving a functional equation. This derivation follows closely Maxwell's own argument.

Let (u, v) be a Cartesian coordinate system in the Euclidean plane. We seek to determine a joint probability distribution p(u, v)dudv that satisfies assumptions P1 and P2. By assumption P1, we have

(7.1) p(u, v)dudv = h(u)du h(v)dv
for some function h. By assumption P2, we have

(7.2) p(u, v)dudv = g(r)rdrdθ
as the density cannot depend on the angle θ when expressed in polar coordinates (r, θ). (7.1) and ( 7.2) combine to give the functional equation

(7.3) h(u)h(v) = g u 2 + v 2 ,
which admits the general solution

(7.4) h(u) = λ π e -λu 2 , p(u, v) = λ π e -λ(u 2 +v 2 ) ,
for any λ > 0 upon insisting that the distribution be normalized.

To replicate this derivation in the hyperbolic plane, we must first specify what we mean by an 'orthogonal coordinate system' in the hyperbolic plane. The most natural choice for such a coordinate system seems to be Lobachevsky coordinates, determined by specifying a directed geodesic (u-axis) through the origin. The Lobachevsky coordinates of a point x are then found by dropping a perpendicular to the u-axis. The signed distance from the foot of the perpendicular to the origin is the u-coordinate of the point and the v-coordinate is the signed distance along the perpendicular to the u-axis (with the distance taken to be positive on one side of the u-axis and negative on the other). With respect to such a coordinate system, we seek a joint probability distribution p(x)vol(dx) = p(u, v)vol(dx) = h(u)h(v)vol(dx), where vol(dx) denotes the Riemannian volume form in the hyperbolic plane (P1). Moreover, (P2) generalizes to the assumption that p(x) can only depend on the Riemannian distance to the origin r = d(o, x), which once again yields the functional equation h(u)h(v) = g(r). As this equation holds for all (u, v), we can take any point on the u-axis to obtain g(u) = h(u)h(0).

That is, we have the functional equation

(7.5) h(u)h(v) = h(0)h(r)
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where (u, v) and r are related by (7.6) cosh(r) = cosh(u) cosh(v) according to the hyperbolic Pythagorean theorem. Setting h = (h • arcosh)/h(0), (7.5) becomes h(cosh u) h(cosh v) = h(cosh u cosh v), which admits the general solution h(cosh u) = (cosh u) -a , for a ∈ R (i.e., h is a power function). Thus,

h(r) = h(0)(cosh(r)) -a ,
which yields the probability density

p(x)vol(dx) = h(0) 2 (cosh(r)) -a vol(dx) = h(0) 2 (cosh(r)) -a sinh(r)drdθ,
in geodesic polar coordinates. Note that this density is normalizable only if a > 1. The constant h(0) can be determined through normalizing the distribution, which yields

(7.7) p(x)vol(dx) = 1 π Γ a+1 2 Γ a-1 2 (cosh(d(o, x)) -a vol(dx).
We call this distribution the Herschel-Maxwell distribution in the hyperbolic plane. It can be viewed as one of several possible generalizations of the Gaussian distribution centered at the point o to the hyperbolic plane alongside the distinct distributions derived from the heat kernel interpretation of the Gaussian [START_REF] Grigor'yan | The heat kernel on hyperbolic space[END_REF][START_REF] Mckean | An upper bound to the spectrum of ∆ on a manifold of negative curvature[END_REF] and

(7.8) p(x)vol(dx) = 1 π λ π e -1 4λ erf 1 2 √ λ e -λ d(o,x) 2 vol(dx),
which inherits an important characteristic property of Euclidean Gaussian distributions from statistical inference: the maximum likelihood estimate of the mean reduces to a (Riemannian) center of mass computation [START_REF] Said | Riemannian Gaussian distributions on the space of symmetric positive definite matrices[END_REF][START_REF] Said | Gaussian distributions on Riemannian symmetric spaces: Statistical learning with structured covariance matrices[END_REF][START_REF] Said | Chapter 10 -Gaussian distributions on Riemannian symmetric spaces of nonpositive curvature[END_REF][START_REF] Said | Riemannian statistics meets random matrix theory: Toward learning from high-dimensional covariance matrices[END_REF][START_REF] Chen | Geometric learning of hidden Markov models via a method of moments algorithm[END_REF]. Figure 2 compares plots of the density functions p(r)vol(dx) in (7.7) and (7.8) as functions of r = d(o, x) for parameters a = 4 and λ = 1.66.

