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KEY PO INT S

• Inhibition of translation
initiation prevents CLL
growth in vitro and
in vivo, through
targeting the MYC
oncogene.

• PHBs directly interact
with the translation
initiation machinery,
filling a gap in the
understanding of the
crucial roles of these
proteins.
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Dysregulation of messenger RNA (mRNA) translation, including preferential translation of
mRNA with complex 5′ untranslated regions such as the MYC oncogene, is recognized as
an important mechanism in cancer. Here, we show that both human and murine chronic
lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the
synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed
in samples from patients with CLL and cell lines treated with FL3 revealed the decreased
translation of the MYC oncogene and of proteins involved in cell cycle and metabolism.
Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-
driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK
pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells.
Here, we rather show that PHBs are directly associated with the eukaryotic initiation
factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resem-
bled FL3 treatment. Importantly, inhibition of translation controlled CLL development
in vivo, either alone or combined with immunotherapy. Finally, high expression of trans-
ber 2023
lation initiation–related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in
patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL devel-
opment by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct
role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.
Introduction
In human chronic lymphocytic leukemia (CLL), the lymph
node microenvironment sustains the proliferation of leukemic
cells through different stimuli, such as the activation of B-cell
receptor (BCR),1 or Toll-like receptors (TLRs).2 Targeting their
LUME 141, NUMBER 26
downstream signaling led to a major breakthrough in the
standard of care in CLL.3 The oncogene MYC represents
another interesting target in CLL, because MYC aberrations
are detected in CLL cells and associated with Richter
transformation, a rare but aggressive complication of CLL.4-6

In addition, its expression is upregulated in the lymph
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node microenvironment,7-9 especially at the translational
level.10

Recently, translation initiation was recognized as an Achilles’
heel of cancer cells. Indeed, increase in global translation rate
and aberrant translation of specific oncogenic transcripts seems
to be a common feature for a large variety of tumors.11,12

Interestingly, translation is also a nexus of resistance to
several kinase inhibitors.13 Particularly in CLL, several reports
demonstrated a dysregulation of translation, either through
mutations in ribosomal proteins14-17 or through activation of
translation by microenvironment-mediated stimuli.10,18 In
addition, ZAP-70 expression also contributes to aberrant
translation through direct interaction with ribosomal proteins.19

The pathways and mechanisms leading to increased translation
are not fully understood yet. Some studies demonstrated the
efficacy of inhibiting translation in CLL, using different types of
translation inhibitors.20-22 However, there is still a debate on the
mechanisms of action of the different molecules used, and only
little evidence of their efficacy in vivo.

Here, we investigated translation in CLL and its inhibition. We
used the translation inhibitor FL3, which has previously shown
antitumor activity both in vitro and in vivo.13,23,24 This molecule,
from the flavagline family, was shown to bind prohibitins
(PHBs).25 These scaffold proteins are found in several cellular
sublocalizations that dictate their activity.26 At the membrane,
they are required for the RAF activation by RAS in a large variety
of cancers,27 leading to the phosphorylation of eukaryotic
initiation factor 4E (eIF4E) through the MAPK pathway, and
ultimately resulting in increased translation. By binding to PHBs,
FL3 was shown to prevent the activation of RAF and therefore
decreases translation.28

In the present paper, we showed that aberrant translation is
indeed a feature of human and murine CLL. We demonstrated
that inhibition of translation in CLL targets the MYC oncogene,
leading to decreased proliferative capacities and reversion of
metabolic rewiring. Finally, we identified PHBs as direct inter-
actors of the eIF4F machinery and as crucial factors for trans-
lation in CLL cells.
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Methods
Animal experiments
All experiments involving laboratory animals were conducted in
a pathogen-free animal facility with the approval of the
Luxembourg Ministry for Agriculture. Mice were treated in
accordance with European guidelines. C57BL/6 mice were
purchased from Janvier Labs. Eμ-TCL1 mice (called TCL1) were
kindly given by Carlo Croce and John Byrd.29 CLL progression
was monitored by determining the percentage of CD5+CD19+

CLL cells in the peripheral blood using flow cytometry.

Patient samples
All experiments involving human samples were conducted in
accordance with the declaration of Helsinki, approved by
the institutional review board (Jules Bordet Institute Ethics
Committee) or the Luxembourg Comité National d’Ethique et
de Recherche. Samples were collected from patients with
CLL after written informed consent. For the cohort of 144
TARGETING MYC THROUGH TRANSLATION INHIBITION
patients used, all patients had a CD19+CD5+CD23+ phenotype
and a Catovsky score of 4/5 or 5/5. All tested prognostic factors
were proven to be significant predictors of treatment-free sur-
vival (TFS) and overall survival (OS), indicating that our cohort is
representative of a CLL population (supplemental Table 1,
available on the Blood website).

