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We consider control of multiple stable first-order systems which have a control coupling described by an Mmatrix. These agents are subject to incremental sector-bounded nonlinearities. We show that such plants can be globally asymptotically stabilized to a unique equilibrium using fully decentralized proportional integral anti-windup-equipped controllers subject to local tuning rules. In addition, we show that when the nonlinearities correspond to the saturation function, the closed-loop asymptotically minimizes a weighted 1-norm of the agents state mismatch. The control strategy is finally compared to other state-of-the-art controllers on a numerical district heating example.

I. INTRODUCTION

In this paper we consider the control of agents sharing a central distribution system with limited capacity as in [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF]. We investigate systems where the positive action of one agent negatively impacts others. This type of competitive structure can arise in many domains, for instance internet congestion control [START_REF] Low | Internet congestion control[END_REF], [START_REF] Kelly | Fairness and stability of end-to-end congestion control[END_REF] and district heating systems [START_REF] Agner | Combating district heating bottlenecks using load control[END_REF]. In the district heating scenario, the structure arises because of the hydraulic constraints of the grid. If one agent (building) locally decides to increase their heat demand by opening their control valves, this will lead to higher flow rates and greater frictional pressure losses. These losses make it so that other agents now receive lower flow rates [START_REF] Agner | Combating district heating bottlenecks using load control[END_REF]. We consider a simple description of such systems as follows. Let x i be the state of each agent i. Then ẋi = -a i x i + n j=1 B i,j sat (u j ) + w i [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF] where a i ∈ R and a i > 0, u i ∈ R is the control action of each agent i, and B ∈ R n×n having elements B i,j represents the network interconnection between the agents. w i ∈ R is a disturbance on agent i. The saturation function sat (•) represents the limitations of the network, but in the later analysis we consider a richer class of nonlinear functions. To capture the resource-sharing aspect of the system we consider the case where B is an M-matrix satisfying B i,i > 0 and B i,j ≤ 0 when i = j.

In this work, we analyze (1) under a fully decentralized PI (proportional-integral) control strategy. Semi-decentralized control strategies for multi-agent systems have been considered in the following works. In [START_REF] Col | Regional H∞ synchronization of identical linear multiagent systems under input saturation[END_REF], each networked agent is equipped with a local controller that receives the control input of its neighbors. In [START_REF] Ofodile | Decentralized approaches to antiwindup design with application to quadrotor unmanned aerial vehicles[END_REF], semi-decentralized anti-windup was considered for stable SISO plants that are decentralized in the linear domain, but become coupled during saturation. This is demonstrated on unmanned aerial vehicles. These and other works focus on stabilization when the disturbance w in plant ( 1) is energy bounded. In this work we focus instead on the asymptotic properties of plant [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF], which become important when w is expected to vary slower than the system and can be assumed constant. We show that our strategy minimizes asymptotic costs of the form n i=1 c i |x i |. Previous works considering asymptotic optimality for plants of the form (1) are [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF] and [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF]. In [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF], it was shown that the static controller u = -B ⊤ x asymptotically minimizes the cost

x ⊤ Ax + v ⊤ v where A = diag(a 1 , a 2 , • • • , a n ) and v = sat (u)
. This result also extends to the case when B is not an M-matrix. In [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF], it was shown that, when B is an M-matrix and w fulfills certain criteria, decentralized PIcontrollers with a rank-one coordinating anti-windup scheme can minimize the cost max i |x i |. Both of these control strategies maintain certain scalability properties: With u = -B ⊤ x [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF], any sparsity structure in the B-matrix is maintained and the rank-one coordination scheme of [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF] admits scalable implementations. However, the most scalable control solution is one that is fully decentralized. In general, it is nontrivial that decentralized PI-controllers are stabilizing, let alone fulfill any optimality criterion. In this paper we manage to not only show the aforementioned asymptotic optimality properties. We also show that the resulting equilibrium is globally asymptotically stable under decentralized controller tuning rules.

The paper is organized as follows. Section II presents the considered plant and control strategy. Section III presents the main results of the paper, namely equilibrium existence and uniqueness, global asymptotic stability, and equilibrium optimality for our considered closed-loop. A motivating numerical example consisting in the flow control of a simplified district-heating network is subsequently given in section IV. The proofs of the main results are presented in sections V, VI, and VII respectively. Conclusions and future work are covered in section VIII.

