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Abstract. Artificial Intelligence is a set of technologies that simulate
human-like cognition, using computer software and systems, to perform
tasks associated with intelligent beings. One method of doing so, is Ma-
chine Learning (ML), which enhances system efficiency based on learn-
ing algorithms that create models from data and its underlying patterns.
Nowadays, many ML models are being generated with different charac-
teristics (e.g., type of the algorithm used, data set used to train it, result-
ing model performance), thus making the selection of a suitable model
for a given use case a complex task, especially for non-expert users (with
no or limited knowledge in ML). In this paper, we propose SML, an
ontology-based model for Semantic Machine Learning description. SML
allows, mainly, to describe and store ML models’ characteristics with
their operational specifications, related data features, contextual usage,
and evaluation metrics/scores to facilitate and improve ML model se-
lection. The conducted experiments show promising results on both the
efficiency and the performance levels.

Keywords: Machine Learning Model · Supervised Learning · Ontology
· Data Set · Context Description · Model Evaluation

1 Introduction

Today, Artificial Intelligence (AI) has become a major player in a wide range of
fields (e.g., social, commercial, industrial), such as speech recognition, medical
diagnosis, autonomous vehicles and building automation [5]. It is basically a
computer system designed to mimic human intelligence by accessing data from
numerous sources and systems, allowing to make decisions and learn from the
outcomes. Machine Learning (ML) is an implementation of the AI that enables
computers to learn from data without specific programming [12]. It is focused
on building models that can learn from historical data, to identify meaningful
data relationships and patterns [6], and make logical decisions with little or
no human intervention. ML automates the construction of analytical models



using data that encompasses various forms of numerical information including
numbers, words, images, etc.

In ML, there are a plethora of models that a user can adopt and reuse (with-
out the need to create new models every time), all having their own specifications
and uses. Each model has different characteristics, such as the type of algorithm
the model relies on (e.g., Linear Regression and Bayes Classifier [8]), the data
set used to train it, the application domain (e.g., finance, travel and transporta-
tion), its performance, etc. All this makes the task of selecting a suitable model,
for a given use case, a complex one especially for non-expert users (having lim-
ited or no ML knowledge). Choosing the right model for a specific use case is
essential. In fact, the better the machine learning model fits a given case, the
more accurately it can find features and patterns in the data. This means better
decision-making, with more accurate analysis and forecasts. For example, using
a regression model trained on a winter season data, to predict data related to a
summer season, will more likely cause poor quality in the predicted results, since
the learning of the model is applied on a different data set pattern (in terms of
season). Therefore, it is necessary to describe ML models and represent their
main characteristics, in a semantic form, to know how and where each model
ca be better used/adopted, and understand their operating context. This allows
to compare, evaluate and propose the most appropriate model(s) for a specific
application scenario.

In the literature, there are several models, approaches, and reviews that de-
scribe machine learning models’ characteristics, applicability, and performance.
However, these works have several limitations. For instance, most of them,
[1,2,7,10,14], do not describe well the data sets used to train and test the models.
In addition, the majority of the works, [7,10,11,14], does not take into account
model application domain and model operational performance. Also, none of
them describes well the model usability or its context (e.g., temporal context,
spatial context), and neglects considering model metadata on several levels (e.g.,
ML model metadata, algorithm metadata, data set metadata). The aforemen-
tioned criteria are important to consider in order to facilitate the usability and
the selection of the ML models. Given the limitations of the existing solutions
in representing machine learning models, which is essential for understanding
their functioning, their applications, evaluating them, and comparing them, we
propose, in this paper, SML: an ontology-based model for Semantic Machine
Learning description. SML describes machine learning models through a human
and a machine understandable vocabulary, to ease the comprehension, the eval-
uation and the selection of the convenient ML model to be used in a given con-
text. As it is based on an ontology model [9], SML gives the same meaning to the
specified and exchanged ML models characteristics and operating specifications.
This makes it easier for systems, from various organizations and platforms, to
store, integrate, and share ML knowledge, enabling both syntactic and semantic
interoperability, and allowing for future extensibility and adaptation.

