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Yet another fast variant of Newton’s method

for nonconvex optimization
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31 VII 2023

Abstract

A class of second-order algorithms is proposed for minimizing smooth nonconvex functions

that alternates between regularized Newton and negative curvature steps in an iteration-

dependent subspace. In most cases, the Hessian matrix is regularized with the square root of

the current gradient and an additional term taking moderate negative curvature into account,

a negative curvature step being taken only exceptionally. Practical variants have been detailed

where the subspaces are chosen to be the full space, or Krylov subspaces. In the first case, the

proposed method only requires the solution of a single linear system at nearly all iterations.

We establish that at most O
(

| log ǫ| ǫ−3/2
)

evaluations of the problem’s objective function

and derivatives are needed for algorithms in the new class to obtain an ǫ-approximate first-

order minimizer, and at most O
(

| log ǫ| ǫ−3
)

to obtain a second-order one. Encouraging

initial numerical experiments with two full-space and two Krylov-subspaces variants are finally

presented.

Keywords: Newton’s method, nonconvex optimization, negative curvature, adaptive regularization

methods, evaluation complexity.

1 Introduction

It is not an understatement to say that Newton’s method is a central algorithm to solve nonlinear
minimization problems, mostly because the method exhibits a quadratic rate of convergence when
close to the solution and is affine-invariant. In the worst case, it can however be as slow as a
vanilla first-order method [10], [15, Section 3.2] even when globalized with a linesearch [43] or
a trust region [18]. This drawback has however been circumvented by the cubic regularization
algorithm [44] and its subsequent adaptive variants [11, 12], [15, Section 3.3]. For nonconvex
optimization, these latter variants exhibit a worst-case O

(
ǫ−3/2

)
complexity order to find an ǫ-

first-order minimizer compared with the O
(
ǫ−2
)
order of second-order trust-region methods [33],

[15, Section 3.2]. Adaptive cubic regularization was later extended to handle inexact derivatives
[49, 50, 2, 1], probabilistic models [1, 16], and even schemes in which the value of the objective
function is never computed [31].
However, as noted in [41], the improvement in complexity has been obtained by trading the
simple Newton step requiring only the solution of a single linear system for more complex or
slower procedures, such as secular iterations, possibly using Lanczos preprocessing [9, 11] (see also
[15, Chapters 8 to 10]) or (conjugate-)gradient descent [36, 6]. In the simpler context of convex
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†ANITI, Université de Toulouse, INP, IRIT, Toulouse, France. Email: sadok.jerad@toulouse-inp.fr
‡NAXYS, University of Namur, Namur, Belgium. Email: philippe.toint@unamur.be. Partly supported by

ANITI.

1

http://arxiv.org/abs/2302.10065v2


Gratton, Jerad, Toint: Adaptive Regularization Newton with Negative Curvature 2

problems, two recent papers [41, 21] independently proposed another globalization technique. At
an iterate x, the step s is computed as

s = −(∇2
xf(x) + λkIn)

−1∇1
xf(x) (1.1)

where λk ∼
√
‖∇1

xf(x)‖. This new approach exhibits the best complexity rate of second-order
methods for convex optimization and retains the local superlinear convergence of standard Newton
method, while showing remarkable numerical promise [41]. Devising an algorithm for nonconvex
functions that can use similar ideas whenever possible appears as a natural extension.

In the nonconvex case, the Hessian may be indefinite and it is well-known that negative cur-
vature can be exploited to ensure progress towards second-order points. Mixing gradient-related
(possibly Newton) and negative curvature directions has long been considered and can be traced
back to [40], which initiated a line of work using curvilinear search to find a step combining
both types of directions. The length of the step is typically tuned using an Armijo-like condition
[40, 24, 42]. Improvements were subsequently proposed by incorporating the curvilinear step in
a nonmonotone algorithm [23], allowing the resolution of large-scale problems [39] or by choosing
between the two steps based on model decrease [26]. Alternatively, negative curvature has also
been used to regularize the Hessian matrix, yielding the famous Goldfeld-Quandt-Trotter (GQT)
method [25]. Unfortunately, this method also involves more complex computation to find the step
and has the same global convergence rate as first-order algorithms [48]. The negative curvature
regularization was also the subject of the more recent paper [4], in which various Newton steps
are tried at each iteration in order to ensure the optimal ARC [11, 12] global rate of convergence.

One may then wonder if it is possible to devise an adaptive second-order method using a single
explictly regularized Newton step when possible and a negative curvature direction only when
necessary, with a near-optimal complexity rate. The objective of this paper is to show that it
is indeed possible (and efficient). To this aim, we propose a fast Newton’s method that exploits
negative curvature for nonconvex optimization problems and generalizes the method proposed
in [41, 21] to the nonconvex case. The new algorithm automatically adjusts the regularization
parameter (without knowledge of the Hessian’s Lipschitz constant). The method either uses an
appropriately regularized Newton step taking the smallest negative eigenvalue of the Hessian also
into account or simply follows the negative curvature otherwise. It first attempts a step along a
direction regularized by the square root of the gradient only, as in the convex setting [21, 41]. In
that sense, it is inspired by the “convex until proved guilty” strategy advocated by [7]. If this
attempt fails, it obtains negative curvature information of the Hessian, which is then used either
for regularization or to define a step along a negative-curvature direction. In what follows, all
these operations are carried out in a specific, iteration-dependent subspace, whose choice leads
to different algoritmic variants. We prove that these methods require at most O

(
| log ǫ| ǫ−3/2

)

iterations and evaluations of the problem data to obtain an ǫ-approximate first-order critical
point, which is very close to the optimal convergence rate of second-order methods for Lipschitz
Hessian functions [13]. We also introduce an further algorithmic variant which is guaranteed to
find a second-order critical point in at most O

(
| log ǫ| ǫ−3

)
iterations.

The paper is organized as follows. Section 2 describes the general algorithmic framework
and compares it with recent work on second-order methods. Section 3 states our assumptions
and derives a bound on its worst-case complexity for finding first-order critical points. Section 4
presents the second-order algorithmic variant and states its complexity, the corresponding analysis
being detailed in appendix. Section 5 then discusses some choices of the iteration-dependent
subspace, including Krylov spaces. Section 6 finally illustrates the numerical behavior of the
proposed methods. Conclusions are drawn in Section 7.
Notation The following notations will be used throughout the paper. Let q ≥ 1. The symbol ‖.‖
denotes the Euclidean norm for vectors in IRq and its associated subordinate norm for matrices.
λmin(M) and λmax(M) denote the minimum and maximum eigenvalues of a symmetric matrix M ,
while Iq is the identity matrix in IRq. For x ∈ IR, we define [x]+ = max(x, 0). For two vectors
x, y ∈ IRq, x⊺y denotes their inner product. The i-th column of Iq is denoted by ei.
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2 Adaptive Newton with Negative Curvature

We consider the problem of finding approximate first-order critical points of the smooth uncon-
strained nonconvex optimization problem

min
x∈IRn

f(x) (2.1)

and discuss our algorithm called AN2C (for Adaptive Newton with Negative Curvature) on this
page. The algorithm, whose purpose is to compute first-order critical points, is presented in the
framework of adaptive regularization methods [3, 11] [15, Section 3.3] and proceeds as follows,
using two subroutines RegStep and NewtonEigenStep.

Algorithm 2.1: Adaptive Newton with Negative Curvature (AN2C)

Step 0: Initialization An initial point x0 ∈ IRn, a regularization parameter σ0 > 0 and a
gradient accuracy threshold ǫ ∈ (0, 1] are given, as well as the parameters

σmin > 0, κC , κθ > 0, κa, κb ≥ 1, ς1 ∈ (0, 1), ς2 ∈ [0, 1
2
), ς3 ∈ [0, 1), θ ∈ (0, 1],

0 < γ1 < 1 < γ2 ≤ γ3 and 0 < η1 ≤ η2 < 1.

Set k = 0.

Step 1: Check termination Evaluate gk
def
= ∇1

xf(xk). Terminate if ‖gk‖ ≤ ǫ.

Step 2: Compute subspace derivatives Choose p ∈ {1, . . . , n} and form Vp ∈ IRn×p.

Compute ĝk
def
= V ⊺

p gk and Ĥk
def
= V ⊺

p HkVp where Hk
def
= ∇2

xf(xk).

Step 3 (Optionnal): Attempt a regularization step

sk = sdefk = RegStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κa, κb, ς1, ς2 ). (2.2)

If sdefk has been successfully defined, go to Step 5.

Step 4 : Newton Step Computation

sk = NewtonEigenStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κC , κb, κθ, ς3, θ ). (2.3)

Step 5: Acceptance ratio computation Evaluate f(xk + sk) and compute the accep-
tance ratio

ρk =
f(xk)− f(xk + sk)

−(g⊺ksk +
1
2s

⊺

kHksk)
. (2.4)

If ρk ≥ η1, set xk+1 = xk + sk else xk+1 = xk.

Step 6: Regularization parameter update Set

σk+1 ∈





[max (σmin, γ1σk) , σk] if ρk ≥ η2,

[σk, γ2σk] if ρk ∈ [η1, η2),

[γ2σk, γ3σk] if ρk < η1.

(2.5)

Increment k by one and go to Step 1.
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Algorithm 2.2: RegStep( ĝk , Ĥk, Vp, ‖gk‖, σk, κa, κb, ς1, ς2 )

Attempt to solve the linear system

(Ĥk +
√
κaσk‖gk‖Ip)ydefk = −ĝk. (2.6)

If a solution ydefk of this system can be obtained such that

(ydefk )⊺(Ĥk +
√
κaσk‖gk‖Ip)ydefk > 0, (2.7)

‖ydefk ‖ ≤ (1 + κθ)

ς1

√
‖gk‖
κaσk

, (2.8)

‖HkVpy
def
k + gk‖ ≤ κb‖Ĥky

def
k + ĝk‖, (2.9)

‖rdefk ‖ ≤ min
(
ς2
√

κaσk‖gk‖‖ydefk ‖, κθ‖ĝk‖
)

(2.10)

where rdefk = (Ĥk +
√
κaσk‖gk‖Ip)ydefk + ĝk, then return sdefk

def
= Vpy

def
k .

Algorithm 2.3: NewtonEigenStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κC , κb, κθ, ς3, θ )

Step 1: Test negative curvature If λmin(Ĥk) ≤ −κC

√
σk‖gk‖, go to Step 4.

Step 2: Newton Step Solve
(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk = −ĝk (2.11)

to ensure the residual condition

‖rneigk ‖ def
=

∥∥∥
(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk + ĝk

∥∥∥
≤ min

(
ς3
√
σk‖gk‖‖yneigk ‖, κθ‖ĝk‖

)
.

(2.12)

Step 3: Check global quality of the solution If

‖HkVpy
neig
k + gk‖ ≤ κb‖Ĥky

neig
k + ĝk‖ then set sk = sneigk

def
= Vpy

neig
k . (2.13)

Else, go back AN2C[Step 2].

