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Chapter 3
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Author: Guillaume CARON
MIS Laboratory
University of Picardie Jules Verne Amiens
France
and
CNRS-AIST Joint Robotics Laboratory (JRL)
Tsukuba
Japan

3.1 Abstract

This chapter reviews the state-of-the-art projection models for omnidirectional
cameras and the calibration methods to compute their parameters. These mod-
els range from the expression of explicit shape of mirrors and lenses to unified
and generic models. The calibration methods estimate the parameters of these
models thanks to partially or totally known scene geometry. Various geometric
features are considered for camera calibration such as points, lines circles used
as input of linear estimators or non-linear optimization schemes.

Several examples of cameras and images they capture are provided together
with sketches illustrating the path of light rays entering cameras as well as
the main equations using common notations to ease their understanding and
comparison.

3.2 Introduction

This chapter deals with the geometrical modeling of omnidirectional image for-
mation and the methods to compute its parameters for each omnidirectional
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camera. The models are formalized by relying on the geometry of the optics of
each omnidirectional camera, exploiting the explicit shape of the mirrors and
lenses, i.e. the ad hoc models (Section 3.3.2), or by more abstract relations
valid for several types of omnidirectional cameras, such as the unified central
projection model (Section 3.3.3). On the other hand, the generic models (Sec-
tion 3.3.4) make it possible to compensate for the impossibility of characterizing
the omnidirectional camera by the other models or the great difficulty in cali-
brating it because of a too large number of parameters.

Finally, the calibration methods (Section 3.4) estimate the parameters of
the above-mentioned models from correspondences between the content of the
omnidirectional image and the observed scene, which is known either totally by
the use of calibration patterns or partially, whether the scene is structured or
not.

3.3 Projection models

3.3.1 Perspective Projection Recalls

Describing the geometrical formation of an image (Figure 3.1c), observation
of a scene by a camera (Fig. 3.1a) assimilable to a pinhole or a camera lens
with infinite depth of field, the perspective projection model, very well known,
involves a projection center C ∈ R3 and the image plane π (Figure 3.1b). The
image being a finite rectangle of π, it defines a section of the pyramid of vertex
C and infinite height characterizing the field of view of the camera. The greater
the focal length f ∈ R∗

+ between the optical center and the image plane, the
smaller the field of view, and conversely.

We define the camera frame Fc with origin C and axes Xc ∈ R3, such that
||Xc|| = 1, and Yc ∈ R3, such that ||Yc|| = 1, parallel to the horizontal and,
respectively, vertical edges of the image rectangle. By usual convention, the
direction of these axes follows that of the organization of the pixels of a digital
image acquired by a camera, i.e. “to the right” for Xc and “downward” for
Yc,Zc ∈ R3, such that ||Zc|| = 1, is orthogonal to the previous axes making Fc

is a direct reference frame, so Zc points to the front of the camera. Thus, the

three-dimensional (3D) points cX =
(
cX cY cZ

)T ∈ R3 of the scene observed
by the camera, expressed in the camera reference frame Fc, have their third
coordinate positive.

The perspective projection model expresses an image point by the intersec-
tion of the line of sight (cCcX), representing the path followed by a light ray,
with the image plane. If, physically, the image plane is beyond the optical center
with respect to the 3D point, any plane in space parallel to it can form a virtual
image plane, identical to the real image plane, with a similarity transformation.
The normalized image plane πx, i.e. distant of one unit from cC, on the side
of cX, is generally chosen in computer vision.

Therefore, the perspective projection model expresses the projection of a 3D

point cX in πx as x =
(
x y

)T ∈ R2 by:
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Figure 3.1: Illustration of the perspective projection. (a) Conventional camera.
(b) Diagram of the perspective projection of a point X of the 3D world in the
normalized image plane πx. (c) Example of an image acquired by a camera that
can be characterized by the perspective projection model from the triforium of
the Amiens cathedral: despite the exceptional regularity of the building, the
width of the central vessel in the image decreases from the bottom of the image
towards its center while it is approximately the same along the entire length of
the building.


x =

cX
cZ

,

y =
cY
cZ

.