The rest of the paper is organized as follows. Section 2 presents a scenario
to motivate the usability and applicability of our work. Section 3 reviews the



related work and highlights the added value of our model. Section 4 details the
specifications of our proposed semantic machine learning model ontology. Section
5 evaluates the efficiency and the performance of the solution. Finally, Section 6
summarizes the work and discusses future research directions.

2 Motivating Scenario

In order to show the motivation behind our proposal, consider the following
Smart City scenario illustrated in Figure 1. The environment is densely covered
by an extensive Wireless Sensor Network (WSN) that collects a wide variety
of data from the city (e.g., CO2 emissions, lighting conditions, noise levels, en-
ergy consumption, temperature). The city has appointed a team of experts to
help monitor, analyze, and forecast elements from within the city, in an effort
to make it a smart, proactive, safe, and healthy environment for its occupants.
The team members have different expertise and are interested in forecasting and
analyzing data related to their respective fields. Figure 1 illustrates some exam-
ples: (i) environmental experts are interested in predicting noise, air, and water
pollution levels, to make the city a more healthy space; (ii) road safety experts
are interested in predicting traffic congestion, risky traffic hours/conditions, and
road deterioration to avoid deadly accidents; (iii) weather experts are interested
in predicting rising temperatures and extreme weather conditions, in order to
disseminate important information to the city occupants, in a proactive manner;
and (iv) energy experts are interested in analyzing and predicting energy con-
sumption, and production levels/patterns in the city, to help make it a greener
more eco-friendly place.

Fig. 1: Smart City Scenario

The aforementioned team members often need to collaborate with each other
on cross-field projects. More importantly, they all need to generate, train, test,
and deploy prediction models that ingest the collected data on one end, and
provide the required forecasts on the other. In such a dynamic and collaborative
environment, it is easy to quickly end up with a huge number of machine learning



models each: (i) covering a specific need; (ii) relying on a specific algorithm; (iii)
using a specific data set for training; (iv) having a specific level accuracy; and
(v) deployed in a specific application domain/field of interest.

In order to sustain this collaborative workspace, prevent isolated analysis, and
provide a decision-making process based on collective intelligence and shared in-
sights, the team members require a system capable of storing, and recommending
ML models for each new application use case. This will enable model re-usage
instead of creating slightly different models every time one needs to make a pre-
diction, and will ensure reproducibility of experiments in the context of open
science. The system would suggest and retrieve a model that best fits the user’s
need if such model already exists. Otherwise, the user can always generate a
new model from scratch. This will significantly prove useful when considering
the growing number of ML models that will be generated over time. Moreover,
such a recommendation system would increase users’ understanding of the exist-
ing models, improve result explain-ability, and allow the team to collaborate in
a more productive manner. In order to deliver this ML model recommendation
engine, one needs to address two main sets of challenges related to: (i) Model
Representation: this entails the challenges related to the description of the
models, as well as their metadata, technical aspects (i.e., algorithmic specifi-
cations), used data sets (i.e., training, testing features/data specifications), the
application domains in which the models are eventually deployed, and the eval-
uation metrics/scores; and (ii) Model Recommendation: this entails a whole
different set of challenges related to model similarity measures, model recom-
mendation processes, and model recommendation optimization. In this work, we
solely focus on the first set of challenges related to the model representation. We
will consider model recommendation in a future dedicated work. As a result, we
specifically focus here on the following challenges:
Challenge 1. How to extensively represent the machine learning models and
their various descriptive metadata? This helps users to easily search, version,
and retrieve the existing ML models (e.g., describing when, where, and by
whom a model was generated and for which purpose/application domain).