Step 4: Eigenvector direction Compute uk such that

ĝ⊺kuk ≤ 0, ‖uk‖ = 1 and u⊺

kĤkuk ≤ θλmin(Ĥk) (2.14)

and set

sk = scurvk
def
=

θκC

√
σk‖gk‖
σk

Vpuk. (2.15)
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The selection of the iteration-dependent subspace defined as the range of Vp in Step 2 is of
course crucial for the algorithm. At this stage of the algorithm description, cycling may possibly
occur between Step 2 and (2.13) in Step 4, should the choice of the subspace be consistently
inadequate. We will however discuss some practical choices in Section 5, for which this situation
cannot happen. For our subsequent analysis, we therefore assume the following.
AS.0 For each iteration k, condition (2.13) is satisfied after finitely many choices of Vp. Moreover,
there exists a constant Vmax ≥ 1 such that

‖Vp‖ ≤ Vmax for all p ∈ {1, . . . , n}. (2.16)

After selecting the subspace(1) and projecting the current gradient and Hessian, we first attempt a
step that avoids computing negative curvature information. Indeed, the sdefk notation, where def
stands for “definite”, in (2.6) makes the connection with the two conditions (2.6) and (2.7). The
condition (2.7) is significantly less restrictive than checking the positive-definess of the regularized
matrix in (2.6). This is at variance with the work of [5] where a factorization is required at
each step, and coherent with the ’capped-CG’ subroutine proposed at [51]. Should the problem
be (locally) convex, (2.7) would automatically hold (see [41, 21]). The test (2.8) is required as
to avoid steps whose magnitude is too large compared to the gradient (the motivation for its
particular form of the test will become clear in Section 3).

When computing a vector sdefk satisfying (2.7) to (2.10) is not possible, we (approximately)

solve a linear system in IRp (2.11) whose definition involves [−λmin(Ĥk)]+. Even if an exact
solution can be obtained at a marginal cost for small p, we still allow an approximate solution
satisfying (2.12). We note that [−λmin(Ĥk)]+ could have been replaced in (2.11) by κC

√
σk‖gk‖

and the remainder of the complexity analysis would remain valid. An interesting connection
can also be established between the regularization in (2.11) for Ĥk = Hk and the GQT method
[25], as the regularization parameter (

√
σk‖gk‖ + [−λmin(Hk)]+) is very similar in spirit to that

used in this method. In the closely related algorithm of [4], a term µ is added to [−λmin(Hk)]+
and multiple µ’s are tested as to ensure ’cubic’ descent. In our case,

√
σk‖gk‖ directly yields a

regularization of the desired order. Also observe that, in most cases, the “approximate minimum
curvature direction” uk is already available when computing λmin(Ĥk). It can be also retrieved
via a Lanczos procedure as proposed in [47, Lemma 9].

We now provide some comments that apply to the definition of both sdefk and sneigk . Specifi-
cally, focusing on the latter, condition (2.13) serves to ensure the appropriateness of the subspace
spanned by Vp. This condition guarantees that the projected residual (2.12) is sufficiently small
compared to both the projected and unprojected gradients. In a more standard setting, where
Vp = In, this condition simplifies to

‖(Hk + (
√
σk‖gk‖+ [−λmin(Hk)]+)In)sk + gk‖ ≤ min(ς3

√
σk‖gk‖‖sk‖, κθ‖gk‖), (2.17)

where the κθ‖gk‖ term is standard when devising truncated CG algorithms. The other term
ensures the typical condition required for the approximate minimization of the cubic model mk,
namely that

‖∇1
smk(sk)‖ ≤ O(‖sk‖2). (2.18)

This condition is typically used to derive the optimal complexity rate O
(
ǫ−3/2

)
, see [11, 3] and

the references therein.
Finally we note that the condition of Step 1 in the NewtonEigenStep algorithm, which forces the

negative curvature step (2.15), can be interpreted as the comparison of the minimal curvature
of the quadratic (λmin(V

⊺

p HkVp)) with the quantity σk

√
‖gk‖/σk, which itself can be viewed as

the curvature of the regularization term 1
6
σk‖s‖3 for some s whose length

√
‖gk‖/σk is of the

order of a standard regularized step (see [15, Lemma 3.3], for instance). The test thus ensures a
“regularization-like” step when the quadratic’s negative curvature is strong enough to dominate
that of the regularization for too small steps (see (2.29) below).

(1)Since we do not specify at this point how to make this selection, AN2C may be viewed as a class of algorithms
depending on the choice of Vp.
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Once the step has been computed, the mechanisms for accepting/rejecting the new iterate
(Step 5) and updating the regularization parameter (Step 6) are typical of adaptive regularization
algorithms (see [3, 11] or [15, Section 3.3.1], for instance).

Before delving into the complexity analysis of AN2C, we further explore its fundamental prop-
erties and discuss its relationships with closely related nonconvex optimization algorithms. The
method presented in [19] differs from AN2C in that it employs a gradient step followed by a negative
curvature step. On the other hand, [38] adopts a condition-based approach to choose between gra-
dient descent and negative curvature directions, relying on known smoothness parameters, while
our methods remain fully adaptive. Another related approach is presented in [47], which, un-
like AN2C, examines various conditions to select a specific direction (gradient, Newton, negative
curvature) and performs a linesearch. Furthermore, [20] proposes a trust-region algorithm (in
contrast to adaptive regularization) that tackles the trust-region subproblem using a combination
of conjugate gradients and negative curvature. Notably, their condition on the residuals of this
subproblem [20, Inequality (3.2)] can be related to (2.17).

Following well-established practice, we now define

S def
= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1},

the set of indexes of “successful iterations”, and

Sk
def
= S ∩ {0, . . . , k},

the set of indexes of successful iterations up to iteration k. We further partition Sk in three subsets
depending on the nature of the step taken, so that

Sneig
k

def
= Sk ∩ {sk = sneigk }, Scurv

k
def
= Sk ∩ {sk = scurvk }, Sdef

k
def
= Sk ∩ {sk = sdefk }.

We also recall a well-known result bounding the total number of iterations of adaptive regulariza-
tion methods in terms of the number of successful ones.

Lemma 2.1 [3, Lemma 2.4], [15, Lemma 2.4.1] Suppose that the AN2C algorithm is used and
that σk ≤ σmax for some σmax > 0. Then

k ≤ |Sk|
(
1 +

| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (2.19)

Proof. Since Steps 5 and 6 of the AN2C algorithm are identical to Steps 3 and 4 of the
algorithm presented on page 43 of [15] and since Lemma 2.4.1 in this reference only depends
on these steps, the conclusion of the lemma remain valid for AN2C algorithm. ✷

This result implies that the overall complexity of the algorithm can be estimated once bounds
on σk and |Sk| are known, as we will show in the next section.

We now state a simple relation between ‖sneigk ‖, σk and ‖gk‖ inspired by [41].
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Lemma 2.2 For all iterations k where sneigk is computed, we have that

‖sneigk ‖ ≤ Vmax‖yneigk ‖ (2.20)

ĝk = −
(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk + rneigk (2.21)

and

‖sneigk ‖ ≤ (1 + κθ)V
3
2
max

√
‖gk‖
σk

. (2.22)

Similarly, when sdefk is computed,

ĝk = −
(
Ĥk +

√
κaσk‖gk‖Ip

)
ydefk + rdefk , (2.23)

and
‖sdefk ‖ ≤ Vmax‖ydefk ‖. (2.24)

At last, when scurvk is computed,

‖scurvk ‖ ≤ Vmax
θκC

√
σk‖gk‖
σk

. (2.25)

Proof. First note from the second part of (2.13) and (2.16),

‖sneigk ‖ = ‖Vpy
neig
k ‖ ≤ Vmax‖yneigk ‖

yielding (2.20). A similar proof can be followed to derive (2.24).

Equation (2.21) results from (2.11), (2.13) and the definition of the residual (2.12). Let us

rewrite now (2.21) in function of ĝk and Ĥk,

ĝk = −
(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk + rneigk .

From (2.21), the facts that Ĥk + (
√

σk‖gk‖ + [−λmin(Ĥk)]+)Ip is a positive definite matrix
with

λmin(Ĥk + (
√

σk‖gk‖+ [−λmin(Ĥk)]+)Ip) ≥
√
σk‖gk‖

and that ‖rneigk ‖ ≤ κθ‖ĝk‖ because of (2.12). We thus obtain that

‖yneigk ‖ ≤ (1 + κθ)

√
‖ĝk‖
σk

≤ (1 + κθ)

√
Vmax‖gk‖

σk
, (2.26)

where the last inequality follows from (2.16). This last inequality and (2.20) give (2.22).

If k ∈ Sdef
k , (2.23) is obtained from (2.6) and the definition of the residual rdefk .

Else if k ∈ Scurv
k , (2.16), the fact that ‖uk‖ = 1 and (2.15) give (2.25). ✷

The next lemma gives a lower bound on the decrease of the local quadratic approximation. In
standard adaptive regularization algorithms, this decrease automatically results from the mini-
mization of the model (See [3] for instance). In our case, we need to use the properties of sdefk ,

scurvk and sneigk to obtain the desired result.
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Lemma 2.3 Let k be a successful an iteration of AN2C. If k ∈ Sdef
k , we have that

−
(
g⊺ksk +

1

2
s⊺kHksk

)
≥ 1− 2ς2

2

√
κaσk‖gk‖‖ydefk ‖2 ≥ 1− 2ς2

2

√
κaσk‖gk‖

‖sk‖2
V 2
max

. (2.27)

If k ∈ Sneig
k , then

−
(
g⊺ksk +

1

2
s⊺kHksk

)
≥ (1− ς3)

√
σk‖gk‖‖yneigk ‖2 ≥ (1− ς3)

√
σk‖gk‖

‖sk‖2
V 2
max

. (2.28)

Else, if k ∈ Scurv
k ,

−
(
g⊺ksk +

1

2
s⊺kHksk

)
≥ 1

2
θ3κ3

C

‖gk‖ 3
2

√
σk

≥ 1

2
σk

‖sk‖3
V 3
max

. (2.29)

Proof. Suppose first that k ∈ Sdef
k . We then obtain from (2.2), (2.10) and (2.8) that

g⊺ks
def
k +

1

2
(sdefk )⊺Hks

def
k = (V ⊺

p gk)
⊺ydefk +

1

2
(ydefk )⊺V ⊺

p HkVpy
def
k

= (rdefk )⊺ydefk − (ydefk )⊺(Ĥk +
√
κaσk‖gk‖Ip)ydefk

+
1

2
(ydefk )⊺Ĥky

def
k

= −
√
κaσk‖gk‖‖ydefk ‖2 + (rdefk )⊺ydefk − 1

2
(ydefk )⊺Ĥky

def
k

≤ −
√
κaσk‖gk‖‖ydefk ‖2 + ς2

√
κaσk‖gk‖‖ydefk ‖2

+
1

2

√
κaσk‖gk‖‖ydefk ‖2.

Hence (2.27) follows froms (2.24).

Suppose now that k ∈ Sneig
k . By using (2.21) and the fact that Ĥk + [−λmin(Ĥk)]+Ip � 0,

g⊺ks
neig
k +

1

2
(sneigk )⊺Hks

neig
k = (V ⊺

p gk)
⊺yneigk +

1

2
(yneigk )⊺V ⊺

p HkVpy
neig
k

= (rneigk )⊺yneigk − (yneigk )⊺(Ĥk + [−λmin(Ĥk)]+Ip)y
neig
k

+
1

2
(yneigk )⊺(Ĥk + [−λmin(Ĥk)]+Ip)y

neig
k

− 1

2
[−λmin(Ĥk)]+‖yneigk ‖2 −

√
σk‖gk‖‖yneigk ‖2

= (rneigk )⊺yneigk − 1

2
(yneigk )⊺(Ĥk + [−λmin(Ĥk)]+Ip)y

neig
k

− 1

2
[−λmin(Ĥk)]+‖yneigk ‖2 −

√
σk‖gk‖‖yneigk ‖2

≤ ς3
√
σk‖gk‖‖yneigk ‖2 − 1

2
[−λmin(Ĥk)]+‖yneigk ‖2 −

√
σk‖gk‖‖yneigk ‖2,

where we have used (2.12) to obtain the last inequality. Rearranging, ignoring the 1
2 [−λmin(Ĥk)]+‖yneigk ‖2

term and using (2.20) yield (2.28).

