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Abstract
This paper describes the GIPSA-Lab submission to the Blizzard
Challenge 2023. The Text-To-Speech system trained for this
challenge is a Transformer-based non-autoregressive encoder-
decoder architecture based on FastSpeech2. Updates of the
FastSpeech2 framework were provided to specifically train the
model on orthographic inputs, which is our main focus for this
edition of the challenge. This model was trained with both or-
thographic and phonetic transcriptions of the same dataset. An
additional phonetic prediction layer was added to the model.
This additional layer enables to train the text encoder on pho-
netic prediction alone, without the need for audio recordings.
Index Terms: speech synthesis, mixed-inputs TTS, phonetic
prediction

1. Introduction
Latest neural networks breakthroughs have largely improved
performances of various automatic speech processing tasks, in-
cluding Text-To-Speech (TTS). Latest neural TTS [1, 2, 3, 4],
combined with neural vocoders [5, 6, 7] generate synthetic
voices that closely mimic natural speech. However, the eval-
uation of synthetic speech naturalness is mostly conducted in
favorable environments, on test stimuli which are very close to
the training corpus. Thus, the good performances shown by
neural TTS models may be overestimated compared to real-life
applications.

The Blizzard Challenge 2023 aims at evaluating latest neu-
ral TTS systems in more challenging environments. More
specifically, the Hub-Task of this challenge includes the eval-
uation of intelligibility of semantically unpredictable sentences
and heterophonic homographs. The Spoke-Task on the other
hand is a speaker adaptation task on a smaller dataset shared by
the Blizzard organizers. Only orthographic sequences can be
used as inputs in the submitted systems.

Our approach to this challenge is to propose a TTS system
very close to the state-of-the-art model FastSpeech2 [4] but with
the addition of phonetic prediction sub-task. FastSpeech2 is a
fully parallel Transformer-based [8] architecture which imple-
ments 3 secondary tasks on top of the spectrogram prediction:
pitch, energy and duration prediction. The duration prediction is
the key factor of this parallel architecture, since it is necessary to
realize the phone-to-frames alignment at the interface between
the text encoder and the audio-decoder. However, this duration
predictor is also the limiting factor to train FastSpeech2 on or-
thographic inputs, since the time-segmentation of the training
set, necessary to train this predictor, is unclear when process-
ing orthographic sequences. In this paper, we show how the
letter-to-sound alignment proposed by Lenglet et al. [9] can be
used to assign duration to the orthographic sequences in order

to train a FastSpeech2 model on orthographic inputs. Moreover,
we show that the addition of a phonetic prediction task from the
output of the FastSpeech2 text encoder allows to train the model
on <orthography|phonetic> pairs without the need for audio
recordings. This setup helps learning phonetic transcriptions
for words and contexts that are otherwise rarely found in clas-
sical audiobooks training corpora. We show through Blizzard
results that this addition helped modelling heterophonic homo-
graphs. Results also show that our model is perceived as more
natural than the FastSpeech2 baseline.

This paper is organized as follows: Section 2 describes
our proposed model and the letter-to-sound mapping used to
train our FastSpeech2 on orthographic sequences. Section 3 de-
scribes the extended dataset we used to train our model, and
the training procedure. Prior to the Blizzard Challenge results,
we evaluated the accuracy of the proposed phonetic prediction
layer in section 3.3. Finally, results of the Blizzard evaluation
are discussed in section 4.

2. Model: FastSpeech2 with mixed inputs
This section describes FastSpeech2 baseline architecture en-
hanced with the proposed phonetic prediction layer. The overall
architecture of the proposed model is shown in Fig.1. The im-
plementation is available online1.

2.1. Model Architecture

The proposed model is very close to one of the open source
FastSpeech2 implementation [4]. The encoder, variance adap-
tor and decoder are kept unchanged2. Following early imple-
mentations of FastSpeech2, the pitch predictor is trained on raw
pitch values in semitones, instead of continuous wavelet trans-
forms [10] in latter works. Pitch and energy values are extracted
using WORLD pre-processing toolbox [11], and are averaged
by phonemes, and normalized. The same multi-speaker model
is used for the Hub-task and the Spoke-Task of this Blizzard
Challenge. Speaker control is achieved through the addition of
a trainable speaker embedding at the output of the text encoder.
The model is trained on both orthographic and phonetic input
sequences, following the mixed-inputs training procedure [12].