Challenge 2. How to cover technical aspects and map models to the algo-
rithms that generated them? How to categorize technical specifications to al-
low easy search and retrieval of ML models? This helps clustering and filtering
models based on their underlying technical features (e.g., separating classifi-
cation from regression, linear from nonlinear, statistical from deep learning).

Challenge 3. How to cover the different intricacies of the training and testing
data sets in the modeling? How to capture the context (i.e., spatial, temporal,
or feature-based) of the data sets that help build and evaluate the ML models
in the representation? This allows comparing model similarity from a data
perspective, as well as discovering the usage context of the models based on
their training/testing data set features (e.g., differentiating an indoor from an
outdoor temperature prediction model since their contexts differ).

Challenge 4. How to include the application domains where the models are
eventually deployed in the description? This allows a higher level clustering/-
categorization of the ML models based on their field of application, which will



consequently improve model suggestion to users based on their expertise (e.g.,
to provide team members from various fields with the useful models that are
applicable in their application domain).

Challenge 5. How to include model evaluation metrics and scores in the rep-
resentation? The evaluation is crucial for ranking and presenting adequate
models for user needs (e.g., to provide energy experts with the most accurate
model for energy prediction in a smart building).

Existing works focus mainly on data set similarity or some performance met-
rics when trying to suggest an adequate model for a specific task. In this work,
we aim to extend existing solutions by considering a more complete set of con-
cepts (e.g., application domains, usage scenarios/contexts, technical algorithmic
aspects) that could impact a ML model recommendation. However, before detail-
ing our proposal, we review, next, related works about Machine Learning model
representation and evaluate the state of the art based on the challenges/require-
ments of our motivating scenario.

3 State of the Art

In this section, we study several ML description models, approaches, and reviews,
that are defined to mainly, give knowledge about ML techniques and algorithms
(e.g., categories, advantages, to mention a few), and to describe their perfor-
mance and applicability. We compare these solutions according to the following
different criteria, grouped into two categories:
1. ML representation criteria: which include the criteria used to represent

ML models, their generation/building process, their behavior, their perfor-
mance, and useful metadata descriptors:

- Criterion 1.A. Algorithm representation: denoting the ability to
describe and link the models to the corresponding ML algorithms that
generated them, thus allowing the inference of their usability, and tech-
nical limitations.

- Criterion 1.B. Data representation: denoting the representation of
the data sets used to train and test the ML models including their char-
acteristics (e.g., the features, their values, and statistical descriptors).

- Criterion 1.C. Performance representation: denoting the ability
to include accuracy and performance metrics/descriptions for each ML
model, to give insights on the quality of the obtained results and allow
for ML models comparisons.

- Criterion 1.D. Metadata representation: denoting the ability to
include meta descriptors that enrich the ML modeling and include var-
ious high-level features/information (e.g., data set metadata, algorithm
metadata, model metadata).

2. ML usability and compatibility criteria: which hold the criteria used
to describe the application domain and the context of each ML model:

- Criterion 2.A. Application-domain representation: denoting the
ability to cover a keyword-based representation of various application do-
mains and link ML models to these domains (e.g., linking a temperature
prediction model to environmental monitoring application domain).



- Criterion 2.B. Usability representation: denoting the ability to
specify several ML models contexts (i.e., defining the environment con-
straints) in each application domain, to know where each ML model can
be more convenient to be applied for more accurate results (e.g., when
using a regression prediction model trained on a winter season data in a
summer season, the quality of the results will be negatively affected).

3.1 Ontology-based ML Description models

MLOnto [2], Machine Learning Ontology, is an ontology that represents knowl-
edge about the Machine Learning discipline. It consists of 7 main classes: Al-
gorithms, Applications, Dependencies, Dictionary, Frameworks, Involved, and
MLTypes. Despite representing different ML types (i.e., AutoML, Reinforce-
ment Learning, Semi-supervised Machine Learning, Supervised Learning, and
Unsupervised Learning), the representation of the model is very high level and
limited, as it neglects several criteria, e.g., Data sets representation (training
sets and testing sets), model performance, and usability.

