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A class of second-order algorithms is proposed for minimizing smooth nonconvex functions that alternates between regularized Newton and negative curvature steps in an iterationdependent subspace. In most cases, the Hessian matrix is regularized with the square root of the current gradient and an additional term taking moderate negative curvature into account, a negative curvature step being taken only exceptionally. Practical variants have been detailed where the subspaces are chosen to be the full space, or Krylov subspaces. In the first case, the proposed method only requires the solution of a single linear system at nearly all iterations. We establish that at most O | log ǫ| ǫ -3/2 evaluations of the problem's objective function and derivatives are needed for algorithms in the new class to obtain an ǫ-approximate firstorder minimizer, and at most O | log ǫ| ǫ -3 to obtain a second-order one. Encouraging initial numerical experiments with two full-space and two Krylov-subspaces variants are finally presented.

Introduction

It is not an understatement to say that Newton's method is a central algorithm to solve nonlinear minimization problems, mostly because the method exhibits a quadratic rate of convergence when close to the solution and is affine-invariant. In the worst case, it can however be as slow as a vanilla first-order method [START_REF] Cartis | On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization[END_REF], [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Section 3.2] even when globalized with a linesearch [START_REF] Yu | Lectures on Convex Optimization[END_REF] or a trust region [START_REF] Conn | Trust-Region Methods[END_REF]. This drawback has however been circumvented by the cubic regularization algorithm [START_REF] Nesterov | Cubic regularization of Newton method and its global performance[END_REF] and its subsequent adaptive variants [START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part I: motivation, convergence and numerical results[END_REF][START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part II: worst-case function-evaluation complexity[END_REF], [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Section 3.3]. For nonconvex optimization, these latter variants exhibit a worst-case O ǫ -3/2 complexity order to find an ǫfirst-order minimizer compared with the O ǫ -2 order of second-order trust-region methods [START_REF] Gratton | Recursive trust-region methods for multiscale nonlinear optimization[END_REF], [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Section 3.2]. Adaptive cubic regularization was later extended to handle inexact derivatives [START_REF] Xu | Newton-type methods for non-convex optimization under inexact Hessian information[END_REF][START_REF] Yao | Inexact non-convex Newton-type methods[END_REF][START_REF] Bellavia | Adaptive regularization algorithms with inexact evaluations for nonconvex optimization[END_REF][START_REF] Bellavia | Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization[END_REF], probabilistic models [START_REF] Bellavia | Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization[END_REF][START_REF] Cartis | Global convergence rate analysis of unconstrained optimization methods based on probabilistic models[END_REF], and even schemes in which the value of the objective function is never computed [START_REF] Gratton | Convergence properties of an objective-function-free optimization regularization algorithm, including an O(ǫ -3/2 ) complexity bound[END_REF]. However, as noted in [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF], the improvement in complexity has been obtained by trading the simple Newton step requiring only the solution of a single linear system for more complex or slower procedures, such as secular iterations, possibly using Lanczos preprocessing [START_REF] Cartis | Trust-region and other regularization of linear least-squares problems[END_REF][START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part I: motivation, convergence and numerical results[END_REF] (see also [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Chapters 8 to 10]) or (conjugate-)gradient descent [START_REF] Griewank | The modification of Newton's method for unconstrained optimization by bounding cubic terms[END_REF][START_REF] Carmon | Gradient descent efficiently finds the cubic-regularized non-convex Newton step[END_REF]. In the simpler context of convex problems, two recent papers [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF][START_REF] Doikov | Gradient regularization of Newton method with Bregman distances[END_REF] independently proposed another globalization technique. At an iterate x, the step s is computed as

s = -(∇ 2 x f (x) + λ k I n ) -1 ∇ 1 x f (x) (1.1)
where λ k ∼ ∇ 1

x f (x) . This new approach exhibits the best complexity rate of second-order methods for convex optimization and retains the local superlinear convergence of standard Newton method, while showing remarkable numerical promise [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF]. Devising an algorithm for nonconvex functions that can use similar ideas whenever possible appears as a natural extension.

In the nonconvex case, the Hessian may be indefinite and it is well-known that negative curvature can be exploited to ensure progress towards second-order points. Mixing gradient-related (possibly Newton) and negative curvature directions has long been considered and can be traced back to [START_REF] Mccormick | A modification of Armijo's step-size rule for negative curvature[END_REF], which initiated a line of work using curvilinear search to find a step combining both types of directions. The length of the step is typically tuned using an Armijo-like condition [START_REF] Mccormick | A modification of Armijo's step-size rule for negative curvature[END_REF][START_REF] Goldfarb | The use of negative curvature in minimization algorithms[END_REF][START_REF] Moré | On the use of directions of negative curvature in a modified Newton method[END_REF]. Improvements were subsequently proposed by incorporating the curvilinear step in a nonmonotone algorithm [START_REF] Ferris | Nonmonotone curvilinear line search methods for unconstrained optimization[END_REF], allowing the resolution of large-scale problems [START_REF] Lucidi | Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization[END_REF] or by choosing between the two steps based on model decrease [START_REF] Gould | Exploiting negative curvature in a linesearch algorithm for unconstrained optimization[END_REF]. Alternatively, negative curvature has also been used to regularize the Hessian matrix, yielding the famous Goldfeld-Quandt-Trotter (GQT) method [START_REF] Goldfeldt | Maximization by quadratic hill-climbing[END_REF]. Unfortunately, this method also involves more complex computation to find the step and has the same global convergence rate as first-order algorithms [START_REF] Ueda | A regularized Newton method without line search for unconstrained optimization[END_REF]. The negative curvature regularization was also the subject of the more recent paper [START_REF] Birgin | The Use of Quadratic Regularization with a Cubic Descent Condition for Unconstrained Optimization[END_REF], in which various Newton steps are tried at each iteration in order to ensure the optimal ARC [START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part I: motivation, convergence and numerical results[END_REF][START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part II: worst-case function-evaluation complexity[END_REF] global rate of convergence.

One may then wonder if it is possible to devise an adaptive second-order method using a single explictly regularized Newton step when possible and a negative curvature direction only when necessary, with a near-optimal complexity rate. The objective of this paper is to show that it is indeed possible (and efficient). To this aim, we propose a fast Newton's method that exploits negative curvature for nonconvex optimization problems and generalizes the method proposed in [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF][START_REF] Doikov | Gradient regularization of Newton method with Bregman distances[END_REF] to the nonconvex case. The new algorithm automatically adjusts the regularization parameter (without knowledge of the Hessian's Lipschitz constant). The method either uses an appropriately regularized Newton step taking the smallest negative eigenvalue of the Hessian also into account or simply follows the negative curvature otherwise. It first attempts a step along a direction regularized by the square root of the gradient only, as in the convex setting [START_REF] Doikov | Gradient regularization of Newton method with Bregman distances[END_REF][START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF]. In that sense, it is inspired by the "convex until proved guilty" strategy advocated by [START_REF] Carmon | Convex until proven guilty": Dimension-free acceleration of gradient descent on non-convex functions[END_REF]. If this attempt fails, it obtains negative curvature information of the Hessian, which is then used either for regularization or to define a step along a negative-curvature direction. In what follows, all these operations are carried out in a specific, iteration-dependent subspace, whose choice leads to different algoritmic variants. We prove that these methods require at most O | log ǫ| ǫ -3/2 iterations and evaluations of the problem data to obtain an ǫ-approximate first-order critical point, which is very close to the optimal convergence rate of second-order methods for Lipschitz Hessian functions [START_REF] Cartis | Worst-case evaluation complexity and optimality of secondorder methods for nonconvex smooth optimization[END_REF]. We also introduce an further algorithmic variant which is guaranteed to find a second-order critical point in at most O | log ǫ| ǫ -3 iterations.

The paper is organized as follows. Section 2 describes the general algorithmic framework and compares it with recent work on second-order methods. Section 3 states our assumptions and derives a bound on its worst-case complexity for finding first-order critical points. Section 4 presents the second-order algorithmic variant and states its complexity, the corresponding analysis being detailed in appendix. Section 5 then discusses some choices of the iteration-dependent subspace, including Krylov spaces. Section 6 finally illustrates the numerical behavior of the proposed methods. Conclusions are drawn in Section 7. Notation The following notations will be used throughout the paper. Let q ≥ 1. The symbol . denotes the Euclidean norm for vectors in IR q and its associated subordinate norm for matrices. λ min (M ) and λ max (M ) denote the minimum and maximum eigenvalues of a symmetric matrix M , while I q is the identity matrix in IR q . For x ∈ IR, we define [x] + = max(x, 0). For two vectors x, y ∈ IR q , x ⊺ y denotes their inner product. The i-th column of I q is denoted by e i .

Adaptive Newton with Negative Curvature

We consider the problem of finding approximate first-order critical points of the smooth unconstrained nonconvex optimization problem min

x∈IR n f (x) (2.1)
and discuss our algorithm called AN2C (for Adaptive Newton with Negative Curvature) on this page. The algorithm, whose purpose is to compute first-order critical points, is presented in the framework of adaptive regularization methods [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF][START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part I: motivation, convergence and numerical results[END_REF] [15, Section 3.3] and proceeds as follows, using two subroutines RegStep and NewtonEigenStep.

Algorithm 2.1: Adaptive Newton with Negative Curvature (AN2C)

Step 0: Initialization An initial point x 0 ∈ IR n , a regularization parameter σ 0 > 0 and a gradient accuracy threshold ǫ ∈ (0, 1] are given, as well as the parameters

σ min > 0, κ C , κ θ > 0, κ a , κ b ≥ 1, ς 1 ∈ (0, 1), ς 2 ∈ [0, 1 2 ), ς 3 ∈ [0, 1), θ ∈ (0, 1], 0 < γ 1 < 1 < γ 2 ≤ γ 3 and 0 < η 1 ≤ η 2 < 1.
Set k = 0.

Step 1: Check termination Evaluate

g k def = ∇ 1 x f (x k ). Terminate if g k ≤ ǫ.
Step 2: Compute subspace derivatives Choose p ∈ {1, . . . , n} and form

V p ∈ IR n×p . Compute g k def = V ⊺ p g k and H k def = V ⊺ p H k V p where H k def = ∇ 2 x f (x k ).
Step 3 (Optionnal): Attempt a regularization step

s k = s def k = RegStep( g k , H k , V p , g k , σ k , κ a , κ b , ς 1 , ς 2 ). (2.2)
If s def k has been successfully defined, go to Step 5.