Following [9], an additional phonetic prediction layer is
added at the output of the text encoder. This layer predicts
a one-to-one mapping between orthographic inputs and pho-
netic outputs. This one-to-one letter-to-sound mapping (L2S)
is further described in Section 2.2. The goals of this layer
are twofold: first, it helps disambiguating homographs as
shown in [13]. Second, it enables to train the text encoder

1https://github.com/MartinLenglet/
Blizzard2023_TTS

2https://github.com/ming024/FastSpeech2
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Figure 1: Model Architecture of the multi-speaker FastSpeech2 baseline with the phonetic prediction layer. This phonetic prediction
layer is trained on the output of the text encoder.

Table 1: Technical specificities and performances of the proposed FastSpeech2 with mixed inputs and vocoder Waveglow. Inference
speed is reported as the Real-Time Factor (RTF). The loading time is the duration needed to load the model before starting the inference.
This duration is not considered to compute the inference speed. Performances are computed on a single GPU Quadro RTX 8000.

Model # Parameters Memory Footprint (Mbytes) Loading Time (s) Inference Speed (RTF)
FastSpeech2 35 630 466 1 600 4.5 1.58 x 10−2

Waveglow 87 879 272 2 400 3 5.31 x 10−2

Total 123 509 738 4 000 7.5 6.89 x 10−2

on <orthography|phonetic> pairs without the need for corre-
sponding audio. This eases the training of models out of audio-
books corpora, e.g. through the use of dictionaries. The cross-
entropy phonetic loss trains the model on a categorization task.
This loss is added to already existing MAE spectrogram-loss
and MSE pitch, duration and energy-losses. The same lexicon
as the Blizzard organizers was used.

Training FastSpeech2 on orthographic inputs is usually
tricky, since the training of the explicit duration predictor relies
on the time-segmentation of characters in the training dataset.
When using phonetic sequences, every input character is at-
tributed a unambiguous duration, either through expert analy-
sis of the audio signal, or with automatic tools like Montreal-
Forced Aligner [14]. On the other hand, in the case of opaque
languages like French which require a wider visual attention
span to achieve the grapheme-to-phoneme (G2P) transcrip-
tion [15], it is unclear how to distribute the duration between
the multiple orthographic characters involved in one phoneme,
called complex phoneme in the following. Thanks to this one-
to-one L2S mapping, we are able to attribute the duration to
the character of interest in case of complex phonemes, and a
null duration to the other characters involved. This procedure
enables to train FastSpeech2 with orthographic inputs, without
relying on a front-end phonetic transcription. As a result, the
raw orthographic sequence is used as is during inference.

The vocoder used is Waveglow [6]. The original architec-
ture remains unchanged3. The technical specificities and per-
formances of our system are summed up in Table 1.

2.2. One-to-one Letter-to-Sound Mapping

Following the exploration of the attention map of a fully trained
Tacotron2 TTS model [2], a one-to-one L2S mapping was pro-
posed by Lenglet et al. [9]. The main results of this study are
reported in this section. This mapping is deduced from the num-
ber of frames which focus on a particular grapheme in case of
complex phonemes. Examples of most commonly seen patterns
are given in Fig.2. Empirical rules were deduced from these ob-
servations, summed up in Table 2. The symbol / / is assigned

3https://github.com/NVIDIA/waveglow
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Figure 2: Distributions of durations of activation (ms) of com-
mon character sequences in complex phonemes.

Table 2: Activation rules on grapheme recurrent schemes. C
and V stand for consonant and vowel respectively. stands for
muted character.

Schemes Activation Examples
C C C “nn”, “ll”, “ss”
V V V “an”, “ou”, “au”

V V V V “eau”, “ain”

as output of this one-to-one mapping for muted characters.
This L2S mapping is used twice to train the model. First,

characters durations when using orthographic inputs are at-
tributed following the rules given in Table 2. This enables to
train FastSpeech2 directly on orthographic sequence, and use
raw orthographic sequences at inference. Thus, it enables the
model to handle French liaisons on its own, which can other-
wise be an issue with G2P front-end [16]. Similarly, the Fast-
Speech2 encoder is also able to learn how to disambiguate ho-
mographs by relying on the contextualisation provided by its
successive Transformer layers [8].