Suppose finally that k ∈ Scurv
k . As (2.14) and (2.15) hold and that Step 4 of NewtonEigenStep is
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taken when λmin(Ĥk) ≤ −κC

√
σk‖gk‖, we deduce that

g⊺ks
curv
k +

1

2
(scurvk )⊺Hks

curv
k = g⊺kVpuk +

1

2
(scurvk )⊺Hks

curv
k

≤ 1

2

θ2κ2
C‖gk‖
σk

u⊺

kĤkuk ≤ 1

2

θ3κ2
C‖gk‖
σk

λmin(Ĥk)

≤ −1

2
θ3κ3

C

‖gk‖ 3
2

√
σk

, (2.30)

yielding the first inequality in (2.29). For the second inequality, remark that from (2.25), we
derive that

θ3κ3
C

‖gk‖ 3
2

√
σk

= σkθ
3κ3

C

‖gk‖ 3
2

σ
3
2

k

≥ σk
‖sk‖3
V 3
max

,

injecting the last bound in (2.30) gives the second inequality in (2.29). ✷

3 Complexity analysis for the AN2C algorithm

We now turn to analyzing the worst-case complexity of the AN2C algorithm. Our analysis is
conducted under AS.0 and the following assumptions.
AS.1 The function f is two times continuously differentiable in IRn.
AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.
AS.3 The Hessian of f is globally Lipschitz continuous, that is, there exists a non-negative constant
LH such that

‖∇2
xf(x)−∇2

xf(y)‖ ≤ LH‖x− y‖ for all x, y ∈ IRn. (3.1)

AS.4 There exists a constant κB > 0 such that

max(0,−λmin(∇2
xf(x))) ≤ κB for all x ∈ {y ∈ IRn | f(y) ≤ f(x0)}.

AS.1-AS.3 are standard assumptions when analyzing algorithms that utilize second-order infor-
mation [12, 3]. AS.4 is weaker than assuming bounded Hessians, a condition often used when the-
oretically analyzing second-order methods that combines negative curvature and gradient based
directions [47, 19, 38]. The left-hand side of the inequality is sometimes called the “convex devi-
ation” or “modulus of nonconvexity” [37]. As it turns out, AS.4 is only needed for x being any
iterate xk produced by the algorithm and these iterates all belong to the level associated with the
starting point x0 because the acceptance condition in Step 5 ensures that the sequence {f(xk)} is
non-increasing. If this level set is bounded or if the sequence {xk} remains bounded for any other
reason, we immediately obtain that

max(0,−λmin(Hk)) ≤ κB for all k ≥ 0 (3.2)

for some κB ≥ 0, and both AS.3 and AS.4 automatically hold.
Having established a lower bound on the decrease ratio in Lemma 2.3, we next proceed to

derive an upper bound on the regularization parameter. This is a crucial step when analyzing
adaptive regularization methods.
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Lemma 3.1 Suppose that AS.1 and AS.3 hold. Then, for all k ≥ 0,

σk ≤ σmax
def
= γ3 max

(
σ0, ςmax

LH

6(1− η2)

)
, (3.3)

where

ςmax
def
= max

(
(1 + κθ)V

7
2

max

(1 − ς3)
,
2(1 + κθ)V

3
max

κaς1(1− 2ς2)
, 2V 3

max

)
. (3.4)

Proof. Let us compute the ratio ρk for k ∈ Sneig
k . By using AS.3 and the standard error

bound for Lispschitz approximation of the function (see [14, Lemma 2.1]), that ς3 < 1, (2.28)
and (2.22), we obtain that

1− ρk =
f(xk + sk)− f(xk)− g⊺ksk − 1

2s
⊺

kHksk

−(g⊺ksk + 1
2s

⊺

kHksk)

≤ LHV 2
max‖sneigk ‖3

6(1− ς3)
√

σk‖gk‖‖sneigk ‖2

≤ LHV 2
max‖sneigk ‖

6(1− ς3)
√

σk‖gk‖

≤ LH(1 + κθ)V
7
2

max

6(1− ς3)σk
. (3.5)

Hence, if σk ≥ LH(1+κθ)V
7
2

max

6(1−ς3)(1−η2)
, then ρk ≥ η2, which implies that iteration k is successful and

σk+1 ≤ σk because of (2.5). The mechanism of (2.5) in the algorithm then ensures that

σk ≤ γ3 max

(
σ0,

LH(1 + κθ)V
7
2
max

6(1− ς3)(1 − η2)

)
. (3.6)

Similarly, if k ∈ Sdef
k , we use AS.3, the Lipschitz approximation error bound, the fact that

ς2 < 1
2 , (2.27), (2.8) and (2.24) to deduce that

1− ρk ≤ LH‖sdefk ‖V 2
max

3(1− 2ς2)
√
κaσk‖gk‖

≤ LH(1 + κθ)V
3
max

3κaς1(1 − 2ς2)σk
.

Using the same argument as above, we now obtain that

σk ≤ γ3 max

(
σ0,

LH(1 + κθ)V
3
max

3κaς1(1− 2ς2)(1− η2)

)
. (3.7)

Consider finally the case where k ∈ Scurv
k . Again using AS.3, the Lipschitz approximation

error bound and (2.29) lower-bound, we derive that

1− ρk =
f(xk + sk)− f(xk)− g⊺ksk − 1

2s
⊺

kHksk

−g⊺ksk − 1
2s

⊺

kHksk
≤ LH‖scurvk ‖3V 3

max

6 1
2σk‖scurvk ‖3 =

LHV 3
max

3σk
,

so that

σk ≤ γ3 max

(
σ0,

LHV 3
max

3(1− η2)

)
. (3.8)

Combining (3.6), (3.7) and (3.8) gives (3.3) with ςmax defined by (3.4). ✷
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We now prove a lower bound on the decrease at a successful iteration k using negative curvature.
We will also bound the change in the norm ‖gk+1‖ in term of ‖gk‖, which will be useful later to
bound the cardinal of a subset of Sneig

k ∪ Scurv
k .

Lemma 3.2 Suppose that AS.1, AS.3 and AS.4 hold and that k ∈ Scurv
k before termination.

Then

f(xk)− f(xk+1) ≥
η1θ

3κ3
C

2
√
σmax

ǫ
3
2 , (3.9)

and

‖gk+1‖ ≤
(
LHV 2

max

2σk
κ2
Cθ

2 +
θ2κBκC√

ǫσk
+ 1

)
‖gk‖. (3.10)

Proof. Let k ∈ Scurv
k . From (2.4) and (2.29), we obtain that

f(xk)− f(xk+1) ≥ η1

(
−g⊺ksk −

1

2
s⊺kHksk

)
≥ η1θ

3κ3
C

2
√
σk

‖gk‖
3
2 .

Since ‖gk‖ ≥ ǫ before termination and that σk ≤ σmax by Lemma 3.1, we obtain (3.9).

Let us now prove (3.10). By using the Lipschitz error bound for the gradient ([14, Lemma 2.1]),
the triangular inequality, the fact that k ∈ Scurv

k , (2.14), (2.15), and (2.25), we obtain that

‖gk+1‖ ≤ ‖gk+1 − gk −Hksk‖+ ‖Hksk + gk‖

≤ LH

2
‖sk‖2 + ‖gk‖+ ‖Hksk‖

=
LH

2
‖scurvk ‖2 + ‖gk‖+ ‖Hks

curv
k ‖

≤ LHV 2
max

2σk
κ2
Cθ

2‖gk‖+ ‖gk‖+ ‖Hks
curv
k ‖. (3.11)

Now, using (2.14), (2.15) again,

‖Hks
curv
k ‖ = θκC

√
‖gk‖
σk

‖HkVpuk‖ = θκC

√
‖gk‖
σk

√
u⊺

kĤ
2
kuk

≤ θ2κC

√
‖gk‖
σk

|λmin(Ĥk)| ≤ θ2κC

√
‖gk‖
σk

|λmin(Hk)|.

Hence (3.11) together with AS.4 and the fact ‖gk‖ ≥ ǫ before termination, give that

‖gk+1‖ ≤ LHV 2
max

2σk
κ2
Cθ

2‖gk‖+ ‖gk‖+ θ2κBκC

√
‖gk‖
σk

=

(
LHV 2

max

2σk
κ2
Cθ

2 +
θ2κBκC√
σk‖gk‖

+ 1

)
‖gk‖

≤
(
LHV 2

max

2σk
κ2
Cθ

2 +
θ2κBκC√

σkǫ
+ 1

)
‖gk‖,

yielding (3.10). ✷

This lemma is the only result requiring AS.4 or its weaker formulation (3.2). Note that this
assumption is only required along directions of negative curvature, which we expect to occur
rarely in practice for suitably large choices of κC .
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After proving a lower bound on the quadratic’s decrease when k ∈ Sdef
k , we now exhibit a

relationship between the decrease on the objective function decrease and gradient both at iteration
k and k + 1 for k ∈ Sneig

k ∪ Sdef
k . This is also where the two global conditions (2.13) and (2.9) on

the subspace Vp will be useful. Moreover, we also prove an inequality between the norms of the
gradient at two successive iterations, similar to (3.10).

Lemma 3.3 Suppose that AS.1 and AS.3 hold and that k ∈ Sneig
k ∪Sdef

k before termination.
Then

‖gk+1‖ ≤
(
LHV 3

max(1 + κθ)

2ς21σk
+

2κb

√
Vmax

ς1
+ κbκC

√
Vmax

)
(1 + κθ)‖gk‖ (3.12)

and

f(xk)− f(xk+1) ≥ η1 ςmin

√
σk‖gk‖

(
−(2 + κC)κb

√
κaσk‖gk‖+

√
(κb(2 + κC))2κaσk‖gk‖+ 2V 2

maxLH‖gk+1‖
LHV 2

max

)2

(3.13)

where

ςmin
def
= min

(
1− 2ς2

2
, 1− ς3

)
. (3.14)

Proof. Consider first the case where k ∈ Sneig
k . By using the Lipschitz error bound for the

gradient ([14, Lemma 2.1]), that (2.13) holds, rneigk expression (2.21), the condition on ‖rneigk ‖
(2.12) and the fact that [−λmin(Ĥk)]+ ≤ κC

√
σk‖gk‖ for k ∈ Sneig

k , we deduce that

‖gk+1‖ ≤ ‖gk+1 −Hks
neig
k − gk‖+ ‖Hks

neig
k + gk‖

≤ LH

2
‖sneigk ‖2 + κb‖Ĥky

neig
k + ĝk‖

≤ LH

2
‖sneigk ‖2 + κb(

√
σk‖gk‖+ [−λmin(Ĥk)]+)‖yneigk ‖+ κb‖rneigk ‖

≤ LH

2
‖sneigk ‖2 + κb(1 + κC)

√
σk‖gk‖‖yneigk ‖+ κbς3

√
σk‖gk‖‖yneigk ‖. (3.15)

Using now (2.26) and (2.22) in the last inequality

‖gk+1‖ ≤
(
LHV 3

max

2σk
(1 + κθ) + κb(1 + κC)

√
Vmax + ς3κb

√
Vmax

)
(1 + κθ)‖gk‖. (3.16)

Consider now k ∈ Sdef
k . By arguments similar to those used for (3.15), this time with (2.23),

(2.9) and (2.10), we obtain that

‖gk+1‖ ≤ ‖gk+1 −Hks
def
k − gk‖+ ‖Hks

def
k + gk‖

≤ ‖gk+1 −Hks
def
k − gk‖+ κb‖Ĥky

def
k + ĝk‖

≤ LH

2
‖sdefk ‖2 + κb

√
κaσk‖gk‖‖ydefk ‖+ κb‖rdefk ‖

≤ LH

2
‖sdefk ‖2 + κb

√
κaσk‖gk‖‖ydefk ‖+ κbς2

√
κaσk‖gk‖‖ydefk ‖. (3.17)
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Bounding ‖sdefk ‖ with (2.24) and utilizing (2.8) yields that

‖gk+1‖ ≤
(
LH(1 + κθ)V

2
max

2ς21κaσk
+

κb(1 + ς2)

ς1

)
(1 + κθ) ‖gk‖, (3.18)

so that taking the larger bound for both (3.16) and (3.18) and using the bounds ς1 < 1, ς2 < 1
2 ,

ς3 < 1, Vmax ≥ 1 and κb ≥ 1 gives (3.12).