OPP protein synthesis assay
O-propargyl-puromycin (OPP, Bioconnect) was added into cell
culture at a final concentration of 20 μM for 30 minutes. The
viability staining was performed at 4◦C for 30 minutes with a
Zombie Fixable Viability kit (BioLegend). The cells were fixed for
15 minutes at room temperature with 3.7% paraformaldehyde,
and permeabilized with 0.5% Triton X-100 in phosphate-
buffered saline for 15 minutes at room temperature. The
detection of the OPP was performed per the manufacturer’s
protocol, using the Click-iT technology (Life Technologies). The
cells were further subjected to antibody staining and analyzed
by flow cytometry.

Pulsed SILAC assay
The stable isotope labeling by amino acids in cell culture
(SILAC) labeling medium used was the following: RPMI 1640 for
SILAC (Thermofisher) containing 10% of dialyzed serum, 1% of
penicillin/streptomycin, unlabeled leucine, and either “heavy”
amino acids [0.398 mM L-(13C6,

15N4)-arginine and 0.798 mM L-
(13C6,

15N2)-lysine] or “medium-heavy” amino acids [0.398 mM
L-(13C6)-arginine and 0.798 mM L-(D4)-lysine]. MEC-1 or OSU-
CLL cells (10 × 106) were resuspended at a concentration of
0.6 × 106 cells per mL, and treated as indicated for 8 hours.
Cells (20 × 106) from patients with CLL were resuspended at a
concentration of 10 × 106 cells per mL, and treated as indicated
for 16 hours. At the end of the labeling, the cells were washed 3
times in cold phosphate-buffered saline and snap frozen, before
proceeding to protein extraction and to mass spectrometry
analysis.

The detailed material and methods can be found as
supplemental Information.
Results
Translation is increased in CLL cells and can be
inhibited by FL3
First, using publicly available gene expression data sets, we
showed that translation-related genes are upregulated in
leukemic B cells compared with healthy B cells, in both human
and mice, resulting in a functional enrichment in translation
(Figure 1A). We also observed increased levels of proteins
responsible for translation initiation in CLL cells from patients
(Figure 1B). Therefore, we quantified translation by OPP incor-
poration (Figure 1C) and confirmed that protein translation is
increased in CLL cells compared with B cells from healthy
donors and from patients with CLL (Figure 1D-E). To investigate
whether an increased translation is also a feature observed in a
murine model of CLL, we analyzed the translation rate in
different cell populations from the spleen of mice with leuke-
mia. We observed a higher translation rate in CLL cells
(CD19+CD5+) compared with normal B cells (CD19+CD5−) and
with both CD8+ and CD4+ T lymphocytes. Interestingly,
FOXP3+ regulatory T cells (Tregs) also showed a higher
29 JUNE 2023 | VOLUME 141, NUMBER 26 3167
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Figure 1. Translation is increased in CLL cells and can be inhibited by FL3. (A) Preranked gene set enrichment analysis (GSEA) from public data sets indicating an
enrichment in translation in CLL cells compared with healthy B cells in human (NCBI Gene Expression Omnibus, GSE67640, GSEA, left panel; and EIF4A2 and EIF4G2 gene
expression in healthy donor [HD] B cells vs CLL cells, middle panels), and in mouse (GSE175564, TCL1 cells compared with C57BL/6 B cells, right panel). (B) Western-blot
analysis of phospho-eIF4E, eIF4E, eIF4A, eIF4G, and HSC70 proteins in B cells from HDs and patients with CLL. (C) Schematic representation of the OPP incorporation
assay to evaluate translation rate. (D-F) Determination of translation rate by OPP assay in B cells from HDs and patients with CLL (D, n = 3), in normal B cells and CLL cells from
patients with CLL (E, n = 5) and in T- and B-cell subsets from the spleen of sick recipient mice, after transfer of Eμ-TCL1 splenocytes (F, n = 5). Left panel: representative plots;
right panel: quantification. (G-I) Determination of translation rate by OPP assay in patients’ CLL cells activated (Activ.) or not (Rest.) with CpG ODN-2006, and treated with
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translation rate compared with other T cells (Figure 1F). Next, to
verify that TLR and BCR activation induce translation, we
treated CLL cells with the TLR9-agonist Class B CpG ODN-2006
or with an anti-immunoglobulin M antibody. Indeed, the cellular
activation increased translation, as attested by increased OPP
TARGETING MYC THROUGH TRANSLATION INHIBITION
incorporation (Figure 1G; supplemental Figure 1A). In addition,
we showed that treatment of patient samples with the synthetic
flavagline FL3 decreased translation (Figure 1G; supplemental
Figure 1A). Accordingly, in human (MEC-1, OSU-CLL, HG-3,
WA-OSEL, and PGA-1) and murine (TCL1-355)30 CLL cell lines,
29 JUNE 2023 | VOLUME 141, NUMBER 26 3169
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incubation with FL3 led to a significant decrease in translation,
starting from 6 nM FL3, after only 3 hours of treatment
(Figure 1H-I; supplemental Figure 1B-F). The reduction in
translation after FL3 treatment was also confirmed by measuring
the incorporation of the methionine analog L-propargylglycine
(supplemental Figure 1G). Active translation is characterized by
the interaction between the translation initiation factors eIF4E
and eIF4G, which can be detected by proximity ligation assay
(Figure 1J). Indeed, we observed an increased interaction
between eIF4E and eIF4G in activated CLL cells from patients
and CLL cell lines, which was decreased upon FL3 treatment
(Figure 1J; supplemental Figure 1H-I). Finally, the effect of FL3
on translation was analyzed by polysome profiling. We observed
a decreased polysome peak amplitude and an accumulation of
RNA in subpolysome fractions, demonstrating a significant
reduction in translation efficiency (Figure 1K; supplemental
Figure 1J). Altogether, these results confirm the relevance of
studying translation in CLL, and demonstrates that FL3 can effi-
ciently inhibit translation in human and murine CLL cells.
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Multiomics analysis revealed that inhibition of
translation affects proteins involved in translation,
cell cycle regulation, MYC, and other oncogenic
pathways
Because flavaglines were shown to reprogram the translational
landscape rather than completely inhibit protein translation,31