Finally, we note that the hyperbolic Herschel-Maxwell distribution can be generalized to n-dimensional hyperbolic space if we insist that the components of the point x in any Lobachevsky coordinate system in any hyperbolic plane containing o and x are independent and the distribution only depends on the geodesic distance r = d(o, x). Reasoning as before, we obtain (7.9)

p(x)vol(dx) = 1 ω n-1 Γ a+1 2 Γ a+1-n 2 Γ n 2 (cosh(d(o, x)) -a vol(dx),
where ω n-1 denotes the area of the unit sphere in R n and the normalization factor in (7.9) is determined by integration with respect to the volume form vol(dx) in n-dimensional hyperbolic space. The distribution is well-defined for a > n -1.
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< l a t e x i t s h a 1 _ b a s e 6 4 = " S o I i where a > 0 to ensure the corresponding distribution is normalizable. Note that by representing x, y ∈ S 2 by unit vectors w x , w y ∈ R 3 , we have cos(d(x, y)) = ⟨w x , w y ⟩, and thus (7.11) takes the form k(x, y) = |⟨w x , w y ⟩| a . That is, the spherical Herschel-Maxwell distribution can be identified with a homogeneous polynomial kernel, which is known to be positive-definite if and only if the power a is a positive integer [START_REF] Smola | Regularization with dot-product kernels[END_REF].
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8. Proofs of the main results.

8.1. Proof of Theorem 3.1.

8.1.1. Notation. The following notation will be used in the proof.

• Let W denote the Weyl group, which arises from the adjoint action of H on a [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF].

Also, let α denote the measure on a * , which is given by α

(dt) = c M |c(t)| -2 dt. Then, L 2 
W (a * ) stands for the space of W -invariant square-integrable functions (with respect to the measure α).

• Denote Φ * the set of functions φ t in (3.1) where t ∈ a * . This is a proper subset of the set Φ of all positive-definite spherical functions, which appears in Godement's theorem (Section 2, in particular (2.4)).
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f (x) = Φ * φ(x)( f α)(dφ)
where ( f α)(dφ) = f (φ)α(dφ). Then, since f (φ) ≥ 0 for almost all φ ∈ Φ * and f is integrable, with respect to α, f α is a finite positive measure on Φ * . Moreover, since Φ * is a (measurable) subset of Φ, (8.2) is exactly of the form (2.4), but with the measure µ f supported on Φ * , where it is equal to f α. This shows that f is positive-definite, and even determines the finite positive measure µ f (recall that µ f is unique). ). This yields a scalar product on C c H (M ), (8.4)

⟨ψ 1 , ψ 2 ⟩ f = M (ψ 1 * ψ † 2 )(x)f (x)vol(dx)
It will shortly be proved that this scalar product admits a spectral representation, (8.5)

⟨ψ 1 , ψ 2 ⟩ f = ⟨ ψ1 , ψ2 ⟩ f
where the scalar product on the righ-hand side is the usual "L 2 " scalar product, with respect to the measure f α on Φ * . By [START_REF] Godement | Introduction aux travaux de Selberg[END_REF] (Plancherel theorem, Page 101), this implies the measure µ f (in (2.4)) is supported on Φ * , where it is equal to f α. Since µ f is a finite positive measure, f (t) ≥ 0 for almost all t and f is integrable.
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To prove (8.5), consider the left-hand side of (8.3). Both ψ and ψ † belong to C c H (M ).

The same is therefore true of their convolution. The spherical transform of ψ † being the complex conjugate of the spherical transform of ψ, it follows by the convolution property of spherical transforms [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 88)

(8.6) ψ * ψ † (t) = | ψ(t)| 2
Since both f and ψ * ψ † are in L 2 H (M ), the Plancherel formula (3.4) yields (8.7)

M (ψ * ψ † )(x)f (x)vol(dx) = a * | ψ(t)| 2 f (t)α(dt) = a * | ψ(t)| 2 ( f α)(dt)
By (8.4), and by pulling back the integral of the right-hand side to Φ * , this is

(8.8) ⟨ψ, ψ⟩ f = Φ * | ψ(φ)| 2 ( f α)(dφ) = ⟨ ψ, ψ⟩ f
so that (8.5) follows immediately, using the polarization identity for scalar products. 