Finally, from (3.17), (3.15), (2.20), (2.24), the bounds max(ς3, ς2) < 1 and κa ≥ 1, we obtain

that, for k ∈ Sdef
k ∪ Sn

k ,

LHV 2
max

2
‖yk‖2 + κb(2 + κC)

√
κaσk‖gk‖‖yk‖ − ‖gk+1‖ ≥ 0.

Hence ‖yk‖ is larger than the positive root of this quadratic and therefore

‖yk‖ ≥ −κb(2 + κC)
√
κaσk‖gk‖+

√
κ2
b(2 + κC)2κaσk‖gk‖+ 2LHV 2

max‖gk+1‖
LHV 2

max

> 0.

We then deduce (3.13) from this inequality, (2.4), the lower bounds on the quadratic decrease

for k ∈ Sneig
k or k ∈ Sdef

k ((2.28) and (2.27) respectively) and the definition of ςmin in (3.14).
✷

The bound (3.13) is not sufficient for deriving the required O
(
ǫ−3/2

)
optimal complexity rate

because the decrease depends on both ‖gk+1‖ and ‖gk‖. Indeed, when ‖gk+1‖ ≪ ‖gk‖, the right-
hand side of (3.13) tends to zero. To circumvent this difficulty, the next lemma borrows some

elements of [41, Theorem 1] and partitions Sneig
k ∪ Sdef

k in two further subsets. The minimum
decrease on the objective function is of the required magnitude in the first one while no mean-
ingful information can be derived on the decrease on the function value in the second, albeit the
magnitude of the gradient at the next iteration is halved. The bounds (3.12) and (3.10) are then
used to bound the cardinal of the latter set.
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Lemma 3.4 Suppose that AS.1, AS.3 and AS.4 hold and that Sneig
k ∪Sdef

k is partitioned as

Sneig
k ∪ Sdef

k = Sdecr
k ∪ Sdivgrad

k (3.19)

where
Sdecr
k

def
= {k ∈ Sneig

k ∪ Sdef
k , σk‖gk‖ ≤ κm2LH‖gk+1‖}, (3.20)

Sdivgrad
k

def
= {k ∈ Sneig

k ∪ Sdef
k , σk‖gk‖ > κm2LH‖gk+1‖} (3.21)

with

κm
def
= γ3 max

(
σ0

LH
,

ςmax

6(1− η2)

)
. (3.22)

Then, for all k ∈ Sdecr
k ,

f(xk)− f(xk+1) ≥
η1 ςmin(σk‖gk‖) 3

2

(
κmLH

(
κb(2 + κC)

√
κa +

√
(κb(2 + κC))2κa +

V 2
max

κm

))2 . (3.23)

Moreover,

|Sdivgrad
k | ≤ κn|Sdecr

k |+
(

1

2 log(2)
| log(ǫ)|+ κcurv

)
|Scurv

k |+ | log(ǫ)|+ log(‖g0‖)
log(2)

+1, (3.24)

where

κn
def
=

1

log(2)
log

(
LH(1 + κθ)V

3
max

2ς21σmin
+

2
√
Vmaxκb

ς1
+
√
VmaxκCκb

)
+

log (1 + κθ)

log(2)
, (3.25)

κcurv
def
=

1

log(2)
log

(
LHV 2

max

2σmin
κ2
Cθ

2 +
θ2κBκC√

σmin
+ 1

)
. (3.26)

Proof. Let k ∈ Sdecr
k . Injecting the definition of Sdecr

k (3.20) in (3.13), we obtain that

f(xk)− f(xk+1) ≥ η1ςmin(σk‖gk‖)
3
2




−(2 + κC)κb
√
κa +

√
(2 + κC)2κ2

bκa +
V 2
max

κm

LHV 2
max




2

.

Taking the conjugate both at the denominator and numerator yields (3.23).

Let k ∈ Sdivgrad
k . Using the definition of κm in (3.22) and that of Sdivgrad

k in (3.21) gives that

‖gk+1‖ <
σk

κmLH

‖gk‖
2

≤ σk

γ3 max
(

σ0

LH
, ςmax

6(1−η2)

)
LH

‖gk‖
2

≤ ‖gk‖
2

, (3.27)

where the last inequality results from the upper bound on σk in (3.3).

Successively using the fact that Sk = Sdecr
k ∪Sdivgrad

k ∪Scurv
k , the relationship between ‖gk+1‖

and ‖gk‖ in the three cases ((3.27), (3.12) and (3.10)), the fact that σk ≥ σmin in (3.12) and
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(3.10), we then deduce that

ǫ

‖g0‖
≤ ‖gk‖

‖g0‖
=

∏

i∈Sk\{k}

‖gi+1‖
‖gi‖

=
∏

i∈Sdecr
k

\{k}

‖gi+1‖
‖gi‖

∏

i∈Sdivgrad

k
\{k}

‖gi+1‖
‖gi‖

∏

i∈Scurv
k

\{k}

‖gi+1‖
‖gi‖

≤
[(

LH(1 + κθ)V
3
max

2ς21σmin
+

2κb

√
Vmax

ς1
+ κCκb

√
Vmax

)
(1 + κθ)

]|Sdecr
k \{k}|

×

1

2|S
divgrad

k
\{k}|

×
[
LHV 2

max

2σmin
κ2
Cθ

2 +
θ2κBκC√
ǫσmin

+ 1

]|Scurv
k \{k}|

.

Now ς1 ≤ 1 and thus both terms in brackets are larger than one. Moreover, obviously, |Sdecr
k \

{k}| ≤ |Sdecr
k | and |Scurv

k \ {k}| ≤ |Scurv
k |, so that

2|S
divgrad

k
\{k}|ǫ

‖g0‖
≤
[(

LH(1 + κθ)V
3
max

2ς21σmin
+

2κb

√
Vmax

ς1
+
√
VmaxκCκb

)
(1 + κθ)

]|Sdecr
k |

×
[
LHV 2

max

2σmin
κ2
Cθ

2 +
θ2κBκC√
ǫσmin

+ 1

]|Scurv
k |

.

Taking logarithms gives that

|Sdivgrad
k \ {k}| log(2) ≤ log

[(
LH(1 + κθ)V

3
max

2ς21σmin
+

κb

√
Vmax

ς1
+ κCκb

√
Vmax

)
(1 + κθ)

]
|Sdecr

k |

+ log(‖g0‖) + | log(ǫ)|+ log

[
LHV 2

max

2σmin
κ2
Cθ

2 +
θ2κBκC√
ǫσmin

+ 1

]
|Scurv

k |.

We then obtain (3.24) with the values of κn and κcurv stated in (3.25) and (3.26) by dividing

this last inequality by log(2) and using the facts that |Sdivgrad
k \ {k}| ≥ |Sdivgrad

k | − 1 and
1√
ǫ
≥ 1. ✷

Combining the previous lemmas, we are now able to state the complexity of the AN2C algorithm.
Our theorem statement relies on the observation that the objective function is evaluated once per
iteration, and its derivatives once per successful iteration.
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Theorem 3.5 Suppose that AS.1- AS.4 hold. Then the AN2C algorithm requires at most

|Sk| ≤
(
κ⋆ +

κnegdecr

2 log(2)
| log(ǫ)|

)
ǫ−

3
2 +

| log(ǫ)|+ log(‖g0‖)
log(2)

+ 1

successful iterations and evaluations of the gradient and the Hessian and at most

(
1 +

| log γ1|
log γ2

)[(
κ⋆ +

κnegdecr

2 log(2)
| log(ǫ)|

)
ǫ−

3
2 +

| log(ǫ)|+ log(‖g0‖)
log(2)

+ 1

]

+
1

log γ3
log

(
σmax

σ0

)

evaluations of f to produce a vector xǫ such that ‖g(xǫ)‖ ≤ ǫ, where κ⋆ is defined by

κ⋆
def
= κdecr (1 + κn) + κnegdecr(1 + κcurv), (3.28)

with

κdecr

def
=

(
LHκm(

√
κaκb(2 + κC) +

√
κa(κb(2 + κC))2 +

V 2
max

κm
)

)2

η1ςminσ
3
2

min

(3.29)

and

κnegdecr

def
=

2(f(x0)− flow)
√
σmax

η1κ3
Cθ

3
, (3.30)

and where κn and κcurv are given by (3.25) and (3.26).

Proof. First note that we only need to prove an upper bound on |Sdecr
k | and |Scurv

k | to
derive a bound on |Sk| since

|Sk| = |Sdecr
k |+ |Scurv

k |+ |Sdivgrad
k | (3.31)

and a bound on |Sdivgrad
k | is given by (3.24). We start by proving an upper bound on |Scurv

k |.
Using AS.2, the lower bound on the decrease of the function values (3.9) and that σk ≤ σmax

as stated in Lemma 3.1, we derive that, for k ∈ Scurv
k ,

f(x0)− flow ≥
∑

i∈Sk

f(xi)− f(xi+1) ≥
∑

i∈Scurv
k

f(xi)− f(xi+1) ≥ |Scurv
k | η1κ

3
Cθ

3

2
√
σmax

ǫ
3
2

and hence that

|Scurv
k | ≤ 2(f(x0)− flow)

√
σmax

η1κ3
Cθ

3
ǫ−

3
2 = κnegdecr ǫ

− 3
2 . (3.32)

Similarly for k ∈ Sdecr
k , using AS.2, (3.23), the fact that σk ≥ σmin and ‖gk‖ ≥ ǫ before

termination yields that

f(x0)−flow ≥
∑

i∈Sdecr
k

f(xi)−f(xi+1) ≥
|Sdecr

k |η1 ςmin(σminǫ)
3
2

(
LHκm(

√
κa(2 + κC)κb +

√
κa(κb(2 + κC))2 +

V 2
max

κm
)

)2

where κm is defined in (3.22). Rearranging the last inequality yields that

|Sdecr
k | ≤

(
LHκm(

√
κaκb(2 + κC) +

√
κa(κb(2 + κC))2 +

V 2
max

κm
)