we wanted to understand more precisely the effect of FL3 in
CLL cells. For this purpose, we performed pulsed SILAC assay
on 5 patient samples and CLL cell lines (Figure 2A). First, we
confirmed the increase in protein synthesis after activation in
CLL cells from patients, representing 16% of the detected
proteins (supplemental Figure 2A-B; supplemental Table 2).
This includes proteins involved in translation and activating
signaling pathways (supplemental Figure 2C). In resting sam-
ples, FL3 treatment led to decreased protein synthesis for
17% of the detected proteins (supplemental Figure 2B-D;
supplemental Table 2). However, the effect was more striking
when CLL cells were activated and treated with FL3, with 31%
of the detected proteins showing a decrease in their translation
rate (Figure 2B; supplemental Figure 2B-E; supplemental
Table 2). Treatment of MEC-1 and OSU-CLL cell lines led to a
similar effect (51% and 30%, respectively, of the detected
proteins) (Figure 2C; supplemental Figure 2B-F; supplemental
Table 3). The ontology analysis revealed that FL3 treatment
affected common pathways in patient samples and cell lines,
including proteins involved in translation and cell cycle regu-
lation (Figure 2D; supplemental Figure 2G). In addition, pro-
teins regulated by several known oncogenes in CLL, such as the
targets of MYC and NFκB, displayed a decreased synthesis
(Figure 2E-F). Thus, our pulsed SILAC experiments suggest a
decreased MYC activity in FL3-treated cells. Translation of MYC
is reportedly increased upon CLL stimulation, contributing to
leukemia development and proggression.18 RNA sequencing
followed by gene set enrichment analysis confirmed the
repression of translation-related genes and MYC target genes
in FL3-treated cells (Figure 2G-H; supplemental Figure 2H;
supplemental Table 4). Furthermore, transcription factor
enrichment analysis confirmed the involvement of MYC/MAX in
the regulation of these repressed genes by FL3 (Figure 2I).
Ontology analysis indicated that deregulated MYC target genes
were mainly involved in metabolism-related biological
3170 29 JUNE 2023 | VOLUME 141, NUMBER 26
processes (supplemental Figure 2I-J). We thus hypothesized
that FL3 could directly inhibit MYC translation (undetectable in
pulsed SILAC assay). Indeed, treatment with FL3 resulted in a
rapid loss of the MYC protein (Figure 2J; supplemental
Figure 2K), whereas its messenger RNA (mRNA) level was
increased (Figure 2K). In addition, FL3 led to decreased levels
of other oncogenes, such as ETS-1 (supplemental Figure 2L-M).
Finally, polysome profiling confirmed the lower abundance of
Myc transcripts in the polysome fraction of both human and
murine cells treated with FL3 (Figure 2L; supplemental Table 4),
confirming the reduction in MYC translation. Preranked gene
set enrichment analysis indicated that FL3 predominantly
repressed translation of genes involved in metabolism (glycol-
ysis, fatty acid metabolism, and oxidative phosphorylation;
Figure 2M).