(3.1)

x is defined in the normalized image plane whose origin is its own intersection
with the Zc axis. It is to be noted that

cx =
(
x y 1

)T ∈ R3, (3.2)

gives the direction of the line of sight, expressed in Fc and passing through

its origin. It is distinguished from x̃ =
(
x y 1

)T ∈ P2, the homogeneous
representation of x in πx. We then write the perspective projection function
pr():

x̃ = pr(cX), (3.3)

with x and y expressed as in (3.1).
The origin of the digital image acquired by a camera being at the top left

and its sampling being in pixels, the perspective projection model considers
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an additional affine transformation K ∈ Aff(2), to transform πx to the digi-
tal image plane πu. This transformation involves, generally, four parameters
γp = {αu, αv, u0, v0} of which αu ∈ R∗ and αv ∈ R∗ are the horizontal and,
respectively, vertical scale factors and (u0, v0) ∈ R2 are the coordinates of the
principal point, i.e. the intersection of πx and Zc, expressed in the digital im-
age. These parameters, called intrinsic, characterize the optics of the camera,
according to the perspective projection model, and are linked to the physical
realization of an image, in particular αu = f/ku and αv = f/kv, with ku ∈ R∗

+

and kv ∈ R∗
+ the dimensions of a photodiode giving a pixel in the digital image.

Thus, the point ũ =
(
u v 1

)T ∈ P2 of the digital image is obtained from x̃
by:

ũ = Kx̃ with K =

αu 0 u0

0 αv v0
0 0 1

 . (3.4)

By putting together the two steps (3.3) and (3.4), we obtain the projection
function of a 3D point cX in the digital image plane:

ũ = prγp
(cX) = Kpr(cX). (3.5)

Remark 1 (Enrichment of the perspective projection model) The above
projection model takes into account the fact that pixels may not be perfectly
square but rectangular. It can be simplified to a minimum with a single scale
factor. This model can also be enriched to take into account: the fact that the
pixels are parallelograms, radial or tangential distortions caused by the optics
used, a misalignment of the optics and the photodiode array of the camera, etc.

The perspective projection model is suitable for cameras with a limited field
of view, around 122 degrees without distortion1. Indeed, the division by cZ in
the perspective projection equations (3.1) raises three problems when the field
of view approaches or exceeds 180 degrees, for example when using a curved
mirror catadioptric lens (Fig. 3.2a) or a fisheye lens (up to2 280 degrees fisheye
lens). The first problem, when cZ tends to 0, generates the need for a very large
image rectangle on πx, either because of a very large photosensitive matrix, or
at the expense of the resolution in the center of the image. Then, when cZ = 0,
x and y are not defined in (3.1), not to mention the numerical instability of
the calculations when cZ is very close to 0. Finally, when the field of view is
greater than 180 degrees, two 3D points cX and cX′ such that cX ′ = −cX,
cY ′ = −cY and cZ ′ = −cZ project to the same coordinates in the image plane.
This is why the projection function prγp

() (3.5) must be adapted for omnidi-
rectional cameras by taking into account either explicitly the optical geometry
of the lenses (Section ??), or an abstraction replacing the plane surface of the
perspective projection model by a sphere (Section 3.3.3), or by relaxing the idea
of the projection surface by reasoning on a vector field (Section 3.3.4).

1Distortions less than 1% according to www.dxomark.com as of March 1, 2017 for the Sigma
12-24 mm camera lens

2Entaniya M12 280.
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3.3.2 Ad hoc models

Ad hoc projection models explicitly exploit the optical geometry of panoramic
and omnidirectional cameras, whether they involve one or more mirrors (Sec-
tion 3.3.2), a fisheye lens (Section 3.3.2), or a combination of cameras (Sec-
tion 3.3.2).

Catadioptric cameras

A catadioptric camera combines curved lenses (diopter) and mirrors (catoptric)
to acquire a panoramic image (Fig. 3.2c).