)2

η1ςminσ
3
2

min

ǫ−
3
2 = κdecr ǫ

− 3
2 . (3.33)
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Combining now (3.32) and (3.33) with the upper-bound (3.24) on |Sdivgrad
k |, we deduce that

|Sdivgrad
k | ≤ κnκdecrǫ

− 3
2 +

( | log(ǫ)|
2 log(2)

+ κcurv

)
κnegdecrǫ

− 3
2 +

| log(ǫ)|+ log(‖g0‖)
log(2)

+ 1. (3.34)

By summing equations (3.32), (3.33), and (3.34) to bound |Sk| in (3.32), while also isolating
the terms based on their different orders with respect to ǫ, we obtain that

|Sk| ≤
(
κ⋆ +

κnegdecr

2 log(2)
| log(ǫ)|

)
ǫ−

3
2 +

| log(ǫ)|+ log(‖g0‖)
log(2)

+ 1, (3.35)

where κ⋆ is defined in (3.28), thus proving the first part of the theorem. The second part is
then deduced from (3.35) combined with Lemma 2.1. ✷

Regrouping all the problem’s dependent constant of the last theorem and keeping the worst de-
pendency w.r.t ǫ, we derive a O

(
| log(ǫ)|ǫ−3/2

)
complexity order in ǫ that only differs by the

factor | log(ǫ)| from the optimal order for nonconvex second-order methods [13], a factor which
is typically small for practical values of ǫ. The AN2C algorithm thus enjoys a better complexity
order than that of past hybrid algorithms [19, 38, 25] for which the order is O

(
ǫ−2
)
. However, it

is marginally worse than that of the more complex second-order linesearch of [47] which attains
the optimal order. Moreover, we see in the proof of Theorem 3.5 that the | log ǫ| term appears
because of (3.24) and (3.32) and we may hope that the number of scurvk iterations is typically
much less than its worst-case O

(
ǫ−3/2

)
in practice. The trust-region algorithm of [20] has the

same total complexity as AN2C although their method requires only O
(
ǫ−3/2

)
gradient and Hessian

calls whereas our algorithm suffers from an additional | log(ǫ)| term.

4 Finding second-order critical points

Can the AN2C algorithm be strengthened to ensure it will compute second-order critical points?
We show in this section under the same assumptions as that used for its first-order analysis that
approximate second order points can be reached.

The resulting modified algorithm, which we call SOAN2C (for Second-Order AN2C) makes extensive
use of AN2C, and is detailed on the next page.

Prior to reaching an approximate first-order point, we utilize only the RegStep and NewtonEigenStep

subroutines to generate tentative steps, hence the ’fo’ (first-order) superscripts in (4.2) and (4.3).
Similar to Section 2, AS.0 is necessary to obtain a valid step when NewtonEigenStep is invoked.
Once an approximate first-order point is reached, further progress towards second-order station-
arity is obtained by exploiting the negative-curvature direction (4.4)-(4.5), thereby justifying the
’so’ (second-order) superscript.

An upper bound on the evaluation complexity of the SOAN2C algorithm is given by the following
theorem.
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Algorithm 4.1: Second-Order Adaptive Newton with Negative Curvature
(SOAN2C)

Step 0: Initialization Identical to AN2C[Step 0] with ǫ ∈ (0, 1] now replaced by ǫ1 ∈ (0, 1]
and ǫ2 ∈ (0, 1].

Step 1: Compute current derivatives Evaluate gk and Hk. Terminate if

‖gk‖ ≤ ǫ1 and λmin(Hk) ≥ −ǫ2. (4.1)

Step 2: Compute subspace derivatives Form ĝk and Ĥk as in AN2C[Step 2].

Step 3: Step calculation If ‖gk‖ > ǫ1,

sk = sfok = RegStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κa, κb, ς1, ς2 ), (Optional). (4.2)

If sfok has been successfully defined, go to Step 4. Else, compute

sk = sfok = NewtonEigenStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κC , κb, κθ, ς3, θ ). (4.3)

Else ( ‖gk‖ ≤ ǫ1 ), compute uk such that

g⊺kuk ≤ 0, ‖uk‖ = 1 and Hkuk = λmin(Hk)uk, (4.4)

and set

sk = ssok
def
=

−λmin(Hk)

σk
uk. (4.5)

Step 4: Acceptance ratio computation Identical to AN2C[Step 5].

Step 5: Regularization parameter update Identical to AN2C[Step 6].



Gratton, Jerad, Toint: Adaptive Regularization Newton with Negative Curvature 19

Theorem 4.1 Suppose that AS.1–AS.4 hold. Then the SOAN2C algorithm requires at most

|Sk| ≤ κ⋆ǫ
− 3

2

1 + κsoǫ
−3
2 +

| log(ǫ1)|
2 log(2)

κnegdecrǫ
− 3

2

1 +

( | log(ǫ1)|+ log(κgpi)

log(2)
+ 1

)
(κsoǫ

−3
2 + 1)

successful iterations and evaluations of the gradient and the Hessian and at most

(
1 +

| log γ1|
log γ2

)[
κ⋆ǫ

− 3
2

1 + κsoǫ
−3
2 +

| log(ǫ1)|
2 log(2)

κnegdecrǫ
− 3

2

1

+

( | log(ǫ1)|+ log(κgpi)

log(2)
+ 1

)
(κsoǫ

−3
2 + 1)

]
+

1

log γ3
log

(
σmax

σ0

)

evaluations of f to produce a vector xǫ such that ‖g(xǫ)‖ ≤ ǫ1 and λmin(Hxǫ
) ≥ −ǫ2, where

κso

def
=

2σ2
max(f(x0)− flow)

η1
(4.6)

κgpi is defined in (A.5) and κ⋆, κnegdecr and σmax (defined by (3.28), (3.30) and (3.3), respec-
tively) depend solely on the problem .

As for Theorem 3.5, the bound, in which the ǫ−3
2 term is likely to dominate, differs from

standard one for second-order algorithms seeking second-order points (in O(max(ǫ
−3/2
1 , ǫ−3

2 )) [15,
Theorems 3.3.9 and 3.4.6] by a (modest) factor | log(ǫ1)|.

To prove Theorem 4.1, we need to take two main issues into account. The first is that, because
the step may be computed using (4.2), (4.3) but also (4.5), we need to complete the partition of
|Sk| by introducing subsets relevant to this new type of steps. The second is clearly that negative
curvature information must be exploited in order to guarantee a sufficient decrease of the objective
function when it is discovered close to a first-order critical point. This leads to a development
which broadly follows the lines of Section 3, extending the proofs when necessary to handle the
more complicated situation. The details of this development are given in appendix.

5 Choosing the subspace

In practice, the algorithm crucially depends on how one chooses the matrix Vp spanning the
iteration-dependent subspace, and we discuss two options. Each of the choices presented below
can be included in both AN2C and SOAN2C, defined in Section 2 and Section 4, respectively. For
conciseness, we only consider AN2C.

5.1 A full-space variant

A simple choice of Vp is to consider Vp
def
= In, that is the subspace is in fact the whole space. We

note that, in this case, conditions (2.9) or (2.13) automatically hold.
We define two variants in this context. The first is called AN2CER (for AN2C Exact using RegStep)

exploits the RegStep algorithm in order to limit the need of possibly costly second-order information.
The second, potentially more costly, is called AN2CE and does not use the optional RegStep algorithm,
therefore making no attempt to avoid eigenvalue computations.

These variants may be useful for problems in which systems (2.6) and (2.11) may effectively be
solved (for instance using Cholesky factorizations). As we will see below, they require on average
a single such solution/factorization per iteration. AN2CER and AN2CE may thus be attractive in
the large class of applications for which off-the-shelf linear solvers are available. The computation
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of λmin(Hk) also needs to be feasible but, due to Algorithm RegStep, this occurs only rarely in
AN2CER.

5.2 A Krylov variant

When the dimension of the problem grows and factorizations become impractical, one can turn
to exploiting Krylov subspaces, as we now show. The resulting algorithmic variant will be called
AN2CK, where K stands here for Krylov, and is obtained by replacing Steps 3 and 4 of the AN2C

algorithm by Algorithm AN2CKStep on the following page. In this variant, the subspace generation
and step computation are combined in order to best exploit the structure of the resulting sub-
problem. As is common in Krylov-based methods, we assume the availability of a ’preconditioner’,
that is a positive-definite matrix Mk approximating the Hessian Hk in the sense that M−1

k Hk is
close to the identity. For clarity, we ignore the iteration subscript k in what follows.

Each iteration of the AN2CKStep algorithm has a moderate cost (a few vector assignments, one
matrix-vector product and –possibly– the computation of the smallest eigenvalue of a tridiagonal
matrix, see [17] and the references therein for details). We observe that (5.1)-(5.2) amounts to
using the standard preconditioned Lanczos process for building an orthonormal (in the 〈·,M ·〉
inner product) basis Vp of successive Krylov subspaces generate by the preconditioned gradient
and Hessian. We therefore build on existing theory for this process (see [18, Section 5.2], for
instance). We note that the use of the full Lanczos basis Vp is only requested at the end of
the process (in (5.7) and (5.9)). As a consequence two options are available for its detailed
implementation: one can store the Lanczos basis vectors as the iterations proceed and use them
at the end of the step computation, or one can forget them but re-run the necessary Lanczos
process to re-generate them (as has been done in the GALAHAD library [28] for the GLTR and GLRT

algorithms for trust-region and regularization subproblems, respectively). Obviously, Vp and Tp

may be updated incrementally in (5.3) and (5.4). When updating Tp, it is also easy to check if it
remains positive definite by recurring the pivots of its Cholesky factorization, which are given by

π1 = δ1 and πp = δp − α2
p/πp−1 (p > 1).

As long as πp stays positive, it is thus unnecessary to compute λmin(Tp) since [−λmin(Tp)]+ is
then identically zero in (5.5). Finally, should a preconditioner M be unavailable, setting M = In
is possible, in which case wp and zp can be dispensed of because they are identical to rp and vp,
respectively.

We now verify that, as stated, Algorithm AN2CK is a correct instantiation of Algorithm AN2C

(without the optional Step 3).

Theorem 5.1 Suppose that

µ1 ≤ λmin(M) and λmax(M) ≤ µ2 (5.10)

for some µ2 ≥ µ1 > 0. Then the definitions and conditions (5.8), (5.6) and (5.5) of Algo-
rithm AN2CKStep are equivalent to (2.14), (2.13) (with κb redefined as max(1, κb

√
µ2) ) and

(2.11) of Algorithm 2.3, respectively. Moreover, AS.0 holds and (5.4) is valid.

Proof. If Zp is the matrix whose columns are z1, . . . , zp, we deduce from (5.1) and (5.2)
that

HVp = ZpTp + αp+1zp+1e
⊺

p = MVpTp + αp+1Mvp+1e
⊺

p . (5.11)

Using that V ⊺

p Mvp+1 = 0 yields (5.4). Note also that as v1 = w1

α1
= M−1z1 from (5.1) and

V ⊺

p MVp = Ip,
V ⊺

p g = α1V
⊺

p z1 = α1V
⊺

p Mv1 = α1e1. (5.12)
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Algorithm 5.1: AN2CKStep( g,H, σ,M, κC , κb, θ )

Step 0: Initialization Set p = 1, r1 = g, w1 = M−1r1, α1 =
√
w⊺

1 r1 and z0 = 0.

