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ABSTRACT: The human handwritten signature is considered to be a significant biometric trait. In the case of offline signatures, 

the problem is addressed as an image recognition task. On the other hand, the visual representation of symmetric positive 

definitive matrices, usually by means of the covariance descriptor of the image feature maps, forms a specific Riemannian 

manifold with a widespread usage and a favorable performance in a plethora of applications. Surprisingly, no records of offline-

signature-verification-oriented research in the space of symmetric positive definitive matrix have been found up to now. In this 

work, we propose, for the first time in offline signature-verification literature, mapping of handwritten signature images in points 

of the tangent space of a connected symmetric positive definitive manifold for verification purposes. Furthermore, based on the 

principles of differential geometry, we address the notorious limited training problem of offline signature verification in this 

manifold by proposing two different feature augmentation methods. The efficiency of the proposed method is evaluated using 

three popular datasets of Western and Asian origin. Error rates against skilled and random forgery in both baselines as well 

augmentation scenarios are strong indicators of the informative and highly discriminative nature of symmetric positive definitive 

manifold oriented representation. 
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1. Introduction  

The authentication of the consent or presence of a human, by means of the signature, has been, an intriguing biometric 

authentication problem [1]. No need to say that signature-verification (SV) oriented research either online (or dynamic) or offline 

(or static) has considerable advancements. This is mainly due to the following four major facts: a) handwritten signatures like 

other behavioral traits cannot be forgotten, lost or stolen, b) signatures, contrary to other physiological biometric traits, have a 

natural variability, defined hereafter as intra-class variability which is the crucial factor for efficient verification, c) signatures are 

accepted as a social interface in a number of different types of societies as a trusted and non-invasive way to declare his/hers 

identity and d) it allows the fusion of several other scientific areas given the fact that the handwritten signature is an outcome of a 

cognitive task.  

Review papers and surveys in SV [1-4], commonly categorize the methods as either dynamic-online (i.e. signal vs. time) [5-7] or 

static-offline (i.e. image) [8-13]. An alternative classification of offline signature verification methodologies divides them into a) 

handcrafted methods, which mainly utilize image processing and computer vision techniques and b) data-driven or learning-

based approaches with typical representatives Bags of Visual Words [14, 15] sparse representation [11] and deep learning 

methodologies [8,12, 16-26]. The latter, address the problem by utilizing either classification [19, 27, 28] or metric learning [20, 

21, 29] losses trained only with genuine samples [20, 30], or even along with skilled forgeries [12, 29]. The resulting network is 

contained within the feature extraction stage providing a vectored representation for any new test signature image [12, 19, 31, 

32]. A number of deep learning based topologies are obtained by examining different loss functions [31] and similarity strategies 

[8,10, 30] commonly used on the dominant SigNet architecture. Also, post feature management methods are applied, exploiting 

the effectiveness of the extracted vectors [13, 33]. 

Another categorization differentiates them into Writer Dependent (WD) or Writer Independent (WI) according to the verification 

strategy that is followed [33-35]. In the WD approach a dedicated classifier is trained for each signatory with his/her reference 

samples [36-37]. They can perform efficiently with few reference samples, especially when synthetic signature samples are used 

[13, 38, 39]. The WI approach usually learns one global classifier which attempts to model the probability distribution between 

a) the intra-class of genuine-genuine pairs of signatures and b) the inter-class of genuine-forgery pairs by forming a 

(dis)similarity distance space [33, 35, 40, 41]. Deep learning based methods such as Attention Siamese networks [25] and Static-

Dynamic Interaction Networks [26] have been also proposed.  

The objective of offline signature verification methods is to provide a compact representation that efficiently captures the 

significant properties of the handwritten image. Such a representation should rely on a number of criteria like: (i) ability to 

uniquely characterize the signature contents, (ii) robustness under any potential deformations, affine or not, and (iii) stability and 

tolerance to occlusions. Simple descriptors such as normalized histograms of global or local patches of an image have been 

reported to partially fulfil criteria (i)-(iii). It is well known that one may advance any simple descriptor by appending additional 

image statistics such as edge orientations. Nevertheless, this idea comes with a cost; the existence of high-dimensional 

descriptors. An effective representation that integrates such multi-modal layers of information at a low dimensionality cost was 

introduced in [42], with the notion of the region covariance descriptors. The idea was to model a local part of the image using 

associations among different low-level layers of information. To this end, region covariance matrices are examples of symmetric 

positive definitive (SPD) matrix-based visual representations with favorable performance in a plethora of computer vision 

applications [43-46]. Remarkably, literature search shows that, to the author’s best knowledge, no prior work has been presented 

which models the handwritten signature with the use of symmetric positive definitive matrices. Inspired by their use in visual 

representation, we introduce them in offline signature verification literature. The concept is relatively simple, since we compute 

new image planes such as intensity gradients, etc. and then we stack these raw features and compute their global (i.e. on the 

entire image) covariance matrix, resulting in the covariance descriptor. Below are the novelty characteristics of the proposed 

approach: 



1. We propose for the first time, in the offline signature verification literature, a visual mapping of the signature image by 

measuring non-linear relations between pixel locations and values with the corresponding feature covariance matrix. This kind of 

non-Euclidean mapping maps a handwritten signature image into a point that relies on a special type of Riemannian homogenous 

space, namely, the symmetric positive definitive manifold. As a result, the concepts and algorithms of differential geometry can 

now be applied since covariance matrices are more naturally viewed through postulates and applications of curved geometry. 