Step 4 : Newton Step Computation

s k = NewtonEigenStep( g k , H k , V p , g k , σ k , κ C , κ b , κ θ , ς 3 , θ ). (2.3)
Step 5: Acceptance ratio computation Evaluate f (x k + s k ) and compute the acceptance ratio

ρ k = f (x k ) -f (x k + s k ) -(g ⊺ k s k + 1 2 s ⊺ k H k s k ) . (2.4) If ρ k ≥ η 1 , set x k+1 = x k + s k else x k+1 = x k .
Step 6: Regularization parameter update Set

σ k+1 ∈      [max (σ min , γ 1 σ k ) , σ k ] if ρ k ≥ η 2 , [σ k , γ 2 σ k ] if ρ k ∈ [η 1 , η 2 ), [γ 2 σ k , γ 3 σ k ] if ρ k < η 1 .
(2.5)

Increment k by one and go to Step 1.

Algorithm 2.2: RegStep( g k , H k , V p , g k , σ k , κ a , κ b , ς 1 , ς 2 )
Attempt to solve the linear system

( H k + κ a σ k g k I p )y def k = -g k . (2.6)
If a solution y def k of this system can be obtained such that

(y def k ) ⊺ ( H k + κ a σ k g k I p )y def k > 0, (2.7 
)

y def k ≤ (1 + κ θ ) ς 1 g k κ a σ k , (2.8) 
H k V p y def k + g k ≤ κ b H k y def k + g k , (2.9) 
r def k ≤ min ς 2 κ a σ k g k y def k , κ θ g k (2.10)
where

r def k = ( H k + κ a σ k g k I p )y def k + g k , then return s def k def = V p y def k . Algorithm 2.3: NewtonEigenStep( g k , H k , V p , g k , σ k , κ C , κ b , κ θ , ς 3 , θ )
Step 1:

Test negative curvature If λ min ( H k ) ≤ -κ C σ k g k , go to Step 4.
Step 2: Newton Step Solve

H k + ( σ k g k + [-λ min ( H k )] + )I p y neig k = -g k (2.11)
to ensure the residual condition

r neig k def = H k + ( σ k g k + [-λ min ( H k )] + )I p y neig k + g k ≤ min ς 3 σ k g k y neig k , κ θ g k .
(2.12)

Step 3: Check global quality of the solution If

H k V p y neig k + g k ≤ κ b H k y neig k + g k then set s k = s neig k def = V p y neig k . (2.13) Else, go back AN2C[Step 2].
Step 4: Eigenvector direction Compute u k such that

g ⊺ k u k ≤ 0, u k = 1 and u ⊺ k H k u k ≤ θλ min ( H k ) (2.14)
and set

s k = s curv k def = θκ C σ k g k σ k V p u k . (2.15)
The selection of the iteration-dependent subspace defined as the range of V p in Step 2 is of course crucial for the algorithm. At this stage of the algorithm description, cycling may possibly occur between Step 2 and (2.13) in Step 4, should the choice of the subspace be consistently inadequate. We will however discuss some practical choices in Section 5, for which this situation cannot happen. For our subsequent analysis, we therefore assume the following. AS.0 For each iteration k, condition (2.13) is satisfied after finitely many choices of V p . Moreover, there exists a constant V max ≥ 1 such that V p ≤ V max for all p ∈ {1, . . . , n}.

(2.16)

After selecting the subspace (1) and projecting the current gradient and Hessian, we first attempt a step that avoids computing negative curvature information. Indeed, the s def k notation, where def stands for "definite", in (2.6) makes the connection with the two conditions (2.6) and (2.7). The condition (2.7) is significantly less restrictive than checking the positive-definess of the regularized matrix in (2.6). This is at variance with the work of [START_REF] Birgin | A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization[END_REF] where a factorization is required at each step, and coherent with the 'capped-CG' subroutine proposed at [START_REF] Yao | Inexact Newton-CG algorithms with complexity guarantees[END_REF]. Should the problem be (locally) convex, (2.7) would automatically hold (see [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF][START_REF] Doikov | Gradient regularization of Newton method with Bregman distances[END_REF]). The test (2.8) is required as to avoid steps whose magnitude is too large compared to the gradient (the motivation for its particular form of the test will become clear in Section 3).

When computing a vector s def k satisfying (2.7) to (2.10) is not possible, we (approximately) solve a linear system in IR p (2.11) whose definition involves [-λ min ( H k )] + . Even if an exact solution can be obtained at a marginal cost for small p, we still allow an approximate solution satisfying (2.12). We note that [-λ min ( H k )] + could have been replaced in (2.11) by κ C σ k g k and the remainder of the complexity analysis would remain valid. An interesting connection can also be established between the regularization in (2.11) for H k = H k and the GQT method [START_REF] Goldfeldt | Maximization by quadratic hill-climbing[END_REF], as the regularization parameter ( σ k g k + [-λ min (H k )] + ) is very similar in spirit to that used in this method. In the closely related algorithm of [START_REF] Birgin | The Use of Quadratic Regularization with a Cubic Descent Condition for Unconstrained Optimization[END_REF], a term µ is added to [-λ min (H k )] + and multiple µ's are tested as to ensure 'cubic' descent. In our case, σ k g k directly yields a regularization of the desired order. Also observe that, in most cases, the "approximate minimum curvature direction" u k is already available when computing λ min ( H k ). It can be also retrieved via a Lanczos procedure as proposed in [47, Lemma 9].

We now provide some comments that apply to the definition of both s def k and s neig k . Specifically, focusing on the latter, condition (2.13) serves to ensure the appropriateness of the subspace spanned by V p . This condition guarantees that the projected residual (2.12) is sufficiently small compared to both the projected and unprojected gradients. In a more standard setting, where V p = I n , this condition simplifies to

(H k + ( σ k g k + [-λ min (H k )] + )I n )s k + g k ≤ min(ς 3 σ k g k s k , κ θ g k ),
(2.17)

where the κ θ g k term is standard when devising truncated CG algorithms. The other term ensures the typical condition required for the approximate minimization of the cubic model m k , namely that

∇ 1 s m k (s k ) ≤ O( s k 2 ). (2.18)
This condition is typically used to derive the optimal complexity rate O ǫ -3/2 , see [START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part I: motivation, convergence and numerical results[END_REF][START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF] and the references therein. Finally we note that the condition of Step 1 in the NewtonEigenStep algorithm, which forces the negative curvature step (2.15), can be interpreted as the comparison of the minimal curvature of the quadratic (λ min (V ⊺ p H k V p )) with the quantity σ k g k /σ k , which itself can be viewed as the curvature of the regularization term 1 6 σ k s 3 for some s whose length g k /σ k is of the order of a standard regularized step (see [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Lemma 3.3], for instance). The test thus ensures a "regularization-like" step when the quadratic's negative curvature is strong enough to dominate that of the regularization for too small steps (see (2.29) below).

(1) Since we do not specify at this point how to make this selection, AN2C may be viewed as a class of algorithms depending on the choice of Vp.

Once the step has been computed, the mechanisms for accepting/rejecting the new iterate (Step 5) and updating the regularization parameter (Step 6) are typical of adaptive regularization algorithms (see [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF][START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part I: motivation, convergence and numerical results[END_REF] or [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Section 3.3.1], for instance).

Before delving into the complexity analysis of AN2C, we further explore its fundamental properties and discuss its relationships with closely related nonconvex optimization algorithms. The method presented in [START_REF] Curtis | Exploiting negative curvature in deterministic and stochastic optimization[END_REF] differs from AN2C in that it employs a gradient step followed by a negative curvature step. On the other hand, [START_REF] Liu | Adaptive negative curvature descent with applications in non-convex optimization[END_REF] adopts a condition-based approach to choose between gradient descent and negative curvature directions, relying on known smoothness parameters, while our methods remain fully adaptive. Another related approach is presented in [START_REF] Royer | Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization[END_REF], which, unlike AN2C, examines various conditions to select a specific direction (gradient, Newton, negative curvature) and performs a linesearch. Furthermore, [START_REF] Curtis | Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization[END_REF] proposes a trust-region algorithm (in contrast to adaptive regularization) that tackles the trust-region subproblem using a combination of conjugate gradients and negative curvature. Notably, their condition on the residuals of this subproblem [START_REF] Curtis | Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization[END_REF]Inequality (3.2)] can be related to (2.17).

Following well-established practice, we now define

S def = {k ≥ 0 | x k+1 = x k + s k } = {k ≥ 0 | ρ k ≥ η 1 },
the set of indexes of "successful iterations", and

S k def = S ∩ {0, . . . , k},
the set of indexes of successful iterations up to iteration k. We further partition S k in three subsets depending on the nature of the step taken, so that

S neig k def = S k ∩ {s k = s neig k }, S curv k def = S k ∩ {s k = s curv k }, S def k def = S k ∩ {s k = s def k }.
We also recall a well-known result bounding the total number of iterations of adaptive regularization methods in terms of the number of successful ones.

Lemma 2.1 [3, Lemma 2.4], [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Lemma 2.4.1] Suppose that the AN2C algorithm is used and that σ k ≤ σ max for some σ max > 0. Then 

k ≤ |S k | 1 + | log γ 1 | log γ 2 + 1 log γ 2 log σ max σ 0 . ( 2 
g k = -H k + ( σ k g k + [-λ min ( H k )] + )I p y neig k + r neig k (2.21)
and

s neig k ≤ (1 + κ θ )V 3 2 max g k σ k . (2.22)
Similarly, when s def k is computed,

g k = -H k + κ a σ k g k I p y def k + r def k , (2.23) 
and

s def k ≤ V max y def k . (2.24)
At last, when s curv k is computed,

s curv k ≤ V max θκ C σ k g k σ k . (2.25) 
Proof. First note from the second part of (2.13) and (2.16), 

s neig k = V p y neig k ≤ V
g k = -H k + ( σ k g k + [-λ min ( H k )] + )I p y neig k + r neig k .
From (2.21), the facts that

H k + ( σ k g k + [-λ min ( H k )] + )I p is a positive definite matrix with λ min ( H k + ( σ k g k + [-λ min ( H k )] + )I p ) ≥ σ k g k
and that r neig k ≤ κ θ g k because of (2.12). We thus obtain that (2.25). ✷

y neig k ≤ (1 + κ θ ) g k σ k ≤ (1 + κ θ ) V max g k σ k , ( 2 
The next lemma gives a lower bound on the decrease of the local quadratic approximation. In standard adaptive regularization algorithms, this decrease automatically results from the minimization of the model (See [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF] for instance). In our case, we need to use the properties of s def k , s curv k and s neig k to obtain the desired result.