Step 1: Form the orthonormal basis Compute

zp =
rp
αp

, vp =
wp

αp
, δp = v⊺pHvp, (5.1)

rp+1 = Hvp − δpzp − αpzp−1, wp+1 = M−1rp+1, αp+1 =
√
w⊺

p+1rp+1, (5.2)

and define
Vp = (v1, v2, . . . , vp) ∈ IRn×p. (5.3)

Step 2: Newton step computation Form the subspace Hessian

Tp
def
= V ⊺

p HVp =




δ1 α2

α2 δ2 α3

. . .
. . .

. . .

δp−1 αp

αp δp




(5.4)

and compute its minimum eigenvalue.

If λmin(Tp) ≤ −κC

√
σ‖g‖, go to Step 4.

Otherwise, solve

(
Tp + (

√
σ‖g‖+ [−λmin(Tp)]+)Ip

)
yp = −α1e1. (5.5)

Step 3: Check global quality of the solution If

√
α2
p+1(e

⊺

pyp)2 + ‖Tpyp + α1e1‖2 ≤ κb‖Tpyp + α1e1‖, (5.6)

then return
s = sneig = Vpyp. (5.7)

Else increment p by one and go back to Step 1.

Step 4: Eigenvector direction Compute u such that

e⊺1u ≤ 0, ‖u‖ = 1 and u⊺Tpu ≤ θ λmin(Tp). (5.8)

Return

s = scurv = θκC

√
‖g‖
σ

Vpu. (5.9)
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The last identity with the fact that Tp = V ⊺

p HVp ensures that (5.8) and (5.5) are reformulations
of (2.14) and (2.11). We now prove that (5.6) implies (2.13). Using (5.5), (5.12), (5.11), we
obtain that

Hs+ g = HVpyp + α1Mv1 = HVpyp + α1MVpe1

= HVpyp −MVpTpyp − (
√

σ‖g‖+ [−λmin(Tp)]+)MVpyp

= αp+1(e
⊺

pyp)Mvp+1 − (
√
σ‖g‖+ [−λmin(Tp)]+)MVpyp.

Since V ⊺

p MVp = Ip and V ⊺

p Mvp+1 = 0, we deduce, using (5.5) and (5.6), that

‖Hs+ g‖2 ≤ λmax(M) (Hs+ g)⊺M−1(Hs+ g)

= λmax(M)
[
α2
p+1(e

⊺

pyp)
2 + (

√
σ‖g‖+ [−λmin(Tp)]+)

2‖yp‖2
]

= λmax(M)
[
α2
p+1(e

⊺

pyp)
2 + ‖Tpyp + α1e1‖2

]

≤ κ2
b λmax(M)‖Tpyp + α1e1‖2,

and (2.13) follows with the redefined κb. We finally verify that AS.0 holds. Because

1 = ‖M 1
2Vp‖ ≥ λmin(M

1
2 )‖Vp‖ =

√
λmin(M)‖Vp‖

(2.16) holds with Vmax = 1/
√
λmin(M) ≤ µ

−1/2
1 , where we again used (5.10) to derive the

last inequality. Moreover, given that κb ≥ 1, termination necessarily occurs when p = n,
V ⊺

n MVn = In, Vn spans the whole space and αp+1 = 0 in (5.6). ✷

The optional Step 3 of Algorithm 2.1 is in fact implicitly contained in Algorithm 5.1 since convexity
along the current step (condition (2.7)) is verified at each step of the Lanczos process by checking
the positive-definiteness of Tp.

Returning now to the complete sequence of minimization iterates, we see that, whenever the
AN2CK algorithm is used with iteration-dependent preconditioners Mk 6= In, Theorems 3.5 and 4.1
remain valid provided (5.10) holds uniformly for all iterations.

6 Numerical illustration

We now illustrate the behavior of our proposed algorithms on three sets of test problems from
the freely available OPM collection(2) [34]. The first set contains 119 small-dimensional problems,
the second contains 74 medium-size ones, while the third contains 59 “largish” ones. The list of
problems and their dimensions are listed in Tables A.3, A.4 and A.5 in appendix.

6.1 Using the full-space variants

We use Matlab implementations of AN2CE and AN2CER where the involved linear systems are solved
by using the Matlab sparse Cholesky factorization, and where we have set

κC = 103, κa = 50 (AN2CE) or 100 (AN2CER) , κθ = 1, ς1 = 1
2
, ς2 = ς3 = 10−10,

σ0 = 1, σmin = 10−8, γ1 = 1
2
, γ2 = γ3 = 10, η1 = 10−4 and η2 = 0.95.

The values of κC and κa were obtained from a hyper-parameter search(3) on the set of small
problems. The values of ς2 and ς3 are given here for consistency, but are irrelevant since factoriza-
tions are used to solve the linear systems. Other parameters values are typical of regularization
algorithms.

(2)This collection is a subset of the CUTEest [29] collection where the test problems are described in Matlab.
(3)Covering the choice {1030, 108, 105, 103, 102, 10} for κC and {100, 50, 10} for κa.
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We compare AN2CE and AN2CER with implementations of the standard adaptive regularization
AR2 and trust-region TR2M, two well-regarded methods. All these algorithms use quadratic ap-
proximations of the objective function (i.e. gradients and Hessians). The first three also use the
same acceptance thresholds η1 and η2 and values of γ1, γ2 and γ3. The TR2M methods shrinks the
trust-region radius by a factor

√
10 and expands it by a factor 2 (see [15, Section 11.2] for a discus-

sion of the coherence of these factors between trust-region and adaptive regularization methods).
The authors are aware that further method-dependent tuning would possibly result in improved
performance, but the values chosen here appear to work reasonably well for each method. The
step computation is performed in AR2 following [15, page 67] or [3] using an (unpreconditioned)
Lanczos approach while a standard Moré-Sorensen method(4) is used in TR2M (see [15, Chapter 9]
for details). For AR2, the step computation is terminated as soon as

‖gk +Hksk‖ ≤ 1
2
θsubσk‖sk‖2 (6.1)

which slightly differs from the test ‖∇1
smk(sk)‖ ≤ 1

2
θsubσk‖sk‖2 used in [15, page 65] and [3] while

maintaining the desired O(ǫ−3/2) evaluation complexity bound (see [35] for a justification of (6.1)
–including the fact that it more often allows the pure Newton step to be accepted– or [15, page 67]).
The Moré-Sorensen iterations in TR2M are terminated as soon as ‖sk‖ ∈ [(1−θsub)∆k, (1+θsub)∆k],
where, in both cases, θsub = 10−3 for n ≤ 100 and 10−2 for n > 100. All experiments were run on
a Dell Precison computer with Matlab 2022b.

We discuss our experiments from the efficiency and reliability points of view. Efficiency is
measured, in accordance with the complexity theory, in number of iterations (or, equivalently,
function and possibly derivatives’ evaluations): the fewer the more efficient the algorithm. In ad-
dition to presenting the now standard performance profiles [22] for our four algorithms in Figure 1,
we follow [45, 32] and consider the derived “global” measure πalgo to be 1

10
of the area below the

curve corresponding to algo in the performance profile, for abscissas in the interval [1, 10]. The
larger this area and the closer πalgo to one, the closer the curve to the left and top borders of the
plot and the better the global performance.

When reporting reliability, we say that the run of an algorithmic variant on a specific test
problem is successful if the gradient norm tolerance ǫ = 10−6 has been achieved in the allotted
cpu-time (1h) and before the maximum number of iterations (5000) is reached. The ρalgo statistic
denotes the percentage of successful runs taken on all problems in each of the three classes.
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Figure 1: Full-space variants: iteration performance profiles for OPM problems (left: small, center:
medium, right: largish). We report on the vertical axis the proportion of problems for which the
number of iterations of each algorithm is at most a fraction (given by the horizontal axis) of the
smallest across all algorithms (see [22]).

Figure 1 and Table 1 suggest that the reliability of AN2CE and AN2CER is comparable to that of
AR2 and TR2M for all problem sizes. They also indicate that AN2CER is somewhat slower iteration-
wise than AR2 and TR2M , but AN2CE is very comparable. The fact that the computationally

(4)Given that our version of AN2C uses matrix factorizations, it seems more natural to compare it with a Moré-
Sorensen-based trust-region than to one using truncated conjugate gradients.
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small pbs. medium pbs. largish pbs.
algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2CER 0.88 96.64 0.85 93.24 0.85 94.92
AN2CE 0.91 96.64 0.91 95.95 0.81 86.44
AR2 0.92 97.48 0.85 93.24 0.84 93.22
TR2M 0.91 94.96 0.86 93.24 0.83 91.53

Table 1: Efficiency and reliability statistics for the OPM problems (full-space variants)

more expensive AN2CE is often faster than AN2CER in terms of iteration numbers is not surprising.
Indeed, the regularization term in (2.11) becomes

√
σk‖gk‖ in convex regions, recovering the

analysis of [41, 21], whereas AN2CE regularizes the problem more strongly in (2.6) (by a factor 10
in our numerical settings) and therefore may further restricts the steplength. AN2CE may however
be computationally more intensive(5) than AN2CER. Which of the two algorithms is preferable in
practice is likely to depend on the CPU cost of calculating the Hessian’s smallest eigenvalue.

As expected, the call to NewtonEigenStep in AN2CER is typically performed on very few iterations
(for less 6.4% of them for the small-problems testset) and, when used, results in a negative-
curvature step (2.15) even more exceptionally (less than 1%). This means in particular that a
single linear-system solve was necessary for approximately 93% of all iterations. The AN2CE variant
of course called NewtonEigenStep at every iteration, but (2.15) was never actually used.

We also ran the SOAN2CE and SOAN2CER variants with ǫ1 = 10−6 and ǫ2 = 10−4, but their
results are undistinguishable (for our test sets) from those obtained with AN2CE and AN2CER,
except for a final eigenvalue analysis at the found approximate first-order point, which confirmed
in all cases that the second-order condition (4.1) did also hold at this point. No step of the form
(4.5) was ever taken in our runs, despite the fact that such steps are necessary in theory (think of
starting the minimization at a first-order saddle point).

6.2 Using the Krylov-based variants

We ran two variants of the AN2CK algorithm on our three problem sets, which differ in how the
vector u is chosen in (5.8). In the first, called AN2CKU, u is chosen as the eigenvector associated
with the eigenvalue λmin(Tp). In the second, called AN2CKYU, u is chosen as the sum of the
current vector yp plus a multiple of the eigenvector associated with λmin(Tp) chosen to ensure that
the last inequality in (5.8) holds as an equality. An hyper-parameter search on a subset of the
medium-sized test set yielded the values

κC = 3, κb = 50 and θ = 1
2
.

None of the tested methods used preconditioning (that is the choiceM = In was made throughout).
The matrices Vp were stored explicitly.

We again compared these two variants with AR2 and with TR2K, an implementation of the
trust-region close to TR2M, but in which the step is computed by minimizing the quadratic model
in the intersection of the trust-region and the successive Krylov spaces until

‖gk +Hksk‖ ≤ 1
10
‖gk‖. (6.2)

The results of our comparison (using the same metrics as in the previous subsection) are given in
Figure 2 and Table 2.

