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Abstract

Based on recent progress in quantum gravity and quantum cosmology we are presenting
also a way to estimate the temperature in cosmos, the Hubble sphere, from a relation between
the Planck temperature and the Hubble scale. Our analysize predict the Hubble sphere
temperature of 2.72k with the one standard deviation confidence interval between 2.65k
and 2.80k, which correspond well with the measured temperature observed from the cosmic
microwave background (CMB) of about 2.72k. This add evidence to that there is a close
connection between the Planck scale, gravity and the cosmological scales as anticipated by
Eddington already in 1918.

1 The Hawking temperature of the Hubble sphere

Quantum cosmology has garnered increased attention in recent years, see for example [1–8].
In this paper, we will demonstrate the existence of a link between the Planck temperature and
the temperature within the Hubble sphere, which is further corroborated by the measured
temperature of the cosmic microwave background.

In this section, we will first establish the mathematical relationship for the Hawking
temperature across the entire Hubble sphere in the critical Friedmann universe. Then, in
the next section, we will establish the connection between the Hawking temperature and the
Planck temperature. By employing the Stefan-Boltzmann [9, 10] law, we will predict the
temperature of the Hubble sphere, which we demonstrate to closely align with the measured
temperature of the cosmic microwave background (CMB). This means the CMB temperature
not only can be measured but predicted from quantum cosmology, something that is rather
remarkable in our view.

The Hawking [11] temperature of a black hole is given by:
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THw =
ℏc3

kb8πGM
, (1)

where M represents the mass of the black hole, kb is the Boltzmann constant, and G is
Newton’s gravitational constant and ℏ is the reduced Planck constant also known as the
Dirac constant. The Friedmann [12] equation is given by:

H2
0 =

8πρ + Λc2

3
, (2)

where ρ = M
4
3
πR3

H

, and the Hubble radius RH = c
H0

, where H0 is the Hubble constant. In

the special case where the cosmological constant, Λ, is set to zero, and we then solve the
Friedmann equation for mass, we get:

Mc =
c2RH

2G
. (3)

This is known as the mass of the critical Friedmann universe. Be aware that when we say
’mass’ here, it can be considered equivalent to the mass in the Friedmann model, as it does
not distinguish between effects from mass or energy. This means that energy is treated as
mass equivalent since we naturally have M = E

c2
. We solve (Eq. 3) for RH , which gives:

RH =
2GMc

c2
. (4)

This means the Hubble radius is mathematically identical to the Schwarzschild [13] radius
of a black hole with a mass equal to the critical mass of the Hubble sphere. Patheria [14] and
Stuckey [15] has even suggested that we possibly live inside a black hole, a controversial idea
discussed even in recent litrature [16–18]. We will not delve into a discussion about whether
we could live inside a black hole or not, but we will focus on the mathematics and demonstrate
that, starting from the critical Friedmann universe, we can surprisingly predict the correct
temperature of the cosmic microwave background, in full alignment with observations, we
will later discuss also why this can be.

Let us now input the critical mass of the Hubble sphere into the Hawking temperature
formula. This gives:

THW =
ℏc3

kb8πGMc
=

ℏc3

kb8πG
c3

2GH0

=
ℏH0

kb4π
≈ 1.38 × 10−30k. (5)

However, it’s important to note that this temperature has never been observed. Never-
theless, if we take this literally, this is the radiation emitted from the Hubble sphere. As
energy flows out of the Hubble sphere, there should also be a possibility to predict what this
means for inside the Hubble sphere. This is what we aim to explore in the next section.