Central catadioptric cameras The panoramic catadioptric camera is single
view point, or central, when we associate a hyperbolic mirror of revolution to
a perspective camera (hypercatadioptric camera, Fig. 3.2a), a parabolic mirror
of revolution to an orthographic camera (paracatadioptric camera), for convex
mirrors, or a concave elliptic mirror of revolution to a perspective camera [2].
The single view point is also almost respected by combining a convex paraboloid
mirror and a concave spherical mirror with a perspective camera (Fig. 3.2b).
For all these configurations, ensuring the single view point requires a precise
relative placement of the perspective or orthographic camera and the mirror(s):
the principal axes must be aligned and the optical center of the perspective
camera must be coincident with the focus of the conical surface of the mirror
(of the spherical mirror in the case of two mirrors mentioned above). Other
combinations of mirrors, although more complex to implement, also allow the
realization of a single view point panoramic camera [8, 17].

The ad hoc modeling of central catadioptric cameras is based on the equa-
tions of the surfaces of each mirror and those of the associated cameras. Thus,

(a) (b) (c)

Figure 3.2: Panoramic catadioptric vision. (a) Single catadioptric camera (V-
Stone VS-C450MR-TK lens). (b) Dual catadioptric camera (RemoteReality
lens) acquiring panoramic (c) image (Place Saint-Michel, Amiens, 2015).
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when the placement of the mirror with respect to the camera respects the geo-
metrical constraints to ensure the uniqueness of the view point, we express the
coordinates of x the point of the normalized image plane from the coordinates of
the corresponding 3D point cX and the parameters of the mirror equation [15]
(Tab. 3.1) with:

ρ =
√

cX2 + cY 2 + cZ2. (3.6)

Non-central catadioptric cameras Even with a camera-mirror pair that
can lead to the single view point, when their relative placement is imprecise, the
catadioptric camera is non-central [23]. This is also the case for any combination
of mirror and camera shape, other than those discussed in Section 3.3.2.

In this case, the light rays passing through the camera to reach the image
plane do not intersect at a single point [48] but form a caustic surface [19].

The explicit formulation of the caustics associated with the shape of a mirror
is based on the flux flow model from geometrical optics. The equation of the
caustic surface associated to a mirror is obtained by solving the differential
equation canceling the Jacobian of a point F ∈ R3 of the caustic with respect to
the height cZm of the mirror surface and the distance between F and the mirror

Table 3.1: Ad hoc projection models of central catadioptric cameras (summary
of [15] and of the approximation for the two-mirror projection model [17]).

mirror parameters camera projection equations

parabolic
convex

h
(semi-latus
rectum)

orthographic

x = hcX
ρ−cZ

y = hcY
ρ−cZ

(3.7)

hyperbolic
convex

h et e
(excentricity)

perspective


x = 2ehcX/

√
4e2+h2

2e√
4e2+h2

ρ−cZ

y = 2ehcY /
√
4e2+h2

2e√
4e2+h2

ρ−cZ

(3.8)

ellipsoidal
concave

h et e
(excentricity)

perspective

x = 2ehcX
2eρ+cZ

√
4e2+h2

y = 2ehcY
2eρ+cZ

√
4e2+h2

(3.9)

parabolic
convex and
spherical
concave

h et r
(radius of

the spherical
mirror)

perspective

x = 2hcX
r/(ρ−cZ)−h2(ρ+cZ)/r

y = 2hcY
r/(ρ−cZ)−h2(ρ+cZ)/r

(3.10)
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along the reflected ray. Using the parameters of excentricity e and semi-latus
rectum h of the mirror surface introduced in Section 3.3.2, the mirror surface is
then written parametrically [48]:

g(cZm) =

√
h2

4
− hcZm − (e2 − 1)cZ2

m, (3.11)

leading to the implicit expression of the caustic:

f(cZm, g) = (e2 − 1)cZ2
m + g(cZm)2 + hcZm − h2

4
= 0. (3.12)

If the shape of the mirror is not known, the factors of the parameters of (3.12)
are replaced by unknowns to be estimated numerically.

