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Decentralized PI-control and Anti-windup in Resource Sharing Networks

Felix Agner1,⋆,†, Jonas Hansson1,∗, Pauline Kergus2, Anders Rantzer1,†, Sophie Tarbouriech3, Luca Zaccarian3,4

Abstract— We consider control of multiple stable first-order
systems which have a control coupling described by an M-
matrix. These agents are subject to incremental sector-bounded
nonlinearities. We show that such plants can be globally
asymptotically stabilized to a unique equilibrium using fully
decentralized proportional integral anti-windup-equipped con-
trollers subject to local tuning rules. In addition, we show that
when the nonlinearities correspond to the saturation function,
the closed-loop asymptotically minimizes a weighted 1-norm
of the agents state mismatch. The control strategy is finally
compared to other state-of-the-art controllers on a numerical
district heating example.

Index Terms— Energy Systems, Constrained Control, Decen-
tralized Control

I. INTRODUCTION

In this paper we consider the control of agents sharing a

central distribution system with limited capacity as in [1].

We investigate systems where the positive action of one

agent negatively impacts others. This type of competitive

structure can arise in many domains, for instance internet

congestion control [2], [3] and district heating systems [4].

In the district heating scenario, the structure arises because of

the hydraulic constraints of the grid. If one agent (building)

locally decides to increase their heat demand by opening

their control valves, this will lead to higher flow rates and

greater frictional pressure losses. These losses make it so that

other agents now receive lower flow rates [4]. We consider

a simple description of such systems as follows. Let xi be

the state of each agent i. Then

ẋi = −aixi +

n
∑

j=1

Bi,jsat (uj) + wi (1)

where ai ∈ R and ai > 0, ui ∈ R is the control action of

each agent i, and B ∈ R
n×n having elements Bi,j represents

the network interconnection between the agents. wi ∈ R

is a disturbance on agent i. The saturation function sat (·)
represents the limitations of the network, but in the later

analysis we consider a richer class of nonlinear functions. To
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3LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
4Department of Industrial Engineering, University of Trento, Trento, Italy
†This work is funded by the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation program under
grant agreement No 834142 (ScalableControl).

∗This work was partially funded by Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

capture the resource-sharing aspect of the system we consider

the case where B is an M-matrix satisfying Bi,i > 0 and

Bi,j ≤ 0 when i 6= j.

In this work, we analyze (1) under a fully decentralized PI

(proportional-integral) control strategy. Semi-decentralized

control strategies for multi-agent systems have been consid-

ered in the following works. In [5], each networked agent

is equipped with a local controller that receives the control

input of its neighbors. In [6], semi-decentralized anti-windup

was considered for stable SISO plants that are decentralized

in the linear domain, but become coupled during saturation.

This is demonstrated on unmanned aerial vehicles. These

and other works focus on stabilization when the disturbance

w in plant (1) is energy bounded. In this work we focus

instead on the asymptotic properties of plant (1), which

become important when w is expected to vary slower than

the system and can be assumed constant. We show that our

strategy minimizes asymptotic costs of the form
∑n

i=1
ci|xi|.

Previous works considering asymptotic optimality for plants

of the form (1) are [7] and [1]. In [7], it was shown that

the static controller u = −B⊤x asymptotically minimizes

the cost x⊤Ax + v⊤v where A = diag(a1, a2, · · · , an) and

v = sat (u). This result also extends to the case when B
is not an M-matrix. In [1], it was shown that, when B is

an M-matrix and w fulfills certain criteria, decentralized PI-

controllers with a rank-one coordinating anti-windup scheme

can minimize the cost maxi |xi|. Both of these control strate-

gies maintain certain scalability properties: With u = −B⊤x
[7], any sparsity structure in the B-matrix is maintained

and the rank-one coordination scheme of [1] admits scalable

implementations. However, the most scalable control solution

is one that is fully decentralized. In general, it is non-

trivial that decentralized PI-controllers are stabilizing, let

alone fulfill any optimality criterion. In this paper we manage

to not only show the aforementioned asymptotic optimality

properties. We also show that the resulting equilibrium is

globally asymptotically stable under decentralized controller

tuning rules.

The paper is organized as follows. Section II presents the

considered plant and control strategy. Section III presents

the main results of the paper, namely equilibrium existence

and uniqueness, global asymptotic stability, and equilibrium

optimality for our considered closed-loop. A motivating nu-

merical example consisting in the flow control of a simplified

district-heating network is subsequently given in section IV.