Lemma 2.3 Let k be a successful an iteration of AN2C. If k ∈ S def k , we have that -g ⊺ k s k + 1 2 s ⊺ k H k s k ≥ 1 -2ς 2 2 κ a σ k g k y def k 2 ≥ 1 -2ς 2 2 κ a σ k g k s k 2 V 2 max . (2.27) If k ∈ S neig k , then -g ⊺ k s k + 1 2 s ⊺ k H k s k ≥ (1 -ς 3 ) σ k g k y neig k 2 ≥ (1 -ς 3 ) σ k g k s k 2 V 2 max . (2.28) Else, if k ∈ S curv k , -g ⊺ k s k + 1 2 s ⊺ k H k s k ≥ 1 2 θ 3 κ 3 C g k 3 2 √ σ k ≥ 1 2 σ k s k 3 V 3 max . (2.29)
Proof. Suppose first that k ∈ S def k . We then obtain from (2.2), (2.10) and (2.8) that

g ⊺ k s def k + 1 2 (s def k ) ⊺ H k s def k = (V ⊺ p g k ) ⊺ y def k + 1 2 (y def k ) ⊺ V ⊺ p H k V p y def k = (r def k ) ⊺ y def k -(y def k ) ⊺ ( H k + κ a σ k g k I p )y def k + 1 2 (y def k ) ⊺ H k y def k = -κ a σ k g k y def k 2 + (r def k ) ⊺ y def k - 1 2 (y def k ) ⊺ H k y def k ≤ -κ a σ k g k y def k 2 + ς 2 κ a σ k g k y def k 2 + 1 2 κ a σ k g k y def k 2 .
Hence (2.27) follows froms (2.24).

Suppose now that k ∈ S neig k . By using (2.21) and the fact that

H k + [-λ min ( H k )] + I p 0, g ⊺ k s neig k + 1 2 (s neig k ) ⊺ H k s neig k = (V ⊺ p g k ) ⊺ y neig k + 1 2 (y neig k ) ⊺ V ⊺ p H k V p y neig k = (r neig k ) ⊺ y neig k -(y neig k ) ⊺ ( H k + [-λ min ( H k )] + I p )y neig k + 1 2 (y neig k ) ⊺ ( H k + [-λ min ( H k )] + I p )y neig k - 1 2 [-λ min ( H k )] + y neig k 2 -σ k g k y neig k 2 = (r neig k ) ⊺ y neig k - 1 2 (y neig k ) ⊺ ( H k + [-λ min ( H k )] + I p )y neig k - 1 2 [-λ min ( H k )] + y neig k 2 -σ k g k y neig k 2 ≤ ς 3 σ k g k y neig k 2 - 1 2 [-λ min ( H k )] + y neig k 2 -σ k g k y neig k 2 ,
where we have used (2.12) to obtain the last inequality. Rearranging, ignoring the 

( H k ) ≤ -κ C σ k g k , we deduce that g ⊺ k s curv k + 1 2 (s curv k ) ⊺ H k s curv k = g ⊺ k V p u k + 1 2 (s curv k ) ⊺ H k s curv k ≤ 1 2 θ 2 κ 2 C g k σ k u ⊺ k H k u k ≤ 1 2 θ 3 κ 2 C g k σ k λ min ( H k ) ≤ - 1 2 θ 3 κ 3 C g k 3 2 √ σ k , (2.30) 
yielding the first inequality in (2.29). For the second inequality, remark that from (2.25), we derive that

θ 3 κ 3 C g k 3 2 √ σ k = σ k θ 3 κ 3 C g k 3 2 σ 3 2 k ≥ σ k s k 3 V 3 max ,
injecting the last bound in (2.30) gives the second inequality in (2.29). ✷

Complexity analysis for the AN2C algorithm

We now turn to analyzing the worst-case complexity of the AN2C algorithm. Our analysis is conducted under AS.0 and the following assumptions.

AS.1 The function f is two times continuously differentiable in IR n . AS.2 There exists a constant

f low such that f (x) ≥ f low for all x ∈ IR n . AS.3
The Hessian of f is globally Lipschitz continuous, that is, there exists a non-negative constant

L H such that ∇ 2 x f (x) -∇ 2 x f (y) ≤ L H x -y for all x, y ∈ IR n . ( 3 

.1)

AS.4 There exists a constant κ B > 0 such that max(0, -λ min (∇

2 x f (x))) ≤ κ B for all x ∈ {y ∈ IR n | f (y) ≤ f (x 0 )}.
AS.1-AS.3 are standard assumptions when analyzing algorithms that utilize second-order information [START_REF] Cartis | Adaptive cubic overestimation methods for unconstrained optimization. Part II: worst-case function-evaluation complexity[END_REF][START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF]. AS.4 is weaker than assuming bounded Hessians, a condition often used when theoretically analyzing second-order methods that combines negative curvature and gradient based directions [START_REF] Royer | Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization[END_REF][START_REF] Curtis | Exploiting negative curvature in deterministic and stochastic optimization[END_REF][START_REF] Liu | Adaptive negative curvature descent with applications in non-convex optimization[END_REF]. The left-hand side of the inequality is sometimes called the "convex deviation" or "modulus of nonconvexity" [START_REF] Kong | The cost of nonconvexity in deterministic nonsmooth optimization[END_REF]. As it turns out, AS.4 is only needed for x being any iterate x k produced by the algorithm and these iterates all belong to the level associated with the starting point x 0 because the acceptance condition in Step 5 ensures that the sequence {f (x k )} is non-increasing. If this level set is bounded or if the sequence {x k } remains bounded for any other reason, we immediately obtain that

max(0, -λ min (H k )) ≤ κ B for all k ≥ 0 (3.2)
for some κ B ≥ 0, and both AS.3 and AS.4 automatically hold.

Having established a lower bound on the decrease ratio in Lemma 2.3, we next proceed to derive an upper bound on the regularization parameter. This is a crucial step when analyzing adaptive regularization methods. Lemma 3.1 Suppose that AS.1 and AS.3 hold. Then, for all k ≥ 0,

σ k ≤ σ max def = γ 3 max σ 0 , ς max L H 6(1 -η 2 ) , (3.3) 
where

ς max def = max (1 + κ θ )V 7 2 max (1 -ς 3 ) , 2(1 + κ θ )V 3 max κ a ς 1 (1 -2ς 2 ) , 2 V 3 max . (3.4)
Proof.

Let us compute the ratio ρ k for k ∈ S neig k

. By using AS.3 and the standard error bound for Lispschitz approximation of the function (see [START_REF] Cartis | Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints[END_REF]Lemma 2.1]), that ς 3 < 1, (2.28) and (2.22), we obtain that

1 -ρ k = f (x k + s k ) -f (x k ) -g ⊺ k s k -1 2 s ⊺ k H k s k -(g ⊺ k s k + 1 2 s ⊺ k H k s k ) ≤ L H V 2 max s neig k 3 6(1 -ς 3 ) σ k g k s neig k 2 ≤ L H V 2 max s neig k 6(1 -ς 3 ) σ k g k ≤ L H (1 + κ θ )V 2 max 6(1 -ς 3 )σ k . (3.5) Hence, if σ k ≥ LH (1+κ θ )V 7 2 max
6(1-ς3)(1-η2) , then ρ k ≥ η 2 , which implies that iteration k is successful and σ k+1 ≤ σ k because of (2.5). The mechanism of (2.5) in the algorithm then ensures that

σ k ≤ γ 3 max σ 0 , L H (1 + κ θ )V 7 2 max 6(1 -ς 3 )(1 -η 2 ) . (3.6) 
Similarly, if k ∈ S def k , we use AS.3, the Lipschitz approximation error bound, the fact that ς 2 < 1 2 , (2.27), (2.8) and (2.24) to deduce that

1 -ρ k ≤ L H s def k V 2 max 3(1 -2ς 2 ) κ a σ k g k ≤ L H (1 + κ θ )V 3 max 3κ a ς 1 (1 -2ς 2 )σ k .
Using the same argument as above, we now obtain that

σ k ≤ γ 3 max σ 0 , L H (1 + κ θ )V 3 max 3κ a ς 1 (1 -2ς 2 )(1 -η 2 ) . (3.7)
Consider finally the case where k ∈ S curv k . Again using AS.3, the Lipschitz approximation error bound and (2.29) lower-bound, we derive that 

1 -ρ k = f (x k + s k ) -f (x k ) -g ⊺ k s k -1 2 s ⊺ k H k s k -g ⊺ k s k -1 2 s ⊺ k H k s k ≤ L H s curv k 3 V 3 max 6 1 2 σ k s curv k 3 = L H V 3 max 3σ k , so that σ k ≤ γ 3 max σ 0 , L H V 3 max 3(1 -η 2 ) . ( 3 

4). ✷

We now prove a lower bound on the decrease at a successful iteration k using negative curvature. We will also bound the change in the norm g k+1 in term of g k , which will be useful later to bound the cardinal of a subset of S neig k ∪ S curv k .

Lemma 3.2 Suppose that AS.1, AS.3 and AS.4 hold and that k ∈ S curv k before termination. Then

f (x k ) -f (x k+1 ) ≥ η 1 θ 3 κ 3 C 2 √ σ max ǫ 3 2 , (3.9) 
and

g k+1 ≤ L H V 2 max 2σ k κ 2 C θ 2 + θ 2 κ B κ C √ ǫσ k + 1 g k . (3.10) Proof. Let k ∈ S curv k
. From (2.4) and (2.29), we obtain that

f (x k ) -f (x k+1 ) ≥ η 1 -g ⊺ k s k - 1 2 s ⊺ k H k s k ≥ η 1 θ 3 κ 3 C 2 √ σ k g k 3 2
.

Since g k ≥ ǫ before termination and that σ k ≤ σ max by Lemma 3.1, we obtain (3.9).

Let us now prove (3.10). By using the Lipschitz error bound for the gradient ([14, Lemma 2.1]), the triangular inequality, the fact that k ∈ S curv k , (2.14), (2.15), and (2.25), we obtain that

g k+1 ≤ g k+1 -g k -H k s k + H k s k + g k ≤ L H 2 s k 2 + g k + H k s k = L H 2 s curv k 2 + g k + H k s curv k ≤ L H V 2 max 2σ k κ 2 C θ 2 g k + g k + H k s curv k . (3.11)
Now, using (2.14), (2.15) again,

H k s curv k = θκ C g k σ k H k V p u k = θκ C g k σ k u ⊺ k H 2 k u k ≤ θ 2 κ C g k σ k |λ min ( H k )| ≤ θ 2 κ C g k σ k |λ min (H k )|.
Hence (3.11) together with AS.4 and the fact g k ≥ ǫ before termination, give that

g k+1 ≤ L H V 2 max 2σ k κ 2 C θ 2 g k + g k + θ 2 κ B κ C g k σ k = L H V 2 max 2σ k κ 2 C θ 2 + θ 2 κ B κ C σ k g k + 1 g k ≤ L H V 2 max 2σ k κ 2 C θ 2 + θ 2 κ B κ C √ σ k ǫ + 1 g k , yielding (3.