This is important because, quite often, machine learning algorithms assumes that the input data forms vectors in Euclidean space. 

But what if the input data is immersed into a non-Euclidean space? Ignoring this geometrical constraint on the intrinsic structure 

of data may provide suboptimal results. It is worth noting here that we incorporate the geometry of the space by working with 

data sampled from a manifold whose geometry is well known, and do not pursue to learn the structure of the manifold as in 

manifold-learning procedures.  

2. In order to address the notorious limited training data curse of pattern recognition, especially in offline signature verification 

[13, 24] we propose two methods for feature points augmentation or duplicates. To be specific, we propose two methods for the 

creation of duplicate covariance matrices when only a few (e.g. three) genuine reference covariance matrices - points are 

available for training. The first approach utilizes the notion of the geodesic curve between signature samples [47] for the creation 

of duplicates. The second one, uses fixed Riemannian Gaussian Distributions (RGD) on the space of symmetric positive 

definitive matrices [48, 49] with their maximum likelihood estimators evaluated from the samples of the learning population. 

In this work, section 2 provides the mathematical tools of the Riemannian manifold of SPD matrices. Section 3 summarizes the 

concept of the global covariance matrix and describes the way in which they are used for modelling the handwritten signature 

images. Section 4 provides two mathematical models for creating duplicates in the manifold. Section 5 describes the 

experimental methods and results. Finally, section 6 provides the conclusion. 

 

2. The Riemannian manifold of SPD matrices.  

From this point on, unless otherwise specified, bold lowercase letters (e.g. x ) denote symmetric matrices, while bold capital 

letters (e.g. X ) denote SPD matrices. Small lowercase letters (e.g. ,i jz or ,i jZ ) denote the ( , )i j  elements of a matrix, lowercase 

or capital. In computer vision we often encounter mathematical entities that do not form Euclidean spaces but instead lie on 

nonlinear manifolds. Among the most popular examples are a) the space of linear subspaces of a Euclidean space formally 

known as the Grassman manifold and b) the space of SPD matrices. Following [50], we define a topological manifold (or simply 

manifold) as a topological space that is locally homomorphic to the n-dimensional Euclidean space n . A differentiable 

manifold is a manifold that has a globally defined differential structure. This allows us to define derivatives (velocities) of curves 

on the manifold. The derivatives at any point X  on the manifold lie in a vector space TX which is expressed by symmetric 

matrices. The TX is the tangent space of the X  point (or pole) which provides all possible curves that pass through it.  

A Riemannian manifold M is defined as a differentiable manifold with a smoothly varying inner product ,
MX

 on each point 

and corresponding tangent space [51]. In other words, we say that the Riemannian manifold is equipped with a corresponding 

Riemannian metric or norm of a tangent vector  Xy T such that 
2

y 
X X

y y . This allows us to define a number of useful 

geometric properties on the manifold such as (a) the angle between two curves passing through a point and (b) the length of a 

curve connecting two points. The shortest curve connecting two points X  and Y  is always a geodesic curve (a curve of zero 

acceleration). Its length defines the corresponding geodesic distance ( , )d X Y  and intuitively, geodesics is analogous to straight 

lines in n . Given a point MX  and a tangent vector T Xy , a unique geodesic curve ( )tΓ  exists such as (0) Γ X  and its 

time derivative ( )t Γ y . The Riemannian exponential map :exp T MX x  is defined by ( ) (1)exp X y Γ . In the following, we only 

consider Riemannian manifolds which verify the identity ( , ( ))d exp X X
X y y  and which have a well-defined logarithm map: 



1 :log exp M T X X X
. In this case, it follows that ( , ) log ( )d Y X X

X Y  and therefore a closed-form expression for the distance 

between points X  and Y  exists. 

 

2.1. The Riemannian SPD manifold 

Let nM P  denote the space nP  of all n n  real matrices Z which are symmetric and strictly positive definite: T  Z Z 0  and 

Tv v Z 0 , for all nv . This section considers the Riemannian geometry of the space nP  when it is equipped with the Rao-

Fisher metric [52], defined by the inner products  1 1 2[ ]tr  
X

x y Y xY y  for ,  Xx y T , where tr. denotes the trace of a matrix. For 

this metric, the geodesic ( )tΓ  connecting two points X  and Y  is given by the one-valued parametric curve: 

1 2 1 2 1 2 1 2( ) ( )tt  Γ X X YX X , [0,1]t    (1) 

so that (0) Γ X  and (1) Γ Y . This directly implies the Riemannian exponential and logarithm maps: 

