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Abstract: We present a novel algorithm for learning the parameters of hidden Markov models (HMMs)1

in a geometric setting where the observations take values in Riemannian manifolds. In particular,2

we elevate a recent second-order method of moments algorithm that incorporates non-consecutive3

correlations to a more general setting where observations take place in a Riemannian symmetric space4

of non-positive curvature and the observation likelihoods are Riemannian Gaussians. The resulting5

algorithm decouples into a Riemannian Gaussian mixture model estimation algorithm followed by a6

sequence of convex optimization procedures. We demonstrate through examples that the learner can7

result in significantly improved speed and numerical accuracy compared to existing learners.8

Keywords: hidden Markov models; method of moments; Riemannian geometry; Riemannian Gaussian9

mixtures; covariance matrices; geometric statistics10

1. Introduction11

Hidden Markov models (HMMs) describe states with Markovian dynamics that are hidden in the12

sense that they are only accessible via observations by a noisy sensor. Specifically, at every time-step13

k, an observation yk is sampled from an observation space Y according to the HMM’s observation14

likelihoods, which specify the probability of making a particular observation, conditioned on the system15

being in a certain state. Despite their structural simplicity, HMMs are capable of modeling complex16

signals and have indeed become a standard tool in the modeling of stochastic time-series [1] in recent17

decades and have found applications in a wide range of fields including computational biology [2,3],18

signal and image analysis [4], speech recognition [5,6], and financial modeling [7].19

In order to apply an HMM, it is often necessary to estimate its parameters from data. The20

standard approach to estimating the parameters of an HMM is using a maximum likelihood (ML)21

criterion. Numerical algorithms for computing the ML estimate are dominated by iterative local-search22

procedures that aim to maximize the likelihood of observed data, such as the expectation-maximization23

(EM) algorithm [1,4]. Unfortunately, these schemes are only guaranteed to converge to local stationary24

points of the typically non-convex likelihood function and as a result often become trapped in local25

optima. Thus, to have a chance of converging to a global optimum, a good initialization is usually26

required. Another drawback of such methods is the significant computational cost associated with27

long runtimes due to costly iterations for large datasets.28

In order to overcome such challenges, methods of moments have been introduced for HMMs [8–29

14]. Originally, these methods relied on empirical estimation of correlations between consecutive pair-30
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or triplet-wise observations to compute estimates of the HMM parameters. Although computationally31

attractive, such methods suffered from a loss of accuracy due to a focus on low order correlations in the32

data. In response, Mattila et al. [15,16] extended these methods to include non-consecutive correlations33

in the data, resulting in improved accuracy while retaining their attractive computational properties.34

1.1. Hidden Markov models with manifold-valued observations35

The development and analysis of statistical procedures and optimization algorithms on manifolds36

and nonlinear spaces more broadly have been the subject of intense and growing research interest in37

recent decades due to the ubiquity of manifold-valued data in a wide range of applications [17–23].38

Since the application of Euclidean algorithms to such data often has a significantly negative impact39

on the accuracy and interpretability of the results, it is necessary to devise algorithms that respect40

the intrinsic geometry of the data. In this work, we turn our attention to HMMs with observations41

in a Riemannian manifold [24,25]. In particular, we restrict our attention to the class of models with42

observations in Riemannian symmetric spaces of non-positive curvature, which include hyperbolic43

spaces, as well as spaces of real, complex, and quaternionic positive definite matrices. We have three44

motivations for this restriction: (1) standard operations on such spaces have relatively favorable45

computational properties due to symmetries, (2) there exists a theory of Riemannian Gaussian46

distributions on such spaces together with associated algorithms such as Riemannian Gaussian47

mixture estimation [26,27], and (3) they are applicable to a substantial class of problems involving48

manifold-valued data, including applications with data in the form of covariance matrices [27].49

1.2. Contributions and paper outline50

Our main contribution in this paper is to extend the second-order method of moments algorithm51

with non-consecutive correlations developed by Mattila et al. [15,16] to the setting of HMMs with52

observations in a Riemannian symmetric space of non-positive curvature, where the observation53

likelihoods take the form of Riemannian Gaussians [27,28]. The paper is organized as follows. In54