We observe that AN2CKU significantly trails the other variants and is in particular both less
efficient and less reliable than AN2CKYU, which we explain by the fact that, should a negative
curvature step occur, the former strategy does not exploit the decrease of the quadratic model

(5)Most failures of this algorithm on large problems occurred because the time limit was reached.
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Figure 2: Krylov-space variants: iteration performance profiles for OPM problems (left: small,
center: medium, right: largish). We report on the vertical axis the proportion of problems for
which the number of iterations of each algorithm is at most a fraction (given by the horizontal
axis) of the smallest across all algorithms (see [22]).

small pbs. medium pbs. largish pbs.
algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2CKU 0.86 96.64 0.81 93.24 0.77 86.44
AN2CKYU 0.91 96.64 0.90 95.95 0.85 91.53
AR2 0.92 97.48 0.87 93.24 0.89 93.22
TR2K 0.94 96.64 0.85 87.84 0.77 84.75

Table 2: Efficiency and reliability statistics for the OPM problems (Krylov-space variants)

already obtained by the “convex step” yp. By contrast, AN2CKYU appears to be competitive with
both AR2 and TR2K, irrespective of problem size.

For the AN2CKYU variant, the average ratio of the number of matrix-vector products divided
by the product of the number of iterations and the problem size (a ratio which is one if every
Lanczos process takes n iterations) is below 0.5 for small problems, below 0.15 for medium ones
and below 0.03 for large ones. Negative curvature directions (5.9) are also used, for this variant,
by 0.25% of the iterations for small problems, 0.23% of iterations for medium ones and never for
large ones.

Finally, we also tested SOAN2CKU and SOAN2CKYU, the versions of AN2CKU and AN2CKYU which
enforce second-order optimality. As for full-space methods, the results obtained are undistin-
guable from those for AN2CKU and AN2CKYU, except for a final eigenvalue analysis confirming the
approximate second-order optimality of the computed solution.

These early results are encouraging but the authors are aware that only further experiments
will allow a proper assessment of the method’s true potential, both from the number of func-
tion/derivatives evaluations and CPU-usage points of view. Several further algorithmic develop-
ments within the new algorithms are also of interest, including a possibly better balance between
NewtonEigenStep and RegStep in the full-space version, as well as refinements of the regularization
parameter update (2.5), possibly in the spirit of [30].

7 Conclusions and Perspectives

We have proposed AN2C and AN2CK, two second-order minimization methods for nonconvex prob-
lems that alternate, in an iteration dependent subspace, between Newton and negative-curvature
directions. These methods differ from the more standard trust-region and adaptive-regularization
techniques in that the involved step computation is free of further inner iterative processes and
only requires the approximate solution of at most two (but typically one) linear systems per iter-
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ation. We have also proved that these algorithms require at most O
(
| log(ǫ)|ǫ−3/2

)
iterations to

obtain an ǫ-approximate first-order critical point. Our proof builds on some elements of [41, 21] for
the convex case and arguments for adaptive regularization [3] and other nonconvex optimization
methods [19, 47]. At each iteration, the algorithms either take an explicit Newton step or negative
curvature when it is sufficiently large compared to the square root of the gradient. The norm of
the residuals of the Newton step are adjusted dynamically and different types of solvers can be
used to solve the linear systems, depending on how subspaces are chosen.

An extension of the algorithmic framework ensuring approximate second-order optimality has
also been introduced, and we have proved that the resulting methods require at mostO

(
| log(ǫ)|ǫ−3

)

iterations to achieve its objective.
A first set of numerical experiments with full-space variants AN2CE and AN2CER as well as

Krylov-subspaces iterative ones AN2CKU and AN2CKYU indicates that they are very reliable and
competitive with standard techniques in terms of number of iterations.

The reader may wonder why we haven’t considered selecting iteration-dependent low-dimensional
random subspaces, as has been advocated in [8, 46] for instance. The main reason is that using
the Johnson-Lindenstrauss lemma (the basic tool in such an approach) is possible for defining
a probabilistically accurate approximate gradient in the subspace. However, as far as we know,
using this idea is problematic for the full Hessian matrix unless it is assumed to be of low rank. We
could therefore attempt to follow the Cauchy-point-based analysis of [8, 46], and hopefully obtain
a probabilistic complexity bound in O(ǫ−2). However, we do not see at this point how to design
a low-dimensional random-subspace algorithm with an O(| log(ǫ)|ǫ−3/2) probabilistic complexity
bound for minimizing functions with general (possibly full-rank) Hessians.

Promising lines for future work include inexact derivatives as in [50, 51], estimating the regu-
larization parameter without evaluating the objective function (as in [31]), stochastic variants and
the handling of simple constraints such as bounds on the variables in the spirit of [15, Section 14.2].
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Proof of Theorem 4.1

As we noted in Section 4, the step in the SOAN2C algorithm may be computed using (4.2), (4.3)
or (4.5). The notations defining the partition of |Sk| remain relevant, but we complete them by
introducing

Sso def
= S ∩ {sk = ssok }, Sso

k
def
= Sk ∩ {sk = ssok }, Sfo def

= S \ Sso and Sfo
k

def
= Sk \ Sso

k .

In addition, for m ≥ ℓ ≥ 0, we define

Sℓ,m
def
= S ∩ {ℓ, . . . ,m}

and we naturally extend this notation using superscripts identifying the subsets of Sℓ,m corre-
sponding to the different iteration types identified above. We also introduce two index sequences
whose purpose is to keep track of when sk = sfok (4.2)-(4.3) or sk = ssok (4.5) are used, in the sense
that

sk = sfok for k ∈
⋃

i≥0,pi≥0

{pi, . . . , qi − 1} and sk = ssok for k ∈
⋃

i≥0

{qi, . . . , pi+1 − 1}.

Formally,

p0 =

{
0 if ‖g0‖ > ǫ1

−1 if ‖g0‖ ≤ ǫ1,
and q0 =

{
inf{k > 0 | ‖gk‖ ≤ ǫ1} if ‖g0‖ > ǫ1
0 if ‖g0‖ ≤ ǫ1.

(A.1)

Then

pi
def
= inf{k > qi−1 | ‖gk‖ > ǫ1} and qi

def
= inf{k > pi | ‖gk‖ ≤ ǫ1} for i ≥ 1. (A.2)
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The following lemma states an important decrease property holding when (4.5) is used. We also
verify that the bound on the regularization parameter derived in Section 3 still applies.

Lemma A.1 Suppose that AS.1 and AS.3 hold. Let k ∈ Sso. Then

−g⊺ksk −
1

2
s⊺kHksk ≥ 1

2
σk‖sk‖3. (A.3)

Moreover, the upper bound (3.3) still holds for all k ≥ 0.

Proof. We obtain from (4.4) and (4.5) that

g⊺ks
so
k +

1

2
(ssok )⊺Hks

so
k ≤ 1

2
‖ssok ‖2u⊺

kHkuk =
1

2
‖ssok ‖2λmin(Hk) ≤ −1

2
σk‖ssok ‖3,

which gives (A.3). As in Lemma 3.1, we now use AS.3, the standard Lipschitz error bound for
the function (see [14, Lemma 2.1]) and (A.3) to deduce that

1− ρk =
f(xk + sk)− f(xk)− g⊺ksk − 1

2s
⊺

kHksk

−g⊺ksk − 1
2s

⊺

kHksk
≤ LH‖ssok ‖3

6(12σk‖ssok ‖3) =
LH

3σk
.

Thus, if σk ≥ LH

3(1−η2)
, we have that ρk ≥ η2 and k is a successful iteration. We may then use

the argument of Lemma 3.1 and the fact that ςmax introduced in (3.4) is larger than two as
Vmax ≥ 1. Therefore, we deduce that (3.3) also holds for the SOAN2C algorithm. ✷

We now prove an analogue of Lemma 3.1, now using the negative-curvature step as described in
(4.4)-(4.5). We also bound the sequence of ‖gpi

‖.

Lemma A.2 Suppose that AS.1, AS.3 and AS.4 hold. Then, for k ∈ Sso,

f(xk)− f(xk+1) ≥ η1
2σ2

max

ǫ32. (A.4)

We also have that

‖gpi
‖ ≤ κgpi

def
= max

[
‖g0‖,

(
LHκ2

B

2σ2
min

+
κ2
B

σmin
+ 1

)]
, (A.5)

for all pi ≥ 0 as defined in (A.1)-(A.2).

Proof. Let k ∈ Sso. From (2.4) and (A.3), we obtain that

f(xk)− f(xk+1) ≥ η1

(
−g⊺ksk −

1

2
s⊺kHksk

)
≥ η1

2
σk‖ssok ‖3.

Using now that ‖ssok ‖3 = |λmin(Hk)|3
σ3
k

(see (4.5)) in the previous inequality gives that

f(xk)− f(xk+1) ≥
η1

2σk
2
|λmin(Hk)|3.

Now |λmin(Hk)| ≥ ǫ2 when ssok is computed and σk ≤ σmax by Lemma A.1, from which (A.4)
follows. Observe now that (A.5) trivially holds if pi = p0 = 0. Consider now pi > 0. From
the definition of pi and qi in (A.2), we see that pi − 1 ∈ Sso. Using the Lipschitz error bound
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for the gradient ([14, Lemma 2.1]), the triangular inequality, (4.4), (4.5), (3.2) (resulting from
AS.4), we obtain that

‖gpi
‖ ≤ ‖gpi

− gpi−1 −Hpi−1s
so
pi−1‖+ ‖Hpi−1s

so
pi−1 + gpi−1‖

≤ LH

2
‖ssopi−1‖2 + ‖gpi−1‖+ ‖Hpi−1s

so
pi−1‖

≤ LH |λmin(Hpi−1)|2
2σ2

pi−1

+ ‖gpi−1‖+
|λmin(Hpi−1)|‖Hpi−1upi−1‖

σpi−1

≤ LH |λmin(Hpi−1)|2
2σ2

pi−1

+ ‖gpi−1‖+
|λmin(Hpi−1)|2

σpi−1

=
LH(−λmin(Hpi−1))

2

2σ2
pi−1

+ ‖gpi−1‖+
(−λmin(Hpi−1))

2

σpi−1

≤ LHκ2
B

2σ2
pi−1

+ ‖gpi−1‖+
κ2
B

σpi−1
.

But ‖gpi−1‖ ≤ ǫ1 ≤ 1 since pi− 1 ∈ Sso and σk ≥ σmin for all k ≥ 0, which then implies (A.5).
✷

In addition to this lemma, all properties of the different steps derived in Section 3 remain valid
because these steps are only computed for ‖gk‖ > ǫ1. In particular, (3.10) still applies with
ǫ = ǫ1. However, (3.24) in Lemma 3.4 may no longer hold because its proof relies on the fact that
‖gk‖ ≥ ǫ1, which is no longer true. The purpose of the next lemma is to provide an analogue of
(3.24) for the case where SOAN2C is used.

Lemma A.3 Suppose that AS.1, AS.3 and AS.4 hold and the SOAN2C algorithm is used.
Consider the partition of Sneig

k ∪ Sdef
k into Sdecr

k ∪ Sdivgrad
k defined in Lemma 3.4 with the

same κm (defined in (3.22)). Then (3.23) holds for all k ∈ Sdecr
k . Moreover,

|Sdivgrad
k | ≤ κn|Sdecr

k |+
(

1

2 log(2)
| log(ǫ1)|+ κcurv

)
|Scurv

k |

+

( | log(ǫ1)|+ log(κgpi)

log(2)
+ 1

)
(|Sso

k |+ 1) (A.6)

where κn and κcurv are defined in (3.25) and (3.26) and κgpi is given by (A.5).

Proof. The proof of (3.23) is identical to that used in Lemma 3.4. Moreover, we still obtain

(3.27) for k ∈ Sdivgrad
k , because the definition of κm in (3.22) is unchanged and Lemma A.1

ensures that (3.3) continues to hold for the SOAN2C algorithm.

