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Adaptive online estimation for
mixtures of ECD : a geometric approach

Jialun Zhou, Salem Said, and Yannick Berthoumieu

Abstract—Mixtures of elliptically-contoured distributions are
highly versatile at modeling real-world probability distributions.
They have therefore played a valuable role in computer vision
and image processing, radar and biomedical signal processing.
Existing methods for the estimation of these mixtures may
become impractical for relatively-large datasets, either due to
lack of computational resources or to poor performance (slow
convergence or inaccuracy). To overcome these issues, the present
paper introduces a new estimation method, called the CIG
method (component-wise information gradient). On the one hand,
this is an online method, so it requires moderate computational
resources. On the other hand, it uses an adaptive step-size
selection rule which guarantees a fast rate of convergence. Based
on a geometric approach to the underlying estimation problem,
the CIG method derives its name from the introduction of a
new information metric on the mixture parameter space, which
is called the component-wise information metric, and serves as
a substitute for the Fisher information metric.

Index Terms— elliptically-contoured distribution, mixture,
information metric, online estimation, texture segmentation

I. INTRODUCTION

Elliptically-contoured distributions (ECD) are a far-reaching
generalization of multivariate Gaussian distributions [1]–[3].
An ECD is given by a location vector and a scatter matrix
(the mean and covariance, for a multivariate Gaussian), but
may also include an additional shape parameter, in order to
allow for data with heavy tails or outliers. As such, ECD
encompass many widely-used statistical distributions, such as
multivariate generalized Gaussian distributions (MGGD) [4],
and multivariate Student T-distributions (MSTD) [5]. In turn,
mixtures of ECD have been recognized as highly-useful gen-
eralizations of Gaussian mixture models [6], [7], which appear
in a broad range of applications, such as action recognition,
image denoising, robust modeling, clustering and classification
of data with outliers [8]–[13], among others [14]–[16].

Estimation of mixture models typically relies on the
expectation-maximization (EM) method. Alternatively, for
mixtures of Gaussian distributions, a geometric approach,
based on Riemannian optimization, was introduced in [17].
This was extended to mixtures of ECD in [18], but under the
restriction that shape parameters should be known in advance.
For mixtures of MGGD, a comparison between several EM-
based methods, and an online estimation method, based on
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stochastic gradient descent, was carried out in [8]. For mix-
tures of MSTD, an alternating proximal minimization method
(inertial PALM) was applied in [13]. Recently, a geometric
approach, based on the Fisher information metric, was applied
to mixtures of scaled Gaussian distributions [19].

The above-mentioned methods suffer from certain draw-
backs. First, some of them are off-line (i.e. batch) meth-
ods [18], [19]. These require excessive resources in time and
memory for relatively large datasets. Second, when the shape
parameter is unknown, existing online methods require mini-
batches of increasing size [13]. However, increasing the size
of mini-batches may lead back to the problem encountered
with off-line methods. Third, these methods either focus on
just one subfamily of ECD (MGGD in [8] or MSTD in [13]),
or assume the shape parameter is known in advance [18], [19].

The present paper, hoping to overcome these drawbacks,
introduces a new online estimation method, called the
component-wise information gradient method (CIG). The main
features of the CIG method may be summarized as follows

• CIG is an online method, which uses mini-batches of
fixed size (one mini-batch per iteration). This reduces the
computation time required to perform a single parameter
update.

• CIG uses an adaptive step-size selection rule in order to
speed up convergence. This reduces the total number of
parameter updates required for convergence.

• CIG applies to many widely-used subfamilies of ECD,
such as MGGD and MSTD (of course, this does not mean
that it applies to multiple subfamilies at once).