Second, the phonetic prediction layer uses this L2S map-
ping as targets to be predicted from the input sequence in case
of orthographic inputs. This phonetic prediction layer further
helps the disambiguation of homographs at the output of the
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encoder. In case of phonetic inputs, the input phoneme is set as
the target of the prediction layer (except for punctuation marks
and spaces, which are given two possible outputs: / / in case of
null duration, or / / otherwise).

3. Training and Early Evaluation
3.1. Dataset

The same multi-speaker model described in section 2 was
trained for both the Hub-task and the Spoke-task. To strictly
follow the mixed-inputs training, utterances without phonetic
alignment were excluded from the training set (19 986 out of
64 015 utterances for speaker NEB). 3 200 utterances (5% of
the NEB corpus) were randomly picked in this excluded por-
tion of the corpus as the validation set. In order to maximize the
multi-speaker performances of our model, 2 additional speakers
were added to the Blizzard dataset. The whole aligned corpus
was included in the training set. Following Blizzard rules for
the challenge, the two additional speakers are taken from open-
access online databases, specified in Table 3. A part from this
extended training dataset, our model is not specifically designed
to achieve few-shot speaker adaptation. Nonetheless, we took
part in the Spoke-Task to evaluate the benefits of our mixed rep-
resentations FastSpeech2 in this context.

Moreover, since the phonetic prediction layer enables the
training of the text encoder without audio recordings, we
also added to the training set phonetic transcriptions from the
ROBERT French-dictionary, as well as common in-context ho-
mographs. These homographs are taken from various online
open-access articles, similar to [13]. The training set is further
described in Table 3.

The audio output is a 80-bands Mel-spectrogram computed
on the 22 050Hz audio signal with an hop-size of 256 (which is
equivalent to a spectrogram sampling rate of ≈ 86Hz).

3.2. Training Procedure

The non-audio inputs (dictionary and homographs) are used at
every stage of the training process. They are mixed with audio-
inputs in each batch, with a ratio of 2/3 for audio inputs and 1/3
for non-audio inputs. While the training on non-audio inputs
helps learning phonetic representations for rare words not seen
in the audio corpus, this ratio minimizes the risks of degradation
of the prosodic predictions and audio quality due to the absence
of spectrogram-loss on the non-audio part of the corpus.

Our model was first trained following a single-speaker
setup on NEB. We believe that this step helps the text encoder
and decoder to focus on their primary goal which is the mod-
ulation of acoustic and prosodic local patterns according to the
sequence to utter. The addition of the speaker embedding latter

Table 3: Multi-Speaker Training Dataset. Durations are given
in hh:mm:ss.

Speaker Metadata Audio
Dataset Gender Duration # Utt

NEB Blizzard Female 33:33:41 44 029
AD Blizzard Female 2:04:53 2 515

DG LibriVox [17] Male 6:17:22 7 539
RO SIWIS [18] Female 0:35:21 586

Dictionary Robert - - 95 879
Homographs Various [13] - - 17 285

Total - - 42:31:17 167 833

in the process is seen as an offset manipulation of these mean
features, which is supposedly easier to learn by the model.

The model was trained for 100 epochs on NEB only, using
both orthographic and phonetic transcriptions. The batch size
is set to 32. All utterances are presented twice by epoch: once
with the orthographic input and once with the phonetic input.
Batches are randomly selected among the whole training cor-
pus, resulting in a mixture of speakers and input types in each
batch. This mixture is not supervised.