1 2 1 2 1 2 1 2( ) ( )exp exp   XY y X X yX X
  (2) 

1 2 1 2 1 2 1 2log ( ) ( )log   Xy Y X X YX X
  (3) 

as well as the geodesic distance, called Rao’s distance:  

2 1 2 1 2 2 2

1
( , ) [ ( )] ( )

n

ii
d tr log log 


 X Y Y XY  (4) 

where i are the eigenvalues of 1 2 1 2
Y XY . All matrix functions appearing in ( )tΓ  and eqs. (1-3) should be treated as symmetric 

matrix functions [53]. The Rao-Fisher metric turns the space nP  into a Riemannian homogeneous space under the action of the 

linear Group GL(n) of n n  real invertible matrices. This means that for any , nPX Y  here is a matrix ( )GL nA  which acts on 

nPX  by a congruence transformation (  ) defined as: ( , ) X A X A , T X A A XA in such a way that  X A Y . In addition, 

the Rao-Fisher metric remains invariant under the action of GL(n) on nP  [49] . Figure 1, presents a graphical illustration of the 

aforementioned topics and at the same time provides a description of the proposed method. Any signature image I is modelled 

with one SPD matrix Y (i.e. a point at the nP  manifold). Next, the Y matrix is mapped on the tangent plane of a common pole 

n nI . This creates the tangent vector ywith respect to a common tangential origin log ( )
n nn n n n  I0 I . Finally, the feature vector 

arises by evaluating the orthonormal coordinates of the tangent vector y in the n nI  common pole tangent space by a) applying 

the vector operator 
9 9

( )vec
I y as: 1 2 1 2( ) ( )

n n n n n nvec


 

  Iv y I yI  and b) selecting its n(n+1)/2  components according to: 

1,1 1,2 2,3 ,[ ,  2 ,...,  ,  2 ,..,  ]n n2,2v v v v v . 

 

3. Covariance descriptors for offline SV 

Let w hI   be a gray scale or binary image of w-columns and h-rows and w h nF   be a corresponding feature map stack with 

n raw image planes, evaluated from I with the use of a number of filters: ( , ) ( , , )F x y I x y . The function   can be any type of a 

series of mappings such as intensity, gradients, pixel locations, filter mappings, etc. Given a rectangular region F , let 

1,2,,,{ } n S

i i S



 f f , be a local feature map of S total pixels that reside on  . Then, the region   is modelled by the covariance 

matrix n nC 

  of the n

i f  points evaluated as: 

1

1
( )( )

1

S T

i ii
C

S
 
  


 f μ f μ    (5) 
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Fig. 1. A signature image is represented by its corresponding CR matrix (one manifold point Y at the P9 SPD manifold). The logarithmic map 

computes the tangent vector y with respect to a common manifold pole 
n nI and its corresponding origin 

n n0  of the tangent plane. Then, a 

vector operator is applied on the tangent vector y in order to have the final feature vector. The Green line represents the geodesic from the 

manifold origin 
n nI to Y.  

 

where nμ represents the column mean vector of the if points and T denotes the transpose operator. This approach describes 

an accepted way for incorporating multiple types of features with potential correlation among them. It has been reported that 

C
is a powerful matching descriptor in scenarios which contain scenes with the object of interest, even in cases that the object is 

deformed in different views and poses [54]. The C
has a noise removal attribute due to the average filtering during its 

computation. In addition, C
does not have any explicit information regarding the position of pixels, which implies an inherent 

scale and rotation invariance over the region under examination. An appealing property comes from the fact that C is considered 

to be low dimensional; it has only ( 1) 2n n  different values. For every image under examination, the preprocessing step can be 

found in [11] and includes typical image processing steps as: thresholding with Otsu’s method and thinning. The pruning level of 

thinning utilizes an automated algorithm originally proposed in [11] which measures an average 5 5 differential patch density 

of the image with respect to the applied thinning level. Next, the median value of the individual pruning levels of each signature 

image that belongs to the training set is set as the selected pruning level for any further image processing in both training and 

testing stages. 

 

3.1. Global covariance descriptor for offline SV 

For the addressed offline SV problem we define the following mapping ( , , )pI x y of an initial signature image ( , )I x y as: 

 
1

2 2

, , , , , , , ,[ , , , , , , tan , , ]p p x p y p xx p yy p x p y p y p x n nI I I I I I I I I x y