Fisheye cameras

A fisheye camera has a hemispherical field of view (180 degrees) or more. As
for the panoramic catadioptric camera, the radial distortions encountered in
the image acquired by the fisheye camera are not aberrations but the result of
the projection of a sphere on a plane. When the radial distortions r ∈ R are
symmetrical with respect to the principal point, they are expressed from the
polar angle θ ∈ R, formed by the line of sight of the point cX and the optical
axis Zc, i.e. θ = arccos(cZ/||cX||). Several fisheye projection models exist,
mainly the equidistant [35] projections:

r = θ, (3.13)

and equisolid [35]:

r = 2 sin
θ

2
, (3.14)

to compare with the equivalent relationship for a perspective camera (Sec. 3.3.1):

r = tan θ. (3.15)

The equidistant projection has a regular radial resolution while the equisolid
projection has a better resolution at the center than at the edges of the image.

Whatever the model considered among the three previous ones, we express
the coordinates of the normalized image point x from r and the second angle
ϕ ∈ R defining the direction of the line of sight, i.e. the azimuthal angle
ϕ = arctan(cY /cX), by:

x = r

(
cosϕ
sinϕ

)
. (3.16)

However, real fisheye lenses rarely follow perfectly the ideal models of the
equations (3.13) and (3.14). In this case, a more general projection model is to
be considered, such as the angular polynomial projection model [27]. This model
expresses the radial distortions r from a polynomial function of the polar angle
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θ, denoted r(θ), considering only the odd powers of θ, weighted by coefficients
k1, k2, ...:

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k5θ

9 + . . . , (3.17)

without loss of generality. Thus this model has as many additional intrinsic
parameters to the perpective projection model as terms considered in the poly-
nomial (3.17), i.e. γpa = {αu, αv, u0, v0, k1, k2, . . .}.

Alternatively, the Cartesian polynomial projection model [43] reasons by
expressing the radial distortions r(ρ′u) in the digital image plane, centered at
the principal point u0 in which the coordinates of a point are expressed as
u′ = u − u0 and v′ = v − v0. This model defines r(ρu′) such that the vector
[u′, v′, r(ρu′)] is collinear with the line of sight associated with the 3D point cX,
i.e., by posing α = αu = αv:

ρ

α
[u′, v′, r(ρu′)] = cX, (3.18)

where ρ is the norm of cX (3.6), and:

r(ρu′) = a0 + a1ρu′ + a2ρ
2
u′ + . . .+ aNρNu′ , (3.19)

such that:
ρu′ =

√
u′2 + v′2. (3.20)

In summary, similar to the angular polynomial projection model, the number of
intrinsic parameters of the Cartesian polynomial projection model depends on
the number of coefficients considered in the polynomial (3.19). They are noted
as γpc = {α, u0, v0, a1, a2, . . .}.

Multi-camera systems

The multi-camera systems combine several cameras, identical or not, in a rig
with mainly complementary fields of view in order to reach, together, an om-
nidirectional field of view up to 360 degrees. This type of polydioptric visual
sensor goes from the combination of several perspective cameras distributed on
the surface of a sphere [49] (polycamera) to the combination of two back-to-
back fisheye lenses, for the most compact [28]. Some products are available
on the market for professionals of photography and panoramic and 360 movies
(or virtual reality), for the first (e.g. LadyBug, Dodeca 2, Insta360Pro), and
many consumer products (e.g. Ricoh Theta, Insta360One, Samsung Gear 360,
Garmin Virb 360, etc.), for the second.

Generally, a projection model characterizes each camera, so there are as
many sets of intrinsic parameters γm,j as there are cameras, m designating the
projection model considered and j, the camera index. To these we add the
extrinsic parameters which express the pose ps,j ∈ R6 of each camera j, of
frame Fcj , in a common coordinates system associated with the polydioptric
system, Fs.

Considering ps,j =
[
cjtTs rTs,j

]T
, such that cjts ∈ R3 and rs,j ∈ R3, the

axis-angle representation of the rotation matrix cjRs ∈ SO(3) [31], we express
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cjMs ∈ SE(3), the rigid transformation matrix from frame Fs to frame Fcj ,
by:

cjMs =

[
cjRs

cjts
01×3 1

]
. (3.21)

This modeling of polydioptric system is very similar to that of stereoscopic
vision systems.