In [4] an ontology-based approach is proposed for making Machine Learn-
ing systems accountable. The approach is based on three phases: (1) the cre-
ation of the predictive models and their deployment for availability, (2) the
annotation of pertinent information derived from the predictive models and
forecasts by using ontological-based terms, and (3) the storage of the anno-
tated data while providing means to exploit them for accountability. The sec-
ond phase is based on two areas. In the first one, the forecasts produced by
the predictive model are represented, by using three ontologies models: the Af-
fectedBy ontology (https://iesnaola.github.io/AffectedBy), the Execution-
Executor-Procedure (EEP) (https://iesnaola.github.io/EEP), and the Re-
sult Context (RC) (https://iesnaola.github.io/RC). In the second one, the
predictive procedures used for achieving the forecasts are modeled via the ML-
Schema ontology [13]. Despite that these ontologies’ models cover many aspects
of Machine Learning models, including model performance and training data sets
representation, they lack in considering several criteria, such as the model context
(other than the temporal and the spatial ones) with its constraints (whenever it
is necessary) and the model application domain.

Authors in [1] define an ontology-based IML (Interpretable Machine Learn-
ing), OnML, for generating semantic explanations, by using interpretable models,
ontologies, and information extraction techniques, in order to generate seman-
tic explanations. This is done by identifying and including ontology-based tuples
into a sampling strategy, where the semantic relationships between terms, words,
and ideas, are sampled and captured in training the interpretable model, rather
of using each of them separately. To reduce the search space for semantic expla-
nations, an anchor learning method is also proposed. The work mainly focuses
on using ontologies models for semantic explanation of the predicted ML results,
without representing or describing the ML data sets, their behavior, context, etc.
However, by relying on the ontologies’ models, the approach gives some hints
regarding the application domain of the used ML, as well as their usability.

https://iesnaola.github.io/AffectedBy
https://iesnaola.github.io/EEP
https://iesnaola.github.io/RC


3.2 Context-aware ML Description Approaches

The work in [11] describes an approach that uses contextual information to train
ML models. It mainly consists of training ML models to maximize a specific scor-
ing function for each operating context. In the experiments, the context-aware
approach results, obtained from specialized models that were trained for each
particular context, were compared against the use of a general model that was
trained using all contexts. The results demonstrate that the suggested approach
lessens bias toward a strategy that employs a special general model, however,
the error difference is considered to be low. Therefore, an evaluation is needed
to identify which strategy fits more application needs. Nonetheless, the context-
aware approach should be taken into consideration, depending on how crucial the
application resources needs are (such as connectivity and memory). Comparing
the proposed approach to our work, the contexts of the ML models are manually
defined and used, without being represented (nor other aspects, e.g., data sets,
application domains, etc.) via a machine understandable form, which allows for
the correct and the automatic usage of ML models in the right contexts.

3.3 Reviews and Surveys-based ML Description

In [14], a review is given to provide definitions and a foundational understanding
of the ML categories (i.e., Supervised, Unsupervised, and Reinforcement Learn-
ing). It discusses methods for the design of supervised ML studies, and introduces
the bias-variance trade-off, as a key theoretical underpinning for supervised Ma-
chine Learning. The work provides an overview and a description of common
supervised ML algorithms (Linear Regression, Logistic Regression, Naive Bayes,
etc.), however, it does not represent them (i.e., data sets, applications domains,
etc.) through a comprehensive model to machine, allowing for their correct usage
in the required cases.