(x) = lim a * φ t (x)| φn (t)| 2 α(dt) = a * φ t (x)| φ(t)| 2 α(dt)
where the first equality follows from (3.3) and fn (t) = | φn (t)| 2 , and the second equality from

| φn | 2 -→ | φ| 2 in L 1 W (a *
) and |φ t (x)| ≤ 1 (this is a consequence of φ t being positive-definite).

However, the limit of f n (x) is just f (x), since the f n converge uniformly to f . Thus,

f (x) = a * φ t (x)| φ(t)| 2 α(dt) Comparing to (3.3), it follows that f (t) = | φ(t)| 2 , as required.
This manuscript is for review purposes only. Finally, fa (t) can be extended to an integral from 0 to ∞, with an exponentially small error,

(8.16) fa (t) = Z(λ) -1/4 + t 2 V (λ) + O e -λR 2
where Z(λ) and V (λ) are the following integrals

Z(λ) = ∞ 0 e -λr 2 sinh(r)dr V (λ) = 1 4 ∞ 0 e -λr 2 r 2 sinh(r)dr
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By a direct evaluation (8.17)

Z(λ) = 1 2 π λ exp 1 4λ erf 1 2 √ λ = λ -1 2 + λ -2 6 + O λ -3
where erf denotes the error function [START_REF] Beals | Special functions, a graduate text[END_REF] 

(t) = π t Im +∞ -∞ g(r)e (it+1)r dr - +∞ -∞
g(r)e (it-1)r dr and then, by definition of the moment-generating function G,

f (t) = π t Im {G(it + 1) -G(it -1)}
which is the same as (6.2).

This manuscript is for review purposes only.

8.4. Proof of Lemma 6.5. It will be enough to prove that there exists a totally-geodesic submanifold M o of M , such that M o is a hyperbolic plane. Indeed, M is a Hadamard manifold (a simply connected complete Riemannian manifold with negative sectional curvatures [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF] (Chapter VI)). Therefore, if M o is a totally geodesic submanifold, it is also an isometrically embedded metric space. The proof will rely very heavily on the algebraic description of symmetric spaces, detailed in [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF] (in particular Chapters V and VI).

Recall that M is determined by a symmetric pair (G, H). The Lie algebra g of G is a real semisimple Lie algebra, and admits a Cartan involution θ with corresponding Cartan decompositon g = h + p (h the Lie algebra of H). If B is the Killing form of g, then This manuscript is for review purposes only. 

4. Basic examples. 4 . 1 .

 41 Hyperbolic plane. M is a two-dimensional simply connected space with constant negative curvature equal to -1. One may take G = SL(2, R) and H = SO(2) (in the usual notation, SL(2, R) = 2 × 2 real unit-determinant matrices, SO(2) = 2 × 2 rotation matrices).

Lemma 5 . 2 (

 52 Embedding Lemma). Assume M o and M are metric spaces, with M o isometrically embedded in M . Let k be a distance kernel (i.e. a kernel of the form (4.7)). If k is positive-definite on M , then it is positive-definite on M o .Here, isometric embedding means that the distance function in M o is the restriction of the distance function in M (this is the isometric embedding of metric spaces, a stronger property than the isometric embedding of Riemannian manifolds). Due to (4.7), this implies the kernel This manuscript is for review purposes only.k on M o is just the restriction of the same kernel k from M . The fact that positive-definiteness is hereditary from M to M o is immediate from (2.1).
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Figure 1 :

 1 Figure 1: Spherical transform for the Gaussian kernel on the hyperbolic plane

7 .

 7 The hyperbolic secant revisited: non-Euclidean Herschel-Maxwell distributions. Recall the hyperbolic secant kernel on the hyperbolic plane from Section 4.3.2, which was shown to be positive-definite in contrast to the Gaussian kernel. Here, we will present a new interpretation of the hyperbolic secant kernel as the Herschel-Maxwell kernel on the hyperbolic plane. In Euclidean space, the Herschel-Maxwell theorem is an elegant characterization of the Gaussian distribution originally due the astronomer J.F.W. Herschel who was studying two-dimensional errors in astronomical observations. Ten years later, James Clerk Maxwell presented a three-dimensional version of the same argument to show that the stationary probability distribution of the velocities of molecules in a gas follows a Gaussian distribution under
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Figure 2 :

 2 Figure 2: Plots of the normalized hyperbolic Herschel-Maxwell (solid curve, 7.7) and Gaussian (dashed curve, 7.8 ) densities as functions of r = d(o, x) for parameters a = 4 and λ = 1.66.

