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Abstract
Teaching new information to pre-trained large language mod-
els (PLM) is a crucial but challenging task. Model adaptation
techniques, such as fine-tuning and parameter-efficient train-
ing, are often prone to catastrophic forgetting, and most exist-
ing benchmarks focus on task adaptation rather than acquir-
ing new information. This work studies and quantifies how
PLM may learn and remember new world knowledge facts
that do not occur in their pre-training corpus, which only
contains world knowledge up to a certain date. To that pur-
pose, we first propose NOVEL-WD, a new dataset consist-
ing of sentences containing novel facts extracted from recent
Wikidata updates, along with two evaluation tasks in the form
of causal language modeling and multiple choice questions
(MCQ). We make this dataset freely available to the com-
munity, and beyond the dataset itself, we release a procedure
to build again later on new versions of similar datasets with
up-to-date information. In a second part, we explore the use
of prefix-tuning for novel information learning, and analyze
how much information can be stored within a given prefix.
We show that a single fact can reliably be encoded within a
single prefix, and that the capacity of the prefix increases with
its length and with the base model size.

Introduction
Since the introduction of the Transformers architecture in
Vaswani et al. (2017), pre-trained language models (PLMs)
have become the de facto standard for most natural lan-
guage processing tasks (Chiang, Chuang, and Lee 2022).
Since those models are typically trained in a semi- or self-
supervised setting, adaptations such as fine-tuning are re-
quired to adapt them to downstream tasks (Dai and Le 2015;
Howard and Ruder 2018; Radford et al. 2019).

In addition to requiring task-specific adaptation, large lan-
guage models are usually unknowing of recent events or
novel world knowledge which is not contained in their train-
ing set (Alivanistos et al. 2022; Kucharavy et al. 2023). As
a result, applications that rely on up-to-date and accurate
knowledge require further updates or adaptation of PLMs
after their initial training.

More generally, the question arises as to how models can
be taught novel factual knowledge, and how to evaluate the
effectiveness of the adaptation.
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Fine-tuning has been one of the main proposed ap-
proaches to adapt pre-trained models to new tasks and do-
mains. However, full model fine-tuning can lead to catas-
trophic forgetting (French 1999; Kirkpatrick et al. 2017),
and can be costly when performed on large models (Strubell,
Ganesh, and McCallum 2020). Furthermore, Wei et al.
(2023) showed that when fine-tuning a model on a small cor-
pus with new information, the model instead learns to gener-
ate previously unseen information (hallucinations), and that
once learned, this behavior is then repeated for other infor-
mation. Fine-tuning may therefore not enable a model to
learn new information that was not seen during training.

Parameter-efficient fine-tuning (PEFT) methods have
emerged as an lightweight alternative to full model fine-
tuning, in which only a fraction of the parameters of the orig-
inal model are modified. PEFT allows for efficiently modi-
fying a small fraction of model parameters using methods
such as prefix-tuning (Li and Liang 2021), adapter-tuning
(He et al. 2021) or LoRA (Hu et al. 2021). Information can
be stored using in-context learning (Logan IV et al. 2022),
prompting (Liu et al. 2023b) or prompt-tuning (Lester, Al-
Rfou, and Constant 2021) amongst others. PEFT methods
have recently experienced a surge of popularity1.

In this study, we focus on prefix-tuning (Li and Liang
2021), a parameter-efficient fine-tuning method in which the
pre-trained model parameters are kept frozen, but a small,
continuous vector called the prefix is optimized. Based on
the idea that context can steer a language model without
changing its parameters, prefix-tuning optimizes the model’s
context as one or several continuous vectors corresponding
to either embeddings or to key-query pairs in attention lay-
ers, whose effects will be propagated to all activation layers
and subsequent tokens.

Wang et al. (2022) and Liu et al. (2022a) showed that
novel knowledge can efficiently be contextually fed into
large language models through prompting. However, the size
of a prompt in a given model is limited by the context size of
that model. In this paper, we view prefix-tuning as a gener-
alized form of prompting taking continuous values, and hav-
ing controllable depth and length, and as such, we hypothe-
size that this method can reliably store significant amounts

1As of August 12, 2023, the peft Python package has been
downloaded over 430,000 times during the last month.



of factual information. This is backed by the findings of
Kossen, Rainforth, and Gal (2023), which argues that in-
context learning enables a model to learn information. Our
goal is therefore to investigate this question in the case of
prefix-tuning, and more specifically how much knowledge
can be compressed into the prefix. In addition, by using
prefix-tuning rather than LoRA, fine-tuning or adapters, we
hope to avoid the hallucination problem mentioned in Wei
et al. (2023) by working with (generalized) prompts without
modifying the existing model weights.