Section 2, we describe HMMs with manifold-valued observations and review the necessary geometric55

background. In Section 3, we review the method of moments algorithms for HMMs and describe how56

they manifest in the geometric setting. In Section 4, we present a number of simulations based on these57

algorithms and conclude with a discussion in Section 5.58

1.3. Notation59

We denote the i-th entry of a vector by [·]i, and the element at row i and column j of a matrix by60

[·]ij. Vectors are assumed to be column vectors unless transposed. The vector of all ones is denoted 1.61

We interpret inequalities between vectors and matrices to hold elementwise. The operator diag acts62

on vectors and returns the matrix where the vector has been placed on the diagonal, and all other63

elements set to zero. The matrix Frobenius norm is denoted ∥ · ∥F. The probability of an event A is64

denoted P(A).65

2. Hidden Markov models on manifolds66

We consider a discrete-time hidden Markov model with a finite-state Markov chain on the state
space X = {1, . . . , N} with time-homogeneous N × N transition probability matrix P with elements

[P]ij = P[xk+1 = j|xk = i]. (1)

The initial and stationary distributions of the HMM exist under appropriate assumptions and are67

denoted by π0 ∈ RN and π∞ ∈ RN , respectively. The HMM is said to be stationary if π0 = π∞.68
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We assume that the states are hidden and can only be accessed through observations in a
Riemannian symmetric space of non-positive curvature so that the Riemannian Gaussian distribution
with probability density function

p(y|ȳ, σ) =
1

Z(σ)
exp

[
−d2(y, ȳ)

2σ2

]
(2)

with respect to the Riemannian volume measure dv(y) on Y is well-defined for any ȳ ∈ Y and σ > 0,
as outlined in [27]. d(·, ·) denotes the Riemannian distance function on Y and Z(σ) denotes the
normalization factor of the Riemannian Gaussian, whose efficient computation has been the subject
of interest in recent years [28–31]. We assume that the observations are sampled from Y according to
conditional probability densities

B(yk = y|xk = j) = p(y|ȳj, σj), (3)

for j = 1, . . . , N where p(·|ȳj, σj) is a Riemannian Gaussian density function of the form (2) with mean69

ȳj ∈ Y and dispersion σj > 0.70

To use an HMM for applications such as filtering or prediction, its model parameters must be71

specified or estimated in advance. This task can be formulated as the following learning problem for72

HMMs:73

Problem 1. Given a sequence y1, . . . , yD of observations in Y generated by an HMM of known state space74

X = {1, . . . , N}, estimate the conditional probability densities B and the matrix of transition probabilities P.75

The learning problem is well-posed under the standard assumptions that the HMM is ergodic76

(irreducible and aperiodic) and identifiable [4,10,15,16]. A special case of the learning problem that is77

worth noting is that of the known-sensor HMM, in which the observation likelihoods B are assumed78

to be known. Known-sensor HMMs are motivated by applications in which the sensor is designed79

by the user, such as a target tracking system whose sensor specifications can be determined prior to80

deployment.81

Various methods since the inception of HMMs have focused on maximizing the likelihood in
terms of both B and P; however, recent efforts have demonstrated the potential of methods that
decouple the problem [12,13] and estimate B and P sequentially. Specifically, in parametric-output
HMMs (e.g., Gaussian HMMs), the observation likelihoods are estimated via a general mixture model
learner as a first step, followed by identification of the transition matrix P as a second step [12]. In
the first step, assuming that the underlying Markov chain behaves well (e.g. is recurrent) and mixes
rapidly, in stationarity, each observation yk from the HMM can be interpreted as having been sampled
from the mixture distribution density

p(y) =
N

∑
i=1

[π∞]iB(y|ȳi, σi). (4)

Since we are assuming that the observation likelihoods belong to the family of isotropic Riemannian82