Table 1: Evaluation of existing ML description models and approaches w.r.t.
the identified criteria

1. ML Representation Criteria 2. ML Usability & Compatibility
Algorithm Data Performance Metadata Application domain Usability

MLOnto, 2020 [2] + - - Limited + -
ML-Schema, 2021 [4] + + + Limited - Limited

OnML Approach, 2022 [1] - - - - Limited Limited
Context-aware ML-based

Approach, 2018 [11] - - - - - Limited

Review, 2019 [14] Limited∗ - Limited∗ - Limited∗ Limited
Survey, 2015 [10] Limited∗ - Limited∗ - Limited∗ Limited
Study, 2020 [7] Limited∗ - Limited∗ - Limited∗ Limited

In [10], a survey is given to discuss the strength and the weakness of different
ML algorithms: Logic basic algorithms (e.g., Decision Trees and Learning Set of
Rules), Statistical learning algorithms (e.g., Bayesian Networks), Instance-based
Learning, Support Vector Machines, and Deep Learning. Despite describing the
scope of the usage of each ML algorithm, such a description is dedicated to users
that should have some expertise to know how and where these MLs’ are better



used. Our work goes further beyond by describing ML models, in terms of the
data sets used, the corresponding application domain, etc., through an under-
standable machine form that facilitates ML use, based on different contexts.

The study in [7] gives an overview of ML classifications (i.e., Unsupervised,
Semi-supervised, and Reinforcement), and presents three different ways (i.e.,
Clustering, Classification, and Prediction) that ML is used in enterprises. The
work also includes a process model for choosing ML algorithms based on the
type of data, intended interpretability, and desired accuracy. Although the study
helps in comprehending the state of ML techniques, and their applicability in
enterprise applications, along with the trade-off between their interpretability
and their accuracy, it misses several aspects that are important to consider, to
know what ML model is better to use in particular cases, e.g., describing ML
data sets, their corresponding contexts, etc. This is apart from neglecting ML
models description using a comprehensible machine format, reducing, thus, users
expertise and knowledge.

In Table 1, we show the comparative study of the ML description models,
approaches and reviews previously described, based on the criteria outlined at
the beginning of this section. We utilized the “+” symbol to indicate a criterion’s
positive coverage, the “-” symbol to indicate a criterion’s lack of coverage, “Lim-
ited” to denote partial coverage of a criterion, and “Limited∗” to indicate partial
coverage of a criterion with a lack of implementation/proposed model.

4 Semantic Machine Learning Model Ontology

To describe and store the characteristics and the operational specifications of ML
models, which are necessary to facilitate ML models comprehension behavior,
and ease their selection in the right contexts, we present, in this section, an
ontology-based model entitled SML, for Semantic Machine Learning description.
SML, which is represented in Figure 2 via entities an relationships between these
entities, is based on a vocabulary that can be used by different environments
and/or platforms to describe ML models in a normalized manner. We note that
attributes of each entity are not shown in Figure 2 for the sake of clarity.

4.1 SML Ontology Features

SML Model’ Representation and Application. As shown in Figure 3,
a semantic Machine Learning Model, is a model that is designed to recognize
patterns or behaviors in some collected data, based on previous or historical
data, referred to as training data set (SML:TrainingDataSet). A training data
set is a data set (SML:DataSet) that is used during the learning process to fit
(train) a model for prediction or classification of values that are known in the
training set, but unknown in other (future) data. Each SML model has some
metadata (SML:MetaData), e.g., Creation Date, Model Developer, etc., and is
applicable in specific application domains (SML:ApplicationDomain), such as
smart buildings, healthcare, transportation, etc.
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Fig. 2: Overview of the proposed Semantic Machine Learning (SML) model
ontology

SML models are based on specific algorithms (SML:Algorithm), e.g., Naïve
Bayes, Support Vector Machines, Decision Trees, etc., having, each, some meta-
data (e.g., Creation Date, Description), and some parameters (i.e., key-value
pairs). An algorithm belongs to a specific category (SML:Category), such as Clas-
sification and Regression, which might have, if necessary, subcategories through
the relation “hasUpperCategory”. Some SML models that are based on particu-
lar algorithms (e.g., Linear Regression) can be compliant, through the relation
“isCompliantWith”, with other algorithms (e.g., Lasso Regression). This can be
known by applying several calculations and studies on the training data set used
for each SML model, along with their contexts (see subsection below).
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Fig. 3: SML model’ representation and application