The starting point of the CIG method is to formulate the
problem of estimating a mixture of ECD as the minimization
of a cross-entropy function, defined in Section II. Ideally,
one hopes to introduce the Fisher information metric, and
apply the corresponding natural gradient method to minimize
the cross-entropy [20]. For mixtures of ECD, this informa-
tion metric does not have a closed form expression. It is
therefore replaced by the component-wise information metric,
which is introduced in Section III. The gradient of the cross-
entropy with respect to this new metric is the component-
wise information gradient, the CIG. The CIG method is then
presented in Section IV. It is a Riemannian stochastic gradient
method, based on the component-wise information gradient.
In addition, it implements an adaptive step-size selection,
which leads to a fast rate of convergence (when a suitable
initialization is used, as stated in Proposition 1). The paper
closes with Section V, which compares the CIG method
to other state-of-the-art methods, through an application to
texture image segmentation.
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II. FORMULATION OF THE PROBLEM

An ECD has three parameters, the location parameter µ, the
scatter matrix Σ, and the shape parameter β (for an MSTD, β
is called the degrees of freedom parameter), which are denoted
θ = (µ,Σ, β). If x is a p-dimensional random vector generated
from an ECD, with probability density p(x|θ), then

p(x|θ) = c(β) [det(Σ)]
− 1

2 g (δ, β) (1)

where c(β) is a normalizing factor that depends only on β, and
δ = (µ−x)†Σ

−1
(µ−x). The generating function g determines

the specific subfamily of ECD. For example,

g(δ, β) = exp (−δβ/2) for MGGD

g(δ, β) = (1 + δ/β)
− p+β

2 for MSTD
(2)

A mixture of ECD is a weighted combination of a finite
number K of ECD, which are known as mixture components.
The k-th mixture component has density p(x|θk) of the form
(1), and is assigned a weight wk ∈ (0, 1). The mixture is
parameterized by θ = (wk , θk ; k = 1, . . . ,K), and has
probability density

f(x|θ) =
K∑

k=1

wk p (x; θk) (3)

The weights wk satisfy the normalizing condition
∑

wk = 1.
The aim of the present paper is to introduce a new method

for online estimation of θ. The starting point of this method
is the minimization of the cross-entropy [21],

argmin
θ

D(θ) D(θ) = −Eθ∗ [ln f (x|θ)] (4)

where θ∗ is the (unknown) true value of the parameter θ.
This minimization is carried out by introducing an original
Riemannian metric, which will be called the component-wise
information metric.

III. THE COMPONENT-WISE INFORMATION METRIC

To introduce the component-wise information metric, it is
convenient to replace the weights wk with quadratic weights
rk , defined by wk = r2k . The normalizing condition on the wk

(stated after (3)) means that the vector r = (rk ; k = 1, . . . ,K)
always belongs to the unit sphere in RK , denoted SK−1.
Replacing the wk by the rk , the mixture density (3) is now
parameterized by θ = (r, θk ; k = 1, . . . ,K).

Each θk belongs to the product space Θ = Rp ×Pp × R+,
where Pp denotes the space of p×p positive-definite matrices.
Indeed, θ = (µ,Σ, β) where µ ∈ Rp, Σ ∈ Pp, while β ∈ R+.
Therefore, θ belongs to the product space Θ = SK−1 ×ΘK ,
since r ∈ SK−1 and each θk ∈ Θ (for k = 1, . . . ,K).

Ideally, one hopes to equip Θ with the Fisher information
metric. However, this information metric does not have a
closed form expression. As an alternative, the component-wise
information metric is here introduced,

⟨U, V ⟩
θ
= ⟨U r, V r⟩

r
+

K∑
k=1

⟨U θk , V θk⟩
θk

(5)

where U , V are tangent vectors to Θ in the tangent space
TθΘ, U = (U r, U θk ; k = 1, . . . ,K) and similarly V =
(V r, V θk ; k = 1, . . . ,K).

