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Mixtures of elliptically-contoured distributions are highly versatile at modeling real-world probability distributions. They have therefore played a valuable role in computer vision and image processing, radar and biomedical signal processing. Existing methods for the estimation of these mixtures may become impractical for relatively-large datasets, either due to lack of computational resources or to poor performance (slow convergence or inaccuracy). To overcome these issues, the present paper introduces a new estimation method, called the CIG method (component-wise information gradient). On the one hand, this is an online method, so it requires moderate computational resources. On the other hand, it uses an adaptive step-size selection rule which guarantees a fast rate of convergence. Based on a geometric approach to the underlying estimation problem, the CIG method derives its name from the introduction of a new information metric on the mixture parameter space, which is called the component-wise information metric, and serves as a substitute for the Fisher information metric.

stochastic gradient descent, was carried out in [START_REF] Najar | Online recognition via a finite mixture of multivariate generalized Gaussian distributions[END_REF]. For mixtures of MSTD, an alternating proximal minimization method (inertial PALM) was applied in [START_REF] Hertrich | Inertial stochastic PALM and applications in machine learning[END_REF]. Recently, a geometric approach, based on the Fisher information metric, was applied to mixtures of scaled Gaussian distributions [START_REF] Collas | Riemannian geometry for statistical estimation and learning: application to remote sensing[END_REF].

The above-mentioned methods suffer from certain drawbacks. First, some of them are off-line (i.e. batch) methods [START_REF] Li | A universal framework for learning the elliptical mixture model[END_REF], [START_REF] Collas | Riemannian geometry for statistical estimation and learning: application to remote sensing[END_REF]. These require excessive resources in time and memory for relatively large datasets. Second, when the shape parameter is unknown, existing online methods require minibatches of increasing size [START_REF] Hertrich | Inertial stochastic PALM and applications in machine learning[END_REF]. However, increasing the size of mini-batches may lead back to the problem encountered with off-line methods. Third, these methods either focus on just one subfamily of ECD (MGGD in [START_REF] Najar | Online recognition via a finite mixture of multivariate generalized Gaussian distributions[END_REF] or MSTD in [START_REF] Hertrich | Inertial stochastic PALM and applications in machine learning[END_REF]), or assume the shape parameter is known in advance [START_REF] Li | A universal framework for learning the elliptical mixture model[END_REF], [START_REF] Collas | Riemannian geometry for statistical estimation and learning: application to remote sensing[END_REF].

The present paper, hoping to overcome these drawbacks, introduces a new online estimation method, called the component-wise information gradient method (CIG). The main features of the CIG method may be summarized as follows

• CIG is an online method, which uses mini-batches of fixed size (one mini-batch per iteration). This reduces the computation time required to perform a single parameter update.

• CIG uses an adaptive step-size selection rule in order to speed up convergence. This reduces the total number of parameter updates required for convergence. • CIG applies to many widely-used subfamilies of ECD, such as MGGD and MSTD (of course, this does not mean that it applies to multiple subfamilies at once).

The starting point of the CIG method is to formulate the problem of estimating a mixture of ECD as the minimization of a cross-entropy function, defined in Section II. Ideally, one hopes to introduce the Fisher information metric, and apply the corresponding natural gradient method to minimize the cross-entropy [START_REF] Amari | Natural gradient works efficiently in learning[END_REF]. For mixtures of ECD, this information metric does not have a closed form expression. It is therefore replaced by the component-wise information metric, which is introduced in Section III. The gradient of the crossentropy with respect to this new metric is the componentwise information gradient, the CIG. The CIG method is then presented in Section IV. It is a Riemannian stochastic gradient method, based on the component-wise information gradient. In addition, it implements an adaptive step-size selection, which leads to a fast rate of convergence (when a suitable initialization is used, as stated in Proposition 1). The paper closes with Section V, which compares the CIG method to other state-of-the-art methods, through an application to texture image segmentation.