The proofs of the main results are presented in sections V,

VI, and VII respectively. Conclusions and future work are

covered in section VIII.

http://arxiv.org/abs/2311.00433v1


Notation: vi denotes element i of vector v ∈ R
n, Ai

denotes row i of matrix A ∈ R
n×m, and Ai,j denotes its

(i, j)-th element. A matrix A is strictly diagonally row-

dominant if |Ai,i| >
∑

j 6=i |Ai,j | for all i. A is strictly

diagonally column-dominant if A⊤, denoting the transpose

of A, is strictly diagonally row-dominant. Let the 2-norm of

a vector x ∈ R
n be given by ‖x‖2 = (

∑n
i=1

x2
i )

1/2. Let the

1-and-infinity-norms of a vector x ∈ R
n be given by ‖x‖1 =

∑n
i=1

|xi| and ‖x‖∞ = maxi |xi| respectively. Let the norm

‖A‖2 of a matrix A be the induced 2-norm. Let 1 ∈ R
n be

a vector of all ones, where n is taken in context. We say

that a function f : R → R is increasing (non-decreasing) if

y > x implies that f(y) > f(x) (f(y) ≥ f(x)).

II. PROBLEM DATA AND PROPOSED CONTROLLER

We consider control of plants of the form

ẋ = −Ax+Bf(u) + w (2)

where vector x ∈ R
n gathers the states xi of each agent,

A ∈ R
n×n is a diagonal positive definite matrix, and w ∈

R
n is a constant disturbance acting on the plant. The input

nonlinearity f : Rn → R
n satisfies Assumption 1 introduced

below and B ∈ R
n×n is an M-matrix, as characterized next.

If the matrix B has strictly positive diagonal elements and

non-positive off-diagonal elements, then the following state-

ments are all equivalent [8]: B is an M-matrix. There is a di-

agonal positive definite matrix Q such that QB +B⊤Q ≻ 0.

There is a diagonal positive definite matrix U such that UB
and UBU−1 are strictly column-diagonally dominant. DB
is an M-matrix for any positive definite diagonal D. For a

more extensive list of equivalent statements, refer to [8].

For (2), we focus on a certain class of functions f : Rn →
R

n characterized by the following assumption.

Assumption 1: f(x) = [f1(x1), f2(x2), . . . , fn(xn)]
⊤

has

components fi satisfying fi(0) = 0 and incrementally

sector-bounded in the sector [0, 1], namely satisfying 0 ≤
(fi(y)− fi(x)) / (y − x) ≤ 1 for all x ∈ R, y ∈ R, x 6= y.

Note that Assumption 1 implies that f is non-decreasing and

Lipschitz with Lipschitz constant 1. Since f(0) = 0, f also

enjoys a sector [0, 1] condition.

Stability properties for feedback with incrementally sector-

bounded nonlinearities has long been considered in the

literature. As far back as [9] it was used for input-output

stability analysis. Both [10] and [11] consider the type of di-

agonally partitioned incrementally sector-bounded functions

that we consider here, whereas [12]–[14] consider a richer

class of incremental sector-bound constraints of the form

(f(x)− f(y)− S1(x− y))
⊤
(f(x) − f(y)− S2(x− y)) ≤

0 for all x ∈ R
n, y ∈ R

n where S1 and S2 are real symmetric

matrices with 0 � S1 ≺ S2.

We will consider function pairs f(·), h(·) where f(x) +
h(x) = x. These pairs fulfill the following property, the proof

of which is in the appendix.

Lemma 1: Let f : Rn → R
n satisfy Assumption 1. Then

h(u) = u− f(u) also satisfies Assumption 1.

The considered class of function pairs is well motivated

by the common case f(x) = sat (x) where sat (x) =
max (min (x,1) ,−11) and h(x) = dz (x) = x− sat (x).

We propose controlling the plant (2) with fully decentral-

ized PI controllers having decentralized anti-windup for each

agent i = 1, . . . , n.

żi = xi + sihi(ui) (3)

ui = −pixi − rizi (4)

where zi is the integral state, ui is the controller output, pi >
0 and ri > 0 are proportional and integral controller gains

respectively, si > 0 is an anti-windup gain, and h(u) = u−
f(u) is an anti-windup signal. Note that while the notation

h is not needed (indeed we could equivalently replace h(u)
with u−f(u)), we will use the pair f , h both to simplify the

exposition and to highlight that f is the nonlinearity acting on

the plant while h is the nonlinearity acting on the controller.

We assume that the closed-loop system satisfies the following

assumption.