8. 1 . 3 .

 13 The only-if part. If f is H-invariant, continuous and positive-definite, then one has (8.3) M (ψ * ψ † )(x)f (x)vol(dx) ≥ 0 for any ψ ∈ C c H (M ), where * denotes the convolution and ψ † (g • o) = ψ(g -1 • o) [14] (Page 286

-1 2 0 e 0 e 2 ∞ 0 e

 20020 +it (cosh(r))| ≤ 1 [41] (Page 161), a simple calculation yields (8.14) | fc (t)| ≤ ∞ R e -λr 2 sinh(r)dr = O e -λR 2 On the other hand, (C(T, R)) -1 | fb (t)| ≤ R -λr 2 r 4 sinh(r)dr ≤ ∞ -λr 2 r 4 sinh(r)dr However, by performing an elementary change of variables, and then assuming that λ ≥ 1, this implies the following bound, (C(T, R)) -1 | fb (t)| ≤ λ -5 -u 2 u 4 sinh(u)du which means that (8.15) | fb (t)| = O λ -5 2

(8. 21 )

 21 ⟨ξ, η⟩ = -B(ξ, θ(η)) ξ, η ∈ g defines a scalar product on g. Let a be a maximal Abelian subspace of p. The linear maps ad a : g → g where ad a (ξ) = [a, ξ] for a ∈ a are jointly diagonalisable, with real eigenvalues. These eigenvalues are linear forms λ : a → R, called the roots of g with respect to a.Fix a non-zero root λ, and a λ ∈ a such that λ(a) = B(a λ , a) for a ∈ a. Then, let ξ λ be a joint eigenvector, ad a (ξ λ ) = λ(a)ξ λ for a ∈ a. Note that(8.22) [a, θ(ξ λ )] = θ ([θ(a), ξ λ ]) = -θ ([a, ξ λ ])for any a ∈ a, where the first equality follows because θ is an involution, and the second because a ∈ a, a subspace of p, and p is by definition the (-1)-eigenspace of θ. However,(8.23) θ ([a, ξ λ ]) = λ(a)θ(ξ λ )by the definition of ξ λ and linearity of θ. Thus,(8.22) and (8.23) imply that ad a (θ(ξ λ )) = -λ(a)θ(ξ λ ) for any a ∈ a. Denoting θ(ξ λ ) by ξ -λ and recalling the definition of a λ ∈ a, it is now seen that the following commutation relations hold(8.24) [a λ , ξ λ ] = ∥a λ ∥ 2 ξ λ [a λ , ξ -λ ] = -∥a λ ∥ 2 ξ -λwhere ∥ • ∥ is the norm with respect to the scalar product(8.21). It will now be proved that(8.25) [ξ λ , ξ -λ ] = -∥ξ λ ∥ 2 a λ First, any a ∈ a commutes with [ξ λ , ξ -λ ]. Indeed, [a, [ξ λ , ξ -λ ]] = [[a, ξ λ ], ξ -λ ] + [ξ λ , [a, ξ -λ ]] = λ(a)[ξ λ , ξ -λ ] -λ(a)[ξ λ , ξ -λ ]where the first equality follows from Jacobi's identity for Lie brackets, and the second because ξ λ and ξ -λ are joint eigenvectors with eigenvalues λ(a) and -λ(a). Second, [ξ λ , ξ -λ ] ∈ p.Indeed, θ([ξ λ , ξ -λ ]) = [θ(ξ λ ), θ(ξ -λ )], but θ(ξ λ ) = ξ -λ by definition, and θ(ξ -λ ) = ξ λ since θ is an involution. Therefore, θ([ξ λ , ξ -λ ]) = -[ξ λ , ξ -λ ] which means [ξ λ , ξ -λ ] ∈ p. However, a is maximal Abelian in p, and this yields [ξ λ , ξ -λ ] ∈ a.

Finally, to obtain ( 8 .