In (5), ⟨·, ·⟩
r

denotes the usual scalar product in the
Euclidean space RK . On the other hand, for each θk =
(µk,Σk, βk), one has the information metric given in [22],

⟨U θk , V θk⟩
θk
= ⟨Uµk , V µk⟩

µk
+ ⟨UΣk , V Σk⟩

Σk
+ ⟨Uβk , V βk⟩

βk

Here, if U θ = (Uµ, UΣ, Uβ) and V θ = (V µ, V Σ, V β), then

⟨Uµ, V µ⟩
µ
= Iµ U

µ† Σ−1 V µ

⟨UΣ, V Σ⟩
Σ
= IΣ,1tr (Σ

−1UΣΣ−1V Σ)

+ IΣ,2tr (Σ
−1UΣ) tr (Σ−1V Σ)

⟨Uβ, V β⟩
β
= IβU

βV β

(6)

in terms of the information constants (Iµ, IΣ,1 , IΣ,2 , Iβ),
which are given explicitly for MGGD and MSTD in the
supplementary material.

Based on the component-wise information metric (5), the
component-wise information gradient (CIG) may now be
introduced. If q = − ln f (x|θ) (f was defined in (3)), then the
CIG is the unique vector field ∇⊙q on Θ which satisfies [23]〈

∇⊙q (θ;x) , V
〉
θ
= dq (θ;x) · V (7)

for any tangent vector V ∈ TθΘ, where dq(x|θ) denotes the
differential of the negative log-likelihood, q(x|θ).

The expectation of the CIG is the component-wise gradient
of the cross-entropy D(θ), which was defined in (4),

Eθ∗
[
∇⊙q (θ;x)

]
= ∇⊙D(θ) (8)

Moreover, the CIG has a component-wise structure,

∇⊙q (θ;x) =

(
∇rq (θ;x)

(∇θk
q (θ;x))

k=1,··· ,K

)
where

∇θq (θ;x) =

 (∇µq (θ;x))

(∇Σq (θ;x))

(∇βq (θ;x))


and the individual components are given as follows. First,

∇rq (θ;x) = ∂q(θ;x)/∂r − ⟨∂q(θ;x)/∂r, r⟩
r
× r (9)

where ⟨·, ·⟩
r

denotes the scalar product in RK , as in (5).
Second, for the remaining components,

∇µq(θ;x) = I−1

µ ΣGµ(θ, x)

∇Σq(θ;x) = JΣ,1G
⊥
Σ(θ, x) + JΣ,2G

∥
Σ(θ, x)

∇βq(θ;x) = I−1

β Gβ(θ, x)

(10)

where the coefficients (JΣ,1, JΣ,2) are

JΣ,1 = 1/IΣ,1 JΣ,2 = 1/(IΣ,1 + p IΣ,2) (11)

in terms of the information constants (IΣ,1, IΣ,2) from (6),
and where Gµ(θ, x), Gβ(θ, x) are Euclidean gradients, while
GΣ(θ, x) is the affine-invariant gradient [24]. Moreover, ⊥ and
∥ denote the parallel and orthogonal components of GΣ(θ, x),
as defined in [25],

G∥
Σ(θ, x) =

1

p
tr
(
Σ−1GΣ(θ, x)

)
Σ

G⊥
Σ(θ, x) = GΣ(θ, x)−G∥

Σ(θ, x)
(12)

Detailed expressions of Gµ(θ, x), GΣ(θ, x) and Gβ(θ, x) are
given in the supplementary material.
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IV. THE CIG METHOD

The main contribution of the present paper is to introduce
the CIG method. This is an online estimation method which
uses an adaptive step-size in order to speed up convergence.
Its basic idea is to use the CIG ∇⊙q, defined in the previous
section, in order to search for the minimum in (4).