Gaussians on Y , the density (4) can be estimated using one of several algorithms for the estimation83

of mixtures of Riemannian Gaussian distributions including expectation-maximization (EM) [26,27],84

stochastic EM [32], and online variants [33]. The second step is then equivalent to the identification of85

a known-sensor HMM.86
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3. Method of moments algorithms for geometric learning of hidden Markov models87

3.1. Method of moments for HMMs88

We begin with a brief review of the method of moments algorithm for HMMs developed by89

Mattila et al. in [15]. The significance of this work is that it extends previous method of moments90

algorithms for HMMs that were based on correlations between consecutive pair- or triplet-wise91

observations to include non-consecutive correlations in the data. In doing so, the authors improve the92

accuracy of the approach by reducing the volume of neglected information inherent in the data while93

maintaining the computationally attractive properties of previous method of moments algorithms.94

Before presenting the algorithm in the setting of HMMs with manifold-valued observations, we
briefly review a summary of the key steps involved in the second-order algorithm of Mattila et al. [15]
in the simplest setting where the observations take place in a finite observation alphabet {1, . . . , Y}
with a known N × Y observation matrix B:

[B]ij = P[yk = j|xk = i]. (5)

Methods of moments for HMMs (e.g. [8–14]) involve the empirical estimation of low-order correlations95

in the data, such as pairs P[yk, yk+1] or triplets P[yk, yk+1, yk+2], followed by computation of the96

HMM parameter estimates by minimizing the discrepancy between the empirical estimates and97

their analytical expressions via a series of convex optimization problems. In Mattila et al. [15], the98

authors extend such methods to include non-consecutive correlations of the form P[yk, yk+τ ] with99

τ = 1, 2, . . . , τ̄ where the number τ̄ is a user-defined lag parameter.100

The lag-τ second-order moments M2(k, τ) ∈ RY×Y of the HMM are defined as the matrices

[M2(k, τ)]ij = P[yk = i, yk+τ = j], (6)

where i, j = 1, . . . , Y and τ ≥ 0. The case τ = 0 reduces to the first-order moments [M1(k)]i = P[yk = i],
where M1(k) ∈ RY, which for notational convenience is expressed as a special case of second-order
moments by writing M2(k, 0) = diag(M1(k)). For a stationary HMM (i.e., π0 = π∞), it can be readily
verified that the lag-τ second-order moments are related to the HMM parameters according to the
equations

M2(k, τ) = BT diag(π∞)Pτ B, M2(k, 0) = diag(BTπ∞), (7)

for any τ > 0.101

The lag-τ second-order moments can be empirically estimated from data as M̂2(τ) according to
the equation

[M̂2(τ)]ij =
1

D − τ

D−τ

∑
k=1

I{yk = i, yk+τ = j}, (8)

for τ = 0, 1, . . . , τ̄, where D is the number of observations and I denotes the indicator function. The102

next step in the method is moment matching through the minimization of the discrepancy between103

the empirical estimate M̂(τ) and its analytical expression by solving the following convex (quadratic)104

optimization problems:105

1. Solve
min

π̂∞∈RN×N
∥M̂2(0)− diag(BTπ̂∞)∥2

F

s.t. π̂∞ ≥ 0, 1Tπ̂∞ = 1,
(9)

and set Â(0) = diag(π̂∞).106

107
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2. For τ = 1, . . . , τ̄, solve

min
P̂(τ)∈RN×N

∥M̂2(τ)− BT Â(τ − 1)P̂(τ)B∥2
F

s.t. P̂(τ) ≥ 0, P̂(τ)1 = 1,
(10)

and set Â(τ) = Â(τ − 1)P̂(τ).108

The output of the above moment matching procedure is a sequence Â(0), . . . , Â(τ̄). In the final step,
we use this sequence to estimate the transition matrix P by solving the following least-squares problem,
which incorporates information from every lag by construction.

min
P̂∈RN×N

∥∥∥∥∥∥∥
 Â(0)

...
Â(τ̄ − 1)

 P̂ −

 Â(1)
...

Â(τ̄)


∥∥∥∥∥∥∥

2

F

s.t. P̂ ≥ 0, P̂1 = 1.