Altogether, these data show that FL3 specifically inhibits the
translation of proteins involved in translation, cell cycle regu-
lation, and MYC oncogenic pathways.
Targeting of MYC translation is associated with
decreased proliferative capacities, and reversion
of metabolic rewiring
Based on the aforementioned results, we decided to investigate
the biological consequences of inhibiting translation. First, we
measured cell viability of CLL cells, healthy peripheral blood
mononuclear cells, MEC-1 and Eμ-TCL1 primary murine cells
(Figure 3A; supplemental Figure 3A). Interestingly, healthy
peripheral blood mononuclear cells were less sensitive to FL3
compared with patient leukemic cells (50% inhibitory concen-
tration at 72 hours: 118.2 and 11.7 nM, respectively). In addi-
tion, FL3 induced more cell death in CLL cells from patients
than in B cells from healthy donors at the same dose (Figure 3B),
confirming the therapeutic window for treating CLL with inhib-
itors of translation. Cell growth of human and murine CLL cell
lines was strongly impaired by very low doses of FL3 (from
6 nM, Figure 3C; supplemental Figure 3B). Drug withdrawal
experiments indicated that 4 days of treatment were necessary
for total impairment of cell recovery (Figure 3D; supplemental
Figure 3C). We also showed a limited effect of FL3 on
apoptosis at an early time point, appearing only for higher
doses and after 48 hours of treatment (Figure 3E; supplemental
Figure 3D). On the contrary, carboxyfluorescein succinimidyl
ester assay revealed a block of proliferation even with low FL3
doses (Figure 3F; supplemental Figure 3E). However, no dif-
ference in cell cycle phase distribution was observed, indicating
a complete block of the cell cycle rather than the inhibition of a
specific phase (supplemental Figure 3F). The decreased
expression of several targets involved in cell proliferation
(CDK4, BIRC5, and MCL1) in cells treated with FL3 was vali-
dated at protein level (supplemental Figure 3G).

Data in Figure 2 strongly suggest impairment of cell metabolism
as majority of the MYC target genes, which show decreased
transcription/translation, are associated with metabolic pathways.
We performed stable isotope tracing using [U-13C]-glucose and
[U-13C]-glutamine (Figure 3G). After [U-13C]-glucose tracing
(depicted in orange), we observed a reduction in glycolytic flux
and pyruvate dehydrogenase (PDH) flux (Figure 3G;
supplemental Figure 3H). The pentose phosphate pathway and
purine/pyrimidine synthesis were also affected by FL3
LARGEOT et al
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(Figure 3G), contributing to the block in proliferation observed in
previous experiments. In addition, the production of lactate from
pyruvate is decreased in FL3-treated cells (Figure 3G), because
lactate dehydrogenase-A, the enzyme catalyzing this reaction
and target of MYC, was also decreased (supplemental
Figure 3G). [U-13C]-glutamine tracing (in green), revealed that
FL3 inhibits glutaminolysis, in line with the role of MYC in this
TARGETING MYC THROUGH TRANSLATION INHIBITION
context.32,33 In addition, the tricarboxylic acid cycle activity was
markedly reduced (Figure 3G; supplemental Figure 3I). As
expected, after translation inhibition, we observed an accumu-
lation of proteinogenic amino acids after FL3 treatment
(supplemental Figure 3J). To confirm the involvement of MYC in
the metabolic reprogramming observed upon FL3 treatment, we
used specific inhibitors (10058-F4 and 10074-G5) that block MYC
29 JUNE 2023 | VOLUME 141, NUMBER 26 3171
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transcriptional activity. We validated their efficacy in our cells
(supplemental Figure 3K) and repeated the metabolic tracing.
MYC inhibition led to similar metabolic changes to those after
FL3 treatment, except for glycolysis (supplemental Figure 3L-M).
This suggests that FL3-mediated metabolism rewiring is mainly
owing to MYC inhibition but other proteins may also contribute
partially to this effect.