The main contributions of this paper are as follows:

• We introduce NOVEL-WD, a framework for generating
new, curated datasets and benchmarks of novel/rare in-
formation extracted from Wikidata in order to evaluate
the learning of new facts in PLMs.

• We evaluate the performance of prefix-tuning for novel
knowledge acquisition, and measure the extent to which
prefix-tuning can efficiently compress information in dif-
ferent situations.

Related work
Adapting models to new tasks is a relatively old problem.
Yoon et al. (2018) showed that dynamically expandable net-
works can obtain good performance in this setting by slowly
increasing model capacity. Lin et al. (2022) explored the
task of improving accuracy of Transformer models on out-
of-data streams using continual model refinement (CMR)
to maximize the diversity of training samples in a non-
stationary distribution. Razdaibiedina et al. (2023) showed
that using a collection of progressively growing prompts al-
leviates catastrophic forgetting and increases model gener-
alization capacities across tasks.

Many studies have explored how information storage
functions within the Transformer architecture. Elhage et al.
(2022) gave a comprehensive overview of the Transform-
ers architecture under the lens of mechanistic intepretabil-
ity. Geva et al. (2021) showed that the feedforward layers
of Transformers models act similarly to key-value memo-
ries in the context of information retrieval systems. Based
on that work, Mitchell et al. (2021) introduced MEND, a
framework that leverages a group of small networks to suc-
cessfully perform local factual edits within the feedforward
layers of a large Transformers model. Meng et al. (2022b,a)
expanded on this idea by using causal inference to locate the
attention feedforward layer containing a given fact and edit-
ing the corresponding matrix as a constrained optimization
problem.

In contrast, several approaches for storing new informa-
tion within a language model have been proposed. One such
approach is the use of flexible, external memories, as exem-
plified in Wu et al. (2021, 2022). Another, dynamic method
is that of retrieval systems, which can leverage external
knowledge bases, sometimes including the Web, to that pur-
pose. Examples of such works include Guu et al. (2020),
Lewis et al. (2020), Borgeaud et al. (2021) and Liu et al.
(2023a). Finally, new information can be stored in the short-
term through methods such as prompt-tuning (Liu et al.
2021, 2022b).

In terms of evaluation, Petroni et al. (2019) is an early at-
tempt at measuring relational and factual knowledge within
PLMs. Zhu et al. (2020) proposed new, information-theory
based evaluation metrics for factual knowledge. Kadavath
et al. (2022) and Lin, Hilton, and Evans (2022) focused on
measuring model uncertainty as a way to distinguish prop-
erly known facts from hallucinated ones. Jang et al. (2021,
2022) introduced the framework TEMPORALWIKI, which
includes a process to generate datasets and benchmarks
from information extracted from Wikipedia and aligned with
Wikidata triples, with the goal of evaluating the performance
of models on new factual knowledge.. Yu et al. (2023) de-
tailed the creation of a large and refined benchmark, specif-
ically tailored to measure world knowledge within PLMs.
Kasai et al. (2022) proposed a continual MCQ benchmark
for world knowledge, updated every week with new ques-
tions about recent events extracted from news websites.

Yang and Liu (2021) successfully used prefix-tuning to
adapt a PLM to the new task of text classification, while
Ma, Nguyen, and Ma (2022) used the same method for
speech-to-text translation. Prefix-tuning was also shown to
obtain good performance in natural language understand-
ing (Lester, Al-Rfou, and Constant 2021), summarization
(Chen, Zhang, and Shakeri 2023) and sentiment analysis
(Balakrishnan, Fang, and Zhu 2022) inter alia. Zhao et al.
(2022) showed that prefix-tuning may also be used for effi-
cient domain adaptation.

The main difference between NOVEL-WD and the
datasets found in TEMPORALWIKI lies in the scope and in-
tended use of our dataset. NOVEL-WD is constructed from
Wikidata alone, and uses synthetic data for the training and
evaluation tasks, therefore limiting the need to download and
process large Wikipedia dump files. We intend our approach
to be particularly useful to generate a moderate amount of
data at a high frequency. Furthermore, we include two eval-
uation tasks in the form of sentence completion and MCQ.
Finally, our training set contains minimal training sentences
for each fact of our dataset rather than a larger snippet of
text, in order to easily compare the learning capabilities of
different models and adaptation techniques.

To our knowledge, no previous studies have been con-
ducted on the use of prefix-tuning to learn novel information,
nor on quantifying information storage inside the prefix.