Notation: v i denotes element i of vector v ∈ R n , A i denotes row i of matrix A ∈ R n×m , and A i,j denotes its (i, j)-th element. A matrix A is strictly diagonally row- dominant if |A i,i | > j =i |A i,j | for all i.
A is strictly diagonally column-dominant if A ⊤ , denoting the transpose of A, is strictly diagonally row-dominant. Let the 2-norm of a vector x ∈ R n be given by x 2 = ( n i=1 x 2 i ) 1/2 . Let the 1-and-infinity-norms of a vector x ∈ R n be given by x 1 = n i=1 |x i | and x ∞ = max i |x i | respectively. Let the norm A 2 of a matrix A be the induced 2-norm. Let 1 ∈ R n be a vector of all ones, where n is taken in context. We say that a function f :

R → R is increasing (non-decreasing) if y > x implies that f (y) > f (x) (f (y) ≥ f (x)).

II. PROBLEM DATA AND PROPOSED CONTROLLER

We consider control of plants of the form

ẋ = -Ax + Bf (u) + w (2) 
where vector x ∈ R n gathers the states x i of each agent, A ∈ R n×n is a diagonal positive definite matrix, and w ∈ R n is a constant disturbance acting on the plant. The input nonlinearity f : R n → R n satisfies Assumption 1 introduced below and B ∈ R n×n is an M-matrix, as characterized next.

If the matrix B has strictly positive diagonal elements and non-positive off-diagonal elements, then the following statements are all equivalent [START_REF] Horn | Topics in Matrix Analysis[END_REF]: B is an M-matrix. There is a diagonal positive definite matrix

Q such that QB + B ⊤ Q ≻ 0.
There is a diagonal positive definite matrix U such that U B and U BU -1 are strictly column-diagonally dominant. DB is an M-matrix for any positive definite diagonal D. For a more extensive list of equivalent statements, refer to [START_REF] Horn | Topics in Matrix Analysis[END_REF].

For (2), we focus on a certain class of functions f : R n → R n characterized by the following assumption.

Assumption 1:

f (x) = [f 1 (x 1 ), f 2 (x 2 ), . . . , f n (x n )]
⊤ has components f i satisfying f i (0) = 0 and incrementally sector-bounded in the sector [0, 1], namely satisfying 0 ≤

(f i (y) -f i (x)) / (y -x) ≤ 1 for all x ∈ R, y ∈ R, x = y.
Note that Assumption 1 implies that f is non-decreasing and Lipschitz with Lipschitz constant 1. Since f (0) = 0, f also enjoys a sector [0, 1] condition. Stability properties for feedback with incrementally sectorbounded nonlinearities has long been considered in the literature. As far back as [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part one: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF] it was used for input-output stability analysis. Both [START_REF] Zhang | Robust synchronization of lur'e networks with incremental nonlinearities[END_REF] and [START_REF] Delellis | Adaptive pinning control of complex networks of lur'e systems[END_REF] consider the type of diagonally partitioned incrementally sector-bounded functions that we consider here, whereas [START_REF] Giaccagli | LMI conditions for contraction, integral action, and output feedback stabilization for a class of nonlinear systems[END_REF]- [START_REF] Giaccagli | Infinite gain margin, contraction and optimality: An LMI-based design[END_REF] consider a richer class of incremental sector-bound constraints of the form

(f (x) -f (y) -S 1 (x -y)) ⊤ (f (x) -f (y) -S 2 (x -y)) ≤ 0 for all x ∈ R n , y ∈ R n
where S 1 and S 2 are real symmetric matrices with 0 S 1 ≺ S 2 .

We will consider function pairs f (•), h(•) where f (x) + h(x) = x. These pairs fulfill the following property, the proof of which is in the appendix.

Lemma 1: Let f : R n → R n satisfy Assumption 1. Then h(u) = u -f (u) also satisfies Assumption 1.

The considered class of function pairs is well motivated by the common case f (x) = sat (x) where sat (x) = max (min (x, 1) , -11) and h(x) = dz (x) = xsat (x).