In conclusion, through the targeting of MYC and other factors,
FL3 treatment leads to the arrest of the proliferative capacities
of CLL cells and results in major changes in cellular metabolism.
PHBs interact directly with the eIF4F translation
initiation machinery, and FL3 binding disrupts this
complex
Next, we investigated FL3’s mechanism of action in CLL cells.
Through its binding to PHBs, FL3 was shown to block RAS-RAF-
MAPK pathway activation.27,34 In CLL cells from patients, acti-
vation led to increased phosphorylation of RAF1, extracellular
signal-regulated kinase (ERK)1/2, and eIF4E (Figure 4A;
3172 29 JUNE 2023 | VOLUME 141, NUMBER 26
supplemental Figure 4A). Surprisingly, the phosphorylation of
RAF1 and ERK1/2 was further increased upon FL3 treatment,
whereas eIF4E phosphorylation was decreased (Figure 4A;
supplemental Figure 4A-B), demonstrating that translation
inhibition was not caused by the impairment of RAF1-ERK1/2
signaling. To understand whether the decrease in eIF4E phos-
phorylation is responsible for the phenotype observed in FL3-
treated cells, we used the MAP kinase–interacting kinases
(MNK) inhibitors eFT-508 (Tomivosertib) and CGP57380,
because MNK1/2 are the main kinases that phosphorylate
eIF4E.35 Treatment with inhibitors completely abolished eIF4E
phosphorylation without affecting cell growth and translation
rate (Figure 4B-D; supplemental Figure 4C-H), showing that
eIF4E phosphorylation status is not responsible for the
decreased translation observed upon FL3 treatment. In addi-
tion, phosphorylation of MNK is not affected by FL3 treatment
(supplemental Figure 4I). 4E-BP1 is a major repressor of trans-
lation by complexing with eIF4E.36 Phosphorylation of 4E-BP1
upon activation of the mTORC1 pathway leads to decreased
interaction with eIF4E, promoting translation initiation.37 We
observed that p-4E-BP1 and 4E-BP1 protein levels were
LARGEOT et al
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unaffected by FL3, and the interaction between eIF4E and 4E-
BP1 was even slightly decreased upon FL3 treatment
(Figure 4E-F; supplemental Figure 4J-K). Cap-binding assay
indicated that FL3 does not impair eIF4E binding to the cap but
strongly reduces the ability of eIF4G to interact with cap-bound
eIF4E, with no effect on 4E-BP1 (supplemental Figure 4L).
These data suggest a direct targeting of the eIF4F translation
initiation complex by FL3, rather than deregulation of upstream
signaling pathways.

Using drug affinity responsive target stability (DARTS) assay, we
confirmed that FL3 binds to PHBs in CLL cells (Figure 4G), but
not to eIF4A (supplemental Figure 4M), which was shown to be
the target of other flavaglines such as rocaglamide A (RocA) or
silvestrol.23,26,38 In addition, we tested whether other molecules
targeting PHBs, not related to flavaglines, such as IN44 and
fluorizoline, were associated with a defect in translation.
Indeed, treatment of CLL cells with IN44 and fluorizoline at
sublethal doses was associated with a decreased translation
rate (supplemental Figure 4N-O). Altogether, these data point
to a direct role of PHBs in the translation initiation machinery. In
addition, we quantified PHB levels in patient cells and observed
that PHBs are more abundant in CLL cells than in healthy donor
B cells, both at mRNA and protein levels (Figure 4H-I).
TARGETING MYC THROUGH TRANSLATION INHIBITION
Considering all these results, we hypothesized that PHBs
interact with the translation initiation machinery. By immuno-
precipitation of the endogenous eIF4E protein in MEC-1 cells,
and of the tagged version of eIF4E and eIF4G in transfected
HEK-293T cells, we showed their interaction with PHB
(Figure 4J-K). Using a proximity ligation assay, we demon-
strated the cytoplasmic interaction of PHB and PHB2 with
eIF4E, eIF4G, and eIF4A in CLL cells from patients and MEC-1
cells (Figure 4L-M; supplemental Figure 4P-T). Interestingly,
these interactions increased upon activation, and decreased
upon treatment with FL3. To understand the stoichiometry of
these interactions, we performed NanoBRET experiments
(Figure 4N). Bioluminescence resonance energy transfer (BRET)
ratios were measured in HEK-293T cells transfected with plas-
mids encoding PHB fused with the nanoluciferase and either
eIF4E or HaloTag (HT, control) fused with the NeonGreen (NG),
in N- or C-terminal. The higher ratio observed when using
PHB(nanoluciferase) and eIF4E(NG), compared with HT(NG),
indicates that PHB and eIF4E indeed interact (supplemental
Figure 4U). The plateau reached when using increasing
amounts of NG-eIF4E, and the linear curve when using the NG-
HT control, confirmed the specificity of the observed interaction
(Figure 4N). These experiments proved the interaction of PHB
with the eIF4F complex.
29 JUNE 2023 | VOLUME 141, NUMBER 26 3173
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Finally, we used the other flavaglines RocA and silvestrol,
known to destabilize the eIF4F complex by binding to eIF4A.
Both molecules decreased translation rate and cell proliferation,
similar to FL3 treatment; however, they induced much higher
rates of apoptosis (supplemental Figure 4V-X). In addition, they
led to decreased phosphorylation of eIF4E, without affecting
the RAF/ERK pathway (supplemental Figure 4Y), which is com-
parable with FL3 treatment. The similarity between FL3 and
RocA/silvestrol confirms that FL3 also destabilizes the eIF4F
complex but through binding to PHBs instead of eIF4A.