10). ✷

This lemma is the only result requiring AS.4 or its weaker formulation (3.2). Note that this assumption is only required along directions of negative curvature, which we expect to occur rarely in practice for suitably large choices of κ C .

After proving a lower bound on the quadratic's decrease when k ∈ S def k , we now exhibit a relationship between the decrease on the objective function decrease and gradient both at iteration k and k + 1 for k ∈ S neig k ∪ S def k . This is also where the two global conditions (2.13) and (2.9) on the subspace V p will be useful. Moreover, we also prove an inequality between the norms of the gradient at two successive iterations, similar to (3.10). 

g k+1 ≤ L H V 3 max (1 + κ θ ) 2ς 2 1 σ k + 2κ b √ V max ς 1 + κ b κ C V max (1 + κ θ ) g k (3.12)
and

f (x k ) -f (x k+1 ) ≥ η 1 ς min σ k g k -(2 + κ C )κ b κ a σ k g k + (κ b (2 + κ C )) 2 κ a σ k g k + 2 V 2 max L H g k+1 L H V 2 max 2 (3.13)
where

ς min def = min 1 -2ς 2 2 , 1 -ς 3 . (3.14) 
Proof. Consider first the case where k ∈ S neig k

. By using the Lipschitz error bound for the gradient ([14, Lemma 2.1]), that (2.13) holds, r neig k expression (2.21), the condition on r neig k (2.12) and the fact that [-λ min ( 

H k )] + ≤ κ C σ k g k for k ∈ S neig k , we deduce that g k+1 ≤ g k+1 -H k s neig k -g k + H k s neig k + g k ≤ L H 2 s neig k 2 + κ b H k y neig k + g k ≤ L H 2 s neig k 2 + κ b ( σ k g k + [-λ min ( H k )] + ) y neig k + κ b r neig k ≤ L H 2 s neig k 2 + κ b (1 + κ C ) σ k g k y neig k + κ b ς 3 σ k g k y neig k . ( 3 
g k+1 ≤ L H V 3 max 2σ k (1 + κ θ ) + κ b (1 + κ C ) V max + ς 3 κ b V max (1 + κ θ ) g k . (3.16)
Consider now k ∈ S def k . By arguments similar to those used for (3.15), this time with (2.23), (2.9) and (2.10), we obtain that 

g k+1 ≤ g k+1 -H k s def k -g k + H k s def k + g k ≤ g k+1 -H k s def k -g k + κ b H k y def k + g k ≤ L H 2 s def k 2 + κ b κ a σ k g k y def k + κ b r def k ≤ L H 2 s def k 2 + κ b κ a σ k g k y def k + κ b ς 2 κ a σ k g k y def k . ( 3 
g k+1 ≤ L H (1 + κ θ )V 2 max 2ς 2 1 κ a σ k + κ b (1 + ς 2 ) ς 1 (1 + κ θ ) g k , (3.18) 
so that taking the larger bound for both (3.16) and (3.18) and using the bounds

ς 1 < 1, ς 2 < 1 2 , ς 3 < 1, V max ≥ 1 and κ b ≥ 1 gives (3.12).
Finally, from (3.17), (3.15), (2.20), (2.24), the bounds max(ς 3 , ς 2 ) < 1 and κ a ≥ 1, we obtain that, for

k ∈ S def k ∪ S n k , L H V 2 max 2 y k 2 + κ b (2 + κ C ) κ a σ k g k y k -g k+1 ≥ 0.
Hence y k is larger than the positive root of this quadratic and therefore

y k ≥ -κ b (2 + κ C ) κ a σ k g k + κ 2 b (2 + κ C ) 2 κ a σ k g k + 2L H V 2 max g k+1 L H V 2 max > 0.
We then deduce (3.13) from this inequality, (2.4), the lower bounds on the quadratic decrease for k ∈ S neig k or k ∈ S def k ((2.28) and (2.27) respectively) and the definition of ς min in (3.14). ✷

The bound (3.13) is not sufficient for deriving the required O ǫ -3/2 optimal complexity rate because the decrease depends on both g k+1 and g k . Indeed, when g k+1 ≪ g k , the righthand side of (3.13) tends to zero. To circumvent this difficulty, the next lemma borrows some elements of [41, Theorem 1] and partitions S neig k ∪ S def k in two further subsets. The minimum decrease on the objective function is of the required magnitude in the first one while no meaningful information can be derived on the decrease on the function value in the second, albeit the magnitude of the gradient at the next iteration is halved. The bounds (3.12) and (3.10) are then used to bound the cardinal of the latter set. where

S decr k def = {k ∈ S neig k ∪ S def k , σ k g k ≤ κ m 2L H g k+1 }, (3.20) 
S divgrad k def = {k ∈ S neig k ∪ S def k , σ k g k > κ m 2L H g k+1 } (3.21)
with

κ m def = γ 3 max σ 0 L H , ς max 6(1 -η 2 ) . (3.22)
Then, for all k ∈ S decr k ,

f (x k ) -f (x k+1 ) ≥ η 1 ς min (σ k g k ) 3 2 κ m L H κ b (2 + κ C ) √ κ a + (κ b (2 + κ C )) 2 κ a + V 2 max κm 2 . (3.23)
Moreover,

|S divgrad k | ≤ κ n |S decr k | + 1 2 log(2) | log(ǫ)| + κ curv |S curv k | + | log(ǫ)| + log( g 0 ) log(2) + 1, (3.24) 
where 

κ n def = 1 log(2) log L H (1 + κ θ )V 3 max 2ς 2 1 σ min + 2 √ V max κ b ς 1 + V max κ C κ b + log (1 + κ θ ) log(2) , (3.25) 
κ curv def = 1 log(2) log L H V 2 max 2σ min κ 2 C θ 2 + θ 2 κ B κ C √ σ min + 1 . ( 3 
f (x k ) -f (x k+1 ) ≥ η 1 ς min (σ k g k ) 3 2       -(2 + κ C )κ b √ κ a + (2 + κ C ) 2 κ 2 b κ a + V 2 max κ m L H V 2 max       2 .
Taking the conjugate both at the denominator and numerator yields (3.23). 

g k+1 < σ k κ m L H g k 2 ≤ σ k γ 3 max σ0 LH , ςmax 6(1-η2) L H g k 2 ≤ g k 2 , (3.27) 
where the last inequality results from the upper bound on σ k in (3.3).

Successively using the fact that

S k = S decr k ∪ S divgrad k ∪ S curv k
, the relationship between g k+1 and g k in the three cases ((3.27), (3.12) and (3.10)), the fact that σ k ≥ σ min in (3.12) and (3.10), we then deduce that

ǫ g 0 ≤ g k g 0 = i∈S k \{k} g i+1 g i = i∈S decr k \{k} g i+1 g i i∈S divgrad k \{k} g i+1 g i i∈S curv k \{k} g i+1 g i ≤ L H (1 + κ θ )V 3 max 2ς 2 1 σ min + 2κ b √ V max ς 1 + κ C κ b V max (1 + κ θ ) |S decr k \{k}| × 1 2 |S divgrad k \{k}| × L H V 2 max 2σ min κ 2 C θ 2 + θ 2 κ B κ C √ ǫσ min + 1 |S curv k \{k}| .
Now ς 1 ≤ 1 and thus both terms in brackets are larger than one. Moreover, obviously,

|S decr k \ {k}| ≤ |S decr k | and |S curv k \ {k}| ≤ |S curv k |, so that 2 |S divgrad k \{k}| ǫ g 0 ≤ L H (1 + κ θ )V 3 max 2ς 2 1 σ min + 2κ b √ V max ς 1 + V max κ C κ b (1 + κ θ ) |S decr k | × L H V 2 max 2σ min κ 2 C θ 2 + θ 2 κ B κ C √ ǫσ min + 1 |S curv k | .
Taking logarithms gives that

|S divgrad k \ {k}| log(2) ≤ log L H (1 + κ θ )V 3 max 2ς 2 1 σ min + κ b √ V max ς 1 + κ C κ b V max (1 + κ θ ) |S decr k | + log( g 0 ) + | log(ǫ)| + log L H V 2 max 2σ min κ 2 C θ 2 + θ 2 κ B κ C √ ǫσ min + 1 |S curv k |.
We then obtain (3.24) with the values of κ n and κ curv stated in (3.25) and (3.26) by dividing this last inequality by log(2) and using the facts that

|S divgrad k \ {k}| ≥ |S divgrad k | -1 and 1 √ ǫ ≥ 1. ✷
Combining the previous lemmas, we are now able to state the complexity of the AN2C algorithm.

Our theorem statement relies on the observation that the objective function is evaluated once per iteration, and its derivatives once per successful iteration.

Theorem 3.5 Suppose that AS.1-AS.4 hold. Then the AN2C algorithm requires at most

|S k | ≤ κ ⋆ + κ negdecr 2 log(2) | log(ǫ)| ǫ -3 2 + | log(ǫ)| + log( g 0 ) log(2) + 1
successful iterations and evaluations of the gradient and the Hessian and at most

1 + | log γ 1 | log γ 2 κ ⋆ + κ negdecr 2 log(2) | log(ǫ)| ǫ -3 2 + | log(ǫ)| + log( g 0 ) log(2) + 1 + 1 log γ 3 log σ max σ 0
evaluations of f to produce a vector x ǫ such that g(x ǫ ) ≤ ǫ, where κ ⋆ is defined by

κ ⋆ def = κ decr (1 + κ n ) + κ negdecr (1 + κ curv ), (3.28) 
with

κ decr def = L H κ m ( √ κ a κ b (2 + κ C ) + κ a (κ b (2 + κ C )) 2 + V 2 max κm ) 2 η 1 ς min σ 3 2 min (3.29)
and

κ negdecr def = 2(f (x 0 ) -f low ) √ σ max η 1 κ 3 C θ 3 , (3.30) 
and where κ n and κ curv are given by (3.25) and (3.26).

Proof.