Assumption 2: A is a diagonal positive definite matrix,

B is an M-matrix, and w is a constant disturbance. The

controller parameters pi, ri, and si, for i = 1, . . . , n, are

all positive.

III. MAIN RESULTS

In this section we will cover the main results of this paper.

In particular, we will consider the proposed control law (3)–

(4) for the plant (2). We will show that this closed-loop

system admits an equilibrium for any constant disturbance

w. We will additionally show that this equilibrium is globally

asymptotically stable and enjoys a notion of optimality. We

will leave the proofs for Sections V to VII.

Let us first consider the existence of an equilibrium, which

corresponds to well-posedness of the equations (2)–(4) with

ẋ = ż = 0.

Theorem 1: (Equilibrium Existence and Uniqueness) Let

f satisfy Assumption 1 and let Assumption 2 hold. Then for

each constant w ∈ R
n, closed-loop (2)–(4) has a unique

equilibrium (x0, z0), inducing input u0 from (4), which

satisfies (2)–(4) with ẋ = ż = 0.

In addition to the existence of the unique equilibrium (x0,

z0), we can also show that it is globally asymptotically stable

under the following assumption on the tuning of the control

parameters.

Assumption 3: Assume that aipi > ri and pisi < 1 for

all i, where ai are the diagonal elements of A in (2) and pi,
ri, and si are the controller gains in (3)–(4).

Theorem 2: (Global Asymptotic Stability) Let f satisfy

Assumption 1 and let f(u) + h(u) = u. Let Assumptions

2 and 3 hold. Then there is a globally asymptotically stable

equilibrium for the closed-loop (2)–(4).

Remark 1: The tuning rules of Assumption 3 are fully

decentralized. Each agent i can tune their own controller

gains to satisfy ri < aipi and si < 1/pi.
Let us now focus on the case where the function pair f(·)
and h(·) are given by the pair sat (·) and dz (·) respectively,

motivated by classical anti-windup for saturating controllers.



Let γi be positive scalar weights, and consider the problem of

minimizing the weighted sum of all state errors
∑n

i=1
γi|xi|.

We can define this problem through the optimization problem

minimize
x, v

n
∑

i=1

γi|xi| = ‖Γx‖1 (5a)

subject to −Ax+Bv + w = 0, (5b)

− 1 ≤ v ≤ 1. (5c)

where Γ = diag{γ1, . . . , γn}. The inequalities (5c) are

considered componentwise. This problem can be motivated

by a district heating example. Let w be the outdoor tem-

perature, xi be the deviation from the comfort temperature

for each agent i, and let Bv denote the heat provided to the

agents, limited by (5c). Then if Γ = I , this corresponds to

minimizing the total discomfort experienced by all agents.

One could consider γi to be a cost describing the severity

of agent i deviating from the comfort temperature, where

γi would be high for e.g. a hospital. Note that this cost

does not capture the notion of fairness as considered in [1].

For instance, with Γ = I , x = [n, 0, . . . , 0]
⊤

, and y =
[1, 1, . . . , 1]

⊤
we achieve the same costs ‖Γx‖1 = ‖Γy‖1.

With the problem (5) defined, the following holds.

Theorem 3: Let Assumption 2 hold and let ΓA−1B be a

strictly diagonally column-dominant M-matrix. Let f(u) =
sat (u) and h(u) = dz (u) = u− sat (u). Let (x0, z0), be an

equilibrium for the closed-loop system in (2)–(4), associated

with input u0. Then x∗ = x0 and v∗ = f(u0) solves (5).

Remark 2: Note that, since B is an M-matrix, A−1B is

also an M-matrix. In this scenario there always exists a

diagonal, positive definite Γ such that ΓA−1B is strictly

diagonally column-dominant. This means that there is always

a selection of weights γi for which the control law (3)–(4)

stabilizes an optimal point.

IV. NUMERICAL EXAMPLE

This motivating example compares three different control

strategies on a simplified, linear model of 10 buildings

connected in a district heating grid. The compared strategies

are the same as the ones considered in [1]. Each building i
has identical thermodynamics on the form