   (6) 

in which, ( , )p pI I x y  is the grayscale signature image after the preprocessing step, , , , ,, , ,p x p y p xx p yyI I I I  are the first and 

second derivatives of ( , )pI x y in both image directions, ,n nx y  are the signature pixel coordinates, normalized by the maximum 

number of rows and lines of the image bounding box and  
1

, ,tan p y p xI I


 is the gradient direction, normalized into radians with 

range varying from [-π, π). The corresponding signature covariance matrix SCMC of any image is evaluated with eqs. (5-6) but 

under the constraint that only the pixels that are part of the signature trace of the preprocessing step contribute to the computation 

of SCMC . Therefore, any signature image results in a 9 9SCMC 

  point ( SCMC P9) therefore inheriting an intrinsic 

dimensionality of 45= 9(9 1) 2 . In the unlike case that SCMC is not strictly positive definite, it can be converted into an SPD 

matrix by adding a small regularization term 9 9xI  where   has a small coefficient value set to 10-4 and I9×9 is the identity 



matrix [55]. Therefore the SCMC
captures global characteristics of the signature image. The use of arbitrary-sized detection 

windows has not been addressed in this work for simplicity reasons and it is a subject of ongoing research. Figure 2 shows the 

construction of a SCMC
for one handwritten signature image.  
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Fig. 2. Creation of the SCMC : Original image and output of the filters. For a specific signature pixel marked with “x” in all filters-planes a 

column stack of values is created. Then, for all signature pixels, we compute its SCMC .  

 

4. Creating duplicates in the SPD space 

A challenging topic in Pattern Recognition and apparently in signature verification is to address the deficiency of available 

genuine reference samples for training as well as the need for training without any skilled forgeries [56]. This lack usually occurs 

due to the fact that, in a typical real-world acquisition scenario, persons do not undertake easily the task of creating several 

signature samples. In order to address this shortage, among others strategies, data augmentation algorithms have been introduced 

and reported more and more often, which provide synthetic signatures by duplicating real signature images [13, 57-59]. Another 

recent work [24] proposes a convolutional neural network model for offline HSV, called SigCNN, and utilize CycleGAN in style 

transfer fields to generate realistic offline signatures from online specimens and their duplicates. Also Maruyama et al. in [13] 

have proposed a duplicate feature generation process with notable results. Therefore it seems quite motivating to duplicate 

features instead of the signature itself. The improvement of the proposed SV duplication in terms of performance is associated 

with the way the duplicated signatures can model the intra and inter writer variability. This section proposes two methods for 

generating signature duplicates on the SPD space. The duplicates will be employed to augment the positive class of the training 

stage of the classifier in order to provide balanced populations between the positive and negative class populations. 

 

4.1. Data augmentation on the geodesic curve 

The parametric form of the geodesic curve ( ) nt PΓ  between two manifold points X and Y is given by eq. (1). Intuitively recall 

that the curve ( ) nt PΓ  is an infinite collection of manifold points in the geodesic defined with a one-dimensional parameter t. 

Therefore, given X and Y as the two ends of the geodesic curve we sample the [0,1]t  parameter of eq. (1) in order to create 

duplicate manifold points. In this work, two different variants of the parameter t are used. The first category, defined by the tGG 

parameter, provides duplicate manifold points on the geodesic between two genuine reference samples. Therefore, we create 

duplicate points on the manifold that share common attributes between genuine reference samples on a path at the geodesic. In 

all experiments, the tGG parameter was considered to be a random variable drawn from a uniform distribution tGG~U(0.2, 0.9). 

The second category, defined by the tGRF parameter, provides duplicate SPD points on the geodesic between a reference sample 

and genuine samples of other writers, commonly known as random forgeries. Therefore we create SPD points that mimic the 

inter-variance of the genuine reference samples. In all our experiments, the tGRF parameter takes one of two discrete relative 

small values tGRF ∈ {0.05, 0.1} and mimics the “genuine” side of the reference signatures. Figure 3, provides an illustration of the 



geodesic-based duplicate method. Note that one could also provide duplicates between genuine duplicates and random forgeries 

etc. 
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Fig. 3. Illustration of the geodesic inspired duplicator. Red boxes, are genuine reference manifold points which are represented on the P9 

manifold with red ‘x’. Green box is a random forgery, marked with green ‘o’. (Left): geodesic curve between genuine samples along with 

duplicates (red ‘D’) by using the tGG parameter. (Right): geodesic curve between genuine and random forgery samples along with duplicates 

(green ‘D’) by using the tGRF parameter. 

 

4.2. Data augmentation with RGD’s. 

Given a number of few SCMC  points on the SPD manifold (e.g. three) we create new duplicate points by utilizing the proposed 

Riemannian Gaussian distribution (RGD) parametric probabilistic model in the space of SPD matrices. In order to create SPD 

points with RGD’s duplicates we follow the procedure below: First, we estimate the maximum likelihood estimate (MLE) of the 

RGD parameters with the set of few reference samples. Second, we build a symmetric positive definite RGD model with these 

parameters in order to draw the SPD duplicates. The proposed class of RGD probability model was formerly introduced by 

Pennec [48], explored in [60] and then expressed in an exact mathematical form in [49]. To begin, a symmetric positive definite 

RGD  ,G C C  model is formally expressed with respect to the Riemannian volume element:  

   
1

2det
n

ij

i j

dv






 C C C   (7) 

where det(.) is the determinant, by the following probability density function: 

 
 

 2

2

,1
| ,

2

d
p exp

  

 
  
 
  

