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Stereodivergent synthesis of chiral
succinimides via Rh-catalyzed asymmetric
transfer hydrogenation

Fangyuan Wang1,4, Zongpeng Zhang1,4, Yu Chen1,4,
Virginie Ratovelomanana-Vidal2, Peiyuan Yu 1 , Gen-Qiang Chen 3 &
Xumu Zhang 1

Chiral succinimide moieties are ubiquitous in biologically active natural pro-
ducts and pharmaceuticals. Until today, despite the great interest, little suc-
cess has beenmade for stereodivergent synthesis of chiral succinimides. Here,
we report a general and efficient method for accessing 3,4-disubstituted suc-
cinimides through a dynamic kinetic resolution strategy based on asymmetric
transfer hydrogenation. The Rh catalyst system exhibit high activities, enan-
tioselectivities, and diastereoselectivities (up to 2000TON, up to >99% ee, and
up to >99:1 dr). Products with syn- and anti-configuration are obtained sepa-
rately by control of the reaction conditions. For theN-unprotected substrates,
both the enol and the imide group can be reduced by control of reaction time
and catalyst loading. In addition, the detailed reaction pathway and origin of
stereoselectivity are elucidated by control experiments and theoretical cal-
culations. This study offers a straightforward and stereodivergent approach to
the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap
chemical feedstocks in a single reaction step.

Chiral 3-substituted and 3,4-disubstituted succinimide substructures
are widely found in natural products and pharmaceuticals (Fig. 1)1–6.
Succinimide derivatives such as phensuximide (PTS), methsuximide
(MTS) and ethosuximide (ETS), are well-known antiepileptic drugs
(AEDs). In recent years, chiral succinimides have received great atten-
tion from synthetic chemists due to their wide range of biological
activities such as antibacterial7, antifungal8, analgesic9, anticonvulsant10,
and antitumor effects11,12. The most well-developed methods include
enantioselective cycloaddition reactions13–15 and hydrogenation
reaction16–18 using maleimides as the substrates. Asymmetric catalytic
addition 19,20of nucleophilic reagents to maleimides has also been
reported (Fig. 2a). However, compared with well-developed synthetic
methods of 3-substituted succinimides, few methodologies exist
concerning the synthesis of 3,4-disubstituted succinimides19,21.

The synthon, 3-hydroxy-4-substituted-succinimides can be easily con-
verted to valuable chiral skeletons, such as chiral pyrrolidones and
chiral lactams (Fig. 2c). Consequently, developing an efficient synthetic
methodology for the construction of 3-hydroxy-4-substituted-succini-
mides from readily available starting materials is highly desirable.

Since the first asymmetric transfer hydrogenation (ATH) of
ketones reported by Noyori and Ikariya using (S,S)-cat.122, a series of
catalysts containing N-monotosylated 1,2-diphenylethylenediamine
(TsDPEN) have been documented by Noyori22, Ikariya23, Wills24–26 and
others27–42. In 1999, Baiker et al. reported an enantioselective
hydrogenation of pyrrolidine-2,3,5-triones using Pt–cinchonidine
systems, obtaining 3,4-disubstituted succinimides with a single
stereocenter16. Inspired by this work, we envisioned that
3-hydroxy-4-substituted maleimides could be reduced through a
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DKR (dynamic kinetic resolution)-ATH process. Over the past dec-
ades, DKR-ATH is an extremely attractive approach for the reduction
of α-functional ketones due to the assured enantiomeric purity43–51. In
particular, base is necessary to facilitate the ATH process52,53. Com-
pared with well-studied α-functional ketones, 3-hydroxy-4-
substituted maleimide (1) exists mainly in its enol form45, and has
low reducing activity under alkaline conditions. It can be reduced
through the Pd/C-H2 system but cannot be reduced by NaBH4/MeOH
system (for details, see Supplementary Fig. 9). Moreover, the corre-
sponding reduction products are prone to epimerization under
alkaline conditions. This alsomade it difficult to obtain the reduction

products using traditional alkaline reduction systems. Therefore, the
development of appropriate asymmetric reductionmethods to solve
such problems is of great significance.