ẋi = −
ai
Ci

(xc + xi − Text(t)) +
1

Ci
Q̇i(u), (6)

where xi denotes agent i’s indoor temperature deviation

from the comfort temperature xc, Ci is the heat capacity of

each building and Text is the outdoor temperature. Here the

assumption of a constant disturbance w is replaced with the

slowly time-varying disturbance Text. Q̇i is the heat supplied

to building i. This heat supply is given by

Q̇ = Bsat (u) , (7)

where B represents the network interconnection. The sim-

ulation was conducted with ai = 0.167 [kW/C◦], Ci =
2.0 [kWh/C◦], pi = 2.5 [1/C◦], ri = 0.2 [1/C◦h], and si =
2.0 [C◦] for all i. The parameters ai, Ci are chosen close

to the values found in [15] which discusses parameter

estimation for a single-family building. Matrix B is selected

as

B =

































12.0 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15 −0.15
−0.15 12.0 −0.3 −0.3 −0.3 −0.3 −0.3 −0.3 −0.3 −0.3
−0.15 −0.3 12.0 −0.45 −0.45 −0.45 −0.45 −0.45 −0.45 −0.45
−0.15 −0.3 −0.45 12.0 −0.6 −0.6 −0.6 −0.6 −0.6 −0.6
−0.15 −0.3 −0.45 −0.6 12.0 −0.75 −0.75 −0.75 −0.75 −0.75
−0.15 −0.3 −0.45 −0.6 −0.75 12.0 −0.9 −0.9 −0.9 −0.9
−0.15 −0.3 −0.45 −0.6 −0.75 −0.9 12.0 −1.05 −1.05 −1.05
−0.15 −0.3 −0.45 −0.6 −0.75 −0.9 −1.05 12.0 −1.2 −1.2
−0.15 −0.3 −0.45 −0.6 −0.75 −0.9 −1.05 −1.2 12.0 −1.35
−0.15 −0.3 −0.45 −0.6 −0.75 −0.9 −1.05 −1.2 −1.35 12.0

































(8)

with elements Bi,j in [kW]. Matrix B is constructed such

that building 1 is closest to a production facility and thus

has the best ability to extract heat, whereas building 10 is the

farthest away. In addition, the entries of B are such that fully

opened control valves at sat (u) = 1 gives Q̇ representing a

reasonable peak heat demand for small houses. We simulate

the system using the DifferentialEquations toolbox

in Julia [16], for an outdoor temperature scenario given by

data from the city of Gävle, Sweden in October 2022 during

which the temperature periodically drops to almost -20◦C.

The data is gathered from the Swedish Meteorological and

Hydrological Institute (SMHI). We compare three different

controllers and three different cost functions. The first con-

troller is the fully decentralized PI-controller considered in

this paper. Secondly the coordinating controller consists of

the same PI-controllers as the decentralized case, but with the

coordinating rank-1 anti-windup signal żi = xi+β1⊤dz (u)
considered in [1]. Finally, the static controller is given by

u = −B⊤C−1x as considered in [7], where C is the

diagonal matrix of all heat capacities Ci.

Figure 1 shows the resulting deviations x during the

simulations. At around hour 100, the outdoor temperature

is critically low. At this time, the buildings do not receive

sufficient heat, regardless of the control strategy. Figure

1a shows that with the decentralized strategy, the worst

deviations become larger than with the coordinating strategy

(Figure 1b). However, not all buildings experience temper-

ature deviations, whereas with the coordinating strategy, all

the buildings share the discomfort. Lastly, the static con-

troller has large deviations experienced by many buildings.

Even when the outdoor temperature is manageable, the static

controller has a constant offset from the comfort temperature,

highlighting the usefulness of the integral action.

We evaluate the performance through the three cost func-

tions

J1 =
1

T

∫ T

0

‖x(t)‖1dt, (9)

J∞ =
1

T

∫ T

0

‖x(t)‖∞dt, (10)

J2 =
1

T

∫ T

0

x(t)⊤Lx(t) + sat (u(t))⊤ sat (u(t)) dt. (11)

where T is the simulation time and L is a diagonal matrix

where each element is given by li =
qi
Ci

. The cost J1 mimics

the optimality notion considered in this paper, J∞ mimics

the optimality notion considered in [1], and J2 mimics the
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(a) Decentralized controller.
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(b) Coordinating controller.
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(c) Static controller.

Fig. 1: Simulation results showing temperature deviations x for each control strategy. The blue lines (with values on the left

axis) are the temperature deviations x. The dotted, black line (with values on the right axis) is the outdoor temperature. At

about hour 100, the temperature becomes critically low. This induces saturation in the controllers, leading to a drop of the

indoor temperatures.
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(a) The cost J∞ is minimized by the coor-
dinating strategy.
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(b) The cost J1 is minimized by the decen-
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(c) The strategies incur similar costs J2,
minimized by static feedback.