We propose controlling the plant (2) with fully decentralized PI controllers having decentralized anti-windup for each agent i = 1, . . . , n.

żi = x i + s i h i (u i ) (3) u i = -p i x i -r i z i (4)
where z i is the integral state, u i is the controller output, p i > 0 and r i > 0 are proportional and integral controller gains respectively, s i > 0 is an anti-windup gain, and h(u) = uf (u) is an anti-windup signal. Note that while the notation h is not needed (indeed we could equivalently replace h(u) with u -f (u)), we will use the pair f , h both to simplify the exposition and to highlight that f is the nonlinearity acting on the plant while h is the nonlinearity acting on the controller. We assume that the closed-loop system satisfies the following assumption.

Assumption 2: A is a diagonal positive definite matrix, B is an M-matrix, and w is a constant disturbance. The controller parameters p i , r i , and s i , for i = 1, . . . , n, are all positive.

III. MAIN RESULTS

In this section we will cover the main results of this paper. In particular, we will consider the proposed control law (3)-( 4) for the plant (2). We will show that this closed-loop system admits an equilibrium for any constant disturbance w. We will additionally show that this equilibrium is globally asymptotically stable and enjoys a notion of optimality. We will leave the proofs for Sections V to VII.

Let us first consider the existence of an equilibrium, which corresponds to well-posedness of the equations ( 2)-( 4) with ẋ = ż = 0.

Theorem 1: (Equilibrium Existence and Uniqueness) Let f satisfy Assumption 1 and let Assumption 2 hold. Then for each constant w ∈ R n , closed-loop ( 2)-( 4) has a unique equilibrium (x 0 , z 0 ), inducing input u 0 from (4), which satisfies ( 2)-( 4) with ẋ = ż = 0.

In addition to the existence of the unique equilibrium (x 0 , z 0 ), we can also show that it is globally asymptotically stable under the following assumption on the tuning of the control parameters.

Assumption 3: Assume that a i p i > r i and p i s i < 1 for all i, where a i are the diagonal elements of A in (2) and p i , r i , and s i are the controller gains in (3)-(4).

Theorem 2: (Global Asymptotic Stability) Let f satisfy Assumption 1 and let f (u) + h(u) = u. Let Assumptions 2 and 3 hold. Then there is a globally asymptotically stable equilibrium for the closed-loop (2)-( 4).

Remark 1: The tuning rules of Assumption 3 are fully decentralized. Each agent i can tune their own controller gains to satisfy r i < a i p i and s i < 1/p i . Let us now focus on the case where the function pair f (•) and h(•) are given by the pair sat (•) and dz (•) respectively, motivated by classical anti-windup for saturating controllers.

Let γ i be positive scalar weights, and consider the problem of minimizing the weighted sum of all state errors n i=1 γ i |x i |. We can define this problem through the optimization problem

minimize x, v n i=1 γ i |x i | = Γx 1 (5a) subject to -Ax + Bv + w = 0, (5b) -1 ≤ v ≤ 1. ( 5c 
)
where Γ = diag{γ 1 , . . . , γ n }. The inequalities (5c) are considered componentwise. This problem can be motivated by a district heating example. Let w be the outdoor temperature, x i be the deviation from the comfort temperature for each agent i, and let Bv denote the heat provided to the agents, limited by (5c). Then if Γ = I, this corresponds to minimizing the total discomfort experienced by all agents.

One could consider γ i to be a cost describing the severity of agent i deviating from the comfort temperature, where γ i would be high for e.g. a hospital. Note that this cost does not capture the notion of fairness as considered in [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF].

For instance, with Γ = I, x = [n, 0, . . . , 0] ⊤ , and y = [1, 1, . . . , 1] ⊤ we achieve the same costs Γx 1 = Γy 1 .

With the problem (5) defined, the following holds. Theorem 3: Let Assumption 2 hold and let ΓA -1 B be a strictly diagonally column-dominant M-matrix. Let f (u) = sat (u) and h(u) = dz (u) = usat (u). Let (x 0 , z 0 ), be an equilibrium for the closed-loop system in ( 2)-( 4), associated with input u 0 . Then x * = x 0 and v * = f (u 0 ) solves [START_REF] Col | Regional H∞ synchronization of identical linear multiagent systems under input saturation[END_REF].