(11)

The dominant contribution to the computational cost of the above algorithm is independent of109

the data size D and scales linearly with the number of lags τ̄ included. In contrast, each iteration of the110

EM algorithm has a complexity of O(N2D). In addition to favorable computational properties, it is111

shown in [15,16] that the above algorithm is strongly consistent under reasonable assumptions. That112

is, as the number of samples grows, we expect the estimate of the transition matrix P to converge to its113

true value.114

3.2. Geometric learning of HMMs using method of moments115

We now return to the problem of estimating the parameters of an HMM with observations in a
Riemannian manifold Y via an extension of the second-order method of moments presented earlier.
We assume conditional probability densities to be given by Riemannian Gaussians of the form (2).
The first stage of the process is to estimate the means and variances of the observation densities from
data by employing a Riemannian Gaussian mixture learner [27,32,33]. In the case of a known-sensor
HMM, this would be unnecessary as the observation densities are known a priori. In the next stage,
we use a kernel trick outlined in [12,16] to extend the pairwise correlations between discrete-valued
observations M2(τ) to an analogous quantity H(τ) ∈ RN×N applicable in the setting of continuous
observation spaces. H is then related to the parameters of the HMM according to the equations

H(0) = diag(Kπ∞),

H(τ) = KT diag(π∞)PτK, (12)

for τ = 1, . . . , τ̄ ∈ N, where π∞ is the HMM stationary distribution which can be estimated from (4),
and K ∈ RN×N is defined as

[K]ij =
∫
Y

B(y | x = i)B(y | x = j) dv(y). (13)

The N × N matrix K in (13) is called the the effective observation matrix in [12,16] and replaces the N ×Y116

observation matrix (5). We can compute K using Monte Carlo techniques based on sampling from117

Riemannian Gaussians [27].118
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The elements of the left-hand side of (12) can be interpreted as conditional expectations with
respect to the joint probability distribution of yk and yk+τ , which can be empirically estimated from
HMM observations as

[Ĥ(0)]ii =
1
D

D

∑
k=1

B(yk|x = i), (14)

[Ĥ(τ)]ij =
1

D − τ

D−τ

∑
k=1

B(yk|x = i)B(yk+τ |x = j) (15)

in analogy with empirical estimate (8) employed in the case of HMMs with a discrete observation119

space.120

Following the estimation of H(τ) and the computation of K, the moment matching procedure121

now takes the form of minimizing the discrepancy between the empirical estimate Ĥ(τ) and the122

corresponding analytical expressions in (12). Specifically, in the case of the known-sensor HMM, we123

solve the following sequence of convex (quadratic) optimization problems:124

1. Solve
min

π̂∞∈RN×N
∥Ĥ(0)− diag(KTπ̂∞)∥2

F

s.t. π̂∞ ≥ 0, 1Tπ̂∞ = 1,
(16)

and set Â(0) = diag(π̂∞).125

126

2. For τ = 1, . . . , τ̄, solve
min

P̂(τ)∈RN×N
∥Ĥ(τ)− KT Â(τ − 1)P̂(τ)K∥2

F

s.t. P̂(τ) ≥ 0, P̂(τ)1 = 1,
(17)

and set Â(τ) = Â(τ − 1)P̂(τ).127

The output is once again a sequence Â(0), . . . , Â(τ̄), which is used to compute an estimate for the128

transition matrix P by solving (11).129

To summarize, the algorithm follows a 2-stage procedure to learn the parameters of an HMM130

with observations in a Riemannian manifold admitting well-defined Gaussian densities of the form (2)131

from data. In stage 1, Riemannian Gaussian mixture estimation is employed to compute estimates for132

the conditional likelihoods B, which are then used in stage 2 to compute an estimate for the transition133

probabilities P by solving a series of convex optimization problems.134

4. Simulations135

We now present the results of several numerical experiments on learning HMMs with136

manifold-valued observations. In the first example, observations take place in the Poincaré disk137

model of hyperbolic 2-space. Poincaré models of hyperbolic spaces have been a subject of increasing138

interest in machine learning in recent years due to their ability to efficiently represent hierarchical data139