Fig. 2: Cost functions evaluated for each control strategy.

optimality considered in [7]. Figure 2 shows the resulting

evaluations. Figure 2a shows that the coordinating controller

gives minimal worst-case deviations J∞, but Figure 2b

shows that the total discomfort J1 is minimized in the de-

centralized strategy. This result, i.e. that the total discomfort

is minimized by decentralized control but the worst-case

discomfort is minimized by coordination, is found also in [4]

where a nonlinear model of the grid hydraulics and a 2-state

model of building dynamics is employed. On the weighted

cost J2 as seen in Figure 2c, all controllers provide similar

performance. The static controller slightly outperforms the

other two in this scenario, but it is outperformed in every

other measure.

V. PROOF OF EQUILIBRIUM EXISTENCE AND

UNIQUENESS

We will now prove Theorem 1 through the use of Banach’s

fixed-point theorem [17]. This proof requires the following

two lemmas, the proofs of which are found in the appendix.

Lemma 2: Let f : Rn → R
n and h : Rn → R

n where

h(x) = x − f(x) satisfy Assumption 1. Then f̃ : Rn → R
n

and h̃ : Rn → R
n given by f̃(x) = f(x+ x0)− f(x0) and

h̃(x) = h(x + x0) − h(x0) for some x0 ∈ R
n also satisfy

Assumption 1 and h̃(x) + f̃(x) = x.

Lemma 3: Let f : Rn → R
n and h : Rn → R

n where

h(x) = x − f(x) satisfy Assumption 1. Then f̃ : Rn → R
n

and h̃ : Rn → R
n given by f̃(x) = Df(D−1x) and h̃(x) =

Dh(D−1x) where D is a diagonal positive definite matrix

also satisfy Assumption 1 and h̃(x) + f̃(x) = x.

Proof: (of Theorem 1) Denoting by S a diagonal

positive definite matrix gathering the anti-windup gains si,
i = 1, . . . n, we can rearrange (2)–(4) by imposing ẋ = ż =
0, which yields

0 = h(u0) + S−1A−1Bf(u0) + S−1A−1w. (12)

If there is a unique u0 solving (12) then x0 =
A−1

(

Bf(u0) + w
)

and z0 = R−1(−Px0 − u0) are

uniquely determined by (2) and (4) respectively, where R =
diag{r1, . . . , rn} is invertible by Assumption 3. Hence we

need only show that there is a unique u0 solving (12) for the

proof to be complete. Let D be a diagonal positive definite

matrix such that DS−1A−1BD−1 is strictly diagonally



column-dominant. Note that such a D always exists because

A and S are diagonal positive definite and B is an M-

matrix. Left-multiply (12) by D and insert multiplication by

I = D−1D before f(u0) to obtain

0 = Dh(u0) +DS−1A−1BD−1Df(u0) +DS−1A−1w.
(13)

Introduce the change of variables B̂ = DS−1A−1BD−1,

ζ = Du0, and ŵ = DS−1A−1w. Then (13) yields

0 = Dh(D−1ζ) + B̂Df(D−1ζ) + ŵ. (14)

Here we can use Lemma 3 to replace f(·), h(·) with f̂(·),
ĥ(·), which satisfy Assumption 1 and f̂(ζ) + ĥ(ζ) = ζ.

Introduce a scalar k satisfying k > max(1, 2max
i

B̂i,i).

Divide (14) by −k, add ζ to the left-hand side, and ζ =
f̂(ζ) + ĥ(ζ) to the right-hand side of (14) to obtain

ζ = −
1

k

(

(1 − k)ĥ(ζ) + (B̂ − kI)f̂(ζ) + ŵ
)

. (15)

We define the right-hand side of this expression as Tw(ζ),
defined for a specific w. By showing that Tw is a contractive

mapping for any ŵ, we can use Banach’s fixed point theorem

[17] to show that there is a unique solution ζ = Tw(ζ) (and

thus a unique u0 = D−1ζ) for any ŵ (and thus any w =
ASD−1ŵ). Consider any α ∈ R

n, β ∈ R
n. Then

Tw(α)− Tw(β) = −1+k
k

(

ĥ(α)− ĥ(β)
)

+−B̂+kI
k

(

f̂(α)− f̂(β)
)

.
(16)

Here we use Lemma 2 to introduce h̃(α−β) = ĥ(α)− ĥ(β)
and f̃(α − β) = f̂(α) − f̂(β). Denote ∆ = α − β and

∆+ = Tw(α) − Tw(β). Then

|∆+

i | ≤
k − 1

k
|h̃i(∆i)|+

k − B̂i,i

k
|f̃i(∆i)|+

∑

j 6=i

|B̂i,j |

k
|f̃j(∆j)|.