Herein, we report the stereodivergent enantio- and diaster-
eoselective ATH of maleimide derivatives catalyzed by a tethered
rhodium catalyst. Anti-3-hydroxy-4-substituted-succinimides 2 (up to
>99% ee, up to >99:1 dr) and syn-3-hydroxy-4-substituted-succinimides
3 can be obtained by adjusting the amount of base (up to >99% ee, up
to >99:1 dr). In addition, both the enol and the adjacent imide can be
reduced to obtain 4 with high chemoselectivity by control the loading
of the catalyst (up to >99% ee, up to >99:1 dr) (Fig. 2b).

Fig. 1 | Biologically active compounds and drugs derived from succinimides.
Phensuximide, methsuximide and ethosuximide are well-known antiepileptic
drugs.Upadacitinib is a drug for the treatmentof immunedisorders, Echinocandins

have antifungal activities, and Tivantinib is used for the treatment of advanced
hepatocellular carcinoma.

Fig. 2 | Synthetic methods for the construction of chiral succinimide derivatives. a Catalytic asymmetric synthesis of chiral succinimides (previous work).
b Stereodivergent synthesis of chiral succinimide derivatives via ATH (this work). c Obtained building blocks.
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Results
Condition optimization
To investigate the proposed ATH process, model substrate 1a was
subjected to reduction using the commercially available TsDPEN-
derived Ru, Rh and Ir complexes (2 mol%) in an azeotropic mixture of
formic acid and triethylamine at 25 °C in MeOH. (Table 1) The Noyori’s
catalyst (R,R)-cat.1 and (S,S)-cat.2 cannot achieve any catalytic conver-
sion (entries 1–2). Ir complexes, (S,S)-cat.3 can only achieve 23% con-
version with 84% ee and 84:16 dr (entry 3). In contrast, the tethered-
catalysts, cat.4~cat.5 showed more excellent conversion, enantios-
electivity and diastereoselectivity. 96% ee and 90:10 dr were achieved
with (R,R)-cat.4 while 95% ee and 92:8 dr were achieved with catalyst
(R,R)-cat.5 (entries 4–5). To our great delight, the catalytic selectivity of
Rh catalyst (R,R)-cat.6 and (S,S)-cat.6 outperformed that of the cata-
lysts previously evaluated, providing corresponding product 2a with
95:5 dr and 96% ee in an anti-selective manner (entries 6–7). (S,S)-cat.6
proved to be potential catalysts for the DKR-ATH of 1a.

With (S,S)-cat.6 as a catalyst, we further explored the effects of
solvents and the ratio of formic acid and triethylamine (Table 1). Several
solvents, such as EtOH, DCM, THF, dioxane, toluene, hexane and EtOAc
were examined with HCO2H/Et3N (5:2) for 12 h (entries 8–14). Except for

a low conversion in hexane (<5% conv.), moderate to high conversion
and high stereoselectivity were observed in other solvents. Pleasingly,
when EtOAc was used, excellent enantioselectivity and diastereoselec-
tivity were obtained in full conversion (entry 14, 99% ee, 98:2 dr). On the
contrary, syn-product 3a was obtained by reducing the amount of tri-
methylamine (entry 15). When only formic acid was used, the enantios-
electivity of the product decreased slightly, and extended reaction time
was necessary to achieve full conversion (entry 16). In addition, different
ratios of triethylamine and formic acid were investigated in EtOAc
(Supplementary Table 1 presents details), indicating that the decrease in
the proportion of Et3N resulted in a decrease in the proportion of anti-
product. Finally, isopropanol and sodium formate were also investi-
gated as hydrogen donors, and a very low reactivitywas observed under
the alkaline environment (entries 17–18, <5% conv.). So far, HCO2H/Et3N
(5:2) was used as a hydrogen donor for anti-2a (entry 14) and HCO2H/
Et3N (2.0 equiv./0.02 equiv.) for syn-3a (entry 15).