II. FORMULATION OF THE PROBLEM

An ECD has three parameters, the location parameter µ, the scatter matrix Σ, and the shape parameter β (for an MSTD, β is called the degrees of freedom parameter), which are denoted θ = (µ, Σ, β). If x is a p-dimensional random vector generated from an ECD, with probability density p(x|θ), then

p(x|θ) = c(β) [det(Σ)] -1 2 g (δ, β) (1) 
where c(β) is a normalizing factor that depends only on β, and δ = (µ-x) † Σ -1 (µ-x). The generating function g determines the specific subfamily of ECD. For example,

g(δ, β) = exp (-δ β /2) for MGGD g(δ, β) = (1 + δ/β) -p+β 2 for MSTD (2) 
A mixture of ECD is a weighted combination of a finite number K of ECD, which are known as mixture components. The k-th mixture component has density p(x|θ k ) of the form (1), and is assigned a weight w k ∈ (0, 1). The mixture is parameterized by θ = (w k , θ k ; k = 1, . . . , K), and has probability density

f (x|θ) = K k=1 w k p (x; θ k ) (3) 
The weights w k satisfy the normalizing condition w k = 1. The aim of the present paper is to introduce a new method for online estimation of θ. The starting point of this method is the minimization of the cross-entropy [START_REF] Cover | Elements of Information Theory[END_REF],

arg min θ D(θ) D(θ) = -E θ * [ln f (x|θ)] (4) 
where θ * is the (unknown) true value of the parameter θ. This minimization is carried out by introducing an original Riemannian metric, which will be called the component-wise information metric.

III. THE COMPONENT-WISE INFORMATION METRIC

To introduce the component-wise information metric, it is convenient to replace the weights w k with quadratic weights r k , defined by w k = r 2 k . The normalizing condition on the w k (stated after (3)) means that the vector r = (r k ; k = 1, . . . , K) always belongs to the unit sphere in R K , denoted S K-1 . Replacing the w k by the r k , the mixture density (3) is now parameterized by θ = (r, θ k ; k = 1, . . . , K).

Each θ k belongs to the product space Θ = R p × P p × R + , where P p denotes the space of p×p positive-definite matrices. Indeed, θ = (µ, Σ, β) where µ ∈ R p , Σ ∈ P p , while β ∈ R + . Therefore, θ belongs to the product space Θ = S K-1 × Θ K , since r ∈ S K-1 and each θ k ∈ Θ (for k = 1, . . . , K).

Ideally, one hopes to equip Θ with the Fisher information metric. However, this information metric does not have a closed form expression. As an alternative, the component-wise information metric is here introduced,

⟨U, V ⟩ θ = ⟨U r , V r ⟩ r + K k=1 ⟨U θk , V θk ⟩ θk (5) 
where U , V are tangent vectors to Θ in the tangent space

T θ Θ, U = (U r , U θk ; k = 1, . . . , K) and similarly V = (V r , V θk ; k = 1, . . . , K).
In [START_REF] Kotz | Multivariate distributions at a cross road[END_REF], ⟨•, •⟩ r denotes the usual scalar product in the Euclidean space R K . On the other hand, for each θ k = (µ k , Σ k , β k ), one has the information metric given in [START_REF] Zhou | Riemannian information gradient methods for the parameter estimation of ECD[END_REF],

⟨U θk , V θk ⟩ θk = ⟨U µk , V µk ⟩ µk + ⟨U Σk , V Σk ⟩ Σk + ⟨U βk , V βk ⟩ βk Here, if U θ = (U µ , U Σ , U β ) and V θ = (V µ , V Σ , V β ), then ⟨U µ , V µ ⟩ µ = I µ U µ † Σ -1 V µ ⟨U Σ , V Σ ⟩ Σ = I Σ,1 tr (Σ -1 U Σ Σ -1 V Σ ) + I Σ,2 tr (Σ -1 U Σ ) tr (Σ -1 V Σ ) ⟨U β , V β ⟩ β = I β U β V β (6)
in terms of the information constants (I µ , I Σ,1 , I Σ,2 , I β ), which are given explicitly for MGGD and MSTD in the supplementary material.