Silencing of PHBs inhibits translation and replicates
the effects of FL3 treatment
The interaction of PHBs with the members of the translation
initiation machinery strongly suggests a direct role of PHBs in
translation. To validate this hypothesis, we knocked down (KD)
PHBs using short hairpin RNA against either PHB or PHB2, as
validated at the mRNA and protein levels (Figure 5A;
supplemental Figure 5A-C). First, we investigated translation
3174 29 JUNE 2023 | VOLUME 141, NUMBER 26
and protein interactions and we could confirm that PHBs KD
decreased translation rate in CLL cells, reduced the formation
of the eIF4E/eIF4G complex, and inhibited eIF4E phosphory-
lation (Figure 5B-C; supplemental Figure 5D-E). In addition,
PHBs KD was associated with a decrease in cell growth and
proliferation (Figure 5D-E), but not inducing cell death
(supplemental Figure 5F). KD of PHBs was also associated with
a decrease in MYC expression and activity (Figure 5F;
supplemental Figure 5G). Finally, we repeated the targeted
metabolomics analysis with glucose or glutamine tracing in
PHBs KD cells. We observed an impact of the KD similar to
treatment with FL3, as exemplified by a reduction in glycolysis
and the tricarboxylic acid cycle, a decreased synthesis of
purines and pyrimidines (Figure 5G), and an accumulation of
proteinogenic amino acid (supplemental Figure 5H). In
conclusion, KD of PHBs replicated all the effects observed with
FL3. Altogether, using different experimental strategies, we
demonstrated, to the best of our kowledge, for the first time, a
direct role for PHBs in translation.
LARGEOT et al
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FL3 alone, or in combination with immunotherapy,
controls CLL development in vivo
Next, we tested the efficiency of translation inhibition to control
CLL development in vivo. For this, we performed adoptive
transfer of Eμ-TCL1 splenocytes into C57BL/6 mice and treated
recipient mice with FL3 or vehicle. The analysis of CD19+CD5+

CLL cells in the peripheral blood indicated that FL3 treatment
significantly controlled the development of the disease
(Figure 6A-B). This correlated with an increased survival of the
mice (median survival of 62 days in FL3-treated mice vs 48 days
in vehicle-treated mice, Figure 6C). In a second independent
cohort, we analyzed the splenocytes after 15 days of treatment.
The percentage of CLL cells in the spleen was again signifi-
cantly decreased (Figure 5D), confirming the efficiency of FL3 to
control CLL progression in vivo. FL3 treatment inhibited the
translation rate in the CLL cells in vivo but had no effect on
nonleukemic B cells (CD19+CD5−, Figure 6E). Interestingly, the
high translation rate of Tregs was inhibited by FL3 treatment
3176 29 JUNE 2023 | VOLUME 141, NUMBER 26
in vivo, whereas their percentage was significantly reduced
(Figure 6D-E). In addition, CLL cells expressing high levels of
the inhibitory immune checkpoint PD-L1 displayed a higher
translation rate (Figure 6F). Finally, we observed that combining
FL3 with anti–programmed cell death protein 1 (PD1) therapy
resulted in a better outcome in vivo (Figure 6G-H). Altogether,
these data indicate that FL3 is effective in vivo by targeting the
malignant cells, but also probably by removing the brakes on
cell-mediated antitumor immunity.