Remark 2: Note that, since B is an M-matrix, A -1 B is also an M-matrix. In this scenario there always exists a diagonal, positive definite Γ such that ΓA -1 B is strictly diagonally column-dominant. This means that there is always a selection of weights γ i for which the control law (3)-( 4) stabilizes an optimal point.

IV. NUMERICAL EXAMPLE

This motivating example compares three different control strategies on a simplified, linear model of 10 buildings connected in a district heating grid. The compared strategies are the same as the ones considered in [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF]. Each building i has identical thermodynamics on the form

ẋi = - a i C i (x c + x i -T ext (t)) + 1 C i Qi (u), (6) 
where x i denotes agent i's indoor temperature deviation from the comfort temperature x c , C i is the heat capacity of each building and T ext is the outdoor temperature. Here the assumption of a constant disturbance w is replaced with the slowly time-varying disturbance T ext . Qi is the heat supplied to building i. This heat supply is given by

Q = Bsat (u) , (7) 
where B represents the network interconnection. The simulation was conducted with

a i = 0.167 [kW/C • ], C i = 2.0 [kWh/C • ], p i = 2.5 [1/C • ], r i = 0.2 [1/C • h], and 
s i = 2.0 [C • ] for all i.
The parameters a i , C i are chosen close to the values found in [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF] which discusses parameter estimation for a single-family building. Matrix B is selected as 12.0 -0.75 -0.75 -0.75 -0.75 -0.75 -0.15 -0.3 -0.45 -0.6 -0.75 12.0 -0.9 -0.9 -0.9 -0.9 -0.15 -0.3 -0.45 -0.6 -0.75 -0.9

B =                 12 
12.0 -1.05 -1.05 -1.05 -0.15 -0.3 -0.45 -0.6 -0.75 -0.9 -1.05 12.0 -1.2 -1.2 -0.15 -0.3 -0.45 -0.6 -0.75 -0.9 -1.05 -1.2

12.0 -1.35 -0.15 -0.3 -0.45 -0.6 -0.75 -0.9 -1.05 -1.2 -1.35 12.0

                (8) with elements B i,j in [kW].
Matrix B is constructed such that building 1 is closest to a production facility and thus has the best ability to extract heat, whereas building 10 is the farthest away. In addition, the entries of B are such that fully opened control valves at sat (u) = 1 gives Q representing a reasonable peak heat demand for small houses. We simulate the system using the DifferentialEquations toolbox in Julia [START_REF] Rackauckas | Differentialequations.jl-a performant and feature-rich ecosystem for solving differential equations in Julia[END_REF], for an outdoor temperature scenario given by data from the city of Gävle, Sweden in October 2022 during which the temperature periodically drops to almost -20 • C. The data is gathered from the Swedish Meteorological and Hydrological Institute (SMHI). We compare three different controllers and three different cost functions. The first controller is the fully decentralized PI-controller considered in this paper. Secondly the coordinating controller consists of the same PI-controllers as the decentralized case, but with the coordinating rank-1 anti-windup signal żi = x i + β1 ⊤ dz (u) considered in [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF]. Finally, the static controller is given by u = -B ⊤ C -1 x as considered in [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF], where C is the diagonal matrix of all heat capacities C i .

Figure 1 shows the resulting deviations x during the simulations. At around hour 100, the outdoor temperature is critically low. At this time, the buildings do not receive sufficient heat, regardless of the control strategy. Figure 1a shows that with the decentralized strategy, the worst deviations become larger than with the coordinating strategy (Figure 1b). However, not all buildings experience temperature deviations, whereas with the coordinating strategy, all the buildings share the discomfort. Lastly, the static controller has large deviations experienced by many buildings. Even when the outdoor temperature is manageable, the static controller has a constant offset from the comfort temperature, highlighting the usefulness of the integral action.