Based on the component-wise information metric ( 5), the component-wise information gradient (CIG) may now be introduced. If q = -ln f (x|θ) (f was defined in (3)), then the CIG is the unique vector field ∇ ⊙ q on Θ which satisfies [23]

∇ ⊙ q (θ; x) , V θ = dq (θ; x) • V (7) 
for any tangent vector V ∈ T θ Θ, where dq(x|θ) denotes the differential of the negative log-likelihood, q(x|θ).

The expectation of the CIG is the component-wise gradient of the cross-entropy D(θ), which was defined in ( 4),

E θ * ∇ ⊙ q (θ; x) = ∇ ⊙ D(θ) (8) 
Moreover, the CIG has a component-wise structure,

∇ ⊙ q (θ; x) = ∇ r q (θ; x) (∇ θk q (θ; x)) k=1,••• ,K where ∇ θ q (θ; x) =    (∇ µ q (θ; x)) (∇ Σ q (θ; x)) (∇ β q (θ; x))   
and the individual components are given as follows. First, ∇ r q (θ; x) = ∂q(θ; x)/∂r -⟨∂q(θ; x)/∂r, r⟩ r × r

where ⟨•, •⟩ r denotes the scalar product in R K , as in [START_REF] Kotz | Multivariate distributions at a cross road[END_REF]. Second, for the remaining components,

∇ µ q(θ; x) = I -1 µ Σ G µ (θ, x) ∇ Σ q(θ; x) = J Σ,1 G ⊥ Σ (θ, x) + J Σ,2 G ∥ Σ (θ, x) ∇ β q(θ; x) = I -1 β G β (θ, x) (10) 
where the coefficients (J Σ,1 , J Σ,2 ) are

J Σ,1 = 1/I Σ,1 J Σ,2 = 1/(I Σ,1 + p I Σ,2 ) (11) 
in terms of the information constants (I Σ,1 , I Σ,2 ) from ( 6), and where G µ (θ, x), G β (θ, x) are Euclidean gradients, while G Σ (θ, x) is the affine-invariant gradient [START_REF] Pennec | A Riemannian Framework for Tensor Computing[END_REF]. Moreover, ⊥ and ∥ denote the parallel and orthogonal components of G Σ (θ, x), as defined in [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a Riemannian manifold[END_REF],

G ∥ Σ (θ, x) = 1 p tr Σ -1 G Σ (θ, x) Σ G ⊥ Σ (θ, x) = G Σ (θ, x) -G ∥ Σ (θ, x) (12) 
Detailed expressions of G µ (θ, x), G Σ (θ, x) and G β (θ, x) are given in the supplementary material.

IV. THE CIG METHOD

The main contribution of the present paper is to introduce the CIG method. This is an online estimation method which uses an adaptive step-size in order to speed up convergence. Its basic idea is to use the CIG ∇ ⊙ q, defined in the previous section, in order to search for the minimum in [START_REF] Gómez | A multivariate generalization of the power exponential family of distributions[END_REF].

Starting from an initialization θ (0) , the CIG method uses a stream of mini-batches (B (t) ; t = 1, 2, . . .), in order to compute a sequence of estimates θ (t) which approximate the true parameter θ * , under suitable conditions (see Proposition 1, below). The update from θ (t) to θ (t+1) only uses the new mini-batch B (t+1) . This provides the mini-batch CIG,

∇ ⊙ q(θ (t) |B (t+1) ) = 1 |B (t+1) | x∈B (t+1) ∇ ⊙ q (θ; x) (13) 
where the sum is over samples x which belong to the new mini-batch B (t+1) , whose size is here denoted by |B (t+1) |. This mini-batch CIG has a component-wise structure, due to the component-wise structure of ∇ ⊙ q (θ; x), given by ( 9)- [START_REF] Peel | Robust mixture modelling using the T distribution[END_REF]. The resulting components of ∇ ⊙ q(θ (t) |B (t+1) ) are denoted by ∇ r q (θ; B (t+1) ), ∇ µ q(θ; B (t+1) ), ∇ Σ q(θ; B (t+1) ), ∇ β q(θ; B (t+1) ), as computed from ( 9)-( 10) and ( 13). Accordingly,