We now prove (A.6). If Sfo
k is empty, then so is its subset Sdivgrad

k and (A.6) trivially holds.

If Sfo
k is not empty, we see from the definitions (A.1)-(A.2) that, for some m ≥ 0 depending

on k,

Sfo
k = {0, . . . , k} ∩ {‖gk‖ > ǫ1} =




m−1⋃

i=0,pi≥0

{pi, . . . , qi − 1}


 ∪ {pm, . . . , k}. (A.7)

Note that the last set in this union is empty unless k ∈ Sfo, in which case pm ≥ 0. Suppose
first that the set of indices corresponding to the union in brackets is non-empty and let i
be an index in this set. Moreover, suppose also that pi < qi − 1. Using (A.5) and the
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facts that ‖gqi−1‖ > ǫ1, that the gradient only changes at successful iterations and that

Spi,qi−2 = Scurv
pi,qi−2 ∪ Sdivgrad

pi,qi−2 ∪ Sdecr
pi,qi−2, we now derive that

ǫ1
κgpi

≤ ‖gqi−1‖
‖gpi

‖ =

qi−2∏

j=pi

‖gj+1‖
‖gj‖

=
∏

j∈Spi,qi−2

‖gj+1‖
‖gj‖

=
∏

j∈Sdecr
pi,qi−2

‖gj+1‖
‖gj‖

∏

j∈Scurv
pi,qi−2

‖gj+1‖
‖gj‖

∏

j∈Sdivgrad
pi,qi−2

‖gj+1‖
‖gj‖

≤
((

LH(1 + κθ)V
3
max

2ς21σmin
+

2κb

√
Vmax

ς1
+ κCκb

√
Vmax

)
(1 + κθ)

)|Sdecr
pi,qi−2|

×

1

2|S
divgrad
pi,qi−2

|
×
(
LHV 2

max

2σmin
κ2
Cθ

2x+
θ2κBκC√
ǫ1σmin

+ 1

)|Scurv
pi,qi−2|

where we used (3.12), (3.10) and (3.27) to derive the last inequality. Rearranging terms, taking

the log, using the inequality |Sdivgrad
pi,qi−2 | ≥ |Sdivgrad

pi,qi−1 | − 1 and dividing by log(2) then gives that

(|Sdivgrad
pi,qi−1 | − 1) +

log(ǫ1)− log(κgpi)

log(2)
≤ κn|Sdecr

pi,qi−2|+
( | log(ǫ1)|

2 log(2)
+ κcurv

)
|Scurv

pi,qi−2|

with κn and κcurv given by (3.25) and (3.26). Further rearranging this inequality and using
the fact that |Spi,qi−2| ≤ |Spi,qi−1| for the different types of step, we obtain that

|Sdivgrad
pi,qi−1 | ≤ κn|Sdecr

pi,qi−1|+
( | log(ǫ1)|

2 log(2)
+ κcurv

)
|Scurv

pi,qi−1|+
| log(ǫ1)|+ log(κgpi)

log(2)
+ 1. (A.8)

If now pi = qi − 1, then clearly |Sdivgrad
pi,qi−1 | ≤ 1 and (A.8) also holds. Using the same reasoning

when {pm, . . . , k} is non-empty, we derive that,

|Sdivgrad
pm,k | ≤ κn|Sdecr

pm,k|+
( | log(ǫ1)|

2 log(2)
+ κcurv

)
|Scurv

pm,k|+
| log(ǫ1)|+ log(κgpi)

log(2)
+ 1, (A.9)

and this inequality also holds if {pm, . . . , k} = ∅ since Sdivgrad
pm,k ⊆ {pm, . . . , k}. Adding now

(A.8) for i ∈ {0, . . . ,m} and (A.9) to take (A.7) into account gives that

|Sdivgrad
k | ≤ κn|Sdecr

k |+
( | log(ǫ1)|

2 log(2)
+ κcurv

)
|Scurv

k |+
( | log(ǫ1)|+ log(κgpi)

log(2)
+ 1

)
(m+ 1).

As (A.7) divides Sfo
k into m+1 consecutive sequences, these sequences are then separated by

at least a second-order step, so that m ≤ Sso
k and (A.6) follows. ✷

Equipped with this last lemma and the results of Sections 2 and 3, we may finally establish the
worst-case iteration/evaluation complexity of the SOAN2C algorithm and prove Theorem 4.1 itself.

Proof. Note that the bounds (3.32) and (3.33) derived in the proof of Theorem 3.5 are still
valid because they only cover steps computed using AN2C, so that we now need to focus on
bounding Sso

k . Using AS.2 and the lower bound on the decrease of the function values (A.4),
we derive that, for k ∈ Sso,

f(x0)− flow ≥
∑

i∈Sk

f(xi)− f(xi+1) ≥
∑

i∈Sso
k

f(xi)− f(xi+1) ≥ |Sso
k | η1

2σ2
max

ǫ32,

and therefore that

|Sso
k | ≤ 2σ2

max(f(x0)− flow)

η1
ǫ−3
2 = κsoǫ

−3
2 . (A.10)
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Injecting now (A.10), (3.33) and (3.32) in the bound (A.6) on Sdivgrad
k yields that

|Sdivgrad
k | ≤ κnκdecrǫ

−3
2

1 +

( | log(ǫ1)|
2 log(2)

+ κcurv

)
κnegdecrǫ

−3
2

1

+

( | log(ǫ1)|+ log(κgpi)

log(2)
+ 1

)
(κsoǫ

−3
2 + 1).

Combining the last inequality with (A.10), (3.33) and (3.32) in |Sk| = |Sdivgrad
k | + |Scurv

k | +
|Sso

k |+ |Sdecr
k | and the definition of (3.28) gives that

|Sk| ≤ κ⋆ǫ
−3
2

1 + κsoǫ
−3
2 +

| log(ǫ1)|
2 log(2)

κnegdecrǫ
−3
2

1 +

( | log(ǫ1)|+ log(κgpi)

log(2)
+ 1

)
(κsoǫ

−3
2 + 1).

This proves the first part of the theorem. The second part follows from the last inequality and
Lemma 2.1. ✷

The factor | log(ǫ1)| by which the bound of Theorem 4.1 differs from O(max(ǫ
−3/2
1 , ǫ−3

2 ) occurs as
a consequence of (A.6), (A.10) and (3.32) and one expects that, in practice, (A.10) is smaller than
O
(
ǫ−3
2

)
so that Newton steps are taken most often.
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The test problems and their dimensions

Problem n Problem n Problem n Problem n Problem n Problem n

argauss 3 chebyqad 10 dixmaanl 12 heart8ls 8 msqrtals 16 scurly10 10

arglina 10 cliff 2 dixon 10 helix 3 msqrtbls 16 scosine 10

arglinb 10 clplatea 16 dqartic 10 hilbert 10 morebv 12 sisser 2

arglinc 10 clplateb 16 edensch 10 himln3 2 nlminsurf 16 spmsqrt 10

argtrig 10 clustr 2 eg2 10 himm25 2 nondquar 10 tcontact 49

arwhead 10 cosine 10 eg2s 10 himm27 2 nzf1 13 tquartic 10

bard 3 crglvy 4 eigenals 12 himm28 2 osbornea 5 trigger 7

bdarwhd 10 cube 2 eigenbls 12 himm29 2 osborneb 11 tridia 10

beale 2 curly10 10 eigencls 12 himm30 3 penalty1 10 tlminsurfx 16

biggs5 5 dixmaana 12 engval1 10 himm32 4 penalty2 10 tnlminsurfx 16

biggs6 6 dixmaanb 12 engval2 3 himm33 2 penalty3 10 vardim 10

brownden 4 dixmaanc 12 expfit 2 hypcir 2 powellbs 2 vibrbeam 8

booth 2 dixmaand 12 extrosnb 10 indef 10 powellsg 12 watson 12

box3 3 dixmaane 12 fminsurf 16 integreq 10 powellsq 2 wmsqrtals 16

brkmcc 2 dixmaanf 12 freuroth 4 jensmp 2 powr 10 wmsqrtbls 16

brownal 10 dixmaang 12 genhumps 5 kowosb 4 recipe 2 woods 12

brownbs 2 dixmaanh 12 gottfr 2 lminsurf 16 rosenbr 10 yfitu 3

broyden3d 10 dixmaani 12 gulf 4 mancino 10 s308 2 zangwill2 2

broydenbd 10 dixmaanj 12 hairy 2 mexhat 2 sensors 10 zangwill3 3

chandheu 10 dixmaank 12 heart6ls 6 meyer3 3 schmvett 3

Table A.3: The OPM small test problems and their dimension

Problem n Problem n Problem n Problem n Problem n Problem n

arglina 400 crglvy 400 dixmaanj 600 fminsurf 400 ncb20c 500 tcontact 400

arglinb 50 cube 500 dixmaank 600 freuroth 500 nlminsurf 400 tquartic 500

arglinc 50 curly10 500 dixmaanl 600 helix 500 nondquar 500 tridia 500

argtrig 50 deconvu 51 dixon 500 hilbert 500 nzf1 520 tlminsurfx 400

arwhead 500 dixmaana 600 dqrtic 500 hydc20ls 99 penalty1 500 tnlminsurfx 400

bdarwhd 500 dixmaanb 600 edensch 500 indef 500 penalty2 100 vardim 500

brownal 500 dixmaanc 600 eg2 400 integreq 500 penalty3 500 wmsqrtals 400

broyden3d 500 dixmaand 600 eg2s 400 lminsurf 400 powellsg 500 wmsqrtbls 400

broydenbd 500 dixmaane 600 eigenals 110 msqrtals 400 powr 500 woods 500

chandheu 500 dixmaanf 600 eigenbls 110 msqrtbls 400 rosenbr 100

chebyqad 150 dixmaang 600 eigencls 110 morebv 500 sensors 100

clplatea 400 dixmaanh 600 engval1 500 ncb20 500 scosine 500

clplateb 400 dixmaani 600 extrosnb 500 ncb20b 500 spmsqrt 997

Table A.4: The OPM medium-size test problems and their dimension

Problem n Problem n Problem n Problem n Problem n

arwhead 2000 dixmaand 2400 eg2 1600 integreq 2000 powellsg 2000

bdarwhd 2000 dixmaane 2400 eg2s 1600 lminsurf 4900 powr 2000

broyden3d 2000 dixmaanf 2400 eigenals 2550 msqrtals 1600 rosenbr 2000

broydenbd 2000 dixmaang 2400 eigenbls 2550 msqrtbls 1600 spmsqrt 1498

clplatea 4900 dixmaanh 2400 eigencls 2550 morebv 5000 tcontact 4900

clplateb 4800 dixmaani 2400 engval1 2000 ncb20b 2000 tquartic 2000

crglvy 4000 dixmaanj 2400 extrosnb 2000 ncb20c 2000 tridia 2000

cube 2000 dixmaank 2400 fminsurf 4900 nlminsurf 4900 tlminsurfx 4900

curly10 1000 dixmaanl 2400 freuroth 2000 nondquar 2000 tnlminsurfx 4900

dixmaana 2400 dixon 2000 helix 2000 nzf1 2600 vardim 2000

dixmaanb 2400 dqrtic 2000 hilbert 2000 penalty1 2000 woods 2000

dixmaanc 2400 edensch 2000 indef 2000 penalty3 2000

Table A.5: The OPM largish test problems and their dimension
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