We evaluate the performance through the three cost functions

J 1 = 1 T T 0 x(t) 1 dt, (9) 
J ∞ = 1 T T 0 x(t) ∞ dt, (10) 
J 2 = 1 T T 0 x(t) ⊤ Lx(t) + sat (u(t)) ⊤ sat (u(t)) dt. ( 11 
)
where T is the simulation time and L is a diagonal matrix where each element is given by l i = qi Ci . The cost J 1 mimics the optimality notion considered in this paper, J ∞ mimics the optimality notion considered in [START_REF] Agner | Anti-windup coordination strategy around a fair equilibrium in resource sharing networks[END_REF], and J 2 mimics the optimality considered in [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF]. Figure 2 shows the resulting evaluations. Figure 2a shows that the coordinating controller gives minimal worst-case deviations J ∞ , but Figure 2b shows that the total discomfort J 1 is minimized in the decentralized strategy. This result, i.e. that the total discomfort is minimized by decentralized control but the worst-case discomfort is minimized by coordination, is found also in [START_REF] Agner | Combating district heating bottlenecks using load control[END_REF] where a nonlinear model of the grid hydraulics and a 2-state model of building dynamics is employed. On the weighted cost J 2 as seen in Figure 2c, all controllers provide similar performance. The static controller slightly outperforms the other two in this scenario, but it is outperformed in every other measure.

V. PROOF OF EQUILIBRIUM EXISTENCE AND UNIQUENESS

We will now prove Theorem 1 through the use of Banach's fixed-point theorem [START_REF] Agarwal | Fixed Point Theory in Metric Spaces: Recent Advances and Applications[END_REF]. This proof requires the following two lemmas, the proofs of which are found in the appendix.

Lemma 2: Let f : R n → R n and h : R n → R n where h(x) = x -f (x) satisfy Assumption 1. Then f : R n → R n and h : R n → R n given by f (x) = f (x + x 0 ) -f (x 0 ) and h(x) = h(x + x 0 ) -h(x 0 ) for some x 0 ∈ R n also satisfy Assumption 1 and h(x) + f (x) = x.

Lemma 3: Let f : R n → R n and h : R n → R n where h(x) = x -f (x) satisfy Assumption 1. Then f : R n → R n and h : R n → R n given by f (x) = Df (D -1 x) and h(x) = Dh(D -1 x) where D is a diagonal positive definite matrix also satisfy Assumption 1 and h(x) + f (x) = x.

Proof: (of Theorem 1) Denoting by S a diagonal positive definite matrix gathering the anti-windup gains s i , i = 1, . . . n, we can rearrange (2)-( 4) by imposing ẋ = ż = 0, which yields

0 = h(u 0 ) + S -1 A -1 Bf (u 0 ) + S -1 A -1 w. ( 12 
)
If there is a unique u 0 solving (12) then x 0 = A -1 Bf (u 0 ) + w and z 0 = R -1 (-P x 0 -u 0 ) are uniquely determined by ( 2) and ( 4) respectively, where R = diag{r 1 , . . . , r n } is invertible by Assumption 3. Hence we need only show that there is a unique u 0 solving [START_REF] Giaccagli | LMI conditions for contraction, integral action, and output feedback stabilization for a class of nonlinear systems[END_REF] for the proof to be complete. Let D be a diagonal positive definite matrix such that DS -1 A -1 BD -1 is strictly diagonally column-dominant. Note that such a D always exists because A and S are diagonal positive definite and B is an Mmatrix. Left-multiply ( 12) by D and insert multiplication by

I = D -1 D before f (u 0 ) to obtain 0 = Dh(u 0 ) + DS -1 A -1 BD -1 Df (u 0 ) + DS -1 A -1 w. (13) 
Introduce the change of variables B = DS -1 A -1 BD -1 , ζ = Du 0 , and ŵ = DS -1 A -1 w. Then (13) yields

0 = Dh(D -1 ζ) + BDf (D -1 ζ) + ŵ. (14) 
Here we can use Lemma 3 to replace f (•), h(•) with f (•), ĥ(•), which satisfy Assumption 1 and

f (ζ) + ĥ(ζ) = ζ.
Introduce a scalar k satisfying k > max(1, 2max i Bi,i ). Divide ( 14) by -k, add ζ to the left-hand side, and ζ = f (ζ) + ĥ(ζ) to the right-hand side of ( 14) to obtain