(17)

Therefore

‖∆+‖1 =
n
∑

i=1

|∆+

i | ≤
n
∑

i=1

(

k − 1

k
|h̃i(∆i)|

+
k − B̂i,i

k
|f̃i(∆i)|+

∑

j 6=i

|B̂j,i|

k
|f̃i(∆i)|

)

. (18)

Due to the diagonal column-dominance of B̂ and the def-

inition of k, it holds that k > B̂i,i >
∑

j 6=i |B̂j,i|. Thus,

selecting λ = k−1

k < 1, µi =
k−(B̂i,i−

∑
j 6=i |B̂j,i|)

k < 1,

γi = max(λ, µi) < 1, and γ̄ = maxi γi < 1, we obtain

‖∆+‖1 ≤

n
∑

i=1

λ|h̃i(∆i)|+ µi|f̃i(∆i)|

≤

n
∑

i=1

γi

(

|h̃i(∆i)|+ |f̃i(∆i)|
)

≤

n
∑

i=1

γ̄|∆i| = γ‖∆‖1. (19)

Note that |h̃i(∆i)|+|f̃i(∆i)| = |∆i| since f̃i(∆i) and h̃i(∆i)
always have the same sign by Assumption 1, and sum to ∆i.

This proves that Tw is a contraction mapping with respect to

the metric ‖·‖1. Thus, by Banach’s fixed point theorem, for

each w and the ensuing ŵ = DS−1A−1w there is a unique

ζ such that (15) holds, and thus a u0 = D−1ζ such that (12)

holds, which completes the proof.

VI. PROOF OF GLOBAL ASYMPTOTIC STABILITY

Given the existence of an equilibrium (x0, z0) and the

associated input u0, consider the change of variables z̃ =
−R(z − z0), ũ = u − u0, f̃(ũ) = f(u0 + ũ) − f(u0), and

h̃(ũ) = h(u0 + ũ) − h(u0). Due to Lemma 2, f̃(·), h̃(·)
satisfy Assumption 1, and f̃(ũ) + h̃(ũ) = ũ. This allows

rewriting the (2)–(4) as
[

˙̃z
˙̃u

]

=

[

−RP−1 RP−1

A−RP−1 −A+RP−1

] [

z̃
ũ

]

−

[

0
PB

]

f̃(ũ)−

[

RS
RS

]

h̃(ũ)

(20)

where P , R, and S are diagonal matrices gathering the

controller parameters pi, ri, and si. Stabilizing this system

to z̃ = ũ = 0 is equivalent to stabilizing the original system

system to the equilibrium x = x0, z = z0, and u = u0. We

will therefore now prove Theorem 2 with a Lyapunov-based

argument considering system (20).

Proof: (of Theorem 2) Consider the Lyapunov function

candidate

V (z̃, ũ) =

n
∑

i=1

∫ z̃i

0

qi(ai
pi
ri

− 1)
(

f̃i(ζ) + ǫζ)
)

dζ

+
n
∑

i=1

∫ ũi

0

qi

(

f̃i(ζ) + ǫζ
)

dζ (21)

where scalars qi > 0 and ǫ > 0 are parameters to be fixed

later. For any such choice of parameters, V is positive defi-

nite and radially unbounded because f̃i(ζ)+ ǫζ is increasing

in ζ and zero at zero. Also ai
pi

ri
− 1 > 0 due to Assumption

3. The time derivative of V along the trajectories of system

(20) is given by

V̇ (z̃, ũ) =−
(

f̃(z̃) + ǫz̃ − f̃(ũ)− ǫũ
)⊤

D̃(z̃ − ũ) (22a)

−
(

f̃(z̃) + ǫz̃
)⊤

D̃PSh̃(ũ) (22b)

−
(

f̃(ũ) + ǫũ
)⊤

QRSh̃(ũ) (22c)

−
(

f̃(ũ) + ǫũ
)⊤

QPBf̃(ũ) (22d)

where D̃ is a diagonal positive definite matrix gathering the

elements qi (ai − ri/pi) and Q is a diagonal positive definite

matrix gathering the elements qi. To simplify this expression,

we split it into

V̇ (z̃, ũ) = V̇1(z̃, ũ) + V̇2(z̃, ũ) (23)

where V̇1(z̃, ũ) corresponds to the terms (22a)–(22b) and

V̇2(z̃, ũ) corresponds to the terms (22c)–(22d). Since D̃
and D̃PS are diagonal, V̇1 can be analyzed for each i
individually. f̃i(ζi) + ǫζi is increasing in ζi, therefore



sign
(

f̃i(z̃i) + ǫz̃i − f̃i(ũi)− ǫũi

)