The learning rate was fixed to 10−3 during this first step.
Following the 2/3 - 1/3 ratio, this training includes about 50
epochs on the non-audio corpus. Following this initialization
step, all other speakers were added to the training set. The learn-
ing rate exponentially decreased from this step, to reach 10−4

after 170 epochs. The training continued with 50 epochs on
the multi-speaker corpus. When training with the multi-speaker
setup, dictionary inputs are duplicated for each speaker, in or-
der to train the phonetic predictor’s dependency to the speaker.
Finally, the model was trained on an evenly distributed corpus
among speakers for another 50 epochs. Utterances were ran-
domly selected to match the number of utterances in the AD
corpus, when enough utterances were available. All utterances
from RO were kept for this final training step. We empirically
found that this final step helps modelling rarest speakers behav-
iors instead of copying the behavior of the most seen speaker.

The vocoder Waveglow [6] was fine-tuned from the pre-
trained model shared with the GitHub implementation. The
fine-tuning was performed on the NEB corpus, first for 50
epochs on the Ground-Truth spectrograms, and then for 50 ad-
ditional epochs on spectrograms predicted by the FastSpeech2
model.

3.3. Phonetic Prediction Evaluation

On top of the evaluation performed for the Blizzard Challenge,
we evaluated the performances of the phonetic prediction layer,
as an indicator of the potential benefits of the proposed archi-
tecture compared to the traditional FastSpeech2 training.

As a test set, we randomly extracted 2230 additional ut-
terances recorded by the same NEB speaker from the original
M-AILABS corpus [19]. These utterances are not part of the
dataset shared by Blizzard organizers, thus they have not been
seen by the model during the training phase.

The phonetic prediction was computed on this test set, and
confusion matrices are reported in Fig.3, using orthographic in-
puts (Fig.3a) and phonetic inputs (Fig.3b). Among the 108168
orthographic characters of this test set, the overall accuracy
reaches 0.984 (0.997 when excluding muted characters). In-
terestingly, most remaining errors are confusions between close
phonetic variants: mid-closed vowels VS mid-opened vowels,
and full closed vowels VS semi-vowels. Most errors with muted
characters are miss-predicted liaisons on ending /r/, /t/ or /z/.
Note that the errors highlighted here may just reflect diver-
gences between the Ground-Truth and the model decision on
optional liaisons. On the other hand, when using phonetic in-
puts, this prediction is almost flawless, reaching 0.993 overall,
and 1.00 when excluding spaces and punctuation marks.

While this evaluation of the phonetic accuracy of the pro-
posed model is promising regarding the production of hetero-
phonic homographs and the intelligibility of semantically un-
predictable sentences, these tasks are specifically designed to
test the model out of what has been seen during the training.
Thus, results may differ on these specific tasks.
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(b) Phonetic Inputs

Figure 3: Confusion Matrices of the phonetic prediction layer, for orthographic inputs (left) and phonetic inputs (right).

Figure 4: Mean Opinion Scores (MOS) for the Hub Task. Our model N is highlighted in orange. The left graph shows MOS by system.
In the right graph, black squares show that the difference between the two models is significant (p<0.01).

4. Blizzard Results
This year Blizzard Challenge evaluates speech produced by
TTS on multiple criteria. The Hub-Task evaluates models ca-
pacities to reproduce natural behaviors of NEB. The natural-
ness is evaluated with Mean Opinion Scores (MOS). Intelli-
gibility is evaluated on heterophonic homographs disambigua-
tion and Semantically Unpredictable Sentences (SUS). Simi-
larly, the Spoke-task evaluates the ability of the model to pro-
duce natural voice with few examples on AD. Our system did
not perform better than the FastSpeech2 baseline in this speaker
adaptation task. Thus, this section is focused on the most inter-
esting results of our proposed system: naturalness and intelligi-
bility on the Hub-task. Results commented in this section have
been computed regardless of listeners experience in the domain.
Among all presented systems, A is the original recording, BT is
the baseline Tacotron2, BF is the baseline FastSpeech2, and N
is our proposed model. Our model N is highlighted in orange in
all figures.

4.1. Naturalness on the most seen speaker

The results of the naturalness assessment on the Hub-Task are
reported in Fig.4. Although not showing impressive results, our
model was significantly preferred over the FastSpeech2 base-
line. Training our model on orthographic sequences may have

helped to produce more accurate phonetic patterns. In compar-
ison, the FastSpeech2 Baseline BF has been trained solely on
phonetic inputs. Thus, BF relies on a G2P front-end to con-
vert the orthographic sequences of the test set before synthesis.
Depending on the front-end used, it may produce errors, in par-
ticular with French liaisons which may be hard to predict.