ζ = - 1 k (1 -k) ĥ(ζ) + ( B -kI) f (ζ) + ŵ . (15) 
We define the right-hand side of this expression as T w (ζ), defined for a specific w. By showing that T w is a contractive mapping for any ŵ, we can use Banach's fixed point theorem [START_REF] Agarwal | Fixed Point Theory in Metric Spaces: Recent Advances and Applications[END_REF] to show that there is a unique solution ζ = T w (ζ) (and thus a unique u 0 = D -1 ζ) for any ŵ (and thus any w

= ASD -1 ŵ). Consider any α ∈ R n , β ∈ R n . Then T w (α) -T w (β) = -1+k
k ĥ(α) -ĥ(β)

+ -B+kI k f (α) -f (β) . (16) 
Here we use Lemma 2 to introduce h(α -β) = ĥ(α) -ĥ(β) and f (α -β) = f (α) -f (β). Denote ∆ = α -β and ∆ + = T w (α) -T w (β). Then

|∆ + i | ≤ k -1 k | hi (∆ i )|+ k -Bi,i k | fi (∆ i )|+ j =i | Bi,j | k | fj (∆ j )|. (17) Therefore ∆ 
+ 1 = n i=1 |∆ + i | ≤ n i=1 k -1 k | hi (∆ i )| + k -Bi,i k | fi (∆ i )| + j =i | Bj,i | k | fi (∆ i )| . ( 18 
)
Due to the diagonal column-dominance of B and the def-

inition of k, it holds that k > Bi,i > j =i | Bj,i |. Thus, selecting λ = k-1 k < 1, µ i = k-( Bi,i-j =i | Bj,i|) k < 1, γ i = max(λ, µ i ) < 1, and γ = max i γ i < 1, we obtain ∆ + 1 ≤ n i=1 λ| hi (∆ i )| + µ i | fi (∆ i )| ≤ n i=1 γ i | hi (∆ i )| + | fi (∆ i )| ≤ n i=1 γ|∆ i | = γ ∆ 1 . ( 19 
) Note that | hi (∆ i )|+| fi (∆ i )| = |∆ i | since fi (∆ i ) and hi (∆ i )
always have the same sign by Assumption 1, and sum to ∆ i . This proves that T w is a contraction mapping with respect to the metric • 1 . Thus, by Banach's fixed point theorem, for each w and the ensuing ŵ = DS -1 A -1 w there is a unique ζ such that (15) holds, and thus a u 0 = D -1 ζ such that [START_REF] Giaccagli | LMI conditions for contraction, integral action, and output feedback stabilization for a class of nonlinear systems[END_REF] holds, which completes the proof.

VI. PROOF OF GLOBAL ASYMPTOTIC STABILITY

Given the existence of an equilibrium (x 0 , z 0 ) and the associated input u 0 , consider the change of variables z = -R(z -z 0 ), ũ = u -u 0 , f (ũ) = f (u 0 + ũ) -f (u 0 ), and

h(ũ) = h(u 0 + ũ) -h(u 0 ). Due to Lemma 2, f (•), h(•)
satisfy Assumption 1, and f (ũ) + h(ũ) = ũ. This allows rewriting the ( 2)-( 4) as

ż u = -RP -1 RP -1 A -RP -1 -A + RP -1 z ũ - 0 P B f (ũ) - RS RS h(ũ)
(20) where P , R, and S are diagonal matrices gathering the controller parameters p i , r i , and s i . Stabilizing this system to z = ũ = 0 is equivalent to stabilizing the original system system to the equilibrium x = x 0 , z = z 0 , and u = u 0 . We will therefore now prove Theorem 2 with a Lyapunov-based argument considering system (20).

Proof: (of Theorem 2) Consider the Lyapunov function candidate

V (z, ũ) = n i=1 zi 0 q i (a i p i r i -1) fi (ζ) + ǫζ) dζ + n i=1 ũi 0 q i fi (ζ) + ǫζ dζ (21) 
where scalars q i > 0 and ǫ > 0 are parameters to be fixed later. For any such choice of parameters, V is positive definite and radially unbounded because fi (ζ) + ǫζ is increasing in ζ and zero at zero. Also a i pi ri -1 > 0 due to Assumption 3. The time derivative of V along the trajectories of system (20) is given by