= sign (z̃i − ũi) and

thus (22a) is negative semi-definite. If z̃i and ũi have

the same sign, (22b) contributes negatively to V̇1. If

they have opposite signs the contribution is positive,

but in this case (22a) only comprises negative terms

because
(

f̃i(z̃i) + ǫz̃i − f̃i(ũi)− ǫũi

)

D̃i,i (z̃i − ũi) =
(

|f̃i(z̃i) + ǫz̃i|+ |f̃i(ũi)− ǫũi|
)

D̃i,i (|z̃i|+ |ũi|). Indeed,

since pisi < 1 from Assumption 3 and |h̃i(ũi)| ≤ |ũi| from

Assumption 1, then (22a) as developed above dominates

(22b) which is upper bounded by |f̃i(z̃i) + ǫz̃i|D̃i,i|h̃i(ũi)|,
and thus V̇1 is negative semidefinite. We now turn our

attention to V̇2. Note that ũ, f̃(ũ), and h̃(ũ) elementwise

have the same sign and QRS is diagonal, positive definite.

Thus
(

f̃(ũ) + ǫũ
)⊤

QRSh̃(ũ) =
(

f̃(ũ) + ǫf̃(ũ) + ǫh̃(ũ)
)⊤

QRSh̃(ũ)

= (1 + ǫ)f̃(ũ)⊤QRSh̃+ ǫh̃(ũ)⊤QRSh̃(ũ) ≥ ǫβ‖h̃(ũ)‖22

(24)

where β is the minimum diagonal element of QRS. Note

also that
(

f̃(ũ) + ǫũ
)⊤

QPBf̃(ũ) = (1 + ǫ)f̃(ũ)⊤QPBf̃(ũ)

+ ǫh̃(ũ)⊤QPBf̃(ũ). (25)

Fix now the weights qi in such a way that QPB+B⊤PQ is

positive definite. This is possible because B is an M-matrix

according to Assumption 2. Therefore ∃α > 0 such that

QPB +B⊤PQ ≻ 2αI . Thus the first term of (25) satisfies

(1 + ǫ)f̃(ũ)⊤QPBf̃(ũ) ≥ (1 + ǫ)α‖f̃(ũ)‖22. (26)

We also note that the second term in (25) satisfies

ǫh̃(ũ)⊤QPBf̃(ũ) ≥ −ǫγ‖f̃(ũ)‖2‖h̃(ũ)‖2 (27)

where γ = ‖QPB‖2. Thus, combining the bounds in (24),

(26) and (27) within (22c)–(22d), we obtain

V̇2(z̃, ũ) ≤ −(1 + ǫ)α‖f̃(ũ)‖22 − ǫβ‖h̃(ũ)‖22 + ǫγ‖f̃(ũ)‖2‖h̃(ũ)‖2

=

(

‖f̃(ũ)‖2
‖h̃(ũ)‖2

)⊤ (

−(1 + ǫ)α 1

2
ǫγ

1

2
ǫγ −ǫβ

)(

‖f̃(ũ)‖2
‖h̃(ũ)‖2

)

.
(28)

We may now select the Lyapunov function parameter ǫ

sufficiently small such that
(

α+ ǫα− ǫγ2

4β

)

> 0. This makes

the quadratic form (28) negative definite. Thus V̇2(z̃, ũ) = 0
if and only if f̃(ũ) = h̃(ũ) = 0, i.e. if and only if ũ = 0.

In this case, V̇1(z̃, ũ) is clearly negative definite in z̃. Thus

V̇ (z̃, ũ) is negative definite, which implies that the origin is

globally asymptotically stable for system (20). Equivalently,

the equilibrium (x0, z0), with input u0, is therefore globally

asymptotically stable for the original system (2)–(4).

VII. PROOF OF EQUILIBRIUM OPTIMALITY

Here we prove Theorem 3.

Proof: Firstly, it is clear that v∗ = sat
(

u0
)

and x∗
i =

x0
i = −sidz

(

u0
i

)

for all i satisfies (5b) due to x0, z0 being an

equilibrium, and satisfies (5c) because sat (·) is bounded in

the range [−1, 1]. Consider, for establishing a contradiction,

that there exists µ 6= 0 such that v† = v∗ + µ and x† =

A−1Bv† +A−1w = x∗ +A−1Bµ is the optimal solution to

(5) with a smaller cost (5a) than the one obtained by x∗, v∗.