Substrate scope
Under the optimal conditions, the methodology using of HCO2H/Et3N
(5:2) as a hydrogen source was successfully extended to a series of
substrates, and the results were illustrated in Fig. 3. Substrateswith the

Table 1 | Optimization for Rh(III)-catalyzed DKR-ATH of 1aa
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entry catalyst Hydrogen donor Solvent conv. (%) eeanti (%) eesyn (%) dr (anti/syn)

1 (R,R)-cat.1 HCO2H:Et3N (5:2) MeOH <5 – – –

2 (S,S)-cat.2 HCO2H:Et3N (5:2) MeOH <5 – – –

3 (S,S)-cat.3 HCO2H:Et3N (5:2) MeOH 23 84 – 84:16

4 (R,R)-cat.4 HCO2H:Et3N (5:2) MeOH 99 −96 – 90:10

5 (R,R)-cat.5 HCO2H:Et3N (5:2) MeOH 90 −95 – 92:8

6 (R,R)-cat.6 HCO2H:Et3N (5:2) MeOH 84 −96 – 95:5

7 (S,S)-cat.6 HCO2H:Et3N (5:2) MeOH 85 96 – 95:5

8 (S,S)-cat.6 HCO2H:Et3N (5:2) hexane <5 – – –

9 (S,S)-cat.6 HCO2H:Et3N (5:2) EtOH 71 93 – 97:3

10 (S,S)-cat.6 HCO2H:Et3N (5:2) DCM 66 95 – 93:7

11 (S,S)-cat.6 HCO2H:Et3N (5:2) THF 81 99 – 96:4

12 (S,S)-cat.6 HCO2H:Et3N (5:2) dioxane 97 99 – 93:7

13 (S,S)-cat.6 HCO2H:Et3N (5:2) toluene >99 95 – 98:2

14 (S,S)-cat.6 HCO2H:Et3N (5:2) EtOAc >99 99 – 98:2

15b (S,S)-cat.6 HCO2H:Et3N (2:0.02) EtOAc >99 – 96 2:98

16c (S,S)-cat.6 HCO2H:Et3N (2:0) EtOAc >99 – 93 <1:99

17d (S,S)-cat.6 iPrOH iPrOH <5 – – –

18e (S,S)-cat.6 HCO2Na
iPrOH <5 – – –

aConditions: Catalyst/1a (0.1 mmol) ratio of 1:50 in 1 mL of solvent, HCO2H/Et3N azeotropic mixture (20 μL) at 25 °C for 12 h. Conversions (conv.) were determined by 1H NMR analysis. Enantiomeric
excesses (ee) and diastereomeric ratios (dr) were determined by HPLC analysis using a chiral stationary phase.
bHCO2H (2.0 equiv.) was used.
cHCO2H (2.0 equiv.) was used for 48 h.
dKOtBu (3.0 equiv.) was used in 1.0 mL of iPrOH at 60 °C for 12 h.
eHCO2Na (5.0 equiv.) was used in 2.0 mL of iPrOH /H2O (1.0 mL/1.0 mL) at 60 °C for 12 h.
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Fig. 3 | Substrate scope. aConducted with catalyst/substrate (0.2 mmol) ratio
of 1: 50 in 1 mL of solvent, HCO2H (2.0 equiv.)/Et3N (2 mol%) for syn–isomer 3
and HCO2H/Et3N azeotropic mixture (20 μL) obtained anti–isomer 2. Isolated
yield including the minor enantiomer, the ee and dr value of were deter-
mined by HPLC analysis using a chiral stationary phase. b(S,S)-cat.6 (5 mol%)