C C
C C   (8) 

where nPC  (in our case 9P ), 0   are the distribution parameters,  ,d C C  is Rao’s distance and ζ(σ) is a normalizing 

factor. Note the resemblance of eq. (8) with the typical form of the one dimensional normal distribution. To continue, given a set 

of K-independent SPD points   1:}SCM
k i kC C  = {  drawn from ,( )G C , we estimate the empirical Riemannian center of mass 

C (of C ) by evaluating the unique global minimizer of 0: K nP  [61]: 

   2

1

1
,

K

K k

k

d
K



 C C C    (9) 

The existence and uniqueness of K  holds from the proposition that if   is a probability distribution on nP  then   has a unique 

Riemannian center of mass C  which is a unique stationary point of the variance function   ([62], pp. 659). In our case, we set 

  to be the empirical distribution  
1 2

(1 ) . 
KK K     C C C  Therefore, the solution ˆK  of the following equation equals 

to the MLE ˆK of the parameter  :  



   3 log ˆ
K K

d

d
  


  C    (10) 

Again, ˆ
K  exists and is unique for any realization of the samples  kC  . Details regarding a smooth estimate of the solution of 

eq. (10) are provided in [63]. Given few samples from a reference set {Ck}, the steps required to draw from a RGD are: 

 

1. Compute the MLE ˆ
KC  (center of mass) of the  kC  by solving eq. (9). 

 

2. Compute the MLE of ˆ
K  by solving eq. (10).  For this purpose, the     normalizing factor has to be evaluated. In order to 

do so, polar coordinates have to be used for the representation of a SPD point kC  by means of its eigenvalues and eigenvectors. 

Specifically, for r=(r1,r2,…,rn) 
n  and  ,U O n  the group of n×n real orthogonal matrices we get from the spectral 

decomposition: C(r,U)=UTdiag(er)U. Due to the invariance property of the Riemannian homogeneous space, we have 

     9,   ,      C I  and: 

   
 

 

2 21 /2
1

2

1

!2 8

/ 2

i

i

n

n n r
n

n

n

i j i

i j i

n e

sinh r r dr



  

 
  

  
 

 

  

 





 

   (11) 

with  
2 /22 Γ / 2n n

n n n  , and Γn  the multivariate gamma function. In 9P  the integral is numerically evaluated.  

 

3. Compute and sample nr  from the joint RGD density  p r  with the Metropolis-Hastings algorithm. 

   
 

   

2 21 /2
1

2

1

!2 8

/ 2

i

i

n n r
n

n

i j

i j

p r n e

sinh r r





 

 
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  
 





  
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


  (12) 

4. Sample from a uniform distribution on O(n). This is achieved by setting an n×n A matrix with independent entries from N(0,1) 

and if A=UT with U orthogonal and T triangular, then U is uniformly distributed on O(n).  

 

5. From eq. (12) we obtain r and from step (4) we obtain U. Next, we use the spectral decomposition in order to synthesize and 

sample from  ,G I . Finally, due to the homogeneous property: expressed by ( , )      ( , )C G A G     C C C A , the sampling 

from Y~G(I,σ) is followed by 
1/2Y C  which in turn results to draw from a desired distribution 1/2 ( , )G  Y C C , centered on 

the empirical center of mass ˆ
KC C  or alternatively on any reference SPD point , ( , )k k kG  C   Y C C . 

 

5. Methods and experimental results  

Three offline handwritten signature datasets were used in order to evaluate the proposed SPD model. These are: the popular 

western oriented a) CEDAR [64] (24 genuine and forgery samples per user), the Indo-Aryan oriented: HINDI and BENGALI (24 

genuine and 30 forgery samples per user), which are the two sub-sets of the BHSig260 database [65] [66]. Evaluation of any 

SCMC matrix considers only the locations and original values of those signature pixels that are part of the thinned signature. 



Experiments were conducted under a writer depended (WD) framework and comply with mandatory protocols that appeared in 

classical and recent relevant papers [67, 68]. In all our experiments we designate with (duplicate method)ωL+ (number of samples & type) and 

(..)ωL-(..) the positive and negative training classes which comprise a learning set L and by ωT+
(..), ωT-

(..) the positive and negative 

training classes of the testing set T. We performed a number of popular training scenarios. The first is referred hereafter as 

Baseline#1 (LBL1) in which the learning set LBL1=[ωL+
(10G), ωL-

(50RF)] represented by the proposed features, is formed by: a) setting 

the number of genuine (G) reference samples equal to NGREF=10 for the positive class ωL+
(10G)

10 45  and b) setting the number 

of representatives of the negative class ωL-
(50RF)

50 45  to 50 random forgery (RF) samples provided by randomly selecting 

genuine samples from other writers of the respective dataset. The set LBL1 feeds a binary, radial basis support vector machine 

(SVM) classifier. In the testing stage, any questioned (Q) sample comes from one of the following categories: a) ωT+
(G) as to 

represent the remaining genuine signatures, b) ωT-
(S) as to represent the full set of the simulated or skilled (S) forgeries (i.e. 24 for 