SML Data Set Modeling and Context. As represented in Figure 4, a
data set, SML:DataSet, can be splitted into either: (1) a training data set



(SML:TrainingDataSet) that is used to train the SML model, or (2) a test-
ing data set (SML:TestingDataSet), which is used to test and evaluate the
SML model after being trained (see Figure 5). It is composed of data items
(SML:DataItem). A data item has some metadata (SML:MetaData). Each meta-
data has a feature, SML:Feature (e.g., Creation Date, Description, Temperature,
Location), and a value, SML:Value, linked to a value type, SML:ValueType. We
defined concepts for each of the features, values and type of values, to be able
to apply on some features values, specific constraints (see below), which can be
in many cases necessary to describe the context of ML models.
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Fig. 4: SML data set’ modeling and context

A data set, which has also some metadata, relies on, at least, two features,
having, each, some attributes, such as a Name, a Type (e.g., categorical, textual,
numerical), a Range, and a Boolean value (to check whether it is an independent
feature or not). The independent feature is the cause. Its value is independent of
other variables in the study. The dependent feature is the effect. Its value depends
on changes in the independent feature. Features belong to topics (SML:Topic)
that are used to describe the application domain (SML:ApplicationDomain) of a
SML model. A data set has a context (SML:Context) represented by constraints
(SML:Constraint), having, each, a source operand, i.e., SML:Feature, a target
operand, i.e., SML:Value, and an operator (SML:Operator). For example, we can
have a spatio-temporal context defined by the “Season” feature, with the value
“Winter”, and by a “Location” feature having “Paris” as a value. Such context
allows to know that, for instance, the training data set of a specific ML model, is
related to Paris in Winter. Contexts also enable to use some data sets for other
ML models, depending on the matching or how closely their contexts are.

SML Model Evaluation. Once the machine learning model is built using
the training data set, it needs to be tested using data, referred to as testing
data set (SML:TestingDataSet). A testing data set is used to evaluate the per-
formance and progress of the SML model training, which might need to be



adjusted or optimized for improved results. As shown in Figure 5, a testing data
set has an evaluation (SML:Evaluation). Each evaluation has some metadata
(SML:hasEvaluationMetaData), and a score (SML:Score) that is computed us-
ing some metrics (SML:Metric), e.g., MAPE (Mean Absolute Percentage Error)
and MSE (Mean Squared Error) [3]. The metrics are grouped into categories
(SML:Category), depending on the algorithm used to build the SML model.
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Fig. 5: SML model’ evaluation

Next, we present the evaluation of the SML ontology model on two aspects:
the efficiency and the performance, after being implemented.

5 Experimental Evaluation

In this section, we outline the experimental procedure that we used to evaluate
SML ontology. It is founded on two types of evaluation:
1. Evaluation of its efficiency: This involves determining if the concepts and

properties (objects and data properties) established in the SML ontology,
are capable of overcoming the various challenges described in Section 2, and
of meeting the criteria listed in Section 3.

2. Evaluation of its performance: This entails studying the response time of the
SML ontology, by applying various simple and complex queries on different
simulated SML model instances. Such instances are based on several config-
urations (e.g., increasing the number of SML models, their data-items, the
used features in their training data sets, etc.).

5.1 Efficiency Evaluation
In this part, we define the most useful queries (see Table 2), which can be
applied to the SML ontology, to help in facing the challenges identified and
explained in Section 2. Also, we analyze the ability of these queries in meeting
the criteria presented in Section 3. The following link: https://tinyurl.com/
bdrudrtw, shows the list of queries that we used, expressed in SPARQL4.