Expression of translation-related genes correlates
with disease progression and poor survival in
patients with CLL
To validate the importance of translation in CLL, we quantified
the expression of 6 genes from the translation-initiation
machinery (eIF4E1, eIF4E2, eIF4G1, eIF4G2, eIF4A1, and
eIF4A2) along with PHB and PHB2 by reverse transcription
quantitative polymerase chain reaction in a cohort of patients
LARGEOT et al
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with CLL (N = 144). First, using Cox regression analysis, we
identified eIF4E2 and eIF4G2 expression as predictors of OS
(hazard ratio [HR] >1 and P value <.05), a high expression was
related with poor OS (Figure 7A-B, median survival of 174 vs
397 months, supplemental Figure 6A). When combining these
genes, the 8-gene translation signature was also linked to OS
(Figure 7C) and higher HRs were obtained when combining 2
genes (Figure 7D, HR >1.5). We made similar observations
when analyzing the TFS. We identified that eIF4G2, eIF4E2,
eIF4A1, and PHB2 transcript expression, as well as the trans-
lation gene signature and multiple gene combinations, was
related with TFS in these patients (Figure 7E-F; supplemental
Figure 6B-D). We then analyzed the expression of single or
multiple genes in groups of patients segregated by the classical
prognostic parameters. Single-gene analysis confirmed the
increased expression of eIF4E1, eIF4E2, eIF4G1, eIF4G2, PHB,
and PHB2 in unfavorable groups (eg, ZAP70+ vs ZAP70−) and
subgroups (eg, IGHVM LPL+ vs IGHVUM LPL−) (Figure 7G;
supplemental Figure 6E), whereas logistic regression identified
differentially expressed gene signatures (supplemental
Figure 6F). Within groups of patients, the level of expression
of eIF4E2 was linked to OS and TFS (Figure 7H-I; supplemental
Figure 6G). Altogether, our data confirmed the relevance of
translation in CLL because the expression of selected genes is
related to survival and clinical parameters.

Discussion
Although often overlooked in favor of transcriptional alter-
ations, the relevance of translation defects in cancer has been
long established. Such importance can be illustrated by the
TARGETING MYC THROUGH TRANSLATION INHIBITION
tight association between ribosomopathies and cancer sus-
ceptibility.39 In addition, increased expression of several trans-
lation initiation factors has been described in a large variety of
neoplasms.11 This overexpression can be associated with either
overall increase in translation or with alteration of specific
mRNA translation. Here, we showed through gene expression
analysis, that translation-related genes are upregulated in
leukemic B cells compared with healthy B cells, in both humans
and mice, which correlate with a higher translation rate
observed in CLL cells. In addition to patient samples, Epstein-
Barr virus–infected human cell lines40 were used in this study
for functional and gene expression studies. Being aware that
they might not fully represent CLL cells, we validated all key
experiments with patient samples and with the new murine cell
line TCL1-355. This corroborates the interest of targeting
translation in this neoplasm. Activation signals converge to
upregulation of translation, and inhibiting this common end
point appears to be more promising compared with targeting
different pathways independently. In addition, oncogenes are
more susceptible to dysregulation of translation, owing to the
complex 5′ structure found in the mRNAs of these genes. Our
multiomics analysis demonstrated that translation inhibition
affects the translation of the oncogene MYC, which is associ-
ated with decreased proliferation capacity and a switch in
metabolism. Thus, inhibiting translation allows targeting the
leukemic process at different levels. MYC translation is highly
regulated at the translational level10,41 and previous studies
demonstrated that eIF4A inhibition targets MYC translation in
CLL.22,42 Here, we show that targeting translation through PHB
leads to a similar effect. In addition, we demonstrated that MYC
inhibition is responsible for major metabolism reprogramming.
29 JUNE 2023 | VOLUME 141, NUMBER 26 3177
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The exact mechanism of action of flavaglines is still under
debate. Surprisingly, despite having biological effects in the
nanomolar concentration range, the mechanistic studies on
flavagline molecules are often conducted in the micromolar
concentration range, thus one must be careful when interpret-
ing the data, because increased doses of the drug often lead to
off-target effects. The known targets of flavaglines are
PHBs,26,43 eIF4A,26,44 and DDX3.19 By binding to eIF4A, fla-
vaglines stimulate the RNA-binding function of eIF4A, which
prevents RNA/eIF4A dissociation, and therefore incorporation
of free eIF4A in a new eIF4F complex.23,45 Through targeting of
PHBs, FL3 was believed to act on translation indirectly, through
the inhibition of the RAS-RAF-MAPK pathway, ultimately
3178 29 JUNE 2023 | VOLUME 141, NUMBER 26
leading to decrease eIF4E phosphorylation.27,34,43,46,47 By
using DARTS analysis, we proved that FL3 targets PHBs in CLL
cells. In addition, this study demonstrates that FL3 treatment is
not associated with decreased phosphorylation of RAF1 and
ERK1/2 in CLL cells. We also showed that in any case the level
of eIF4E phosphorylation (downstream of RAF1/ERK signaling)
does not account for translation rate or cell proliferation. This
might be seen as a contradiction to some reports on the role of
eIF4E phosphorylation in cancer48-50; nevertheless, elegant
work has demonstrated that defects in eIF4E phosphorylation
are not associated with impaired translation nor cell growth.51