CEDAR, 30 for Hindi and Bengali) or c) ωT-
(RF) as to represent the remaining random forgeries of all the other writers of the 

dataset. We report the results by means of the average value (10 repetitions) of two corresponding Equal Error Rates (EER) with 

two user dependent sliding thresholds. The first is the EER(S), i.e. the probability of rejecting genuine samples pFRR vs the 

probability of accepting skilled forgery samples pFAR(S), and the second is the EER(RF) i.e. the probability of rejecting genuine 

samples pFRR vs the probability of accepting random forgery samples pFAR(RF). It is important here to note that the testing stage 

does not contain the same RF samples of the Learning set. The second experimental setup referred hereafter as Baseline#2, 

(LBL2) is similar to the LBL1, but it is more challenging since it has only three (3) genuine samples for the positive class ωL+
(3G), 

and a number of 30 ωL-
(30RF) samples for its negative class. This set is similar to the case in which a limited number of training 

samples are available. In an analogous way to the LBL1 design, same quality metrics and EER(S) and EER(RF) rates were 

measured and reported. 

Next, we provide details for a number of experimental setups in which the positive class is comprised from a) the few training 

samples ωL+
(3G) and b) their duplicates designated by ωL+

(Duplicate) according to the material exposed in section 4. For the duplicate 

case provided in section 4.1 we now provide some additional clarifications. The fixed tGRF parameter accepts two values: 0.1 and 

0.01 in order to create genuine-random forgery duplicates ωL+
(D-GRF). Pairing with 50 random forgeries of the ωL-

(50RF) category, a 

total number of 3×50: ωL+
(150D-RF) positive class duplicates are created and combined with the ωL-

(50RF) negative class samples in 

order to create the first augmentation setup defined as LAUG1. In addition to the sect. 4.1 discussion we construct another scenario 

in which we set 5GG
DN  , the number of genuine pair duplicates. The corresponding tGRF parameter draws GG

DN  times from a 

uniform distribution tGG~U(0.2, 0.9). Therefore a total of ωL+
(D-GG) genuine to genuine (GG) duplicates is created. Consequently, 

GG to RF (GG-RF) duplicates can be created and appended to ω+
(Duplicate) class by pairing the aforementioned ωL+

(D-GG) samples 

and the ω-
(50RF) negative class samples; the total number of duplicates then is equal to ωL+

(750D-GGRF) duplicates. We denote this 

experimental setup as LAUG2.  

For the RGD duplicate case (section 4.2) we also provide a description of tasks. For any given population of the ωL+
(3G) samples 

we solve eqs.(9,10) for evaluation of the dispersion parameter 3ˆ ( )L
G    throughout the Karcher mean 3

ˆ ( )L
G C . Then, using steps 

(1)-(5) of section 4.2 we create duplicates by direct RGD sampling from either: i) three individual RGD distributions 

 3
ˆ( ), L

i GG   
C  in which each of the center Ci is one reference sample from the original ωL+

(3G) set and ii) three RDG’s G(Ci, 

σfixed) with σfixed equals to 0.1 or 0.01. To avoid any potential confusion we state here that the MLE Ĉ  is only used for evaluation 

of the MLE of ̂ ; therefore we did not choose to perform direct RGD sampling from the 3 3( ,ˆ ˆ( ) )( )L L
G GG    C  distribution. The 

number of direct RGD sampling based duplicates was also set to five (5) which result in a corresponding (RGD)ωL+
(15D-G) number 

of positive set samples of a new LAUG3 set. Finally, in a similar way to LAUG2, we can choose to append the (RGD)ωL+
(15D-G) set by 

pairing them with 50 random forgeries of the ωL-
(50RF) negative class samples. A total of (RGD)ωL+

(750D-GRF) is created with the tGRF 



parameter, thus creating the positive class of the LAUG3 set. The number of samples ωL- of the negative class has been set equal to 

the number of the positive class ωL+ by drawing additional random forgery samples only when ωL+ population class exceeds 50. 

Table 1 provides a summary of the proposed experimental setups. 

 

Table 1.  Summary of proposed experimental setups. 

Setup Case 

Learning Set 
Testing Set 

(+) & (-) classes (+) class (-) class 

LBL1 - ωL+
(10G) 

ωL-
(50RF) The ωT+class contains the 

remaining genuine samples  
ωT+(G) 
 
The ωT- class contains: i) all 
the (S)killed forgery 
samples ωT-(S) 

or 
ii) all the remaining 
(R)andom (F)orgery 
samples ωT-(RF).  