[34]. In the second example, we consider a model with observations in the manifold of 2× 2 symmetric140

positive definite (SPD) matrices equipped with the standard affine-invariant Rao-Fisher metric [26].141

4.1. Example 1: Observations in hyperbolic space142

We consider the example of an HMM with N = 3 hidden states with initial distribution π0 =

(1, 0, 0)T and transition matrix

P =

0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

 (18)
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and observations generated from a Riemannian Gaussian model in the Poincaré disk Y = {y ∈ C :
|y| < 1} with associated means ȳ1 = 0, ȳ2 = 0.29 + 0.82i, ȳ3 = −0.29 + 0.82i and standard deviations
σ1 = 0.1, σ2 = 0.4, σ3 = 0.4 as studied in [24] in the context of estimation using the EM algorithm.
The Riemannian distance function d(·, ·) and the Riemannian Gaussian normalization factor Z(σ) are
given by

d(y, z) = acosh
(

1 +
2|y − z|2

(1 − |y|2)(1 − |z|2)

)
, Z(σ) = 2π

√
π

2
σe

σ2
2 erf

(
σ√
2

)
, (19)

respectively, where erf denotes the error function [35].143

We employed the second-order method of moments algorithm of Section 3.2 to learn the144

parameters of this HMM from observations alone. The model was fitted on 20 HMM chains, each145

with 10,000 observations. In our implementation, we used the mixture estimation algorithm of [26] to146

estimate the density (4). The full results are reported in Table 1, where the true and estimated Gaussian147

means are denoted by ȳi and ŷi, respectively. On repeating the experiment with varying τ̄ and the148

same random seed—and hence the same estimates for means and dispersions by construction—we149

observed that incorporating non-consecutive data (i.e., τ̄ > 1) up to τ̄ = 3 significantly improved our150

estimate for P and produced a more accurate estimate than alternative algorithms [24,25]. Comparing151

the empirical performance of our algorithm to the numerical results reported in [24], we observed that152

our algorithm performed competitively, while requiring only a fraction of the runtime with the same153

number of observations. In comparison to the online learning algorithm of [25], which we employed154

on the same learning problem, we observed improved performance for τ̄ > 1, with the method155

of moments algorithm with τ̄ = 3 producing the most accurate estimate of P out of all considered156

methods. Interestingly, the runtime of our algorithm was not noticeably affected by the choice of τ̄157

in this example since the mixture estimation and computation of K (13) accounted for the dominant158

contribution to the computational cost.159

Table 1. Comparison of the performance of the method of moments algorithm proposed in this paper against
previously published algorithms for estimating HMMs with observations in the Poincaré disk.

EM algorithm
from [24]

Online algorithm
from [25]

Our proposed algorithm with
(a) τ̄ = 1, (b) τ̄ = 2, (c) τ̄ = 3

Mean error,
(
∑i d2(ȳi, ŷi)

)1/2 0.88 0.97 0.69

Dispersion error,
(
∑i(σi − σ̂i)

2)1/2 0.42 0.37 0.34

Transition matrix error, ∥P − P̂∥F 0.35 0.30 (a) 0.42, (b) 0.26, (c) 0.21

Average runtime ∼ 1 hour ∼ 190 sec ∼ 20 sec

4.2. Example 2: Observations in the manifold of 2 × 2 SPD matrices with N = 5 hidden states160

We now consider an HMM with N = 5 hidden states that are accessible through noisy
observations in the manifold of 2 × 2 SPD matrices generated from a Riemannian Gaussian model
with means ȳi and standard deviations σi given in Table 2. Here the Riemannian distance function
d(·, ·) and the Riemannian Gaussian normalization factor Z(σ) are given by

d(y, z) = ∥ log(y−1/2zy−1/2)∥F, Z(σ) = (2π)
3
2 σ2e

σ2
4 erf

(σ

2

)
. (20)