Starting from an initialization θ(0), the CIG method uses
a stream of mini-batches (B(t); t = 1, 2, . . .), in order to
compute a sequence of estimates θ(t) which approximate the
true parameter θ∗, under suitable conditions (see Proposition
1, below). The update from θ(t) to θ(t+1) only uses the new
mini-batch B(t+1). This provides the mini-batch CIG,

∇⊙q(θ(t)|B(t+1)) =
1

|B(t+1)|
∑

x∈B(t+1)

∇⊙q (θ;x) (13)

where the sum is over samples x which belong to the new
mini-batch B(t+1) , whose size is here denoted by |B(t+1)|.
This mini-batch CIG has a component-wise structure, due
to the component-wise structure of ∇⊙q (θ;x), given by
(9)-(10). The resulting components of ∇⊙q(θ(t)|B(t+1)) are
denoted by ∇rq (θ;B

(t+1)), ∇µq(θ;B
(t+1)), ∇Σq(θ;B

(t+1)),
∇βq(θ;B

(t+1)), as computed from (9)-(10) and (13).
Accordingly, θ(t) = (r(t), θ(t)

k ; k = 1, . . . ,K) is updated to
obtain θ(t+1) = (r(t+1), θ(t+1)

k ; k = 1, . . . ,K), as follows. First,

r(t+1) = Expr(t) (−η(t+1)∇rq (θ
(t)|B(t+1))) (14)

where η(t+1) is the adaptive step-size (defined in (18), below)
and Exp is the Riemannian exponential on the sphere SK−1,

Expr (V
r) = cos (∥V r∥) r + sin (∥V r∥) V r

∥V r∥

for any r ∈ SK−1 and tangent vector V r ∈ TrS
K−1. Second,

for the remaining parameters θ(t)

k = (µ(t)

k ,Σ(t)

k , β(t)

k ),

µ(t+1)

k = µ(t)

k − η(t+1)∇µk
q
(
θ(t)|B(t+1)

)
(15)

Moreover,

Σ(t+1)

k = ExpΣ
(t)
k

(
−η(t+1)∇Σk

q
(
θ(t)|B(t+1)

))
(16)

where Exp is the Riemannian exponential on Pp (here, exp
denotes the matrix exponential [24]),

ExpΣ(V
Σ) = Σ exp

(
Σ−1V Σ

)
for any Σ ∈ Pp and tangent vector V Σ ∈ TΣPp . Furthermore,

β(t+1)

k = Expβ
(t)
k

(
−η(t+1)∇βk

q (θ(t)|B(t+1))
)

(17)

with the notation

Expβ(V
β) = β × eV

β/β

for β > 0 and V β ∈ R. The CIG method repeats the updates
(14)-(17), whenever a new mini-batch becomes available.

The method has two essential features. First, it is an online
method, where the update from θ(t) to θ(t+1) only relies on
B(t+1). Second, it uses an adaptive step-size η(t+1), which is
computed based on the current θ(t). Specifically,

η(t+1) =
τ (t)
min

Lτ (t)
max

(18)

Here, L is a certain constant, which will shortly be introduced
in Proposition 1, and τ (t)

min and τ (t)
max are given by

τ (t)

min = min
{
1,
(
λ(t)

min,k
/I(t)

µk

)
k
,
(
J (t)

Σk,2

)
k
,
(
1/I(t)

βk

)
k

}
τ (t)

max = max
{
1,
(
λ(t)

max,k
/I(t)

µk

)2
k
,
(
J (t)

Σk,1

)2
k
,
(
1/I(t)

βk

)2
k

} (19)

where λmin,k and λmax,k are the smallest and largest eigenvalues
of Σk , and where the information constants (I(t)

µk
, J (t)

Σk,2
, etc.)

are computed as in (6) and (10), based on the current value
of the parameters (r(t), µ(t)

k ,Σ(t)

k , β(t)

k ).
The rate of convergence and asymptotic behavior of the CIG

method are described in the following Proposition 1, roughly
based on [26]. The precise statement of conditions required
in this Proposition, as well as a sketch of its proof, may be
found in the supplementary material.

Proposition 1 (fast convergence of CIG): There exists a
compact and convex neighborhood Θ∗ of θ∗ in which the
objective function D(θ) satisfies the following conditions

(i) it is L-geodesically smooth (see Equation (28) in the
supplementary), for some L > 0.

(ii) it is α-geodesically strongly convex (see Equation (33)
in the supplementary), for some α > 0.