As shown in Table 2, different queries can be used to interrogate the SML
ontology model. For instance, the Query Q1, where we require the algorithm of
a given ML model, meets the challenge 2, which includes mapping models to the
4 A standard query language that is able to retrieve and manipulate data stored in

Resource Description Framework (RDF) format.

https://tinyurl.com/bdrudrtw
https://tinyurl.com/bdrudrtw


algorithms that generated them. The representation of a ML model algorithm is
a criterion that is part of the ML representation, hence the relationship between
the Query Q1 and the ML representation criteria. Another example of a query
is Query Q7 that requires the description of the training data set context of a
given ML model. The Query Q7 takes up challenge 3, which covers the context
of the data sets (training or testing data sets) features to help build and evaluate
the ML models, and meets ML usability and compatibility criteria, as it specifies
the ML context.

Table 2: List of useful queries overcoming the required challenges and meeting
the needed criteria

ML Representation Criteria ML Usability and Compatibility Criteria

Challenge 1

Q5- Retrieve the metadata of a given ML model,
with those related to its algorithm,

its training data set, its testing data set,
and to the evaluations applied to the testing data

Challenge 2 Q1 - Retrieve the algorithm of a given ML model

Challenge 3
Q2 - Describe the training data set of a given ML model

Q3 - Describe the testing data set of a given ML model

Q7 - Describe the training data context
of a given ML model

Challenge 4 Q6 - Find the application domain of each ML model,
and give a clear description of this domain

Challenge 5
Q4 - Retrieve the performance of a given ML model

(i.e., the scores and the metrics used to calculate
the evaluation applied to the testing data)

5.2 Performance Evaluation
In this part, we took into consideration five different scenarios, to evaluate the
performance of the SML ontology model, in terms of the response time, while ap-
plying several queries on the SML model. The scenarios were made by simulating
different SML models using “Protégé” tool https://protege.stanford.edu/,
through which all information about data sets for instance were filled, and vary-
ing their criteria: (1) their number (the number of SML model instances), (2) the
number of the data items used in their training data set, (3) the number of the
used features in their training data set, (4) the number of metrics used to com-
pute the score of their testing data set, and (5) the number of their metadata.
We display the query response time (ms) in the experiments based on an aver-
age of 10 sequential executions for each query. The tests have been carried out
using “Stardog” (https://www.stardog.com/), a platform for enterprise knowl-
edge graph, run on a Windows 10 Professional machine having an Intel i7-8665U
CPU @ 1.90GHz 2.11GHz processor and 1 GB RAM.

Impact of ML Models Instances and their Metadata. In the first scenario
(see Figure 6-(a)), we studied the impact of varying the number of ML models
instances, when requiring the set of models having a given algorithm (i.e., Linear
Regression). In the scenario, we fixed the number of algorithms to 50, linked every
ML model (between 100 and 10000 models) to a single algorithm (as defined in
the SML ontology), and measured the corresponding query response time. As
per the resulted graph curve, the query run time increases quasi-linearly with the
increased number of ML models instances. The time evolution is more important
between the first two tests, as the number of ML models was increased from 100
to 1000 (with a difference of 900 models), contrary to the rest of the other tests,

https://protege.stanford.edu/
https://www.stardog.com/


where the increased number of ML models was more constant (with a difference
of 2000/3000 models).
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Fig. 6: Number of ML models instances vs ML models metadata impact

In the second scenario (see Figure 6-(b)), we studied the impact of varying
the number of metadata related to each ML model instance, when requesting
the set of the metadata related to a specific model. In the scenario, we fixed the
number of ML models to 500, varied the number of their data items (from 5 to
40), and measured the corresponding query response time. The resulted curve
shows that the query execution time evolves linearly with the increased number
of metadata defined for each ML model.