2 The Hubble sphere and its temperature derived

from the Planck temperature

Planck mass particles have been suggested by multiple authors to possibly be the most fun-
damental particles in the universe; see, for example, Motz [19] and Haug [20]. It is also
assumed that the Planck scale somehow will play a central role in quantum gravity. Einstein
[21] already in 1916 suggested that the next step in gravity theory would be a unified quan-
tum gravity theory, something he worked on much of the rest of his life, but unfortunately
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without a big break through. Eddington [22] in 1918 was likely the first to suggest that such
a quantum gravity theory had to be somehow linked to the Planck scale through the Planck
length. Most researchers working on quantum gravity today seem to be of the opinion that
the Planck scale will play an important role in such a theory; see, for example, [23–25].

It is worth noting that as early as 1987, Cohen [26] pointed out that it would likely be
impossible to find the Planck length independent of deriving it from G, c, and ℏ. This view
was held until at least 2016, as seen in the interesting paper by McCulloch [27]. However,
in recent years, it has been demonstrated that we can find the Planck length independent
of any knowledge of G or ℏ; see [28, 29]. It has also been shown that the Planck length
can be derived from cosmological redshift without knowledge of G or ℏ; see [30]. Haug [31]
has additionally recently demonstrated that a series of cosmological phenomena and entities,
such as the critical mass of the universe divided by the Hubble radius, is identical to the
Planck mass divided by twice the Planck length. Furthermore, the Hubble constant can be
expressed as H0 = λ̄cc

l2p
, where λ̄c is the reduced Compton wavelength of the critical mass of

the universe. The reduced Compton wavelength of the critical mass in the universe can also
be found without knowledge of the kilogram of the critical mass or the Planck constant; see
[30].

If there is indeed a link between the Planck scale and the cosmic scale, then one could
expect, or at least hope, that other observed phenomena of the cosmos, such as the cosmic
microwave background temperature, possibly also have a link to the Planck scale. In this
section, we will demonstrate that we can indeed predict the CMB temperature of about 2.72
Kelvin from the Planck temperature when utilizing a combination of the Hawking temperature
with the Stefan-Boltzmann law.

The luminosity of the Hubble sphere according to the Stefan-Boltzmann law must be
given by

LH = 4πR2
HσT 4

H (6)

where TH is what we will call the Hubble sphere Temperature. Next, we will utilize the idea
that the most elementary of all particles are likely Planck mass particles. The Planck mass is

normally considered to have a mass of mp =
√

ℏc
G ≈ 2.17×10−8 kg. This is much higher than

any known atom. However, Haug [20] has recently suggested that the Planck mass particle
only lasts the Planck time and that the particle then has a mass of mptp ≈ 1.17 × 10−51

if observed over a second, which corresponds well with a survey of existing and proposed
classical and quantum approaches to the photon mass, as seen in Spavieri et al [32]. Only
if observed inside the Planck time window the mass is the Planck mass, that is this mass
is special as it is observer window time dependent as discussed in [33]. Going into depth
about the different views on the potential photon mass is outside the scope of this article; we
mention this to avoid any automatic rejection of the idea that the Planck mass particle can
be the most elementary particle in the universe. It could actually be linked to photons. Even
if photons are assumed to be massless, it could be that photons acquire this mass during
collisions with other photons. It is well known within the standard literature that photon-
photon collisions likely give rise to mass, as shown in, for example, Pike et al. [34]. For the
moment simply assume there is a Planck mass particle playing a central role in the universe
and possibly as the ultimate building block of all matter.

The energy passing through a sphere with a radius equal to the Planck length is given by:

E =
LH

4πl2p
. (7)

The radiant flux absorbed by the Planck sphere’s cross-section πr2 is thus expressed as:
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Φabs = πl2pE = πl2p
LH

4πl2p
= πl2p

4πR2
HσT 4

H

4πl2p
=

π

4
R2

HσT 4
H . (8)

The Planck temperature, as given by Max Planck [35, 36], is Tp = 1
kb

√
ℏc5
G =

mpc2

kb
= ℏc

lpkb
.

