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Determinantal expressions of certain
Integrals on symmetric spaces

Salem Said1 and Cyrus Mostajeran2

1 CNRS, Laboratoire Jean Kuntzmann (UMR 5224)
2 School of Physical and Mathematical Sciences, NTU Singapore

Abstract. The integral of a function f defined on a symmetric space
M ≃ G/K may be expressed in the form of a determinant (or Pfaffian),
when f is K-invariant and, in a certain sense, a tensor power of a positive
function of a single variable. The paper presents a few examples of this
idea and discusses future extensions. Specifically, the examples involve
symmetric cones, Grassmann manifolds, and classical domains.
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1 Introduction

Riemannian symmetric spaces were classified by É. Cartan, back in the 1920s. A
comprehensive account of this classification may be found in the monograph [1].
In the 1960s, a classification of quantum symmetries lead Dyson to introduce
three kinds of random matrix ensembles, orthogonal, unitary, and symplectic [2].
These three kinds of ensembles are closely related to the symmetric spaces known
as symmetric cones, and also to their compact duals, which provide for so-called
circular ensembles. More recently, Dyson’s classification of quantum symmetries
has been extended to free fermionic systems. It turned out that this extended
classification is in on-to-one correspondance with Cartan’s old classification of
symmetric spaces [3]. This correspondance has motivated the notion that the
relationship between random matrices and symmetric spaces extends well beyond
symmetric cones, and is of a general nature (for example [4] or [5, 6]).

The present submission has a modest objective. It is to show how the integral
of a function f , defined on a symmetric space M ≃ G/K, can be expressed in
the form of a determinant or Pfaffan, when f is K-invariant and satisfies an
additional hypothesis, formulated in Section 4 below. This is not carried out
in a general setting, but through a non-exhaustive set of examples, including
symmetric cones, Grassmann manifolds, classical domains, and their duals (for
the case of compact Lie groups, yet another example of symmetric spaces, see [7]).

The determinantal expressions obtained here, althoguh elementary, are an
analytic pre-requisite to developing the random matrix theory of Riemannian
symmetric spaces. This long-term goal is the motivation behind the present work.

Unfortunately, due to limited space, no proofs are provided for statements
made in the following. These will be given in an upcoming extended version.
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2 Integral formulas

Let M be a Riemannian symmetric space, given by the symmetric pair (G,K).
Write g = k+p the corresponding Cartan decomposition, and let a be a maximal
abelian subspace of p. Then, denote ∆ a set of positive reduced roots on a [1].

Assume that g = z(g)+gss where z(g) is the centre of g and gss is semisimple
and non-compact (gss is a real Lie algebra). The Riemannian exponential Exp
maps a isometrically onto a totally flat submanifold of M , and any x ∈ M is of
the form x = k · Exp(a) where k ∈ K and a ∈ a.

Let f : M → R be a K-invariant function, f(k · x) = f(x) for k ∈ K and
x ∈ M . There is no ambiguity in writing f(x) = f(a) where x = k · Exp(a).
With this notation, there exists a constant CM such that [1]∫

M

f(x)vol(dx) = CM

∫
a

f(a)
∏
λ∈∆

sinhmλ |λ(a)| da (1)

where da is the Lebesgue measure on a.
The dual M̂ of M is a symmetric space given by the symmetric pair (U,K),

where U is a compact Lie group, with the Cartan decomposition u = k + ip
(i =

√
−1). Now, Exp maps ia onto a torus T which is totally flat in M̂ , and

any point x ∈ M̂ is of the form x = k · Exp(ia) where k ∈ K and a ∈ a.
If f : M̂ → R is K-invariant, there is no ambiguity in writing f(x) = f(t)

where x = k · t, t = Exp(ia). In this notation [1],∫
M̂

f(x)vol(dx) = CM

∫
T

f(t)
∏
λ∈∆

sinmλ |λ(t)| dt (2)

where dt is the Haar measure on T . Here, sin|λ(t)| = sin|λ(a)| where t = Exp(ia),
and this does not depend on the choice of a.

3 Determinantal expressions

Let µ be a positive measure on a real interval I. Consider the multiple integrals,

zβ(µ) =
1

N !

∫
I

. . .