θ (t) = (r (t) , θ (t) k ; k = 1, . . . , K) is updated to obtain θ (t+1) = (r (t+1) , θ (t+1) k ; k = 1, . . . , K), as follows. First, r (t+1) = Exp r (t) (-η (t+1) ∇ r q (θ (t) |B (t+1) )) (14) 
where η (t+1) is the adaptive step-size (defined in [START_REF] Li | A universal framework for learning the elliptical mixture model[END_REF], below) and Exp is the Riemannian exponential on the sphere

S K-1 , Exp r (V r ) = cos (∥V r ∥) r + sin (∥V r ∥) V r ∥V r ∥
for any r ∈ S K-1 and tangent vector V r ∈ T r S K-1 . Second, for the remaining parameters

θ (t) k = (µ (t) k , Σ (t) k , β (t) k ), µ (t+1) k = µ (t) k -η (t+1) ∇ µk q θ (t) |B (t+1) (15) 
Moreover,

Σ (t+1) k = Exp Σ (t) k -η (t+1) ∇ Σk q θ (t) |B (t+1) ( 16 
)
where Exp is the Riemannian exponential on P p (here, exp denotes the matrix exponential [START_REF] Pennec | A Riemannian Framework for Tensor Computing[END_REF]),

Exp Σ (V Σ ) = Σ exp Σ -1 V Σ
for any Σ ∈ P p and tangent vector V Σ ∈ T Σ P p . Furthermore,

β (t+1) k = Exp β (t) k -η (t+1) ∇ βk q (θ (t) |B (t+1) ) (17) 
with the notation

Exp β (V β ) = β × e V β /β
for β > 0 and V β ∈ R. The CIG method repeats the updates ( 14)-( 17), whenever a new mini-batch becomes available. The method has two essential features. First, it is an online method, where the update from θ (t) to θ (t+1) only relies on B (t+1) . Second, it uses an adaptive step-size η (t+1) , which is computed based on the current θ (t) . Specifically,

η (t+1) = τ (t) min L τ (t) max ( 18 
)
Here, L is a certain constant, which will shortly be introduced in Proposition 1, and τ (t) min and τ (t) max are given by τ

(t) min = min 1, λ (t) min,k /I (t) µk k , J (t) Σk ,2 k , 1/I (t) βk k τ (t) max = max 1, λ (t) max,k /I (t) µk 2 k , J (t) Σk ,1 2 k , 1/I (t) βk 2 k ( 19 
)
where λ min,k and λ max,k are the smallest and largest eigenvalues of Σ k , and where the information constants (I (t) µk , J (t) Σk ,2 , etc.) are computed as in ( 6) and [START_REF] Peel | Robust mixture modelling using the T distribution[END_REF], based on the current value of the parameters (r (t) , µ (t) k , Σ (t) k , β (t) k ). The rate of convergence and asymptotic behavior of the CIG method are described in the following Proposition 1, roughly based on [START_REF] Meng | Fast and furious convergence: Stochastic second order methods under interpolation[END_REF]. The precise statement of conditions required in this Proposition, as well as a sketch of its proof, may be found in the supplementary material.

Proposition 1 (fast convergence of CIG): There exists a compact and convex neighborhood Θ * of θ * in which the objective function D(θ) satisfies the following conditions (i) it is L-geodesically smooth (see Equation ( 28) in the supplementary), for some L > 0. (ii) it is α-geodesically strongly convex (see Equation [START_REF] Besson | On the Fisher information matrix for multivariate elliptically contoured distributions[END_REF] in the supplementary), for some α > 0. Moreover, if (θ (t) ), generated by the CIG method ( 14)-( 17) with adaptive step-size [START_REF] Li | A universal framework for learning the elliptical mixture model[END_REF] and constant mini-batch size b, remains within Θ * , then it achieves a fast rate of convergence

E θ * D θ (T ) -D θ * ⩽ c T D θ (0) -D θ * +ε 2 * (20) where ε 2
* > 0 is a constant and where

c T = T t=0 1 - α τ (t) min 2 L τ (t) max (21) 
The rate of convergence ( 20) is called fast, because it is geometric. Precisely, it can be shown, based on elementary arguments, that there exists some c ∈ (0, 1) such that c T ≤ c T .