Furthermore, the Hawking temperature of a Planck mass is determined by Hawking radiation
and is given by:

THw,p =
ℏg

2πckb
. (9)

The acceleration at the Planck mass at the Schwarzschild radius of the Planck mass is
g =

Gmp

r2s
=

Gmp

(2lp)2
, which leads to:

THw,p =
ℏg

2πckb
=

ℏGmp

r2s

2πckb
=

ℏc
8πlpkb

=
Tp

8π
. (10)

This is also identical to: ℏc3
8πGmpkb

=
Tp

8π . The same result can be obtained from the Unruh

[37] temperature when applied to a Planck mass particle:

TUnn,p =
ℏa

2πckb
=

ℏ c2

4lp

2πckb
=

ℏc
8πlpkb

=
Tp

8π
. (11)

Since the Stefan–Boltzmann law involves a fourth power, it has a stabilizing effect on the
exchange, and the flux emitted by Planck particles (Planck spheres) should be approximately
equal to the flux absorbed, especially close to the steady state, where we have:

4πl2pσT
4
Hwp = πl2pE = πl2p

4πR2
HσT 4

H

4πl2p
= πR2

HσT 4
H . (12)

This gives:

T 4
Hwp = T 4

H

R2
H

4l2p

THwp = TH

√
RH

2lp
(13)

and

TH = THwp

√
2lp
RH

TH =
Tp

8π

√
2lp
RH

≈ 2.72k. (14)

As there is considerable uncertainty in both the Hubble constant, considerable effort has
been put into measuring it as accurately as possible. See, for example, [38–45]. If we use
the recent Hubble constant value given by Kelly et al. [46] of 66.6+4.1

−3.3 (km/s)/Mpc (see
also [47, 48]), we get a predicted Hubble temperature using (Eq. 14) to be 2.72k with
a one standard deviation confidence interval of 2.65k to 2.8k. This is well in line with
the measured cosmic microwave background temperature. For example, Fixsen [49] used
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the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background
(CMB) temperature of 2.7260 ± 0.0013k. Similarly, in a recent 2023 study, Dahl et al. [50]
found a CMB temperature of 2.725007 ± 0.000024k (see also [51]).

However, the Hubble tension [45, 52], which implies an unexplained difference in the
Hubble constant when inferred from local measurements and when inferred from the cosmic
microwave background (CMB), suggests that there may be a larger uncertainty in the CMB
temperature than indicated in the studies just referenced. An important point could be that
the black body is at a distance from the CMB. Our new approach here could potentially open
up new avenues for investigating the cause of the Hubble tension, as our approach appears
to directly link the Hubble constant to the Planck temperature and the cosmic microwave
background. However, this is beyond the scope of this paper, but we mention it because we
believe it’s important to remain open to possible adjustments in the standard cosmological
model as we make progress in understanding the cosmos and its connections to the Planck
scale.

We have utilized the critical universe solution (The Friedmann equation when the cosmo-
logical constant is set equal to zero), so it represent the universe before taking into account
accelerating expansion. The Λ-CDM model features a positive cosmological constant due
to accelerating expansion that are assumed caused by dark energy, prompting us to inquire
about how our model appears to predict the temperature of the cosmic microwave background
so precisely. The reason for this may be that the temperature measured thus far for the cos-
mic microwave background (CMB) is more closely related to the early universe as discussed
by for example by [53–55]. Alternatively, it could indicate a shift toward a new cosmology.
However, further investigation by multiple researchers over time will be required to confirm
this.