∫
I

|V (u
1
, . . . , uN)|β µ(du1) . . . µ(duN) (3)

where V denotes the Vandermonde determinant and β = 1, 2 or 4. Consider also
the following bilinear forms,

(h, g)(µ,1) =

∫
I

∫
I

(h(u)ε(u− v)g(v))µ(du)µ(dv) (4)

(h, g)(µ,2) =

∫
I

h(u)g(u)µ(du) (5)

(h, g)(µ,4) =

∫
I

(h(u)g′(u)− g(u)h′(u))µ(du) (6)

Here, ε denotes the unit step function and the prime denotes the derivative.
In the following proposition, det denotes the determinant and pf the Pfaffian.



Determinantal expressions of certain Integrals on symmetric spaces 3

Proposition 1. The following hold for any probability measure µ as above.
(a) if N is even,

z1(µ) = pf
{(

uk, uℓ
)
(µ,1)

}N−1

k,ℓ=0
(7)

(b) on the other hand, if N is odd,

z1(µ) = pf

{ (
uk, uℓ

)
(µ,1)

(
1, uk

)
(µ,2)

−
(
uℓ , 1

)
(µ,2)

0

}N−1

k,ℓ=0

(8)

(c) moreover,

z2(µ) = det
{(

uk, uℓ
)
(µ,2)

}N−1

k,ℓ=0
(9)

(d) and, finally,

z4(µ) = pf
{(

uk, uℓ
)
(µ,4)

}2N−1

k,ℓ=0
(10)

On the other hand, if µ be a probability measure on the unit circle S1, and

zβ(µ) =
1

N !

∫
S1

. . .

∫
S1

|V (u
1
, . . . , uN)|β µ(du1) . . . µ(duN) (11)

consider the bilinear form

(h, g)(µ,1) =

∫ 2π

0

∫ 2π

0

(h(eix)ε(x− y)g(eiy)) µ̃(dx)µ̃(dy) (12)

where µ̃ is the pullback of the measure µ through the map that takes x to eix,
and let (h, g)(µ,2) and (h, g)(µ,4) be given as in (5) and (6), with integrals over
S1 instead of I.

Proposition 2. The following hold for any probability measure µ on S1.
(a) if N is even,

z1(µ) = (−i)N(N−1)/2 × pf
{
(gk, gℓ)(µ,1)

}N−1

k,ℓ=0
(13)

where gk(u) = uk−(N−1)/2 .

(b) on the other hand, if N is odd,

z1(µ) = (−i)N(N−1)/2 × pf

{
(gk, gℓ)(µ,1) (1, gk )(µ,2)

− (gℓ , 1)(µ,2) 0

}N−1

k,ℓ=0

(14)

with the same definition of gk(u).
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(c) moreover,

z2(µ) = det
{(

uk, u−ℓ
)
(µ,2)

}N−1

k,ℓ=0
(15)

(d) and, finally,

z4(µ) = pf
{
(hk, hℓ)(µ,4)

}2N−1

k,ℓ=0
(16)

where hk(u) = uk−(N−1).

Both of the above Propositions 1 and 2 are directly based on [8].

4 Main idea

An additional hypothesis is made on the function f(a) (in (1)) or f(t) (in (2)) :
that there exists a natural orthonormal basis (ej ; j = 1, . . . , r) of a, such that

f(a) =

r∏
j=1

w(aj) f(t) =

r∏
j=1

w(tj) (17)

where w is a positive function of a single variable, and aj are the components of
a in the basis (ej ; j = 1, . . . , r), while tj = Exp(iajej). In this sense, it may be
said that f is the r-th tensor power of w.

What is meant by natural is that (17) will imply that the integral (1) or (2)
can be transformed into a multiple integral of the form (3) or (11), respectively.
Thus, in the case of (1), there exists a measure µ on an interval I, which satisfies∫

M

f(x)vol(dx) = C̃M × zβ(µ) (C̃M is a new constant)

and, in the case of (2), there is a measure µ on S1, which yields a similar identity.
It should be noted that this measure µ will depend on the function w from (17).

Then, Propositions 1 and 2 provide a determinantal (or Pfaffian) expression
of the initial integral on the symmetric space M or M̂ .

At present, this is not a theorem, but a mere idea or observation, supported
by the examples in the following section.

5 Examples

5.1 Symmetric cones

Consider the following Lie groups (in the usual notation, as found in [1]).