LBL2 - ωL+
(3G) 

LAUG1 
a ωL+

(150D-RF) ωL-
(150RF) 

b ωL+
(3G) & ω+L

(150D-RF) ωL-
(153RF) 

LAUG2 

a ωL+
(15D-GG) ωL-

(50RF) 

b ωL+
(750D-GGRF) ωL-

(750RF) 

c ωL+
(3G) & ωL+

(750D-GGRF) ωL-
(50RF) 

d ωL+
(3G) & ωL+

(15D-GG) & ωL+
(750D-GGRF) ωL-

(768RF) 

LAUG3 
a (RGD)ωL+

(15D-G) 
ωL-

(50RF) 
b ωL+

(3G) & (RGD)ωL+
(15D-G) 

LAUG4 
a (RGD)ωL+

(15D-G) ωL-
(750RF) 

b ωL+
(3G) & (RGD)ωL+

(15D-G) ωL-
(753RF) 

 

5.1. Results 

The experiments were conducted 10 times and averages of user dependent EER’s in both (S) and (RF) scenarios are shown in 

table 2. Commenting on the results, we primarily note the improved performance of the random forgery experiment when 

compared to the skilled forgery one, something that is a reasonable outcome. We also note the low verification error rates 

derived with the typical setups of the LBL1 with 10 reference samples as well as the limited training sample setup LBL2 with 

only three samples. Tables 3 and 4 provide the verification errors when covariance matrix augmentation actions are taking place. 

When we consider geodesic based duplicates we observe that the lowest verification error rates are derived when tGRF=0.05 for 

the case of creating duplicates located on the geodesic between genuine reference samples and random forgeries. On the other 

hand, if we set tGRF=0.1, a minor degradation in verification efficiency is observed. Similar issues are observed when RGD 

duplicates are also created. The weakest verification efficiency is obtained when the random forgeries do not participate in the 

formation of the duplicates and we estimate the parameter σ with 3ˆ ( )L
G   . On the other hand, low error rates are observed, when 

σ is estimated with 3ˆ ( )L
G    and we utilize random forgeries by taking tGRF=0.05 (with similar error rates observed when 

tGRF=0.1). In the case of manually setting σ, improved verification results are obtained when σ=0.01, with an additional minor 

improvement when random forgeries are participating in the creation of duplicates. This is a quite interesting result; one may 

observe from the joint RGD density (section 4.2, step 3) that r~p(r) provides the exp(r) term needed for the spectral 

decomposition (and synthesis) with values near 1, or near the volume of any Ck sample with the use of eq.(12). We know that the 

eigenvalues of a covariance matrix are representative of the hyper-ellipsoid volume that embeds the 9-dimensional signature 

pixels feature maps. So, this might be an indication that the improvement of the duplicate method is mainly due to the sampling 

from O(n) by means of the orthogonal matrix U which is uniformly distributed on O(n). 

 

Table 2.  Baseline error rates (EER(S) & EER(RF) %) 

Baseline# 
& #Refs 

EER(S) & EER(RF) user_thresholds 

CEDAR HINDI BENGALI 
LBL1(10G) 0.49(S) 0.03(RF) 1.00(S) 0.30 (RF) 0.27(S) 0.09(RF) 
LBL2(3G) 1.18(S) 0.14(RF) 2.50(S) 0.69 (RF) 1.52(S) 0.41 (RF) 



 

A summary of some recent state-of-the-art (SOTA) results is shown in Tables 5 and 6 for both baselines and augmentation writer 

dependent setups. Table 5 contains direct comparisons (i.e. same experiments, same random seeds in the selection of genuine 

samples and RF’s in the 10-fold repetition) with the methods that have been developed by the majority of the authors in other 

publications [9, 11]. We also provide a comparative summary with characteristic methods found in the literature given the fact 

that a more thorough comparison is not feasible given the numerous and diverse nature in the design and implementation of the 

system’s stages. We additionally report here other augmentation research efforts i) the work of Yapici et al. [57] which utilized a 

novel cycle-GAN topology for generating synthetic signature images but did not evaluate the used datasets, ii) the work of 

Prajapati et al. [69] which exploited autoencoders for synthetic signatures; but it was restricted on a private Persian dataset and 

iii) the work of Ruiz et al. [58] tested only with random forgeries. We feel that that the proposed method is definitely worthy a 

new line of research for OSV.  

Table 3. Error rates (EER(S) & EER(RF) %) for augmentation methods and duplicates placement 

on the geodesic curve. 

Setup Case tGRF CEDAR HINDI BENGALI 

LAUG1 

a 
0.05 0.51(S) 0.12(RF) 1.65(S) 0.44(RF) 1.06(S) 0.32(RF) 

0.10 0.55(S) 0.13(RF) 1.65(S) 0.44(RF) 1.07(S) 0.32(RF) 

b 
0.05 0.49(S) 0.12(RF) 1.62(S) 0.43(RF) 1.02(S) 0.31(RF) 

0.10 0.52(S) 0.12(RF) 1.61(S) 0.43(RF) 1.05(S) 0.32(RF) 

LAUG2 

a 
0.05 0.67(S) 0.14(RF) 1.72(S) 0.54(RF) 1.27(S) 0.38(RF) 

0.10 0.73(S) 0.18(RF) 1.80(S) 0.60(RF) 1.24(S) 0.36(RF) 

b 
0.05 0.49(S) 0.10(RF) 1.65(S) 0.46(RF) 0.99(S) 0.25(RF) 