 8 [START_REF] Hewitt | Abstract harmonic analysis[END_REF], note thatB([ξ λ , ξ -λ ], a) = B(ξ -λ , [a, ξ λ ]) = B(ξ -λ , ξ λ )λ(a)where the first equality holds since B is ad-invariant, and the second since ξ λ is a joint eigenvector with eigenvalue λ(a). Now, the fact that B is symmetric and the definition ofa λ imply B([ξ λ , ξ -λ ], a) = B(ξ λ , ξ -λ ) B(a λ , a), so that [ξ λ , ξ -λ ] = B(ξ λ , ξ -λ ) a λand (8.25) follows after recalling (8.21) and ξ -λ = θ(ξ λ ).Moving on, let g o denote the Lie subalgebra of g, generated by {ξ -λ , a λ , ξ λ }. The Lie bracket of g o is completely determined by(8.24) and(8.25). It is straightforward to see thatg o ≃ sl(2, R) (theLie algebra of 2 × 2 zero-trace real matrices). The isomorphism is given by (8.26) ξ -λ ←→ 0 proper rescaling of {ξ -λ , a λ , x -λ } (this needs to ensure that ∥a λ ∥ 2 = 2 and ∥ξ λ ∥ 2 = 1). Let G o be the connected subgroup of G with Lie algebra g o and let M o be the orbit of o under G o (recall that o ∈ M has stabiliser H in G and can be thought of as the " point of origin "). Then, M o is a totally geodesic submanifold of M , because g o is a Lie subalgebra of g [24] (Page 189). Moreover, M o is a Riemannian homogeneous space under the action of G o , M o ≃ G o /H o where H o = G o ∩ H is the stabiliser of o in G o . To see that M o is a hyperbolic plane (up to an irrelevant scaling factor), note first that G o ≃ SL(2, R). It then remains to check tha H o ≃ SO(2), since the Riemannian homogeneous space SL(2, R)/SO(2) is just a hyperbolic plane [41]. To do so, let h o be the Lie algebra of H o . Then, h o = g o ∩ h. However, since h is the (+1)-eigenspace of θ, it is easy to see that h o is generated by τ = ξ λ + ξ -λ . Since τ corresponds to the generator of SO(2) ⊂ SL(2, R), under the isomorphism (8.26), H o ≃ SO(2), as required.

•

  Functions or measures on a * can be pulled back to Φ * , assuming they are W -invariant. This is because φ t ′ = φ t if and only if t ′ = w • t for some w ∈ W . Accordingly, the measure α on a * can be identified with a measure on Φ * , also denoted α. Similarly, if f (t) is a spherical transform, as in (3.2), f (φ) is just f (t) when φ ∈ Φ * and φ = φ t for some t ∈ a * . and this implies that f is continuous, since each φ t is continuous and verifies |φ t (x)| ≤ 1, being a positive-definite function with φ t (o) = 1. The fact that f is positive-definite follows

		• Finally, C c H (M ) is the space of H-invariant continuous, compactly supported functions,
		with complex values, defined on M .
	8.1.2. The if part. For square-integrable functions, the spherical transform is only defined
	in an abstract sense. It is a linear isometry between the Hilbert spaces L 2 H (M ) and L 2 W (a * ), f → f [22][42]. However, if f is integrable, the inversion formula (3.3) holds
	(8.1)	f (x) =	a *	f (t)φ t (x)α(dt) for all x ∈ M
	from Godement's theorem. Indeed, (8.1) can be written
	(8.2)			

  8.2. Proof of Proposition6.1. Let R be such that r ≤ R implies | cosh(r) -1| < 1. -1/4 + t 2 (r 2 /4) + ε(t, r) for r ≤ Rwith remainder |ε(t, r)| ≤ C(T, R)r 4 for all t ≤ T and r ≤ R, where C(T, R) > 0 is a constant.

	Then [41] (Page 142)			
	(8.9) 2 +it (cosh(r)) = 1 Replacing this into (4.2), the following decomposition is obtained, P -1
	(8.10)			f (t) = fa (t) + fb (t) + fc (t)
	in terms of the following integrals
	(8.11)	fa (t) =	R	e -λr 2 1 -1/4 + t 2 (r 2 /4) sinh(r)dr
			0	
	(8.12)	fb (t) =	R	e -λr 2 ε(t, r) sinh(r)dr
			0	
	(8.13)	fc (t) =	∞ R	e -λr 2 P -1 2 +it (cosh(r)) sinh(r)dr
	Noting that |P			
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≥ 0, for any t ∈ R, which completes the proof.This manuscript is for review purposes only.
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Appendix A. L 1 -Godement theorem. The L 2 -Godement theorem, stated back in Section 3, has the following variant, which will be called the L 1 -Godement theorem. It seems useful to have this at hand, to deal with kernels k such that the function f (x) = k(o, x) is integrable but not square-integrable.