V (z, ũ) = -f (z) + ǫz -f (ũ) -ǫũ ⊤ D(z -ũ) (22a) -f (z) + ǫz ⊤ DP S h(ũ) (22b) -f (ũ) + ǫũ ⊤ QRS h(ũ) (22c) -f (ũ) + ǫũ ⊤ QP B f (ũ) ( 22d 
)
where D is a diagonal positive definite matrix gathering the elements q i (a i -r i /p i ) and Q is a diagonal positive definite matrix gathering the elements q i . To simplify this expression, we split it into 

V (z, ũ) = V1 (z, ũ) + V2 (z, ũ) (23 
i ) + ǫz i -fi (ũ i ) -ǫũ i Di,i (z i -ũi ) = | fi (z i ) + ǫz i | + | fi (ũ i ) -ǫũ i | Di,i (|z i | + |ũ i |).
f (ũ) + ǫũ ⊤ QRS h(ũ) = f (ũ) + ǫ f (ũ) + ǫ h(ũ) ⊤ QRS h(ũ) = (1 + ǫ) f (ũ) ⊤ QRS h + ǫ h(ũ) ⊤ QRS h(ũ) ≥ ǫβ h(ũ) 2 2 ( 24 
)
where β is the minimum diagonal element of QRS. Note also that

f (ũ) + ǫũ ⊤ QP B f (ũ) = (1 + ǫ) f (ũ) ⊤ QP B f (ũ) + ǫ h(ũ) ⊤ QP B f (ũ). (25) 
Fix now the weights q i in such a way that QP B + B ⊤ P Q is positive definite. This is possible because B is an M-matrix according to Assumption 2. Therefore ∃α > 0 such that QP B + B ⊤ P Q ≻ 2αI. Thus the first term of (25) satisfies

(1 + ǫ) f (ũ) ⊤ QP B f (ũ) ≥ (1 + ǫ)α f (ũ) 2 2 . (26) 
We also note that the second term in (25) satisfies

ǫ h(ũ) ⊤ QP B f (ũ) ≥ -ǫγ f(ũ) 2 h(ũ) 2 (27) 
where γ = QP B 2 . Thus, combining the bounds in (24), ( 26) and ( 27) within (22c)-(22d), we obtain

V2 (z, ũ) ≤ -(1 + ǫ)α f (ũ) 2 2 -ǫβ h(ũ) 2 2 + ǫγ f(ũ) 2 h(ũ) 2 = f (ũ) 2 h(ũ) 2 ⊤ -(1 + ǫ)α 1 2 ǫγ 1 2 ǫγ -ǫβ f (ũ) 2 h(ũ) 2 . (28) 
We may now select the Lyapunov function parameter ǫ sufficiently small such that α + ǫα -ǫγ 2 4β > 0. This makes the quadratic form (28) negative definite. Thus V2 (z, ũ) = 0 if and only if f (ũ) = h(ũ) = 0, i.e. if and only if ũ = 0. In this case, V1 (z, ũ) is clearly negative definite in z. Thus V (z, ũ) is negative definite, which implies that the origin is globally asymptotically stable for system (20). Equivalently, the equilibrium (x 0 , z 0 ), with input u 0 , is therefore globally asymptotically stable for the original system (2)-(4).

VII. PROOF OF EQUILIBRIUM OPTIMALITY

Here we prove Theorem 3.

Proof: Firstly, it is clear that v * = sat u 0 and x * i = x 0 i = -s i dz u 0 i for all i satisfies (5b) due to x 0 , z 0 being an equilibrium, and satisfies (5c) because sat (•) is bounded in the range [-1, 1]. Consider, for establishing a contradiction, that there exists µ = 0 such that v † = v * + µ and x † = A -1 Bv † + A -1 w = x * + A -1 Bµ is the optimal solution to (5) with a smaller cost (5a) than the one obtained by x * , v * . Then µ solves the optimization problem

minimize µ n i=1 |γ i x * i + Bi µ| (29a) subject to -1 ≤ v * + µ ≤ 1. ( 29b 
)
where Bi is row i of the matrix B = ΓA -1 B. The equilibrium of (3) implies x * i = -s i dz u 0 i . Therefore we can leverage (29b) to see that x * i > 0 =⇒ u 0 i < -1 =⇒ v i = -1 =⇒ µ i ≥ 0 and conversely x * i < 0 =⇒ u 0 i > 1 =⇒ v i = 1 =⇒ µ i ≤ 0. Combining this with Γ and A both being diagonal, positive definite and the fact that B is an M-matrix which implies that Bi,i > 0, we obtain |γ i x i + Bi,i µ i | = |γ i x i | + | Bi,i µ i | for all i. Thus (29a) can be expanded as follows 