The decreased eIF4E phosphorylation rather reflects the
dissociation of the translation initiation machinery. Indeed,
LARGEOT et al
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eIF4E-eIF4G interaction is crucial for MNKs-driven eIF4E
phosphorylation.52 Furthermore, we showed that 4E-BP1 is
also not affected in FL3-treated cells, demonstrating that the
effect of FL3 on translation does not involve upstream
pathways.
TARGETING MYC THROUGH TRANSLATION INHIBITION
Therefore, we hypothesized that PHBs are directly involved in
translation. We used different approaches to demonstrate the
interaction of PHBs with the eIF4F complex. Then, by using short
hairpin RNA, we showed that KDof PHBsmirror FL3 treatment. This
discovery represents an important breakthrough that provides key
29 JUNE 2023 | VOLUME 141, NUMBER 26 3179
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Figure 7. Expression of translation-related genes correlates with disease progression and poor survival in patients with CLL. Gene expression analysis was performed by
qRT-PCR for 8 genes involved in translation in a cohort of 144 patients with CLL. The relationship between gene expression and survival was evaluated by Cox univariate
regression analysis. Gene expression in clinical groups was evaluated by differential expression analysis for single genes or by logistic regression (LR) analysis for multiple genes.
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biological insights necessary to understand both PHB biology and
PHB-targeting drugs. However, many questions remain open.
Future workmust determinewhether the interaction between PHBs
and the eIF4Fmachinery is limited to CLL cells, what factors govern
this interaction, and how FL3 impairs it. Finally, whether PHBs are
general players in translation or limited to certain circumstances (eg,
oncogenic process or hypoxia) remains to be elucidated.

We showed that CLL cells and Tregs have a higher translation
rate in vivo compared with normal B cells and conventional
CD4+ T cells, respectively. Moreover, inhibition of translation
led to an efficient control of the disease after adoptive transfer
of Eμ-TCL1 diseased splenocytes. In FL3-treated mice, we
observed a decrease in translation rate in the leukemic cells and
in CD8+ and CD4+ T lymphocytes and Tregs. Interestingly, the
translation rate in nonleukemic B cells was not decreased by
FL3 treatment. In addition, only CLL cells and Tregs were
negatively affected by translation inhibition, indicating a spe-
cific effect of the drug. We recently demonstrated the crucial
role of Tregs in the development of CLL,53,54 thus the possibility
to target both CLL cells and Tregs appears promising for the
therapeutic potential of translation inhibition in CLL. Interest-
ingly, Tregs rely on a noncanonical translation initiation
machinery55 and on the ribosome biogenesis factor Nocl4,56

suggesting that FL3 might also be able to target specific
translation mechanisms that do not use the canonical factors. In
addition, we demonstrated that FL3 treatment in combination
with immunotherapies targeting PD1 is more efficient than
single therapies. Future studies should compare the advantage
of inhibiting translation relative to current treatments. As
translation is the nexus of resistance to several therapies,13 the
possibility to combine inhibition of translation with standard of
care in CLL represents a promising approach, particularly in a
malignancy characterized by relapse and refractory disease.

In conclusion, we have highlighted the importance of the
deregulation of translation in CLL, unveiled a direct role of PHBs
in translation, and demonstrated that translation inhibition is
efficient in controlling CLL development in a preclinical model.
We also found a correlation between translation-related/PHB
gene expression, prognostic markers, and survival in a cohort
of patients with CLL. Current therapies targeting downstream of
the BCR constituted a major advance in the standard of care in
CLL. However, resistance to these therapies remains an
important pitfall. The identification of translation as a novel
therapeutic target could be key to establishing effective ther-
apeutic strategies for patients with CLL who are at high risk.
ber 2023
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