and HCO2H/Et3N azeotropic mixture (50 μL) were used. c(S,S)-cat.6 (5 mol%)
and HCO2H (2.0 equiv.) were used for 24 h. d(S,S)-cat.6 (1 mol%) and HCO2H/
Et3N azeotropic mixture (20 μL) were used for 1 h. e(S,S)-cat.6 (1 mol%) and
HCO2H/Et3N azeotropic mixture (20 μL) were used for 0.5 h. f(S,S)-cat.6 (5
mol%) and HCO2H/Et3N azeotropic mixture (40 μL) were used for 24 h.
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different protective groups on the nitrogen atom were subjected to
the standard reaction conditions, and the reaction proceeded
smoothly to provide the anti-product with high yields, excellent
enantioselectivities and diastereoselectivities (2a–2g, 94–98% yield,
94:6–>99:1 dr, 88%–>99% ee). Next, we evaluated the effect of the
substituents on the C4 position. Functional groups, such as halides
(2h–2j), trifluoromethyl (2k), methyl (2l), methoxy (2m) at the para
position of the phenyl groupwere compatiblewith this transformation
(88–97% yield, 90:10–99:1 dr, 96%–>99% ee). Substrates with meta-
substitution on the phenyl group were also tolerated, and 98% ee and
96:4 dr were obtained (2n). In addition, the ortho-methoxy and ortho-
fluoro substrate were evaluated with lower dr values (2o–2p, 95–96%
yield, 91:9 dr and 97% ee). Moreover, the product 2rwith 3,4-methoxy
groups on the phenyl ring was obtained with 99% ee and 99:1 dr.
The current reaction also tolerates substrates bearing 2-naphthyl,
2-furanyl, and 3-indolyl groups (2r–2t, 92%–95% yield, 84:16–99:1 dr,
97–99% ee).

Subsequently, a sharp contrast was exhibited using HCO2H (2.0
equiv.)/Et3N (2 mol%) as a hydrogen source, and the syn-products
could be obtained selectively. (Fig. 3) High enantioselectivities and
diastereoselectivities were obtained with a wide range of N-protected
substrates (3a–3g, 93–98% yield, 93:7–>99:1 dr, 88–98%ee). The effect
of substitution at the C4 position of the substrates was also evaluated,
and products with halides, trifluoromethyl, methyl, and methoxy
group at the ortho, meta, or para position of the phenyl group were
smoothly produced in 92–98% yields with 95:5–99:1 dr and up to >99%
ee (3h–3q). 2-Naphthyl-containing substrates could obtain excellent
enantioselectivity and diastereoselectivity as well (3r, 98% yield, >99:1
dr, 98% ee). Heterocycle-containing substrates, such as indole (3s, 91%
ee, 99:1 dr) and furan (3t, 94% ee, 96:4 dr) were compatible with the
conditions. For substrates with alkyl substitution at the C4 position,
using an azeotropicmixture ofHCO2H/Et3N (5:2) as a hydrogen source,
this transformation proceeded smoothly to provide the syn-product
in excellent yields (up to 97%) and with high levels of diastereo- and
enantioselectivities (3u–3x, 97–98% ee, >99:1 dr). What’s more,
N-unprotected substrates were well tolerated (3y–3aa, 98%–>99% ee,
>99:1 dr). Interestingly, for N-unprotected substrates, both the enol

and imide groups can be reduced. The products 4,5-dihydroxy-3-alkyl-
pyrrolidin-2-one, containing three contiguous stereocenters, can be
obtained by increasing the loading of catalyst (4y-4aa, 98%–>99%
ee, >99:1 dr).

Synthetic applications
To demonstrate the synthetic utilities of this methodology, two gram-
scale transformations were conducted, and the results were summar-
ized in Fig. 4. To our delight, when 0.05 mol% (S/C = 2000) catalyst
loading was used, the gram-scale experiment proceeded smoothly to
provide 3u with excellent results. According to the procedure in the
literature, 3u can be further transformed into the important synthon
5u (3-hydroxy-4-methylproline), which is a key intermediate for Echi-
nocandin (Fig. 4a)54. Similarly, the ATH of 1w could be performed with
a catalyst loading of 0.1 mol% to obtain 3wwith excellent results. Then
it can be further transformed into pyrrolidine derivative 6w, lactam
derivatives 7w55, 8w, and succinimide derivative 9w56 in high yield and
excellent stereoselectivity (Fig. 4b).