Moreover, if (θ(t)), generated by the CIG method (14)–(17)
with adaptive step-size (18) and constant mini-batch size b,
remains within Θ∗, then it achieves a fast rate of convergence

Eθ∗
[
D
(
θ(T )

)
−D

(
θ∗)]⩽cT

[
D
(
θ(0)
)
−D

(
θ∗)]+ε2∗ (20)

where ε2∗ > 0 is a constant and where

cT =

T∏
t=0

{
1−

α
[
τ (t)
min

]2
Lτ (t)

max

}
(21)

The rate of convergence (20) is called fast, because it is
geometric. Precisely, it can be shown, based on elementary
arguments, that there exists some c ∈ (0, 1) such that cT ≤ cT .

With this geometric rate, the difference between θ(T ) and
θ(∗) (measured by the left-hand side of (20)) converges to a
limit smaller than the positive constant ε2∗ , which quantifies
the asymptotic accuracy of the method. It should be noted ε2∗
is proportional to 1/b (where b is the mini-batch size).

In practice, when implementing the adaptive step-size (18),
large values of L lead to slow convergence at early stages of
the estimation. To overcome this issue, the following step-size
may be used,

η(t+1) = max

{
τ (t)
min

Lτ (t)
max

,
a

t+ 1

}
(22)

a combination of (18) and of the decreasing step-size used
in [22], which involves a constant a, selected as in [22],
[25]. Moreover, for simple scenarios, with small dimension
p or number of components K (recall the notation of Section
II), it is possible to replace the adaptive step-size (18) with
a constant step-size < 1/L, and still obtain similar results.
However, this yields poor performance when K > 2, and will
always requires manual selection of the constant step-size.

The following section will present an application of the CIG
method to texture segmentation. This will highlight the main
features of the CIG method, and compare it to state-of-the-art
online estimation methods.
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V. TEXTURE SEGMENTATION

The CIG method was applied to texture segmentation,
within images from the DTD database [27]. Specifically,
textures were modeled using mixtures of MGGD and MSTD,
motivated by the fact that these two subfamilies of ECD
successfully capture the wavelet statistics of texture images,
as shown in [9], [28], [29].

Two images were randomly selected from the DTD
database, ‘honeycombed’ and ‘pitted’. A mixed image was
then considered in 3-dimensional CIE-Lab color space (see
Figure 1). Since the two images have similar texture and color
features, the two resulting point clouds in color space are quite
hard to separate (see Figure 1(c)).

Segmentation was carried out using a classical Bayesian
classifier [30]. In other words, each single pixel was identified
as ‘honeycombed’ or ‘pitted’, based on the maximum a
posteriori rule. Recall from Bayes formula that

a posteriori = (prior × likelihood)/evidence (23)

The evidence is just a normalizing factor, and plays no role
in the following.

The likelihood was chosen to be a mixture of MGGD
or MSTD with K = 2 mixture components. This choice
reflects the fact that the two point clouds (blue and orange
in Figure 1(c)) do not appear to have an ellipsoidal shape,
and therefore cannot be represented by single MGGD or
MSTD. The prior probabilities are the overall probabilities of
being ‘honeycombed’ or ‘pitted’ (blue or orange). They were
estimated empirically, by a straightforward uniform sampling.

The CIG method, and three other state-of-the-art online
estimation methods, were used to estimate the likelihood distri-
butions. These three methods are Euclidean stochastic gradient
(SGD [8]) and affine-invariant stochastic gradient (AIG [17]),
in addition to the general Adam method, widely regarded as
one of the most robust online optimization methods [31].

Each of the two original images has more than 5×105 pixels.
Half of these were used as training set, and the remaining half
made up the mixed image of Figure 1, used as the test set.

The same randomly-chosen initialization, and the same
mini-batch size (= 10), were used in each of the four above-
mentioned methods (CIG, SGD, AIG, Adam). SGD and AIG
were implemented with a decreasing step-size, while Adam
was implemented with the standard parametrization proposed
in [31]. For CIG, the step-size in (22) was used with a = 1.