With this geometric rate, the difference between θ (T ) and θ ( * ) (measured by the left-hand side of (20)) converges to a limit smaller than the positive constant ε 2 * , which quantifies the asymptotic accuracy of the method. It should be noted ε 2 * is proportional to 1/b (where b is the mini-batch size).

In practice, when implementing the adaptive step-size [START_REF] Li | A universal framework for learning the elliptical mixture model[END_REF], large values of L lead to slow convergence at early stages of the estimation. To overcome this issue, the following step-size may be used,

η (t+1) = max τ (t) min L τ (t) max , a t + 1 (22) 
a combination of (18) and of the decreasing step-size used in [START_REF] Zhou | Riemannian information gradient methods for the parameter estimation of ECD[END_REF], which involves a constant a, selected as in [START_REF] Zhou | Riemannian information gradient methods for the parameter estimation of ECD[END_REF], [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a Riemannian manifold[END_REF]. Moreover, for simple scenarios, with small dimension p or number of components K (recall the notation of Section II), it is possible to replace the adaptive step-size [START_REF] Li | A universal framework for learning the elliptical mixture model[END_REF] with a constant step-size < 1/L, and still obtain similar results. However, this yields poor performance when K > 2, and will always requires manual selection of the constant step-size.

The following section will present an application of the CIG method to texture segmentation. This will highlight the main features of the CIG method, and compare it to state-of-the-art online estimation methods.

V. TEXTURE SEGMENTATION

The CIG method was applied to texture segmentation, within images from the DTD database [START_REF] Cimpoi | Describing Textures in the Wild[END_REF]. Specifically, textures were modeled using mixtures of MGGD and MSTD, motivated by the fact that these two subfamilies of ECD successfully capture the wavelet statistics of texture images, as shown in [START_REF] Tan | Multivariate statistical models for image denoising in the wavelet domain[END_REF], [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF], [START_REF] Kwitt | Testing a multivariate model for wavelet coefficients[END_REF].

Two images were randomly selected from the DTD database, 'honeycombed' and 'pitted'. A mixed image was then considered in 3-dimensional CIE-Lab color space (see Figure 1). Since the two images have similar texture and color features, the two resulting point clouds in color space are quite hard to separate (see Figure 1(c)).

Segmentation was carried out using a classical Bayesian classifier [START_REF] Russell | Artificial intelligence a modern approach[END_REF]. In other words, each single pixel was identified as 'honeycombed' or 'pitted', based on the maximum a posteriori rule. Recall from Bayes formula that

a posteriori = (prior × likelihood)/evidence ( 23 
)
The evidence is just a normalizing factor, and plays no role in the following.

The likelihood was chosen to be a mixture of MGGD or MSTD with K = 2 mixture components. This choice reflects the fact that the two point clouds (blue and orange in Figure 1(c)) do not appear to have an ellipsoidal shape, and therefore cannot be represented by single MGGD or MSTD. The prior probabilities are the overall probabilities of being 'honeycombed' or 'pitted' (blue or orange). They were estimated empirically, by a straightforward uniform sampling.

The CIG method, and three other state-of-the-art online estimation methods, were used to estimate the likelihood distributions. These three methods are Euclidean stochastic gradient (SGD [START_REF] Najar | Online recognition via a finite mixture of multivariate generalized Gaussian distributions[END_REF]) and affine-invariant stochastic gradient (AIG [START_REF] Hosseini | An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization[END_REF]), in addition to the general Adam method, widely regarded as one of the most robust online optimization methods [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

Each of the two original images has more than 5×10 5 pixels. Half of these were used as training set, and the remaining half made up the mixed image of Figure 1, used as the test set.

The same randomly-chosen initialization, and the same mini-batch size (= 10), were used in each of the four abovementioned methods (CIG, SGD, AIG, Adam). SGD and AIG were implemented with a decreasing step-size, while Adam was implemented with the standard parametrization proposed in [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. For CIG, the step-size in [START_REF] Zhou | Riemannian information gradient methods for the parameter estimation of ECD[END_REF] was used with a = 1.