3.3.3 Unified central projection and its extensions

Unlike ad hoc models, unified central projection is based on a mathematical
abstraction of the geometry of central omnidirectional camera image formation.
It introduces a virtual sphere as an intermediate projection surface between the
scene and the image plane [15, 3]. This sphere is also another image represen-
tation space, common to all central cameras.

Unified central projection model

The unified central projection model (Fig. 3.3) can be seen as a generalization of
the perspective projection model consisting in adding a preliminary step which
first projects the 3D point cX onto a unit sphere [3] of center C in XS ∈ R3,
such that ||XS || = 1:

XS =

XS
YS
ZS

 = prS(
cX) with


XS =

cX
ρ

YS =
cY
ρ

ZS =
cZ
ρ

, ρ = ||cX||, (3.22)

before projecting it on the normalized image plane in x, using a second center
of projection C ∈ R3, distant of ξ ∈ R+ from the first one, along the axis Zc [3]:

x = pr
(
XS +

(
0 0 ξ

)T)
with

{
x = XS

ZS+ξ

y = YS
ZS+ξ

. (3.23)

1
ξ

C

X

x πx

Zc

Xc

Cξ

XS

Zξ

Xξ

Figure 3.3: Diagram of the unified central projection model.
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prS() and pr() combine into a single projection function prξ of the 3D point cX
into x̃:

x̃ = prξ(
cX) with

{
x =

cX
cZ+ξρ

y =
cY

cZ+ξρ

. (3.24)

To finalize the unified central projection model, the transformation from the
normalized image plane to the digital image plane is done in the same way as
with the perspective (3.4) projection model. ξ joins the set of intrinsic param-
eters of the unified central projection model γu = {αu, αv, u0, v0, ξ}. Thus, the
projection function of a 3D point cX in the digital image plane is written:

ũ = prγu(
cX) = Kprξ(

cX). (3.25)

The projection prξ() of the sphere to the image plane is invertible, which
makes it possible to express a spherical point, and thus the associated line of
sight, from an image point:

XS = pr−1
ξ (x) =


ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 − ξ

 . (3.26)

The equation (3.25) of projection to the digital image plane is equivalently
rewritten by introducing the intrinsic parameters τ ∈ [0, 1[, α′

u ∈ R∗ and α′
v ∈

R∗ and by posing xi = τ/(1 − τ), αu = α′
u/(1 − τ) and

αv = α′
v/(1− τ) [51]. We then express the equivalent unified central projection

function prγ′
u
:

ũ = prγ′
u
(cX) = K′prτ (

cX) with K′ =

α′
u 0 u0

0 α′
v v0

0 0 1

 , (3.27)

and prτ (
cX) giving: {

x =
cX

(1−τ)cZ+τρ

y =
cY

(1−τ)cZ+τρ

. (3.28)

This rewriting of the unified central projection model with γ′
u = {α′

u, α
′
v, u0, v0, τ},

inverts and has better numerical properties for the calibration [51].
Finally, representing the coordinates of points on the sphere by Cartesian

coordinates is redundant because, since the sphere is unitary, XS , YS and ZS
are not independent (||XS || = 1). The minimal representation of a point on
the sphere is done by the spherical coordinates of azimuthal ϕ and polar θ
angles3 (θ = [θ, ϕ]T ∈ R2), which are expressed from XS by the function c2s()
(Cartesian to spherical):

θ =

(
θ
ϕ

)
= c2s(XS) =

(
arccos(ZS)

arctan(YS/XS)

)
. (3.29)

3This chapter considers the standard ISO 80000-2:2019 to note spherical coordinates.
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Remark 2 (Enrichment of the unified central projection model) Similar
to the perspective projection model, the unified central projection model can be
extended by taking into account additional intrinsic parameters, e.g. for radial
distortions (Remark 1). ⋄

Remark 3 (Generalization of the perspective projection model) The uni-
fied central projection model is valid for any single point of view camera, includ-
ing perspective cameras. Indeed, it is enough to cancel ξ (or τ) to find back the
perspective projection. ⋄

Extensions for fisheyes cameras

The unified central projection model (Sec. 3.3.3) is also equivalent to the ad hoc
projection models of fisheye lens cameras [13] seen in Section 3.3.2. In practice,
this model needs to be completed by a distortion parameter to better approx-
imate the projection of most fisheye lenses [53]. However, this model poorly
characterizes fisheye lenses whose field of view is greater than 180 degrees [51].