First note that we only need to prove an upper bound on |S decr 

, f (x 0 ) -f low ≥ i∈S k f (x i ) -f (x i+1 ) ≥ i∈S curv k f (x i ) -f (x i+1 ) ≥ |S curv k | η 1 κ 3 C θ 3 2 √ σ max ǫ 3 2
and hence that

|S curv k | ≤ 2(f (x 0 ) -f low ) √ σ max η 1 κ 3 C θ 3 ǫ -3 2 = κ negdecr ǫ -3 2 . (3.32)
Similarly for k ∈ S decr k , using AS.2, (3.23), the fact that σ k ≥ σ min and g k ≥ ǫ before termination yields that

f (x 0 )-f low ≥ i∈S decr k f (x i )-f (x i+1 ) ≥ |S decr k |η 1 ς min (σ min ǫ) 3 2 L H κ m ( √ κ a (2 + κ C )κ b + κ a (κ b (2 + κ C )) 2 + V 2 max κm ) 2
where κ m is defined in (3.22). Rearranging the last inequality yields that 

|S decr k | ≤ L H κ m ( √ κ a κ b (2 + κ C ) + κ a (κ b (2 + κ C )) 2 + V 2 max κm ) 2 η 1 ς min σ 3 2 min ǫ -3 2 = κ decr ǫ -3 2 . ( 3 
|S k | ≤ κ ⋆ + κ negdecr 2 log(2) | log(ǫ)| ǫ -3 2 + | log(ǫ)| + log( g 0 ) log(2) + 1, (3.35) 
where κ ⋆ is defined in (3.28), thus proving the first part of the theorem. The second part is then deduced from (3.35) combined with Lemma 2.1. ✷

Regrouping all the problem's dependent constant of the last theorem and keeping the worst dependency w.r.t ǫ, we derive a O | log(ǫ)|ǫ -3/2 complexity order in ǫ that only differs by the factor | log(ǫ)| from the optimal order for nonconvex second-order methods [START_REF] Cartis | Worst-case evaluation complexity and optimality of secondorder methods for nonconvex smooth optimization[END_REF], a factor which is typically small for practical values of ǫ. The AN2C algorithm thus enjoys a better complexity order than that of past hybrid algorithms [START_REF] Curtis | Exploiting negative curvature in deterministic and stochastic optimization[END_REF][START_REF] Liu | Adaptive negative curvature descent with applications in non-convex optimization[END_REF][START_REF] Goldfeldt | Maximization by quadratic hill-climbing[END_REF] for which the order is O ǫ -2 . However, it is marginally worse than that of the more complex second-order linesearch of [START_REF] Royer | Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization[END_REF] which attains the optimal order. Moreover, we see in the proof of Theorem 3.5 that the | log ǫ| term appears because of (3.24) and (3.32) and we may hope that the number of s curv k iterations is typically much less than its worst-case O ǫ -3/2 in practice. The trust-region algorithm of [START_REF] Curtis | Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization[END_REF] has the same total complexity as AN2C although their method requires only O ǫ -3/2 gradient and Hessian calls whereas our algorithm suffers from an additional | log(ǫ)| term.

Finding second-order critical points

Can the AN2C algorithm be strengthened to ensure it will compute second-order critical points? We show in this section under the same assumptions as that used for its first-order analysis that approximate second order points can be reached.

The resulting modified algorithm, which we call SOAN2C (for Second-Order AN2C) makes extensive use of AN2C, and is detailed on the next page.

Prior to reaching an approximate first-order point, we utilize only the RegStep and NewtonEigenStep subroutines to generate tentative steps, hence the 'f o' (first-order) superscripts in (4.2) and (4.3). Similar to Section 2, AS.0 is necessary to obtain a valid step when NewtonEigenStep is invoked. Once an approximate first-order point is reached, further progress towards second-order stationarity is obtained by exploiting the negative-curvature direction (4.4)-(4.5), thereby justifying the 'so' (second-order) superscript.

An upper bound on the evaluation complexity of the SOAN2C algorithm is given by the following theorem.

Algorithm 4.1: Second-Order Adaptive Newton with Negative Curvature (SOAN2C)

Step 0: Initialization Identical to AN2C[Step 0] with ǫ ∈ (0, 1] now replaced by ǫ 1 ∈ (0, 1] and ǫ 2 ∈ (0, 1].

Step 1: Compute current derivatives Evaluate g k and H k . Terminate if

g k ≤ ǫ 1 and λ min (H k ) ≥ -ǫ 2 . (4.1) 
Step 2: Compute subspace derivatives Form g k and H k as in AN2C[Step 2].

Step 3:

Step calculation If g k > ǫ 1 ,

s k = s f o k = RegStep( g k , H k , V p , g k , σ k , κ a , κ b , ς 1 , ς 2 ), (Optional). (4.2)
If s f o k has been successfully defined, go to Step 4. Else, compute

s k = s f o k = NewtonEigenStep( g k , H k , V p , g k , σ k , κ C , κ b , κ θ , ς 3 , θ ). (4.3) Else ( g k ≤ ǫ 1 ), compute u k such that g ⊺ k u k ≤ 0, u k = 1 and H k u k = λ min (H k )u k , (4.4) 
and set

s k = s so k def = -λ min (H k ) σ k u k . (4.5)
Step 4: Acceptance ratio computation Identical to AN2C[Step 5].

Step 5: Regularization parameter update Identical to AN2C[Step 6].

Theorem 4.1 Suppose that AS.1-AS.4 hold. Then the SOAN2C algorithm requires at most

|S k | ≤ κ ⋆ ǫ -3 2 1 + κ so ǫ -3 2 + | log(ǫ 1 )| 2 log(2) κ negdecr ǫ -3 2 1 + | log(ǫ 1 )| + log(κ gpi ) log(2) + 1 (κ so ǫ -3 2 + 1)
successful iterations and evaluations of the gradient and the Hessian and at most

1 + | log γ 1 | log γ 2 κ ⋆ ǫ -3 2 1 + κ so ǫ -3 2 + | log(ǫ 1 )| 2 log(2) κ negdecr ǫ -3 2 1 + | log(ǫ 1 )| + log(κ gpi ) log(2) + 1 (κ so ǫ -3 2 + 1) + 1 log γ 3 log σ max σ 0
evaluations of f to produce a vector x ǫ such that g(x ǫ ) ≤ ǫ 1 and λ min (H xǫ ) ≥ -ǫ 2 , where

κ so def = 2σ 2 max (f (x 0 ) -f low ) η 1 (4.6)
κ gpi is defined in (A.5) and κ ⋆ , κ negdecr and σ max (defined by (3.28), (3.30) and (3.3), respectively) depend solely on the problem .

As for Theorem 3.5, the bound, in which the ǫ -3 2 term is likely to dominate, differs from standard one for second-order algorithms seeking second-order points (in O(max(ǫ

-3/2 1 , ǫ -3
2 )) [15, Theorems 3.3.9 and 3.4.6] by a (modest) factor | log(ǫ 1 )|.

To prove Theorem 4.1, we need to take two main issues into account. The first is that, because the step may be computed using (4.2), (4.3) but also (4.5), we need to complete the partition of |S k | by introducing subsets relevant to this new type of steps. The second is clearly that negative curvature information must be exploited in order to guarantee a sufficient decrease of the objective function when it is discovered close to a first-order critical point. This leads to a development which broadly follows the lines of Section 3, extending the proofs when necessary to handle the more complicated situation. The details of this development are given in appendix.

Choosing the subspace

In practice, the algorithm crucially depends on how one chooses the matrix V p spanning the iteration-dependent subspace, and we discuss two options. Each of the choices presented below can be included in both AN2C and SOAN2C, defined in Section 2 and Section 4, respectively. For conciseness, we only consider AN2C.

A full-space variant

A simple choice of V p is to consider V p def = I n , that is the subspace is in fact the whole space. We note that, in this case, conditions (2.9) or (2.13) automatically hold.

We define two variants in this context. The first is called AN2CER (for AN2C Exact using RegStep) exploits the RegStep algorithm in order to limit the need of possibly costly second-order information. The second, potentially more costly, is called AN2CE and does not use the optional RegStep algorithm, therefore making no attempt to avoid eigenvalue computations.

These variants may be useful for problems in which systems (2.6) and (2.11) may effectively be solved (for instance using Cholesky factorizations). As we will see below, they require on average a single such solution/factorization per iteration. AN2CER and AN2CE may thus be attractive in the large class of applications for which off-the-shelf linear solvers are available. The computation of λ min (H k ) also needs to be feasible but, due to Algorithm RegStep, this occurs only rarely in AN2CER.

A Krylov variant

When the dimension of the problem grows and factorizations become impractical, one can turn to exploiting Krylov subspaces, as we now show. The resulting algorithmic variant will be called AN2CK, where K stands here for Krylov, and is obtained by replacing Steps 3 and 4 of the AN2C algorithm by Algorithm AN2CKStep on the following page. In this variant, the subspace generation and step computation are combined in order to best exploit the structure of the resulting subproblem. As is common in Krylov-based methods, we assume the availability of a 'preconditioner', that is a positive-definite matrix M k approximating the Hessian H k in the sense that M -1 k H k is close to the identity. For clarity, we ignore the iteration subscript k in what follows.

Each iteration of the AN2CKStep algorithm has a moderate cost (a few vector assignments, one matrix-vector product and -possibly-the computation of the smallest eigenvalue of a tridiagonal matrix, see [START_REF] Coakley | A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices[END_REF] and the references therein for details). We observe that (5.1)-( 5.2) amounts to using the standard preconditioned Lanczos process for building an orthonormal (in the •, M • inner product) basis V p of successive Krylov subspaces generate by the preconditioned gradient and Hessian. We therefore build on existing theory for this process (see [START_REF] Conn | Trust-Region Methods[END_REF]Section 5.2], for instance). We note that the use of the full Lanczos basis V p is only requested at the end of the process (in (5.7) and (5.9)). As a consequence two options are available for its detailed implementation: one can store the Lanczos basis vectors as the iterations proceed and use them at the end of the step computation, or one can forget them but re-run the necessary Lanczos process to re-generate them (as has been done in the GALAHAD library [START_REF] Gould | GALAHAD-a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization[END_REF] for the GLTR and GLRT algorithms for trust-region and regularization subproblems, respectively). Obviously, V p and T p may be updated incrementally in (5.3) and (5.4). When updating T p , it is also easy to check if it remains positive definite by recurring the pivots of its Cholesky factorization, which are given by π 1 = δ 1 and π p = δ pα 2 p /π p-1 (p > 1).

As long as π p stays positive, it is thus unnecessary to compute λ min (T p ) since [-λ min (T p )] + is then identically zero in (5.5). Finally, should a preconditioner M be unavailable, setting M = I n is possible, in which case w p and z p can be dispensed of because they are identical to r p and v p , respectively. We now verify that, as stated, Algorithm AN2CK is a correct instantiation of Algorithm AN2C (without the optional Step 3). 

Proof.

If Z p is the matrix whose columns are z 1 , . . . , z p , we deduce from (5.1) and (5.2) that

HV p = Z p T p + α p+1 z p+1 e ⊺ p = M V p T p + α p+1 M v p+1 e ⊺ p .
(5.11)

Using that V ⊺ p M v p+1 = 0 yields (5.4). Note also that as v 1 = w1 α1 = M -1 z 1 from (5.1) and

V ⊺ p M V p = I p , V ⊺ p g = α 1 V ⊺ p z 1 = α 1 V ⊺ p M v 1 = α 1 e 1 .
(5.12)

Algorithm 5.1: AN2CKStep( g, H, σ, M, κ C , κ b , θ )

Step 0: Initialization Set p = 1, r 1 = g, w 1 = M -1 r 1 , α 1 = w ⊺ 1 r 1 and z 0 = 0.