While the expression for the Riemannian distance function holds true for higher dimensional SPD161

matrices, the analytical expression for Z(σ) in (20) is only valid in the 2 × 2 case. Nonetheless, Z(σ)162

can be directly computed or approximated for higher dimensional SPD matrices [26–31].163
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The transition matrix P of the underlying Markov chain is

P =


0.3 0.1 0.2 0.1 0.3
0.1 0.4 0.2 0.2 0.1
0.2 0.2 0.3 0.1 0.2
0.1 0.1 0.2 0.5 0.1
0.4 0.1 0.1 0.1 0.3

 . (21)

We employed our proposed geometric second-order method of moments algorithm with τ̄ = 1 to164

sequentially estimate the underlying Gaussian model and the probability transition matrix from 10,000165

observations. The results of the Gaussian mixture estimation procedure are reported in Table 2 and166

demonstrate a high level of accuracy. The estimated Riemannian Gaussian model with means ŷi and167

standard deviations σ̂i as well as the observations used to learn the model are visualized in Figure 1.168

Table 2. True and estimated Riemannian Guassian mixture model parameters. ŷi and σ̂i denote the estimated
Riemannian Gaussian means and standard deviations, respectively. π∞ and π̂∞ denote the true and estimated
stationary distributions, respectively.

i = 1 i = 2 i = 3 i = 4 i = 5

ȳi

1.646 0.056

0.056 2.379

 2.294 0.744

0.744 1.415

  2.631 −0.127

−0.127 1.277

 0.674 0.454

0.454 2.056

  1.829 −0.919

−0.919 1.602


ŷi

1.642 0.051

0.051 2.383

 2.300 0.743

0.743 1.412

  2.642 −0.128

−0.128 1.277

 0.672 0.454

0.454 2.057

  1.830 −0.920

−0.920 1.604


σi 0.1 0.1 0.1 0.1 0.1

σ̂i 0.099 0.100 0.099 0.101 0.101

π∞ 0.227 0.171 0.199 0.195 0.207

π̂∞ 0.229 0.159 0.201 0.195 0.216

Figure 1. Visual representation of the Riemannian Gaussian model estimated from 10,000 observations
from three vantage points: top view (left), side view (middle), and front view (right). Each 2 × 2
SPD-valued observation is plotted as a point in the interior of the pointed convex cone {(a, b, c) ∈ R3 :
a ≥ 0, ac − b2 ≥ 0}. The shaded compact regions within the cone are superlevel sets of the 5 estimated
Riemannian Gaussian densities that represent the observation likelihoods.
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The estimated transition matrix P̂ is

P̂ =


0.291 0.088 0.195 0.092 0.334
0.104 0.409 0.185 0.188 0.114
0.199 0.206 0.297 0.098 0.200
0.091 0.113 0.202 0.482 0.112
0.407 0.105 0.106 0.083 0.299

 , (22)

which yields a relative approximation error of

∥P − P̂∥F
∥P∥F

= 0.050 (23)

with respect to the Frobenius norm. The mean error in the estimated transition probabilities is

1
N2

N

∑
i,j=1

|[P]ij − [P̂]ij| ≈ 0.01. (24)

5. Conclusion169

In this paper, we have shown that the recent method of moments algorithms for HMMs can be170

generalized to geometric settings in which observations take place in Riemannian manifolds. We171

observe through simple numerical simulations that the documented advantages of method of moments172

algorithms, including their competitive accuracy and attractive computational and statistical properties,173

may continue to hold in the geometric setting. Nonetheless, we expect unique computational challenges174

to arise in applications involving high-dimensional Riemannian manifolds. Specifically, using Markov175

chain Monte Carlo (MCMC) algorithms to compute the effective observation matrix K defined in176

(13) may become prohibitively expensive in high dimensions, which is not the case in the Euclidean177

setting as K admits a closed form analytic expression for multivariate Gaussian HMMs. Thus, a key178

technical challenge for the effective application of the proposed algorithm in problems involving179

high-dimensional manifolds is to devise algorithms for the efficient and scalable computation of K.180

Further developments of the approach may include extensions to models that incorporate third- or181

higher-order moments or more elaborate dynamics and control inputs.182
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