In this case, the unified central projection model can be extended by adding,
after the spherical projection (3.22), a second spherical projection, of center Cξ,
before the perspective projection to the image plane of center Cτ = (0, 0, τ/(1−
τ) − ξ)T, which thus becomes the third center of projection. The equation of
this double-sphere projection model to the digital image plane is then written
from the two versions (3.25) and (3.27) of the unified central projection [51]:

ũ = prγd
(cX) = K′prτ (prξ(

cX)), (3.30)

such that the composition of projection functions prτ (prξ(
cX)) gives:{

x =
cX

(1−τ)(cZ+ξρ)+τρ2

y =
cY

(1−τ)(cZ+ξρ)+τρ2

, (3.31)

where ρ is defined in Equation (3.6), and with:

ρ2 =

√
cX2 + cY 2 + (cZ + ξρ)2. (3.32)

This last model has therefore 6 intrinsic parameters γd = {α′
u, α

′
v, u0, v0, ξ, τ}.

Extension for 360◦ cameras

The most compact spherical polydioptric systems have the specificity of being
designed so that their lenses have complementary fields of view, thus reduc-
ing their number to a minimum. Two fisheye lenses placed back-to-back are
enough to cover the full 360 degrees of the spherical field of view thanks to two
flat mirrors judiciously positioned between the lenses, thus reflecting the light
to a single photosensitive matrix [28]. For even more compactness, the cam-
era manufacturer Ricoh has replaced, in its Theta4 brand, the mirrors by two

4http://theta360.com
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prisms redirecting the light rays passing through the fisheye lenses towards two
photosensitive matrices.

Beyond the interest of the very small volume of this spherical polydioptric
camera (Fig. 3.4a), for the general public, as well as in robotics, the proximity
of the two fisheye lenses also makes their optical centers very close. We can then
make the approximation that they are at the same location, in particular when
the elements of the observed scene are far enough from the spherical camera5

(minimum working distance of polycameras [49]).
The projection model of a compact polydioptric spherical camera is thus

restricted to a single sphere, each hemisphere of which is associated with one of
the two fisheye images (Fig. 3.4b), thus considering two image planes associated
with the same sphere [11]. As the lenses, the photosensitive matrices and their
alignment can be slightly different from one fisheye camera to the other, two
sets of intrinsic parameters γu,j , j ∈ {1, 2} are considered. However, since both
fisheye cameras are assumed to share the same origin, we can set Fs = Fc1

(Fig. 3.4c) and the extrinsic parameters, i.e. the pose of the second fisheye
camera, relative to the first, thus, are reduced to the orientation rs,2 (or r1,2)
c2Rs = c2Rc1 ∈ SO(3). We then re-express the projection of a spherical point
sXS of the hemisphere associated to the camera j in the normalized image plane
of the latter (Eq. (3.23)) by:

x = prj

(
cjRs

sXS +
(
0 0 ξj

)T)
, (3.33)

with c1Rs = c1Rc1 = I3×3. In practice, the sign of the third coordinate of
cjXs = cjRs

sXS is sufficient to determine which of the two cameras perceives
it.

3.3.4 Generic Models

Generic models, also called discrete models, associate to each pixel a line of
sight, also called light ray [46, 41] or raxel [18]. These rays intersect at a single
point, the optical center, for central cameras. They intersect at the same line,
the camera axis, for axial cameras. Finally, the rays are not constrained for the
other non-central cameras [41].