The four methods were evaluated by the F1 score (defined in [START_REF] Van Rijsbergen | Information Retrieval[END_REF]), as shown in Figure 2. The CIG method has a significant advantage in terms of speed of convergence and asymptotic F1 score (after convergence).

The final segmentation results are presented in Figure 3. CIG is visibly better than the other three methods, since the right-most column of Figure 3 has the clearest separation between light and dark gray. Table I reports mean and standard deviation of the computation time per one iteration (in milliseconds). This table shows no significant difference between the four methods. 

VI. CONCLUSION

The present paper has introduced the CIG method for the estimation of mixtures of ECD. This is an online estimation method, which uses an adaptive step-size in order to speed up convergence. Theoretically, it was shown that the CIG method, when initialized correctly, guarantees a fast (precisely, geometric) rate of convergence. Numerically, the CIG method was applied to texture segmentation, with images taken from the DTD database. This application showcased the advantages of this CIG method, in terms of its rate of convergence and asymptotic accuracy, compared to state-of-the-art online estimation methods. In fact, the CIG method requires roughly the same amount of time, as other methods, to perform a single iteration, while achieving convergence after a significantly smaller number of iterations. Moreover, after convergence, the CIG method was seen to provide a significantly greater accuracy, with regard to the texture segmentation problem at hand. Although the CIG method was only applied to mixtures of MGGD and MSTD, it promises to extend successfully to several other subfamilies of ECD.

SUPPLEMENTARY MATERIAL

To begin, the expressions of the information constants and of the Euclidean and affine-invariant gradients, appearing in ( 6) and [START_REF] Peel | Robust mixture modelling using the T distribution[END_REF], are here provided.

Information constants

For MGGD and MSTD, the information constants appearing in ( 6) and [START_REF] Peel | Robust mixture modelling using the T distribution[END_REF] are found from the following table [START_REF] Besson | On the Fisher information matrix for multivariate elliptically contoured distributions[END_REF], [START_REF] Verdoolaege | On the geometry of multivariate generalized Gaussian models[END_REF] Model MGGD MSTD 

Iµ (p-2)[2(β-1)+p]Γ( p-2 2β ) p2 1 β Γ( p 2β ) p+β p+β+2 JΣ,1 2(p+2) p+2β 
2(p+β+2) p+β JΣ,2 2 β 2(p+β+2) β Iβ 1+P 1 +P 2 +P 3 β 2 Q 1 -p(p+β+4) 2β(p+β)(p+β+2)
J Σ,1 = I -1 Σ,1 J Σ,2 = 1/ (I Σ,1 + pI Σ,2 ) (24) 
In the table,

P 1 = (p/2β) 2 Ψ 1 (p/2β) P 2 = (p/β) [ln 2 + Ψ 0 (p/2β)] P 3 = (p/2β) {P 4 + Ψ 1 (1 + p/2β)} P 4 = (ln 2) 2 + P 5 [ln 4 + P 5 ] P 5 = Ψ 0 (1 + p/2β) Q 1 = {Ψ 1 (β/2) -Ψ 1 [(p + β)/2]} /4 (25) 
where Ψ 0 and Ψ 1 denote the polygamma functions.

Gradients

The Euclidean and affine-invariant gradients in [START_REF] Peel | Robust mixture modelling using the T distribution[END_REF] are [START_REF] Zhou | Riemannian information gradient methods for the parameter estimation of ECD[END_REF] G

µk (θ, x) = 2o k ∂h(δ k , x) ∂δ k Σ -1 (x -µ k ) G Σk (θ, x) = o k 1 2 Σ k + ∂h(δ k , β k ) ∂δ k S k G βk (θ, x) = -o k ∂ ln c(β k ) ∂β k + ∂h(δ k , β k ) ∂β k (26) 
where h = ln(g), with g the generating function from (1),

S k = (x-µ k )(x-µ k ) † and o k = w k p(x|θ k )/ K j=1 w j p(x|θ j ).