VIII. CONCLUSIONS

In this paper we considered fully decentralized PI-control for a class of interconnected systems subject to incrementally sector-bounded nonlinearities. We showed that for systems where the input matrix is an M-matrix, fully decentralized PI-controllers globally asymptotically stabilize a specific equilibrium. Furthermore, this equilibrium is optimal in that it minimizes costs of the form n i=1 γ i |x i |. The proposed control strategy was employed in a numerical example of a simplified district heating system model. The example showed that, with our decentralized strategy, the total discomfort in the system is minimized, at the cost of higher worst-case discomforts when compared with a alternative coordinated control strategies. We have thus demonstrated that a fully decentralized and easily tuned control law constitutes a relevant design for a large class of systems.

Open questions include analysis of the transient response, and finding controller tuning rules accordingly. Furthermore, to better capture the district heating application, a richer class of systems should be considered: Multi-state models for each individual building, as well as more complex, nonlinear models of the interconnection B should be considered.
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 112 Fig. 1: Simulation results showing temperature deviations x for each control strategy. The blue lines (with values on the left axis) are the temperature deviations x. The dotted, black line (with values on the right axis) is the outdoor temperature. At about hour 100, the temperature becomes critically low. This induces saturation in the controllers, leading to a drop of the indoor temperatures.
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 2 Fig. 2: Cost functions evaluated for each control strategy.

  n i=1 |γ i x i + Bi µ| ≥ i =j   |γ i x i + Bi,i µ i | -| i =j Bi,j µ j |   ≥ n i=1 |γ i x i | + | Bi,i ||µ i | -n i=1 j =i | Bi,j ||µ j | = n i=1 |γ i x i | + n k=1   | Bk,k |j =k | Bj,k |   |µ k |.

  B is diagonally column-dominant, then | Bk,k |j =k | Bj,k | isstrictly positive for all k. Thus this expression is minimized by µ = 0, which completes the proof.

  and DP S are diagonal, V1 can be analyzed for each i individually. fi(ζ i ) + ǫζ i is increasing in ζ i , therefore sign fi (z i ) + ǫz i -fi (ũ i ) -ǫũ i = sign (z i -ũi )and thus (22a) is negative semi-definite. If zi and ũi have the same sign, (22b) contributes negatively to V1 . If they have opposite signs the contribution is positive, but in this case (22a) only comprises negative terms because fi (z

	)
	where V1 (z, ũ) corresponds to the terms (22a)-(22b) and V2 (z, ũ) corresponds to the terms (22c)-(22d). Since D

  Indeed, since p i s i < 1 from Assumption 3 and | hi (ũ i )| ≤ |ũ i | from Assumption 1, then (22a) as developed above dominates (22b) which is upper bounded by | fi (z i ) + ǫz i | Di,i | hi (ũ i )|,and thus V1 is negative semidefinite. We now turn our attention to V2 . Note that ũ, f (ũ), and h(ũ) elementwise have the same sign and QRS is diagonal, positive definite. Thus
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APPENDIX

We prove here suitable properties of the function class characterized by Assumption 1, as stated in Lemmas 1, 2 and 3. To simplify the exposition, we drop the index i.

Proof: (of Lemma 1)

Clearly, h(0

which clearly shows that if x = y then 0 ≤ (h(y) -h(x))/(y -x) ≤ 1, thus concluding the proof.

Proof:

which clearly shows that if x = y then 0 ≤ ( f (y) -

which clearly shows that if x = y then 0 ≤ ( f (y)f (x))/(y -x) ≤ 1. Finally f (x) + h(x) = Df (D -1 x) + Dh(D -1 x) = D f (D -1 x) + h(D -1 x) = DD -1 x = x, thus concluding the proof.