Interestingly, we can apply a similar law between the Hawking temperature of the Hubble
sphere and the Hubble temperature, we get:

TH = THw

√
RH

2lp
≈ 2.72k. (15)

This means we also we have:

TH = THw

√
RH

2lp
=

Tp

8π

√
2lp
RH

≈ 2.72k. (16)

Tatum et al. [56] has independently suggested that the Hawking temperature can be used
to find the Hubble temperature by providing the formula:

TH =
ℏc3

kb8πG
√
Mcmp

. (17)

That is, they has altered the M in the denominator to
√

Mcmp in the Hawking temper-
ature formula. From a deeper analysis, we can see that his formula is identical to (Eq. 16),
as we have:

TH = THw

√
RH

2lp
= THw

√√√√ 2GMc
c2

2Gmp

c2

= THw

√
Mc

mp
=

ℏc3

kb8πGMc

√
Mc

mp
=

ℏc3

kb8πG
√

Mcmp

. (18)

However it is important to notice also that there was no independent way to find the
Planck mass independent off G when they published this in 2015, this means they not could
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have used or result (for predictions) we soon will show (Eq. 20) that likely can be seen as the
true depth of quantum cosmology in relation to the CMB temperature. It is first in recent
years been demonstrated how to find the Planck units totally independent on knowledge off
G and ℏ, see [28, 29].

This means that the formula initially somehow speculatively suggested by Tatum et al.
is fully consistent with our more formal analysis where the formula is derived based on the
Stefan-Boltzmann law. Many ideas in physics began somewhat ad hoc and speculatively
before being fully formalized mathematically and rooted in physical ‘laws’. For example,
FitzGerald [57] merely described length contraction in words and stated it as a possible
explanation for the null result in the Michelson and Morley experiment [58]. Later, Lorentz
[59] formalized length contraction in his transformations, and naturally, Einstein [60] further
naturally improved the theory of relativity.

Haug [28] has demonstrated that the Schwarzschild radius from a deeper perspective

is always identical to rs = 2lp
lp
λ̄
. Furthermore, since the Hubble constant always equals

H0 = λ̄cc
2l2p

, and the Hubble radius is equal to RH = c
H0

, we must also have RH = 2lp
lp
λ̄c

, where

λ̄c is the reduced Compton wavelength of the critical universe mass. This means we can also
express the Hubble temperature as:

TH =
Tp

8π

√
2lp
RH

=
Tp

8π

√
λ̄c

2lp
≈ 2.72k. (19)

Further since the Planck temperature is given as Tp = ℏ c
lp

1
kb

, we can also re-write this as:

TH =
Tp

8π

√
2lp
RH

=
1

kb
ℏ

c

8πlp

√
λ̄c

2lp
≈ 2.72k. (20)

Again, both the Planck length and the reduced Compton wavelength of the critical mass
of the universe can be found independently of G and c. Equation (20) can be seen as the
deepest quantum form describing the CMB temperature, it is only dependent on the Planck
constant, the Planck length and the reduced Compton wavelength, all related to the quantum
scale of the world.

That there is a link to the Planck scale even for cosmological observable phenomena also
seems to be in line with a recent but simple Planck quantization of Einstein’s field equation
(see [61]):

Rµv −
1

2
gµvR + Λgµv =

8πl2p
ℏc

Tµv. (21)

This rewritten field equation is simply the deeper level of Einstein’s field equation as it
gives all the same predictions as Einstein’s original field equation, but delving into it further
is outside the scope of this paper. This paper was simply to demonstrate that there is also
a connection between the Planck temperature and the temperature in the Hubble sphere,
which again corresponds very well to the measured CMB temperature.

3 Conclusion

We have demonstrated a close connection between the Planck temperature and the Hubble
sphere temperature. By combining the Planck temperature with the Stefan-Boltzmann law
and insights from the Hawking or Unruh temperature, we can predict the temperature within
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the Hubble sphere to fall between 2.65k and 2.8k with a 68.3% confidence interval. This
prediction is based on the Hubble constant, which is reported as 66.6+4.1

−3.3 (km/s)/Mpc in a
recent study by Kelly et al. [46].

Our finding, which suggests that the Hubble sphere temperature can be predicted from
the Planck temperature, aligns with recent advancements in quantum gravity and quantum
cosmology. These developments provide additional evidence that gravity , at a deeper level,
is intricately linked to the Planck scale as forsen by Eddington already in 1918.
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