Theorem A.1 (L 1 -Godement theorem). A continuous function f ∈ L 1 H (M ) is positive definite if and only if f (t) ≥ 0 for all t ∈ a * and f is integrable with respect to the measure

Here, L 1 H (M ) denotes the space of H-invariant integrable functions (with respect to vol). The following proof is modelled on the one in Section 8.1. In particular, the notation is the same as in Paragraph 8.1.1.

A.1. The if part. It will be enough to prove that the inversion formula (3.3) holds

The fact that f is continuous and positive-definite then follows exactly as in Paragraph 8.1.2.

Denote G s (x) = G s (o, x) the heat kernel of M . For s > 0, G s has spherical transform [START_REF] Gangolli | Asymptotic behaviour of the spectra of compact quotients of certain symmetric spaces[END_REF] (A.2) Ĝs (t) = (Z(s)) -1 exp -s ∥t∥ 2 + ∥ρ∥ 2 where Z(s) is a normalizing constant, which guarantees G s integrates to 1 over M , and where ρ is half the sum of positive roots (as in Formula (3.1)). Recall that the heat semigroup is strongly continuous on L 1 H (M ) [START_REF] Davies | Heat kernels and spectral theory[END_REF] (Page 148). This means the convolutions

Therefore, by taking the convolution under the integral

where the second equality follows because φ t is an eigenfunction of convolution operators [START_REF] Terras | Harmonic analysis on symmetric spaces and applications[END_REF] (Page 67). Now, from the assumption that f is integrable (i.e. f ∈ L 1 W (a * )), and from (A.2), the dominated convergence theorem can be applied in (A.3), in order to obtain

as s → 0. But this limit is identical to f (x), so (A.1) is proved.

A.2. The only-if part. As in Paragraph 8.1.3, the aim is to prove (8.7),
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which then implies the spectral representation (8.5). Since ψ * ψ † ∈ C c H (M ), it follows from (3.3) and (8.6) that

Replacing this under the integral on the left-hand side of (A.4), the righ-hand side is obtained by using the definition (3.2) of f . Now, everything follows from (8.5) as in Paragraph 8.1.3.

Appendix B. The hyperbolic secant in three dimensions. Recall the hyperbolic secant kernel from 4.3.2. This is here considered in the case where M is a hyperbolic space. The aim is to apply the L 2 -Godement theorem, with the help of the spherical transform pair (4.5).

Setting g(r) = (cosh(r)) -a and f (x) = g(d(o, x)), it follows that f is continuous and in L 2 H (M ) when a > 1. This is because,

as follows by integrating in geodesic spherical coordinates. Thus, the L 2 -Godement theorem can be applied to f . The spherical transform f can be found from Lemma 6.4, at least for integer values of a. Indeed, the moment-generating function G, required in the lemma, reads

When a is (of course, positive) integer, this can be obtained using the residue theorem [START_REF] Baten | The probability law for the sum of n independent variables, each subject to the law (1/(2h)) sech (πx/(2h))[END_REF].

Precisely, if a is odd, a = 2n + 1,

and if a is even, a = 2n,

where sech = 1/ cosh and csch = 1/ sinh are the hyperbolic secant and cosecant, and where the imaginary part of σ is ≥ -1. With G given by (B.1) and (B.2), the spherical transform f can be computed using (6.2). Letting H(σ) = G(iσ), this yields
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Proof. The proof of the first equality follows by induction using Euler's reflection formula Γ(z)Γ(1 -z) = π/ sin(πz) for z / ∈ Z and the identity Γ(z + 1) = zΓ(z). The second equality follows in the same manner using the formula Γ(1/2 + z)Γ(1/2 -z) = π/ cos(πz), which itself follows from replacing z with z + 1/2 in Euler's reflection formula.

Proposition B.2. The hyperbolic secant kernel is positive definite in three-dimensional hyperbolic space whenever a is a positive integer.

Proof. If a is odd with a = 2n + 1, then

using Lemma B.1 with z = iσ/2. Thus,

where we have used the fact that t ∈ R and Γ(z) = Γ(z) for z ∈ C.