Mechanism study
To elucidate the detailed mechanism of this ATH process, a series of
mechanistic investigations were conducted, and the results were
summarized in Fig. 5. First, the reaction of hydroxyl-protected sub-
strate 1a’ was conducted under the standard conditions, and 2a’ was
obtainedwith only 37–38% ee and 85/15-87/13 dr, whichmeans that the
presence of the –OH group at the C3-position is necessary to ensure
high enantioselectivity, and the C=C reduction pathway is also possi-
ble. (Fig. 5a). Second, the syn-product 3a canbe smoothly transformed
into the anti-product 2a in the presence of an azeotropic mixture of
HCO2H/Et3N (5:2). This suggested that the anti-product was probably
produced by epimerization of the syn-product. Interestingly, 3y canbe
transformed into the 4ywith three contiguous stereocenters (Fig. 5b).
Moreover, the reaction kinetic experiment showed that 1a can be
completely reduced in preference to 1a’ under standard conditions
(Fig. 5c). During the process, the reduction of 1a first produced the
syn-product which isomerized to the anti-product along with
the process of the reaction, whereas, the reduction of 1a’ obtained the

Fig. 4 | Gram scale synthetic utilities of the DKR-ATH process. a Gram-scale experiment of 1u. b Gram-scale experiment of 1w and transformations of product 3w.
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anti-productmainly, and the anti/syn ratio changed slightly during the
reaction process (Fig. 5d). In addition, the keto-enol equilibrium
experiment revealed that the ratio of enol-1u increased with the
increase of pH value in acidic environment (Fig. 5e). Our mechanistic
investigations revealed that the current reaction probably proceeded
via reduction of the keto form.

The mechanistic investigations and theoretical data57,58 accumu-
lated for theATHof 1point to twoplausible catalytic cycles. Key results
fromDFT calculations, including themost favorable reactionpathways
for C=O and C=C reduction, respectively, are shown in Fig. 6. Active
catalyst cat1 was generated from decarboxylation of the formate
complex of cat.6 (Supplementary Fig. 11 and Supplementary Data 1).
In the catalytic cycle for C=O reduction, cat1 interacts with substrate
keto-1g to generate the intermediate a-R-int1, followed by a direct
hydride (H−) transfer via transition state a-RS-TS1, with an energy
barrier of 3.1 kcal/mol relative to a-R-int1. This step generates an
intermediate a-RS-int2, which ismore stable than a-R-int1 by 11.3 kcal/
mol. Subsequently, the proton transfer step is completed via a-RS-TS2
by overcoming the energy barrier of 12.9 kcal/mol relative to a-RS-
int2. The active catalyst cat1 is regenerated after releasing of the syn-
product RS-pro followed by proton transfer from formic acid. Finally,
considering that active catalyst cat1 first more easily capture enol-1g
than keto-1g to form a more stable intermediate int1 in an exergonic
process of 2.6 kcal/mol, the free energy barrier of the C=O reduction
pathway from cat1 to product should be 15.0 kcal/mol from int1 to a-
RS-TS1. On the other hand, for the catalytic cycle of the C=C reduction,
the hydride transfer step suffered from an energy barrier of 19.7 kcal/
mol via transition state S-TS1 relative to int1. The following proton

transfer step has an energy barrier of 21.1 kcal/mol relative to int1.
Subsequent release of the anti-product SS-pro and interaction with
formic acid regenerates cat1 and produces CO2. The results show that
from cat1, the free energy barrier of the most favorable pathway for
C=O and C=C reduction are respectively 15.0 kcal/mol (from int1 to a-
RS-TS1) and 21.1 kcal/mol (from int1 to SS-TS2), and are consistent
with the experimental observation that the formation of the anti-
product is favored over the syn-product. The CO2 generated in the
asymmetric reduction with formic acid can be effectively removed
from the catalytic system. In addition, the theoretical study of the C=C
reduction pathway for the hydroxyl-protected substrate was also
conducted under standard conditions (Supplementary Fig. 12 and
Supplementary Data 1 present the details).