We also believe that our overall MOS score could have ben-
efited from simple post-treatments to reduce the produced noise.
We are aware that our Waveglow vocoder produces background
noise which can be detrimental to listeners judgment. However,
in an attempt to avoid the use of heuristics, we decided to enter
the challenge without post-processing denoising techniques.

4.2. Heterophonic Homographs Disambiguation
Intelligibility assessment on heterophonic homographs is re-
ported in Fig.5. Our model N achieves an average score among
all systems. Our model shows global improvements over the
BF, which was expected thanks to the addition of mixed repre-
sentations and the training of the phonetic prediction layer on
the auxiliary dictionary and homographs corpus.

More specifically, our model performs very well on homo-
graphs that have been seen with enough examples in its homo-
graph corpus. “Fils” (261 examples) pronounced /f i s/: “son
(en)” VS /f i l/: plural of “fil (fr)”, “wire (en)” has a intelligibil-
ity score or 100% for both variants, whereas systems with over-
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Figure 5: Homographs intelligibility scores for the Hub Task. Our model N is highlighted in orange. The right graph shows the
percentage of correct pronunciation by system. The right graph shows this intelligibility assessment by homograph.

Figure 6: Intelligibility scores on semantically unpredictable sentences for the Hub Task. Our model N is highlighted in orange. The
right graph shows the percentage of correct pronunciations by system. In the right graph, black squares show that the difference
between the two models is significant (p<0.01).

all better scores do not achieve such accuracy on this specific
homograph. This is also true for “convient” (181 examples) or
“fier” (366 examples) (/k o~v i e~/: “suit (en)” VS /k o~v i/:
“invite (en)” — /f j eˆr/: “proud (en)” VS /f j e/: “trust (en)”),
with the most common forms /k o~v i e~/ and /f j eˆr/ being
systemically pronounced by other TTS regardless of the con-
text. On the contrary, “options” (117 examples), “intentions”
(141 examples) and “portions” (145 examples) also appear in
the homographs training corpus, but with fewer examples. The
number of examples and the balance between variants impact
the performances of the system. However, the proposed method
helps modelling homographs if enough examples are given dur-
ing training.

4.3. Semantically Unpredictable Sentences (SUS)
Intelligibility scores on SUS are reported in Fig.6 for all sys-
tems. All models but one perform similarly on SUS. Our system
only statistically differs from G which shows the worst results
on this task, and from O which performs better. On the other
hand, BF is found to statistically differ from the top 5 perform-
ing systems. The mixed representations and phonetic prediction
layer may have help to achieve this task.

5. Conclusions and Discussion
This paper has described the GIPSA-Lab system for the Bliz-
zard Challenge 2023. This system is very similar to the orig-
inal FastSpeech2 architecture, with two major additions: the
training on orthographic sequences and the phonetic prediction
layer. The phonetic prediction layer was evaluated before the

Blizzard Challenge, and showed very promising performances.
The results of the proposed system in Blizzard evaluation con-
firm the benefits of these additions compared to the baseline
FastSpeech2 system. Our system performed better than the
baseline FastSpeech2 on naturalness and intelligibility on the
most seen speaker in the corpus. On the other hand, our system
did not show much difference in terms of speaker adaptation.

The results of the disambiguation of heterophonic homo-
graphs shows the potential of the proposed training of the text
encoder on <orthography|phonetic> pairs without the need for
audio recordings. However, disambiguation was only improved
for the most seen examples in the homographs training corpus.
Wider corpora may help to achieve better results. The training
procedure may also impact the final result. The ratio of non-
audio inputs in the training batches may vary to include more
phonetic training during the learning phase.

The vocoder used also contributed to the mitigated MOS
evaluated during quality assessments. We experience mitigated
audio quality with Waveglow, which tends to add background
noise in our samples. The impact of this noise can be reduced
with post-processing denoising, that we did not explore in our
Blizzard submission. Other vocoders like Hifi-GAN may also
help regarding this issue.
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