For some axial cameras, the generic model can be quasi-central when the
intersection points of the rays and the camera axis form a short segment [7].
The projection of a 3D point cX is then a ray ψ = [θ, ϕ, δZ ]

T ∈ R3 where θ and
ϕ are the polar and azimuthal angles (see (3.29)) of the line of sight formed by
cX and the point c[0, 0, δZ ]

T
[7]:

ψ =

 θ
ϕ
δZ

 =

c2s
(

cX− c[0, 0, δZ ]
T

||cX− c[0, 0, δZ ]
T||

)
δZ

 . (3.34)

5The Theta brand of Ricoh is mentioned here as an example because it has one of the
smallest distances on the market between its fisheyes lenses. It is thus a spherical camera for
which the approximation of uniqueness of optical center for the two fisheye lenses is among
the most tolerable.
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(a) (b)

1
ξ1

S

X

x

XS

Xξ1

Zξ1

Cξ
1

πx1
Xc1

Zc1

Zc2

Xc2
πx2

Xξ2
Zξ2

Cξ2

X’
XS’
x’

1ξ2

(c)

Figure 3.4: Spherical vision: (a) Compact polydioptric spherical camera (Ricoh
Theta S, side view with the two fisheye lenses in its upper part) acquiring
(b) double-fisheye images (Le champ à cailloux, Vaux-en-Amiénois, 2019) and
whose projection can be represented, under hypotheses, by (c) an extension of
the unified central projection model to two image planes.

When the camera is central, δZ = 0.
δZ is possibly unique for each pixel u and the projection model is a table

associating to each pixel u a ray ψ.

3.4 Calibration methods

Calibration methods exploit points (most methods), straight lines [16, 4, 6],
circles [27] or spheres [52]. These primitives observed by the camera on cali-
bration patterns (Fig. 3.5a, 3.5b, 3.5c) or in the scene (Fig. 3.5d) are the data
used to estimate the intrinsic parameters of the projection model characterizing
the camera. The calibration patterns can be two-dimensional (2D) or 3D, the
former requiring to be observed at several distinct exposures (to be added in the
parameters to be estimated) to perform the calibration, when a single observa-
tion of a 3D calibration pattern may suffice [40]. Without requiring a calibration
pattern or the presence of a particular structure in the scene, self-calibration
relies on the detection and matching of points of interest in the scene in several
images acquired at different camera exposures [26, 34, 36].

Most of the available methods and software estimate the intrinsic parameters
minimizing the reprojection error (Sum of Squared Differences, SSD) of reference
calibration patterns oXi with respect to their detection in the image ui:

γ̂· = argmin
γ·

1

2

∑
i

||prγ·(
cMo

oXi)− ui||2, (3.35)

γ̂· being the estimate of the intrinsic parameters according to the considered
projection model: γ· ∈ {γp, γu, ...} (Sec. 3.3). In practice, as many cMo as
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(c)

(d)

Figure 3.5: Examples of measurements in the image for calibration. (a) checker-
board and disk plane patterns in a paracatadioptric [9] image: primitives are
points (corners of squares or centers of disks). (b-c) 3D multi-planar pattern
observed by a 360 polydioptric camera [11]. (d) straight lines extracted from
the environment structure (green lines) [6].

there are calibration patterns must be computed when solving the minimization
problem (3.35), even if they are not used afterwards.

As for the solution of the minimization problem (3.35), it is usually iterative
by nonlinear optimization [27, 51, 9, 33, 45, 11] by a Newton, Gauss-Newton or
Levenberg-Marquardt type method. Indeed, the formation of omnidirectional
images is nonlinear. On the other hand, a nonlinear optimization ensures a
better management of erroneous or inaccurate measurements [51] than a linear
resolution method, being able nevertheless, classically, to initialize the intrinsic
parameters to ensure the convergence of the optimization method [39].

Some variants are based on a collinearity criterion, not only when the con-
sidered primitives are straight lines [4], but also for the lines of sight associated
to the pixels of the omnidirectional image, whether they form the projection
model [43, 7] or not [39].