Then µ solves the optimization problem

minimize
µ

n
∑

i=1

|γix
∗
i + B̃iµ| (29a)

subject to − 1 ≤ v∗ + µ ≤ 1. (29b)

where B̃i is row i of the matrix B̃ = ΓA−1B. The

equilibrium of (3) implies x∗
i = −sidz

(

u0
i

)

. Therefore we

can leverage (29b) to see that x∗
i > 0 =⇒ u0

i <
−1 =⇒ vi = −1 =⇒ µi ≥ 0 and conversely

x∗
i < 0 =⇒ u0

i > 1 =⇒ vi = 1 =⇒ µi ≤ 0.

Combining this with Γ and A both being diagonal, positive

definite and the fact that B is an M-matrix which implies

that B̃i,i > 0, we obtain |γixi + B̃i,iµi| = |γixi|+ |B̃i,iµi|
for all i. Thus (29a) can be expanded as follows

n
∑

i=1

|γixi + B̃iµ| ≥
∑

i6=j



|γixi + B̃i,iµi| − |
∑

i6=j

B̃i,jµj |





≥
n
∑

i=1

(

|γixi|+ |B̃i,i||µi|
)

−
n
∑

i=1

∑

j 6=i

|B̃i,j ||µj |

=

n
∑

i=1

|γixi|+

n
∑

k=1



|B̃k,k| −
∑

j 6=k

|B̃j,k|



 |µk|.

(30)

Since B̃ is diagonally column-dominant, then |B̃k,k| −
∑

j 6=k |B̃j,k| is strictly positive for all k. Thus this expression

is minimized by µ = 0, which completes the proof.

VIII. CONCLUSIONS

In this paper we considered fully decentralized PI-control

for a class of interconnected systems subject to incrementally

sector-bounded nonlinearities. We showed that for systems

where the input matrix is an M-matrix, fully decentralized

PI-controllers globally asymptotically stabilize a specific

equilibrium. Furthermore, this equilibrium is optimal in that

it minimizes costs of the form
∑n

i=1
γi|xi|. The proposed

control strategy was employed in a numerical example of

a simplified district heating system model. The example

showed that, with our decentralized strategy, the total dis-

comfort in the system is minimized, at the cost of higher

worst-case discomforts when compared with a alternative co-

ordinated control strategies. We have thus demonstrated that

a fully decentralized and easily tuned control law constitutes

a relevant design for a large class of systems.

Open questions include analysis of the transient response,

and finding controller tuning rules accordingly. Furthermore,

to better capture the district heating application, a richer

class of systems should be considered: Multi-state models for

each individual building, as well as more complex, nonlinear

models of the interconnection B should be considered.
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APPENDIX

We prove here suitable properties of the function class

characterized by Assumption 1, as stated in Lemmas 1, 2

and 3. To simplify the exposition, we drop the index i.
Proof: (of Lemma 1)

Clearly, h(0) = 0− f(0) = 0. Additionally,

h(y)− h(x)

y − x
=

y − f(y)− x+ f(x)

y − x

= 1−
f(y)− f(x)

y − x
∈ [0, 1] (31)

which clearly shows that if x 6= y then

0 ≤ (h(y)− h(x))/(y − x) ≤ 1, thus concluding the

proof.

Proof: (of Lemma 2)

Clearly, f̃(0) = f(x0)− f(x0) = 0. In addition,

f̃(y)− f̃(x)

y − x
=

f(y + x0)− f(x+ x0)

(y + x0)− (x+ x0)
∈ [0, 1] (32)

which clearly shows that if x 6= y then 0 ≤ (f̃(y) −
f̃(x))/(y − x) ≤ 1. Finally f̃(x) + h̃(x) = f(x + x0) −

f(x0)+h(x+x0)−h(x0) = x+x0−x0 = x, thus concluding

the proof.

Proof: (of Lemma 3)

f̃(0) = D−1f(0) = 0. Additionally,

f̃(y)− f̃(x)

y − x
=

df(y/d)− df(x/d)

y − x

=
f(y/d)− f(x/d)

y/d− x/d
∈ [0, 1] (33)

which clearly shows that if x 6= y then 0 ≤ (f̃(y) −
f̃(x))/(y − x) ≤ 1. Finally f̃(x) + h̃(x) = Df(D−1x) +
Dh(D−1x) = D

(

f(D−1x) + h(D−1x)
)

= DD−1x = x,

thus concluding the proof.
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