β Gβ Uβ Kβ

1 GLN (R) U(N) O(N)

2 GLN (C) U(N)× U(N) U(N)

4 GLN (H) U(2N) Sp(N)
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Then, Mβ ≃ Gβ/Kβ is a Riemannian symmetric space, with dual M̂β = Uβ/Kβ .
In fact, Mβ is realised as a so-called symmetric cone : the cone of positive-definite
real, complex, or quaternion matrices (according to the value of β = 1, 2 or 4).

Each x ∈ Mβ is of the form kλ k† where k ∈ Kβ and λ is a positive diagonal
matrix († denotes the transpose, conjugate-transpose, or quaternion conjugate-
transpose). If f : Mβ → R is Kβ-invariant, and can be written f(x) =

∏
w(λj),∫

Mβ

f(x)vol(dx) = C̃β × zβ(µ) (18)

where µ(du) = (w(u)u−Nβ )du, with Nβ = (β/2)(N − 1) + 1, on the interval
I = (0,∞). The constant C̃β is known explicitly, but this is irrelevant at present.

The dual M̂β can be realised as the space of symmetric unitary matrices
(β = 1), of unitary matrices (β = 2), or of antisymmetric unitary matrices with
double dimension 2N , (β = 4).

If β = 1, 2, then x ∈ M̂β is of the form keiθ k† where k ∈ Kβ and θ is real
diagonal. However, if β = 4, there is a somewhat different matrix factorisation,

x = k

(
−eiθ

eiθ

)
ktr (tr denotes the transpose) (19)

where k ∈ Sp(N) is considered as a 2N × 2N complex matrix (rather than a
N × N quaternion matrix). If f : M̂β → R is Kβ-invariant, f(x) =

∏
w(eiθj ),∫

M̂β

f(x)vol(dx) = C̃β × zβ(µ) (20)

where µ(du) = w(u)|du| on the unit circle S1 (|du| = dφ if u = eiφ).
Remark : in many textbooks, M̂1 is realised as the space of real structures
on CN , and M̂4 as the space of quaternion structures on C2N . The alternative
realisations proposed here seem less well-known, but more concrete, so to speak.

5.2 Grassmann manifolds

Consider the following Lie groups (again, for the notation, see [1]).

β Gβ Uβ Kβ

1 O(p, q) O(p+ q) O(p)×O(q)

2 U(p, q) U(p+ q) U(p)× U(q)

4 Sp(p, q) Sp(p+ q) Sp(p)× Sp(q)

Then, Mβ ≃ Gβ/Kβ is a Riemannian symmetric space, with dual M̂β = Uβ/Kβ .
The Mβ may be realised as follows [9] (K = R,C or H, according to β),

Mβ = {x : x is a p-dimensional and space-like subspace of Kp+q} (21)
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Here, x is space-like if |ξp|2 − |ξq|2 > 0 for all ξ ∈ x with ξ = (ξp , ξq), where | · |
denotes the standard Euclidean norm on Kp or Kq. Moreover, for each x ∈ Mβ ,
x = k(xτ ) where k ∈ Kβ and xτ ∈ Mβ is spanned by the vectors

cosh(τj)ξj + sinh(τj)ξp+j j = 1, . . . , p

with (ξk; k = 1, . . . , p+ q) the canonical basis of Kp+q, and (τj ; j = 1, . . . , p) real
(p ≤ q throughout this paragraph).

If f : Mβ → R is Kβ-inariant, f(x) = f(τ), the right-hand side of (1) reads
(the positive reduced roots can be found in [10])

Cβ

∫
Rp

f(τ)

p∏
j=1

sinhβ(q−p) |τj | sinhβ−1 |2τj |
∏
i<j

|cosh(2τi)− cosh(2τj)|β dτ (22)

and this can be transformed into the form (3), by introducing uj = cosh(2τj).
This will re-appear, with β = 2 and p = q, in the following paragraph.