The four methods were evaluated by the F1 score (defined
in [32]), as shown in Figure 2. The CIG method has a
significant advantage in terms of speed of convergence and
asymptotic F1 score (after convergence).

The final segmentation results are presented in Figure 3.
CIG is visibly better than the other three methods, since the
right-most column of Figure 3 has the clearest separation
between light and dark gray. Table I reports mean and standard
deviation of the computation time per one iteration (in mil-
liseconds). This table shows no significant difference between
the four methods.

(a) Mixed image (b) True seg. (c) CIE-Lab

Fig. 1: Mixed texture image

(a) MGGD (b) MSTD

Fig. 2: Number of iteration versus F1 score

Fig. 3: Segmentation results

TABLE I: Time per iteration (ms): mean/standard deviation

methods SGD AIG Adam CIG
mean 0.9 1 0.9 1
s.d. 3.1 · 10−2 3.3 · 10−3 3.2 · 10−2 1.2 · 10−3

VI. CONCLUSION

The present paper has introduced the CIG method for the
estimation of mixtures of ECD. This is an online estimation
method, which uses an adaptive step-size in order to speed
up convergence. Theoretically, it was shown that the CIG
method, when initialized correctly, guarantees a fast (precisely,
geometric) rate of convergence. Numerically, the CIG method
was applied to texture segmentation, with images taken from
the DTD database. This application showcased the advantages
of this CIG method, in terms of its rate of convergence
and asymptotic accuracy, compared to state-of-the-art online
estimation methods. In fact, the CIG method requires roughly
the same amount of time, as other methods, to perform a single
iteration, while achieving convergence after a significantly
smaller number of iterations. Moreover, after convergence,
the CIG method was seen to provide a significantly greater
accuracy, with regard to the texture segmentation problem at
hand. Although the CIG method was only applied to mixtures
of MGGD and MSTD, it promises to extend successfully to
several other subfamilies of ECD.
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SUPPLEMENTARY MATERIAL

To begin, the expressions of the information constants and
of the Euclidean and affine-invariant gradients, appearing in
(6) and (10), are here provided.

Information constants

For MGGD and MSTD, the information constants appearing
in (6) and (10) are found from the following table [33], [34]

Model

MGGD MSTD

Iµ
(p−2)[2(β−1)+p]Γ( p−2

2β
)

p2
1
β Γ( p

2β
)

p+β
p+β+2

JΣ,1
2(p+2)
p+2β

2(p+β+2)
p+β

JΣ,2
2
β

2(p+β+2)
β

Iβ
1+P1+P2+P3

β2
Q1−p(p+β+4)

2β(p+β)(p+β+2)

TABLE II: Information constants
and from the relations

JΣ,1 = I−1

Σ,1 JΣ,2 = 1/ (IΣ,1 + pIΣ,2) (24)

In the table,

P1 = (p/2β)
2
Ψ1(p/2β)

P2 = (p/β) [ln 2 + Ψ0(p/2β)]

P3 = (p/2β) {P4 +Ψ1(1 + p/2β)}
P4 = (ln 2)2 + P5 [ln 4 + P5]

P5 = Ψ0(1 + p/2β)

Q1 = {Ψ1(β/2)−Ψ1[(p+ β)/2]} /4

(25)

where Ψ0 and Ψ1 denote the polygamma functions.

Gradients

The Euclidean and affine-invariant gradients in (10) are [22]

Gµk
(θ, x) = 2ok

∂h(δk, x)

∂δk

Σ−1(x− µk)

GΣk
(θ, x) = ok

[
1

2
Σk +

∂h(δk, βk)

∂δk

Sk

]
Gβk

(θ, x) = −ok

[
∂ ln c(βk)

∂βk

+
∂h(δk, βk)

∂βk

] (26)

where h = ln(g), with g the generating function from (1),
Sk = (x−µk)(x−µk)

† and ok = wkp(x|θk)/
∑K

j=1 wjp(x|θj).