Step 1: Form the orthonormal basis Compute

z p = r p α p , v p = w p α p , δ p = v ⊺ p Hv p , (5.1 
)

r p+1 = Hv p -δ p z p -α p z p-1 , w p+1 = M -1 r p+1 , α p+1 = w ⊺ p+1 r p+1 , (5.2) 
and define

V p = (v 1 , v 2 , . . . , v p ) ∈ IR n×p . (5.3)
Step 2: Newton step computation Form the subspace Hessian

T p def = V ⊺ p HV p =        δ 1 α 2 α 2 δ 2 α 3 . . . . . . . . . δ p-1 α p α p δ p        (5.4)
and compute its minimum eigenvalue.

If λ min (T p ) ≤ -κ C σ g , go to Step 4.

Otherwise, solve

T p + ( σ g + [-λ min (T p )] + )I p y p = -α 1 e 1 .
(5.5)

Step 3: Check global quality of the solution If

α 2 p+1 (e ⊺ p y p ) 2 + T p y p + α 1 e 1 2 ≤ κ b T p y p + α 1 e 1 , (5.6) 
then return s = s neig = V p y p .

(5.7)

Else increment p by one and go back to Step 1.

Step 4: Eigenvector direction Compute u such that e ⊺ 1 u ≤ 0, u = 1 and u ⊺ T p u ≤ θ λ min (T p ).

(5.8) Return

s = s curv = θκ C g σ V p u.
(5.9)

The last identity with the fact that T p = V ⊺ p HV p ensures that (5.8) and (5.5) are reformulations of (2.14) and (2.11). We now prove that (5.6) implies (2.13). Using (5.5), (5.12), (5.11), we obtain that

Hs + g = HV p y p + α 1 M v 1 = HV p y p + α 1 M V p e 1 = HV p y p -M V p T p y p -( σ g + [-λ min (T p )] + )M V p y p = α p+1 (e ⊺ p y p )M v p+1 -( σ g + [-λ min (T p )] + )M V p y p .
Since V ⊺ p M V p = I p and V ⊺ p M v p+1 = 0, we deduce, using (5.5) and (5.6), that

Hs + g 2 ≤ λ max (M ) (Hs + g) ⊺ M -1 (Hs + g) = λ max (M ) α 2 p+1 (e ⊺ p y p ) 2 + ( σ g + [-λ min (T p )] + ) 2 y p 2 = λ max (M ) α 2 p+1 (e ⊺ p y p ) 2 + T p y p + α 1 e 1 2 ≤ κ 2 b λ max (M ) T p y p + α 1 e 1 2 ,
and (2.13) follows with the redefined κ b . We finally verify that AS.0 holds. Because

1 = M 1 2 V p ≥ λ min (M 1 2 ) V p = λ min (M ) V p (2.16) holds with V max = 1/ λ min (M ) ≤ µ -1/2 1
, where we again used (5.10) to derive the last inequality. Moreover, given that κ b ≥ 1, termination necessarily occurs when p = n, V ⊺ n M V n = I n , V n spans the whole space and α p+1 = 0 in (5.6). ✷

The optional Step 3 of Algorithm 2.1 is in fact implicitly contained in Algorithm 5.1 since convexity along the current step (condition (2.7)) is verified at each step of the Lanczos process by checking the positive-definiteness of T p . Returning now to the complete sequence of minimization iterates, we see that, whenever the AN2CK algorithm is used with iteration-dependent preconditioners M k = I n , Theorems 3.5 and 4.1 remain valid provided (5.10) holds uniformly for all iterations.

Numerical illustration

We now illustrate the behavior of our proposed algorithms on three sets of test problems from the freely available OPM collection (2) [START_REF] Gratton | OPM, a collection of optimization problems in Matlab[END_REF]. The first set contains 119 small-dimensional problems, the second contains 74 medium-size ones, while the third contains 59 "largish" ones. The list of problems and their dimensions are listed in Tables A. [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF], A.4 and A.5 in appendix.

Using the full-space variants

We use Matlab implementations of AN2CE and AN2CER where the involved linear systems are solved by using the Matlab sparse Cholesky factorization, and where we have set

κ C = 10 3 , κ a = 50 (AN2CE) or 100 (AN2CER) , κ θ = 1, ς 1 = 1 2 , ς 2 = ς 3 = 10 -10 , σ 0 = 1, σ min = 10 -8 , γ 1 = 1 2 , γ 2 = γ 3 = 10, η 1 = 10 -4
and η 2 = 0.95. The values of κ C and κ a were obtained from a hyper-parameter search (3) on the set of small problems. The values of ς 2 and ς 3 are given here for consistency, but are irrelevant since factorizations are used to solve the linear systems. Other parameters values are typical of regularization algorithms.

We compare AN2CE and AN2CER with implementations of the standard adaptive regularization AR2 and trust-region TR2M, two well-regarded methods. All these algorithms use quadratic approximations of the objective function (i.e. gradients and Hessians). The first three also use the same acceptance thresholds η 1 and η 2 and values of γ 1 , γ 2 and γ 3 . The TR2M methods shrinks the trust-region radius by a factor √ 10 and expands it by a factor 2 (see [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Section 11.2] for a discussion of the coherence of these factors between trust-region and adaptive regularization methods). The authors are aware that further method-dependent tuning would possibly result in improved performance, but the values chosen here appear to work reasonably well for each method. The step computation is performed in AR2 following [15, page 67] or [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF] using an (unpreconditioned) Lanczos approach while a standard Moré-Sorensen method (4) is used in TR2M (see [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Chapter 9] for details). For AR2, the step computation is terminated as soon as

g k + H k s k ≤ 1 2 θ sub σ k s k 2 (6.1)
which slightly differs from the test [15, page 65] and [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF] while maintaining the desired O(ǫ -3/2 ) evaluation complexity bound (see [START_REF] Gratton | Adaptive regularization minimization algorithms with non-smooth norms[END_REF] for a justification of (6.1) -including the fact that it more often allows the pure Newton step to be accepted-or [15, page 67]). The Moré-Sorensen iterations in TR2M are terminated as soon as

∇ 1 s m k (s k ) ≤ 1 2 θ sub σ k s k 2 used in
s k ∈ [(1-θ sub )∆ k , (1+θ sub )∆ k ],
where, in both cases, θ sub = 10 -3 for n ≤ 100 and 10 -2 for n > 100. All experiments were run on a Dell Precison computer with Matlab 2022b.

We discuss our experiments from the efficiency and reliability points of view. Efficiency is measured, in accordance with the complexity theory, in number of iterations (or, equivalently, function and possibly derivatives' evaluations): the fewer the more efficient the algorithm. In addition to presenting the now standard performance profiles [START_REF] Dolan | Optimality measures for performance profiles[END_REF] for our four algorithms in Figure 1, we follow [START_REF] Porcelli | A note on using performance and data profiles for training algorithms[END_REF][START_REF] Gratton | First-order objective-function-free optimization algorithms and their complexity[END_REF] and consider the derived "global" measure π algo to be 1 10 of the area below the curve corresponding to algo in the performance profile, for abscissas in the interval [START_REF] Bellavia | Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization[END_REF][START_REF] Cartis | On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization[END_REF]. The larger this area and the closer π algo to one, the closer the curve to the left and top borders of the plot and the better the global performance.

When reporting reliability, we say that the run of an algorithmic variant on a specific test problem is successful if the gradient norm tolerance ǫ = 10 -6 has been achieved in the allotted cpu-time (1h) and before the maximum number of iterations (5000) is reached. The ρ algo statistic denotes the percentage of successful runs taken on all problems in each of the three classes. Figure 1: Full-space variants: iteration performance profiles for OPM problems (left: small, center: medium, right: largish). We report on the vertical axis the proportion of problems for which the number of iterations of each algorithm is at most a fraction (given by the horizontal axis) of the smallest across all algorithms (see [START_REF] Dolan | Optimality measures for performance profiles[END_REF]).

Figure 1 and Table 1 suggest that the reliability of AN2CE and AN2CER is comparable to that of AR2 and TR2M for all problem sizes. They also indicate that AN2CER is somewhat slower iterationwise than AR2 and TR2M , but AN2CE is very comparable. The fact that the computationally (4) Given that our version of AN2C uses matrix factorizations, it seems more natural to compare it with a Moré-Sorensen-based trust-region than to one using truncated conjugate gradients. more expensive AN2CE is often faster than AN2CER in terms of iteration numbers is not surprising. Indeed, the regularization term in (2.11) becomes σ k g k in convex regions, recovering the analysis of [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF][START_REF] Doikov | Gradient regularization of Newton method with Bregman distances[END_REF], whereas AN2CE regularizes the problem more strongly in (2.6) (by a factor 10 in our numerical settings) and therefore may further restricts the steplength. AN2CE may however be computationally more intensive (5) than AN2CER. Which of the two algorithms is preferable in practice is likely to depend on the CPU cost of calculating the Hessian's smallest eigenvalue.

As expected, the call to NewtonEigenStep in AN2CER is typically performed on very few iterations (for less 6.4% of them for the small-problems testset) and, when used, results in a negativecurvature step (2.15) even more exceptionally (less than 1%). This means in particular that a single linear-system solve was necessary for approximately 93% of all iterations. The AN2CE variant of course called NewtonEigenStep at every iteration, but (2.15) was never actually used.

We also ran the SOAN2CE and SOAN2CER variants with ǫ 1 = 10 -6 and ǫ 2 = 10 -4 , but their results are undistinguishable (for our test sets) from those obtained with AN2CE and AN2CER, except for a final eigenvalue analysis at the found approximate first-order point, which confirmed in all cases that the second-order condition (4.1) did also hold at this point. No step of the form (4.5) was ever taken in our runs, despite the fact that such steps are necessary in theory (think of starting the minimization at a first-order saddle point).