Table 3.2 gathers the most used and among the most recent omnidirectional
camera calibration methods (see [40] to complete the oldest references). Most
of them are associated with free software [12, 14, 25, 5, 22, 38, 29, 37] and some
of them are even integrated to other libraries like OpenCV6. In addition to the
attributes already mentioned (use of calibration pattern, type of primitive, cri-
terion considered, solver) to classify the calibration methods, the maximum field
of view of the camera calibrated with each method is reported, when known. At
most, a monocular camera with a field of view of 280 degrees and a polydioptric

6https://opencv.org
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camera with a field of view of 360 degrees have been calibrated7.
Finally, the calibration methods reported in Table 3.2 consider various pro-

jection models:

• [24, 42] use perspective projection (Sec. 3.3.1) with distortions for multi-
camera systems (Sec. 3.3.2)

• [28] uses the equidistant fisheye projection (Sec. 3.3.2, Eq. (3.13))

• [27, 45] are based on an angular polynomial projection model (Sec. 3.3.2,
Eq. (3.17)), combined with a quadric-based non-central projection model [1]
for [45]

• [44] is based on the Cartesian polynomial projection model (Sec. 3.3.2,
Eq. (3.19))

• [4, 39, 9, 33, 11] use the unified central projection model (Sec. 3.3.3)

• [51] is based on the double sphere projection model (Sec. 3.3.3)

• [7] is based on a generic projection model (Sec. 3.3.4)

3.5 Conclusion of the chapter

This chapter has presented the most frequently encountered projection models
in omnidirectional vision. Faced with the variety of these models, the choice
depends both on the camera used but also on the intended application, par-
ticularly according to criteria of accuracy, efficiency and image representation.
The calibration method, its ease of implementation, and even the availability of
software, are all practical elements to take into account. Nevertheless, all cali-
bration methods require a distribution of the considered primitives in the whole
field of view of the camera, particularly at its periphery, to ensure a correct
estimation of the intrinsic parameters of the camera [40].

Once the camera is calibrated, the representation of the omnidirectional
image can be transformed, for example from the acquired image plane to rectified
planes so that the straight lines of the scene become straight and not curved
in the image [4], or to a spherical image [32]. This issue of omnidirectional
image representation depends on the algorithms that exploit it, whether they are
video surveillance applications [50], 3D reconstruction [47], virtual reality [21],
robotics [10] or autonomous vehicles [20].

7Only polydioptric camera calibration methods leading to an omnidirectional image like
monocular are mentioned. For the others, see for example [30] and references.
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Table 3.2: Main calibration methods and their characteristics: use of pattern
or not, primitive and criterion considered, solver, maximum calibrated field of
view (in degrees) and available software.
Abbreviations: lin for linear, reproj for reprojection, SSD for Sum of Squared
of Differences, rSSD for robust SSD, opt for optimization, LM for Levenberg-
Marquardt, GN for Gauss-Newton, alt for alternate.
Notes: † lacks specification; * maximum assumed by following that of [9] because
the methods are similar or the same cameras are calibrated.

method pattern primitive criterion solver max software
field

[4] no lines colinearity linear 180† [12]
[39] yes points colinearity and lin and 180† [14]

reproj/SSD opt/LM
[27] yes points/ reproj/SCE opt/LM 190 [25]

circles
[51] yes points reproj/SrCE opt/GN 195 [5]
[9] yes points reproj/SCE opt/LM 210 [22]
[33] yes points reproj/SCE opt/LM 210* [38]
[45] yes points reproj/SCE opt 210* [29]
[43] yes points colinearity and lin/alt 220 [37]

reproj/SCE and opt/LM
[7] yes points colinearity opt 280 no

(denses) and distance
[28, 11] yes points reproj/SCE opt/LM 360 no
[24, 42]
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stéréovision et localisation par indexation d’images. PhD thesis, Université
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21


	Models and Calibration Methods
	Abstract
	Introduction
	Projection models
	Perspective Projection Recalls
	Ad hoc models
	Unified central projection and its extensions
	Generic Models

	Calibration methods
	Conclusion of the chapter