The free energies and key lengths of the transition states leading to
different stereoselectiveproductswere also shown inFig. 7. For theC=O
reduction pathway, it is found that the transition state a-RS-TS1 has a
significant advantage relative to other three transition states a-SS-TS1,
a-SR-TS1, and a-RR-TS1 by 6.2, 7.5, and 10.8 kcal/mol, respectively. The
proton transfer step in the C=C reduction pathway is the enantio/rate-
determining step, the transition state SS-TS2 is more stable than the
other three transition states RS-TS2, SR-TS2, and RR-TS2 by 9.2, 12.7,
and 2.6 kcal/mol, respectively. Comparing to the reduction of the C=C,
a-RS-TS1 is more favorable than the corresponding transition states SS-
TS2 by 6.1 kcal/mol. The result showed that reduction of the C=O bond
is the more reasonable pathway, resulting in the formation of syn-pro-
duct, which can transform into the anti-product in the presence of Et3N.
The reduction of the C=C path need to overcome a higher energy
barrier (21.1 kcal/mol vs 15.0 kcal/mol) and form the anti-product in the
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catalytic cycle, which is also inconsistent with the experimental results
of the formation of syn-product.

Discussion
In conclusion, ahighly asymmetric transferhydrogenationof 3-hydroxy-
4-substituted-maleimide derivatives was successfully developed using a

tethered Rh catalyst under mild reaction conditions. Through strategic
modulation of the amount of Et3N, a variety of 3-hydroxy-4-substituted-
maleimide were transformed into the corresponding syn- and anti-
chiral succinimides with excellent enantio- and diastereoselectivities.
This method successfully breaks the inherent impression of single
product in previously reported ATH methodologies. Comprehensive
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Fig. 7 | The free energies of the transition states of the enantio-determining steps. a Calculated transition states for the C=O bond reduction pathway. b Calculated
transition states for the C=C bond reduction pathway. The energies are given in kcal/mol. The lengths are given in angstrom.

Fig. 6 | Proposal catalytic cycle for ATH of 1g with HCOOH. The C=C reduction
pathwaywasdepicted in the left catalytic cycle and the C=O reduction pathwaywas
described in the catalytic cycle on the right. The Gibbs free energy of the

compounds, intermediates and transition states are provided below the corre-
sponding chemical structures and the energies are given in kcal/mol.
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mechanistic studies revealed that the -OH group at the C3-position of 1
is crucial for driving the reaction to the high enantioselectivity, and the
configurationof theproductwill undergoepimerizationduring theATH
process. This also leads to two possible reduction processes (C=O or
C=C). Computational analysis revealed that the C=C reduction pathway
may suffer a higher energy barrier than theC=O reductionpathway, and
it cannot generate the syn-product. Thus, the C=O reduction pathway
via dynamic kinetics resolution process is reasonable. In addition, gram-
scale experiments andvarietiesof transformationathighTONsprovides
an efficient way to synthesis chiral pyrrolidine derivatives. The present
findings demonstrate successful mechanistic control to realize the ATH
of a challenging substrate, which can provide further insight into the
development of ATH.

Methods
Representative procedure of asymmetric transfer
hydrogenation of 1a
To a 10 mL Schleck tube charged with a magnetic stirring bar were
added successively substrate 1a (0.2 mmol, 56 mg), formic acid/tri-
methylamine azeotropic mixture (5/2) (40 μL), cat.6 (3 mg, 0.004
mmol) and the solvent (2 mL). The mixture was then stirred at room
temperature for the indicated reaction time. After completion, the
reaction solution was concentrated and the residue was passed
through a short columnof silica gel (eluent: EtOAc:PE = 2:1) to produce
2a as a white solid (55 mg, 97% yield, 99% ee, 98:2 dr). The ee or dr
values of compound 2a were determined by HPLC analysis on a chiral
stationary phase (Chiralpak IE column, hexane/isopropanol = 80/20;
flow rate = 1.0 mL/min; UV detection at 210 nm; t1 = 8.9 min, t2 =
9.9 min, t3 = 10.6 min, t4 = 13.4 min (major).

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its supplementary information files.
Crystallographic data for compounds 2g, 2p, 3e, 8w have been
deposited in the Cambridge Structural Database with the deposition
numbers 2040537, 2074951, 2074952, and 2117425 respectively.
Copies of the crystallographic data can be obtained free of charge via
https://www.ccdc.cam.ac.uk/structures/.
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