Now, the duals M̂β are real, complex, or quaternion Grassmann manifolds,

M̂β = {x : x is a p-dimensional subspace of Kp+q} (23)

For each x ∈ M̂β , x = k(xθ) where k ∈ Kβ and xθ is spanned by the vectors

cos(θj)ξj + sin(θj)ξp+j j = 1, . . . , p

with (θj ; j = 1, . . . , p) real.
If f : M̂β → R is Kβ-inariant, f(x) = f(θ), the right-hand side of (2) reads

Cβ

∫
(0,π)p

f(θ)

p∏
j=1

sinβ(q−p) |θj | sinβ−1 |2θj |
∏
i<j

|cos(2θi)− cos(2θj)|β dθ (24)

which can be transformed into the form (11), by introducing uj = cos(2θj).
In [4], this is used to recover the Jacobi ensembles of random matrix theory.
Remark : the angles θj may be taken in the interval (−π/2, π/2) instead of
(0, π). In this case, |θj | are the principal angles between xθ and the subspace
xo spanned by (ξj ; j = 1, . . . , p). By analogy, it is natural to think of |τj | as the
‘principal boosts’ (using the Language of special relativity) between xτ and xo .

5.3 Classical domains

Consider, finally, the following Lie groups (again, for the notation, see [1]).

β Gβ Uβ Kβ

1 Sp(N,R) Sp(N) U(N)

2 U(N,N) U(2N) U(N)× U(N)

4 O∗(4N) O(4N) U(2N)
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Then, Mβ ≃ Gβ/Kβ is a Riemannian symmetric space, with dual M̂β = Uβ/Kβ .
The Mβ are realised as classical domains, whose elements are N × N complex
matrices (if β = 1, 2) or 2N×2N complex matrices (if β = 4), with operator norm
< 1, and which are in addition symmetric (β = 1) or antisymmetric (β = 4).

If β = 1, 2, then any x ∈ Mβ may be written

x = k1(tanh(λ))k2 (25)

where k1 and k2 are unitary (k2 = ktr1 , in case β = 1), and λ is real diagonal.
However, if β = 4,

x = k

(
− tanh(λ)

tanh(λ)

)
ktr (26)

where k is 2N×2N unitary. If f : Mβ → R is Kβ-invariant, and f(x) =
∏

w(λj),∫
Mβ

f(x)vol(dx) = C̃β

∫
RN

N∏
j=1

w(λj) sinh |2λj |
∏
i<j

|cosh(2λi)− cosh(2λj)|β dλ

After introducing uj = cosh(2λj), this immediately becomes∫
Mβ

f(x)vol(dx) = C̃β × zβ(µ) (27)

where µ(du) = w(acosh(u)/2)du on the interval I = (1,∞).
Remark : the domain M2 is sometimes called the Siegel disk. As an application
of (27), consider a random x ∈ M2 with a Gaussian probability density function

p(x|x̄, σ) = (Z(σ))
−1

exp

[
−d2(x, x̄)

2σ2

]
(28)

with respect to vol(dx), where d(x, x̄) denotes Riemannian distance and σ > 0.
Then, following the arguments in [6], (27) can be used to obtain

Z(σ) = C̃2 × det {mk+ℓ(σ)}N−1
k,ℓ=0 mj(σ) =

∫ ∞

1

exp
(
−acosh2(u)/8σ2

)
uj du

The integrals mj(σ) are quite easy to compute, and one is then left with a deter-
minantal expression of Z(σ). The starting point to the study of the random ma-
trix x is the following observation. If x is written as in (25) and uj = cosh(2λj),
then the random subset {uj ; j = 1, . . . , N} of I = (1,∞) is a determinantal
point process (see [11]). By writing down its kernel function, one may begin to
investigate in detail many of its statistical properties, including asymptotic ones,
such as the asymptotic density of the (uj), or the asymptotic distribution of their
maximum, in the limit where N → ∞ (of course, with suitable re-scaling).
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6 Future directions

The present submission developed determinantal expressions for integrals on
symmetric spaces on a case-by-case basis, only through a non-exhaustive set of
examples. Future work should develop these expressions in a fully general way,
by transforming (1) and (2) into (3) or (11), for any system of reduced roots.

The long-term goal is to understand the random matrix theory of symmetric
spaces. One aspect of this is to understand the asymptotic properties of a joint
probability density (in the notation of (1))

f(a)
∏
λ∈∆

sinhmλ |λ(a)| da

and analyse how these depend on the set of positive reduced roots ∆. It is worth
mentioning that, in previous work [6], it was seen that a kind of universality
holds, where different root systems lead to the same asymptotic properties.

Random matrix theory (in its classical realm of orthogonal, unitary, and
symplectic ensembles) has so many connections to physics, combinatorics, and
complex systems in general. A further important direction is to develop such
connections for the random matrix theory of symmetric spaces.
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