Using the Krylov-based variants

We ran two variants of the AN2CK algorithm on our three problem sets, which differ in how the vector u is chosen in (5.8). In the first, called AN2CKU, u is chosen as the eigenvector associated with the eigenvalue λ min (T p ). In the second, called AN2CKYU, u is chosen as the sum of the current vector y p plus a multiple of the eigenvector associated with λ min (T p ) chosen to ensure that the last inequality in (5.8) holds as an equality. An hyper-parameter search on a subset of the medium-sized test set yielded the values

κ C = 3, κ b = 50 and θ = 1 2 .
None of the tested methods used preconditioning (that is the choice M = I n was made throughout). The matrices V p were stored explicitly. We again compared these two variants with AR2 and with TR2K, an implementation of the trust-region close to TR2M, but in which the step is computed by minimizing the quadratic model in the intersection of the trust-region and the successive Krylov spaces until

g k + H k s k ≤ 1 10 g k . (6.
2)

The results of our comparison (using the same metrics as in the previous subsection) are given in Figure 2 and Table 2. We observe that AN2CKU significantly trails the other variants and is in particular both less efficient and less reliable than AN2CKYU, which we explain by the fact that, should a negative curvature step occur, the former strategy does not exploit the decrease of the quadratic model (5) Most failures of this algorithm on large problems occurred because the time limit was reached. Figure 2: Krylov-space variants: iteration performance profiles for OPM problems (left: small, center: medium, right: largish). We report on the vertical axis the proportion of problems for which the number of iterations of each algorithm is at most a fraction (given by the horizontal axis) of the smallest across all algorithms (see [START_REF] Dolan | Optimality measures for performance profiles[END_REF]).

small already obtained by the "convex step" y p . By contrast, AN2CKYU appears to be competitive with both AR2 and TR2K, irrespective of problem size.

For the AN2CKYU variant, the average ratio of the number of matrix-vector products divided by the product of the number of iterations and the problem size (a ratio which is one if every Lanczos process takes n iterations) is below 0.5 for small problems, below 0.15 for medium ones and below 0.03 for large ones. Negative curvature directions (5.9) are also used, for this variant, by 0.25% of the iterations for small problems, 0.23% of iterations for medium ones and never for large ones.

Finally, we also tested SOAN2CKU and SOAN2CKYU, the versions of AN2CKU and AN2CKYU which enforce second-order optimality. As for full-space methods, the results obtained are undistinguable from those for AN2CKU and AN2CKYU, except for a final eigenvalue analysis confirming the approximate second-order optimality of the computed solution.

These early results are encouraging but the authors are aware that only further experiments will allow a proper assessment of the method's true potential, both from the number of function/derivatives evaluations and CPU-usage points of view. Several further algorithmic developments within the new algorithms are also of interest, including a possibly better balance between NewtonEigenStep and RegStep in the full-space version, as well as refinements of the regularization parameter update (2.5), possibly in the spirit of [START_REF] Gould | Updating the regularization parameter in the adaptive cubic regularization algorithm[END_REF].

Conclusions and Perspectives

We have proposed AN2C and AN2CK, two second-order minimization methods for nonconvex problems that alternate, in an iteration dependent subspace, between Newton and negative-curvature directions. These methods differ from the more standard trust-region and adaptive-regularization techniques in that the involved step computation is free of further inner iterative processes and only requires the approximate solution of at most two (but typically one) linear systems per iter-ation. We have also proved that these algorithms require at most O | log(ǫ)|ǫ -3/2 iterations to obtain an ǫ-approximate first-order critical point. Our proof builds on some elements of [START_REF] Mischenko | Regularized Newton method with global O(1/k 2 ) convergence[END_REF][START_REF] Doikov | Gradient regularization of Newton method with Bregman distances[END_REF] for the convex case and arguments for adaptive regularization [START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF] and other nonconvex optimization methods [START_REF] Curtis | Exploiting negative curvature in deterministic and stochastic optimization[END_REF][START_REF] Royer | Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization[END_REF]. At each iteration, the algorithms either take an explicit Newton step or negative curvature when it is sufficiently large compared to the square root of the gradient. The norm of the residuals of the Newton step are adjusted dynamically and different types of solvers can be used to solve the linear systems, depending on how subspaces are chosen.

An extension of the algorithmic framework ensuring approximate second-order optimality has also been introduced, and we have proved that the resulting methods require at most O | log(ǫ)|ǫ -3 iterations to achieve its objective.

A first set of numerical experiments with full-space variants AN2CE and AN2CER as well as Krylov-subspaces iterative ones AN2CKU and AN2CKYU indicates that they are very reliable and competitive with standard techniques in terms of number of iterations.

The reader may wonder why we haven't considered selecting iteration-dependent low-dimensional random subspaces, as has been advocated in [START_REF] Cartis | Randomised subspace methods for non-convex optimization, with applications to nonlinear least-squares[END_REF][START_REF] Shao | On Random Embeddings and Their Application to Optimization[END_REF] for instance. The main reason is that using the Johnson-Lindenstrauss lemma (the basic tool in such an approach) is possible for defining a probabilistically accurate approximate gradient in the subspace. However, as far as we know, using this idea is problematic for the full Hessian matrix unless it is assumed to be of low rank. We could therefore attempt to follow the Cauchy-point-based analysis of [START_REF] Cartis | Randomised subspace methods for non-convex optimization, with applications to nonlinear least-squares[END_REF][START_REF] Shao | On Random Embeddings and Their Application to Optimization[END_REF], and hopefully obtain a probabilistic complexity bound in O(ǫ -2 ). However, we do not see at this point how to design a low-dimensional random-subspace algorithm with an O(| log(ǫ)|ǫ -3/2 ) probabilistic complexity bound for minimizing functions with general (possibly full-rank) Hessians.

Promising lines for future work include inexact derivatives as in [START_REF] Yao | Inexact non-convex Newton-type methods[END_REF][START_REF] Yao | Inexact Newton-CG algorithms with complexity guarantees[END_REF], estimating the regularization parameter without evaluating the objective function (as in [START_REF] Gratton | Convergence properties of an objective-function-free optimization regularization algorithm, including an O(ǫ -3/2 ) complexity bound[END_REF]), stochastic variants and the handling of simple constraints such as bounds on the variables in the spirit of [START_REF] Cartis | Evaluation complexity of algorithms for nonconvex optimization[END_REF]Section 14.2].

Proof of Theorem 4.1

As we noted in Section 4, the step in the SOAN2C algorithm may be computed using (4.2), (4.3) or (4.5). The notations defining the partition of |S k | remain relevant, but we complete them by introducing

S so def = S ∩ {s k = s so k }, S so k def = S k ∩ {s k = s so k }, S f o def = S \ S so and S f o k def = S k \ S so k .
In addition, for m ≥ ℓ ≥ 0, we define S ℓ,m def = S ∩ {ℓ, . . . , m} and we naturally extend this notation using superscripts identifying the subsets of S ℓ,m corresponding to the different iteration types identified above. We also introduce two index sequences whose purpose is to keep track of when s k = s f o k (4.2)-(4.3) or s k = s so k (4.5) are used, in the sense that

s k = s f o k for k ∈ i≥0,pi≥0
{p i , . . . , q i -1} and s k = s so k for k ∈ i≥0 {q i , . . . , p i+1 -1}.

Formally,

p 0 = 0 if g 0 > ǫ 1 -1 if g 0 ≤ ǫ 1 , and 
q 0 = inf{k > 0 | g k ≤ ǫ 1 } if g 0 > ǫ 1 0 if g 0 ≤ ǫ 1 . (A.1)
Then

p i def = inf{k > q i-1 | g k > ǫ 1 } and q i def = inf{k > p i | g k ≤ ǫ 1 } for i ≥ 1. (A.2)
The following lemma states an important decrease property holding when (4.5) is used. We also verify that the bound on the regularization parameter derived in Section 3 still applies.

Lemma A.1 Suppose that AS.1 and AS.3 hold. Let k ∈ S so . Then

-g ⊺ k s k - 1 2 s ⊺ k H k s k ≥ 1 2 σ k s k 3 . (A.3)
Moreover, the upper bound (3.3) still holds for all k ≥ 0.

Proof. We obtain from (4.4) and (4.5) that 

g ⊺ k s so k + 1 2 (s so k ) ⊺ H k s so k ≤ 1 2 s so k 2 u ⊺ k H k u k = 1 2 s so k 2 λ min (H k ) ≤ - 1 2 σ k s so k 3 ,
-ρ k = f (x k + s k ) -f (x k ) -g ⊺ k s k -1 2 s ⊺ k H k s k -g ⊺ k s k -1 2 s ⊺ k H k s k ≤ L H s so k 3 6( 1 2 σ k s so k 3 ) = L H 3σ k . Thus, if σ k ≥ LH 3(1-η2)
, we have that ρ k ≥ η 2 and k is a successful iteration. We may then use the argument of Lemma 3.1 and the fact that ς max introduced in (3.4) is larger than two as V max ≥ 1. Therefore, we deduce that (3.3) also holds for the SOAN2C algorithm.

✷

We now prove an analogue of Lemma 3.1, now using the negative-curvature step as described in (4.4)-(4.5). We also bound the sequence of g pi .

Lemma A.2 Suppose that AS.1, AS.3 and AS.4 hold. Then, for k ∈ S so ,

f (x k ) -f (x k+1 ) ≥ η 1 2σ 2 max ǫ 3 2 . (A.4)
We also have that

g pi ≤ κ gpi def = max g 0 , L H κ 2 B 2σ 2 min + κ 2 B σ min + 1 , (A.5)
for all p i ≥ 0 as defined in (A.1)-(A.2).