Impact of Data Items and Features used in ML Training Data Sets.
In Figure 7-(a), we looked at the effect of varying the number of data items
included within the training data sets of ML models, while demanding the set
of the data items of a specific model. We limited the number of ML models in
the tests to 100, varied the numbers of data items used in the training data sets
of the ML models (from 100 to 1000), and then, calculated the query response
time. The resulted graph demonstrates that as more metadata are defined for
each ML model training data set, the query run time increases linearly.
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Fig. 7: Training data set data items vs Training data set features vs ML
evaluation metrics impact

In Figure 7-(b), we investigated the impact of increasing the number of fea-
tures used in the training data sets of the ML models, while requesting the set of
the features used for a particular model. We set a cap of 1000 ML models for each
test, distributed different number of features (from 2 to 20) to each ML model
training data set, and then retrieved the corresponding query response time.



The resulted graph shows that the run time evolves linearly with the increased
number of features used for each ML model training data set.

Impact of ML Evaluation Metrics. In the last scenario, we looked into the
impact of adding metrics in the evaluation score related to the testing data set
of ML models (see Figure 7-(c)). In the tests, where we requested the top 3 ML
models having the best evaluation score, we fixed the number of ML models
to 1000 and varied the number of score metrics from 1 to 10 (e.g., MAPE and
MSE [3]), and got the corresponding query response time. From the resulted
graph, we can see that as the number of metrics used in the score (to evaluate
ML models testing data sets) increases, the run time evolves linearly.

Discussion. In the experimental scenarios, the resulted graphs reveal promis-
ing and positive linear curves, indicating that the query execution response time
increases linearly with the growing number of ML models instances, their meta-
data, their data items and features used in their training data, as well as the
number of the metrics used to compute the score of their testing data set. This
shows a proportionate relation, with almost a constant growth between the vari-
ous variables employed and the query execution time. The findings also highlight
that the curves of the graphs, in which we increased the number of ML models
instances (see Figure 6-(a)), where the time jump is equal to 20 ms, and the
number of the score metrics of the ML models evaluation (see Figure 7-(c)),
where the time jump is equal to 21 ms, are more important than the others, as
the time jumps are equal to 15 ms, 4 ms and 15 ms, respectively, in Figure 6-(b),
Figure 7-(a) and Figure 7-(b). In Figure 6-(a), the time jump is explained by the
huge number of ML models instances we used (10000), and in Figure 7-(c), the
time jump can be dedicated to the fact that there were more concepts to reach in
the query (SML:MachineLearningModel, SML:TestingDataSet, SML:Evaluation,
SML:Score, and SML:Metric). Moreover, we can see that the increased number
of metadata, and the number of features used in ML models training data sets,
have the same resulted curve with a time jump equal to 15 ms, despite of varying
different variables: from 5 to 40 for metadata number, comparing to 2 to 20 for
features number. This can be justified by the very close response times (405 and
407 ms) when the two variables are equal to 20. As for the increased number of
data items in the training data sets of ML models, it has the lowest impact on
the query response time, with a time jump equal to 4 ms.

6 Conclusion
In this paper, we propose a Semantic Machine Learning Model ontology (SML)
that describes and stores ML models’ characteristics and operational specifica-
tions (e.g., their used algorithms, their metadata, their training and testing data
sets, their evaluation, etc.). SML allows to share ML knowledge across different
platforms and environments, enabling to ease the comprehension of ML models,
as well as their selection in various use cases. After implementing SML, we have
evaluated its efficiency and performance in different scenarios, where we varied
the number of ML instances models, their metadata, the number of data items



and features used in their training data sets, and the number of metrics used
to compute their testing data evaluation scores. Our experimental results are
promising and encouraging.

As part of our ongoing evaluation of the ontology, we aim to check its con-
sistency, to see if the defined concepts and properties cause any inconsistencies
in the ontology’s structure. This can be done by running different reasoners.
We also seek to evaluate its clarity, to check whether the names or labels of
the concepts and properties are clear to users (experts and/or non-experts), and
see how easy it is for users to use/understand the ontology. Finally, we aim to
use SML ontology in real environments or projects to evaluate further how the
ontology can be exploited in practice, and work on the recommendation engine,
which will use SML ontology to suggest the most suitable ML model(s) that can
be applied in specific contexts and different scenarios.
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