A. Sketch of proof

Note Θ * is the neighborhood of θ * which satisfies all assumptions in proposition 1. Here, another product metric is used for proving Proposition 1, which is constructed by the sum of classic intrinsic Riemannian metrics within each sub spaces

g(u, v) = ⟨U r , V r ⟩ + k ⟨U µ k , V µ k ⟩ + k g(U Σ k , V Σ k ) + k U β k V β k (27)
Where ⟨•, •⟩ is dot product in Euclidean space, and g(•, •) is the affine-invariant metric in SPD matrix space. Recall the geodesically L-lipschitz smooth of the cost function D(θ)

D(θ (t+1) ) ⩽D(θ (t) ) -η (t+1) g G(θ (t) ), U (θ (t) , B (t+1) ) + L 2 d 2 g θ (t) , θ (t+1) (28 
) where G(θ (t) ) and d g (•, •) denote the product gradient and distance derived by the product metric [START_REF] Cimpoi | Describing Textures in the Wild[END_REF], respectively. More specifically, the arc length on unit sphere locates in the component of weights, then Eulidean distance and affine invariant distance follow in sequence. The vector U (θ (t) , B (t) ) is the descending direction (the CIG), and B (t) is a randomly selected mini-batch. Take expectation of the two sides of equation ( 28), w.r.t the law for selection of mini-batch B (t+1) . E D(θ (t+1) ) ⩽ D(θ (t) ) -η (t+1) g G(θ (t) ), U (θ (t) )

+ L 2 E d 2 g θ (t) , θ (t+1) (29) 
The CIG can be decomposed in tangent space of θ (t) and represented by the classic gradient. Applying this truth in equation ( 29), the following equations could be obtained d 2 g (θ (t) , θ (t+1) ) = [η (t+1) ] 2 ∥U (θ (t) , B (t+1) )∥ 2 g ∥U (θ (t) , B (t+1) )∥ 2 g ⩽ τ max ∥G(θ (t) , B (t) )∥ 2 g g G(θ (t) ), U (θ (t) ) ⩾ τ min ∥G(θ (t) )∥ 2 g (

the coefficients τ min and τ max are given in equation ( 18 

we can obtain 

E D θ (t+1) -D θ * ⩽ 1 - τ (t)

Fig. 2 :Fig. 3 :

 23 Fig. 1: Mixed texture image

2 * ( 32 ) 2 2 2 wheremin ] 2 v 2 *

 232222 ) of main article. For any new mini-batch BE[∥G(θ, B)∥ 2 ] = ∥E[G(θ, B)]∥ 2 + V ar[∥G(θ, B)∥] (31)In neighborhood of θ * , the variance V ar[∥G(θ, B)∥] is bounded by some finite positive constantv 2 * E[∥G(θ, B)∥ 2 ] ⩽ ∥E[G(θ, B)]∥ 2 + vApplying equations (30)-(32) and the step-size τ (t) min Lτ (t) max to equation (29), we can obtainE [D (θ (t+1) )] ⩽ D θ (t) -τ (t) min L τ (t) max G θ (t) 2 g + [ε (t) * ]2Lτmax . Finally, using the Polyak-Lojasiewicz inequality ∥G(θ (t) )∥ g ⩾ 2α(D(θ (t) ) -D(θ * ))

min 2 α 2 ( 2 ) 2 2

 222 L τ (t) max D θ (t) -D θ * + [ε (t) * ]Range these T times of iterationE [D (θ (T ) )] -D θ * ⩽ c T D θ (0) -D θ * + ε 2 * (34) with c T = T t=0 1 -α τ (t) min L τ (t) max(35)and with ε 2 * a positive constant.

TABLE I :

 I Time per iteration (ms): mean/standard deviation

	methods	SGD	AIG	Adam	CIG
	mean	0.9	1	0.9	1
	s.d.	3.1 • 10 -2	3.3 • 10 -3	3.2 • 10 -2	1.2 • 10 -3

TABLE II :

 II Information constants and from the relations