0.10 0.51(S) 0.12(RF) 1.65(S) 0.45(RF) 0.99(S) 0.25(RF) 

c 
0.05 0.64(S) 0.13(RF) 1.62(S) 0.45(RF) 1.21(S) 0.42(RF) 

0.10 0.70(S) 0.18(RF) 1.65(S) 0.45(RF) 1.18(S) 0.33(RF) 

d 
0.05 0.45(S) 0.09(RF) 1.60(S) 0.43(RF) 0.90(S) 0.23(RF) 

0.10 0.47(S) 0.10(RF) 1.60(S) 0.43(RF) 0.95(S) 0.23(RF) 

 

Table 4.  Error rates (EER(S) & EER(RF) %) for augmentation methods and duplicates placement 

with RGD’s. 

RGD Parameters 

DATASET 

CEDAR HINDI BENGALI 

 LAUG3 (Case a) 

G(Ci, 3ˆ ( )L
G   ) 5.27(S) 2.42(RF) 13.9(S) 4.87(RF) 10.9(S) 3.41(RF) 

G(Ci,0.01) 0.49(S) 0.12(RF) 1.67(S) 0.54(RF) 0.88(S) 0.23(RF) 
G(Ci,0.1) 4.77(S) 2.21(RF) 11.2(S) 3.70(RF) 1.76(S) 0.55(RF) 
 LAUG3 (Case b) 

G(Ci, 3ˆ ( )L
G   ) 5.15(S) 2.28(RF) 13.0(S) 4.22(RF) 10.2(S) 3.24(RF) 

G(Ci,0.01) 0.49(S) 0.10(RF) 1.60(S) 0.42(RF) 0.85(S) 0.22(RF) 
G(Ci,0.1) 4.75(S) 2.18(RF) 12.1(S) 4.01(RF) 1.43(S) 0.40(RF) 
 LAUG4 (Case a), tGRF=0.05 

G(Ci, 3ˆ ( )L
G   ) 0.69(S) 0.14(RF) 1.72(S) 0.55(RF) 1.24(S) 0.41(RF) 

G(Ci,0.01) 0.49(S) 0.11(RF) 1.60(S) 0.42(RF) 0.86(S) 0.22(RF) 
G(Ci,0.1) 1.55(S) 0.16(RF) 1.89(S) 0.58(RF) 5.12(S) 1.76(RF) 
 LAUG4 (Case b), tGRF=0.1 

G(Ci, 3ˆ ( )L
G   ) 0.74(S) 0.15(RF) 1.82(S) 0.57(RF) 1.41(S) 0.53(RF) 

G(Ci,0.01) 0.55(S) 0.11(RF) 1.62 (S) 0.45(RF) 0.92(S) 0.25(RF) 
G(Ci,0.1) 1.73(S) 0.18(RF) 2.13(S) 0.63(RF) 5.22(S) 1.80(RF) 

 

 



Table 5.  Comparative summary of EER(S) % for WD baseline SOTA methods on skilled forgeries. 

The results reported on refs [11] and [9] are a direct comparison (i.e. same verification protocol) to 

the proposed. 

Method(Ref) CEDAR HINDI BENGALI 

SigNet/F/SPP [12] 3.60(10G) - - 
K-SVD/OMP [11] 0.79(10G) 1.05(10G) 0.44(10G) 
Hybrid Texture [70] 1.64(16G) 10.9(16G): for all (260) writers 
RNN’s [8] 0.01(12G) 0.43(12G) 0.36(12G) 
Deformations [16] 3.89(12G) 9.01(8G) 8.21(8G) 
Texture features [65] - 24.4(8G) 33.8(8G) 
CNN-CoLL [22] 2.50(3G) - - 
Visibility Graphs [9] 0.51(10G) 1.02(10G) 0.32(10G) 
Deep metric net [23] 1.67(12G) - - 
Stroke aware GAN [24] 3.31(10G) - - 
Proposed (LBL1) 0.49(10G) 1.00(10G) 0.27(10G) 

 

 

Table 6.  Comparative summary of error rates (EER%) for WD SOTA with some augmentation 

methods on skilled forgeries. 

Method (Ref) CEDAR HINDI BENGALI 

Duplicator: [13, 71] 3.04(3G)[13] - 6.06(5G)[71] 
Gaussian noise: [13] 0.82(3G) - - 
Stroke aware GAN [24] 5.65(3G) - - 
Proposed (RGD’s) 0.49(3G) 1.62(3G) 0.86(3G) 

 

6. Conclusions 

For the first time in offline SV we map signatures in the SPD manifold and in a common pole tangent space. Two new 

approaches are employed in order to cope with the limited training issue of SV in the view of the SPD manifold space. 

Experiments with a) a baseline setup, b) limited reference samples and c) the proposed duplicates were conducted in three 

popular datasets. Ongoing research includes the porting of the SPD manifold into the WI signature verification domain with 

more signature datasets that use different SPD metrics in order to propose a robust WI classifier. 
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