Proof. Let k ∈ S so . From (2.4) and (A.3), we obtain that

f (x k ) -f (x k+1 ) ≥ η 1 -g ⊺ k s k - 1 2 s ⊺ k H k s k ≥ η 1 2 σ k s so k 3 . Using now that s so k 3 = |λmin(H k )| 3 σ 3 k (see (4. 5 
)) in the previous inequality gives that

f (x k ) -f (x k+1 ) ≥ η 1 2σ k 2 |λ min (H k )| 3 .
Now |λ min (H k )| ≥ ǫ 2 when s so k is computed and σ k ≤ σ max by Lemma A.1, from which (A.4) follows. Observe now that (A.5) trivially holds if p i = p 0 = 0. Consider now p i > 0. From the definition of p i and q i in (A.2), we see that p i -1 ∈ S so . Using the Lipschitz error bound for the gradient ([14, Lemma 2.1]), the triangular inequality, (4.4), (4.5), (3.2) (resulting from AS.4), we obtain that 

g pi ≤ g pi -g pi-1 -H pi-1 s so pi-1 + H pi-1 s so pi-1 + g pi-1 ≤ L H 2 s so pi-1 2 + g pi-1 + H pi-1 s so pi-1 ≤ L H |λ min (H pi
≤ L H κ 2 B 2σ 2 
pi-1

+ g pi-1 + κ 2 B σ pi-1 .
But g pi-1 ≤ ǫ 1 ≤ 1 since p i -1 ∈ S so and σ k ≥ σ min for all k ≥ 0, which then implies (A.5). ✷

In addition to this lemma, all properties of the different steps derived in Section 3 remain valid because these steps are only computed for g k > ǫ 1 . In particular, (3.10) still applies with ǫ = ǫ 1 . However, (3.24) in Lemma 3.4 may no longer hold because its proof relies on the fact that g k ≥ ǫ 1 , which is no longer true. The purpose of the next lemma is to provide an analogue of (3.24) for the case where SOAN2C is used. Note that the last set in this union is empty unless k ∈ S f o , in which case p m ≥ 0. Suppose first that the set of indices corresponding to the union in brackets is non-empty and let i be an index in this set. Moreover, suppose also that p i < q i -1. Using (A.5) and the facts that g qi-1 > ǫ 1 , that the gradient only changes at successful iterations and that S pi,qi-2 = S curv pi,qi-2 ∪ S divgrad pi,qi-2 ∪ S decr pi,qi-2 , we now derive that ǫ 1 κ gpi ≤ g qi-1 g pi = qi-2 j=pi g j+1 g j = j∈Sp i ,q i -2 g j+1 g j = j∈S decr p i ,q i -2 g j+1 g j j∈S curv p i ,q i -2 g j+1 g j j∈S divgrad p i ,q i -2

g j+1 g j ≤ L H (1 + κ θ )V 3 max 2ς 2 1 σ min + 2κ b √ V max ς 1 + κ C κ b V max (1 + κ θ ) |S decr p i ,q i -2 | × 1 2 |S divgrad p i ,q i -2 | × L H V 2 max 2σ min κ 2 C θ 2 x + θ 2 κ B κ C √ ǫ 1 σ min + 1 |S curv p i ,q i -2 |
where we used (3.12), (3.10) As (A.7) divides S f o k into m + 1 consecutive sequences, these sequences are then separated by at least a second-order step, so that m ≤ S so k and (A.6) follows. ✷

Equipped with this last lemma and the results of Sections 2 and 3, we may finally establish the worst-case iteration/evaluation complexity of the SOAN2C algorithm and prove Theorem 4.1 itself.

Proof. Note that the bounds (3.32) and (3.33) derived in the proof of Theorem 3.5 are still valid because they only cover steps computed using AN2C, so that we now need to focus on bounding S so k . Using AS.2 and the lower bound on the decrease of the function values (A.4), we derive that, for k ∈ S so ,

f (x 0 ) -f low ≥ i∈S k f (x i ) -f (x i+1 ) ≥ i∈S so k f (x i ) -f (x i+1 ) ≥ |S so k | η 1 2σ 2 max ǫ 3 2 ,
and therefore that , ǫ -3 2 ) occurs as a consequence of (A.6), (A.10) and (3.32) and one expects that, in practice, (A.10) is smaller than O ǫ -3

|S so k | ≤

. 8 )

 8 Combining (3.6), (3.7) and (3.8) gives (3.3) with ς max defined by (3.

Lemma 3 . 3

 33 Suppose that AS.1 and AS.3 hold and that k ∈ S neig k ∪ S def k before termination. Then

Lemma 3 . 4

 34 Suppose that AS.1, AS.3 and AS.4 hold and that S neig k

. 26 )

 26 Proof. Let k ∈ S decr k . Injecting the definition of S decr k (3.20) in (3.13), we obtain that

Let k ∈ S divgrad k .

 k Using the definition of κ m in (3.22) and that of S divgrad k in (3.21) gives that

k|

  and |S curv k | to derive a bound on |S k | since |S k | = |S decr k | + |S curv k | + |S divgrad k | (3.31) and a bound on |S divgrad k | is given by (3.24). We start by proving an upper bound on |S curv k |. Using AS.2, the lower bound on the decrease of the function values (3.9) and that σ k ≤ σ max as stated in Lemma 3.1, we derive that, for k ∈ S curv k

Theorem 5 . 1

 51 Suppose that µ 1 ≤ λ min (M ) and λ max (M ) ≤ µ 2 (5.10) for some µ 2 ≥ µ 1 > 0. Then the definitions and conditions (5.8), (5.6) and (5.5) of Algorithm AN2CKStep are equivalent to (2.14), (2.13) (with κ b redefined as max(1, κ b √ µ 2 ) ) and (2.11) of Algorithm 2.3, respectively. Moreover, AS.0 holds and (5.4) is valid.

Lemma A. 3

 3 Suppose that AS.1, AS.3 and AS.4 hold and the SOAN2C algorithm is used. Consider the partition of S neig k 3.4 with the same κ m (defined in (3.22)). Then (3.23) holds for all k ∈ S decr k| log(ǫ 1 )| + κ curv |S curv k | + | log(ǫ 1 )| + log(κ gpi ) log(2) + 1 (|S so k | + 1) (A.6)where κ n and κ curv are defined in (3.25) and (3.26) and κ gpi is given by (A.5).Proof. The proof of (3.23) is identical to that used in Lemma 3.4. Moreover, we still obtain (3.27) for k ∈ S divgrad k , because the definition of κ m in (3.22) is unchanged and Lemma A.1 ensures that (3.3) continues to hold for the SOAN2C algorithm. We now prove (A.6). If S f o k is empty, then so is its subset S divgrad k and (A.6) trivially holds. If S f o k is not empty, we see from the definitions (A.1)-(A.2) that, for some m ≥ 0 depending on k, S f o k = {0, . . . , k} ∩ { g k > ǫ 1 } = {p i , . . . , q i -1}   ∪ {p m , . . . , k}. (A.7)

κ curv κ negdecr ǫ -3 2 1 + 1 +

 11 2σ 2 max (f (x 0 )f low ) η 1 ǫ -3 2 = κ so ǫ -3 2 . (A.10) Injecting now (A.10), (3.33) and (3.32) in the bound (A.6) on S divgrad k | log(ǫ 1 )| + log(κ gpi ) log(2)+ 1 (κ so ǫ -3 2 + 1).Combining the last inequality with (A.10), (3.33) and(3.32) in|S k | = |S divgrad k | + |S curv k | + |S so k | + |S decr k| and the definition of (3.28) gives that|S k | ≤ κ ⋆ ǫ | log(ǫ 1 )| + log(κ gpi ) log(2) + 1 (κ so ǫ -3 2 + 1).This proves the first part of the theorem. The second part follows from the last inequality and Lemma 2.1. ✷ The factor | log(ǫ 1 )| by which the bound of Theorem 4.1 differs from O(max(ǫ -3/2 1

  .33) Combining now (3.32) and (3.33) with the upper-bound (3.24) on |S divgrad

					k	|, we deduce that
	|S divgrad k	| ≤ κ n κ decr ǫ -3 2 +	| log(ǫ)| 2 log(2)	+ κ curv κ negdecr ǫ -3 2 +	| log(ǫ)| + log( g 0 ) log(2)	+ 1. (3.34)
	By summing equations (3.32), (3.33), and (3.34) to bound |S k | in (3.32), while also isolating the terms based on their different orders with respect to ǫ, we obtain that

Table 1 :

 1 small pbs. medium pbs. largish pbs. algo π algo ρ algo π algo ρ algo π algo ρ algo Efficiency and reliability statistics for the OPM problems (full-space variants)

	AN2CER	0.88 96.64	0.85 93.24	0.85 94.92
	AN2CE	0.91 96.64	0.91 95.95	0.81 86.44
	AR2	0.92 97.48	0.85 93.24	0.84 93.22
	TR2M	0.91 94.96	0.86 93.24	0.83 91.53

Table 2 :

 2 pbs. medium pbs. largish pbs. algo π algo ρ algo π algo ρ algo π algo ρ algo Efficiency and reliability statistics for the OPM problems (Krylov-space variants)

	AN2CKU	0.86 96.64	0.81 93.24	0.77 86.44
	AN2CKYU	0.91 96.64	0.90 95.95	0.85 91.53
	AR2	0.92 97.48	0.87 93.24	0.89 93.22
	TR2K	0.94 96.64	0.85 87.84	0.77 84.75

  + g pi-1 + |λ min (H pi-1 )| H pi-1 u pi-1 σ pi-1 ≤ L H |λ min (H pi-1 )| 2 2σ 2

		-1 )| 2		
		2σ 2 pi-1		
		pi-1	+ g pi-1 +	|λ min (H pi-1 )| 2 σ pi-1
	=	L H (-λ min (H pi-1 )) 2 2σ 2 pi-1	+ g pi-1 +	(-λ min (H pi-1 )) 2 σ pi-1

  and (3.27) to derive the last inequality. Rearranging terms, taking the log, using the inequality |S divgrad pi,qi-2 | ≥ |S divgrad pi,qi-1 | -1 and dividing by log(2) then gives that(|S divgrad pi ,qi-1 | -1) + log(ǫ 1 )log(κ gpi ) log(2) ≤ κ n |S decr pi,qi-2 | + | log(ǫ 1 )| 2 log(2) + κ curv |S curv pi,qi-2 |with κ n and κ curv given by (3.25) and(3.26). Further rearranging this inequality and using the fact that |S pi,qi-2 | ≤ |S pi,qi-1 | for the different types of step, we obtain that|S divgrad pi,qi-1 | ≤ κ n |S decr pi,qi-1 | + | log(ǫ 1 )| 2 log(2) + κ curv |S curv pi,qi-1 | + | log(ǫ 1 )| + log(κ gpi ) log(2) + 1. (A.8)If now p i = q i -1, then clearly |S divgrad pi,qi-1 | ≤ 1 and (A.8) also holds. Using the same reasoning when {p m , . . . , k} is non-empty, we derive that, and this inequality also holds if {p m , . . . , k} = ∅ since S divgrad pm,k ⊆ {p m , . . . , k}. Adding now (A.8) for i ∈ {0, . . . , m} and (A.9) to take (A.7) into account gives that

	|S divgrad pm,k	| ≤ κ n |S decr pm,k | +	| log(ǫ 1 )| 2 log(2)	+ κ curv |S curv pm,k | +	| log(ǫ 1 )| + log(κ gpi ) log(2)	+ 1,	(A.9)
	|S divgrad k	| ≤ κ n |S decr k	| +	| log(ǫ 1 )| 2 log(2)	+ κ curv |S curv k	| +	| log(ǫ 1 )| + log(κ gpi ) log(2)	+ 1 (m + 1).

[START_REF] Bellavia | Adaptive regularization algorithms with inexact evaluations for nonconvex optimization[END_REF] This collection is a subset of the CUTEest[START_REF] Gould | CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization[END_REF] collection where the test problems are described in Matlab.[START_REF] Birgin | Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models[END_REF] Covering the choice {10 30 , 10 8 , 10 5 , 10 3 , 10 2 , 10} for κ C and {100, 50, 10} for κa.

so that Newton steps are taken most often.
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