A. Sketch of proof

Note Θ∗ is the neighborhood of θ∗ which satisfies all
assumptions in proposition 1. Here, another product metric
is used for proving Proposition 1, which is constructed by the
sum of classic intrinsic Riemannian metrics within each sub
spaces

g̃(u, v) = ⟨U r, V r⟩+
∑
k

⟨Uµk , V µk⟩

+
∑
k

g(UΣk , V Σk) +
∑
k

UβkV βk

(27)

Where ⟨·, ·⟩ is dot product in Euclidean space, and g(·, ·) is
the affine-invariant metric in SPD matrix space. Recall the
geodesically L-lipschitz smooth of the cost function D(θ)

D(θ(t+1)) ⩽D(θ(t))− η(t+1)g̃
(
G(θ(t)), U(θ(t), B(t+1))

)
+

L

2
d2

g̃

(
θ(t),θ(t+1)

)
(28)

where G(θ(t)) and dg̃(·, ·) denote the product gradient and
distance derived by the product metric (27), respectively.
More specifically, the arc length on unit sphere locates in
the component of weights, then Eulidean distance and affine
invariant distance follow in sequence. The vector U(θ(t), B(t))
is the descending direction (the CIG), and B(t) is a randomly
selected mini-batch. Take expectation of the two sides of
equation (28), w.r.t the law for selection of mini-batch B(t+1).

E
[
D(θ(t+1))

]
⩽ D(θ(t))− η(t+1)g̃

(
G(θ(t)), U(θ(t))

)
+

L

2
E
[
d2

g̃

(
θ(t),θ(t+1)

)] (29)

The CIG can be decomposed in tangent space of θ(t) and
represented by the classic gradient. Applying this truth in
equation (29), the following equations could be obtained

d2

g̃(θ
(t),θ(t+1)) = [η(t+1)]2∥U(θ(t), B(t+1))∥2

g̃

∥U(θ(t), B(t+1))∥2

g̃ ⩽ τmax∥G(θ(t), B(t))∥2

g̃

g̃
(
G(θ(t)), U(θ(t))

)
⩾ τmin∥G(θ(t))∥2

g̃

(30)

the coefficients τmin and τmax are given in equation (18) of
main article. For any new mini-batch B

E[∥G(θ, B)∥2 ] = ∥E[G(θ, B)]∥2 + V ar[∥G(θ, B)∥] (31)

In neighborhood of θ∗, the variance V ar[∥G(θ, B)∥] is
bounded by some finite positive constant v2

∗

E[∥G(θ, B)∥2 ] ⩽ ∥E[G(θ, B)]∥2 + v2∗ (32)

Applying equations (30)-(32) and the step-size τ
(t)
min

Lτ
(t)
max

to
equation (29), we can obtain

E [D (θ(t+1))] ⩽ D
(
θ(t)
)
−
[
τ (t)
min

]2
2Lτ (t)

max

∥∥G (θ(t)
)∥∥2

g̃
+ [ε(t)

∗ ]2

where [ε(t)
∗ ]2 =

[τ
(t)
min]

2v2
∗

2Lτmax
. Finally, using the Polyak-

Lojasiewicz inequality

∥G(θ(t))∥g̃ ⩾ 2α(D(θ(t))−D(θ∗)) (33)

we can obtain

E
[
D
(
θ(t+1)

)]
−D

(
θ∗)

⩽

(
1−

[
τ (t)
min

]2
α

2Lτ (t)
max

)[
D
(
θ(t)
)
−D

(
θ∗)]+ [ε(t)

∗ ](2)

Range these T times of iteration

E [D (θ(T ))]−D
(
θ∗) ⩽ cT

[
D
(
θ(0)
)
−D

(
θ∗)]+ ε2

∗ (34)

with

cT =

T∏
t=0

(
1−

α
[
τ (t)
min

]2
2Lτ (t)

max

)
(35)

and with ε2
∗ a positive constant.
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