Methodology
Research question
In this study, we would like to investigate the following
questions:
• Can a simple prefix (i.e. a prefix with a number of virtual

tokens of n = 1 and a depth of d = 1) learn a single
fact? Does this learning generalize to reformulations of
this fact?

• Can a larger prefix (n > 1) learn multiple facts? What
effect does prefix size have on learning and generaliza-
tion? In-context learning suggests that the answer to this
question and the previous one are positive.

• In the existing literature, the prefix is usually spread
across all layers of the model. However, recent work



(Simoulin and Crabbé 2021) suggests that the deeper lay-
ers in Transformer models are associated with abstract
and high-level capabilities, while factual information is
stored in the lower layers. Does restricting the prefix
depth d therefore affect the learning and generalization
capacities of the model?

• Can training metrics be used to indicate overfitting and
forgetting in a prefix-tuned model at training time?

• Do the answers to the previous questions remain true
when model scales? The assumption is that a smaller pre-
fix may be required when the model is bigger thanks to
the extra information the model already has.

Information learning
We model a fact as a semantic triple of the form (subject,
predicate, object), in which the subject and object are typi-
cally noun phrases, and the predicate a verb phrase. Given a
baseline language model L, a modified language model L′

and a triple T = (s, p, o), we consider the following aspects,
largely adapted from Meng et al. (2022a):

• Learning: Given a sentence or question S containing s
and p and expecting the continuation o, we consider that
L has learned T if L(S) ̸= o and L′(S) = o.

• Generalization: Given a sentence or question Ŝ ≈ S, we
consider that L′ can generalize if L′(Ŝ) = o.

• Specificity: Given a second triple T ′ = (s′, p′, o′) such
that o ̸= o′ and a sentence or question S′ expecting the
continuation o′, we consider that L′ is specific if L′(S) =
o and L′(S′) ̸= o.

• Non-forgetting: We consider that L′ has retained the fact
contained in T if L(S) = o and L′(S) = o.

Evaluation
Given a baseline model L and a list T = T1, ..., Tp of facts
encoded as triples of the form Ti = (si, pi, oi), we evalu-
ate the efficiency of an adaptation technique by applying the
following approach:

• We apply the adaptation technique on L, using as train-
ing set a dataset D containing a list of simple sentences
previously generated from the triples of T .

• We evaluate learning in the resulting model L′, by mea-
suring its perplexity in a causal language modeling set-
ting on the sentences of D, and comparing it to that of
L.

• We evaluate generalization by measuring the perplexity
of L′ in a causal language modeling setting on complex,
creative sentences created by reformulating the sentences
of D.

• We measure specificity and non-forgetting by evaluating
L and L′ on existing MCQ benchmarks.

Dataset
In this section, we describe the steps used to create NOVEL-
WD and give an overview of the resulting dataset. A sample
output of each step of the full process is given in Table 1.

Element Value
Triple (Frances Allen, spouse, Jacob Schwartz)

Train sent. Frances Allen is married to Jacob Schwartz.
Test sent. 1 Frances Allen’s spouse is
Test sent. 2 The spouse of Frances Allen was
Test sent. 3 Frances Allen was married to
Test sent. 4 Frances Allen has been married to
Test sent. 5 The name of Frances Allen’s spouse is
Question Who was Frances Allen’s spouse?

Distractor 1 Charles Householder
Distractor 2 David Padua
Distractor 3 John Cocke

Table 1: A sample of the dataset for a single triple.

Triple extraction
We begin by extracting RDF triples that were newly added to
Wikidata. To do so, we retrieve new triples from a daily in-
cremental database dump. We restrict ourselves to items and
exclude lexemes, which represent lexicographical data. We
also do not take into account complex triples, in which the
subject or object is a Wikimedia template, as well as triples
in which the subject is a numerical identifier, a filename or
a URI. We then resolve eventual internal Wikidata links in
the subject, predicate or object by replacing them with the
English name of the associated item. Finally, when multiple
triples share the same subject and predicate, we randomly
select one such triple and discard the other ones, so as to
limit the risk of models trying to learn multiple conflicting
facts.

Training set
To generate a training set, we convert each triple into a sim-
ple sentence. In order to do so, we query a 8-bit quantized
version of VICUNA-13B (Chiang et al. 2023) with a two-
shot prompt. For each triple, we generate one such sentence.

Test sets
To evaluate the performance of models on our dataset, we
provide two different evaluation tasks.

The first task is a causal language modeling task: For
each triple, we used 8-bit VICUNA-13B in a two-shot set-
ting to generate five sentences in which the object of the
triple is missing. In order to test for generalization capabili-
ties and to avoid repeating the training sentence, we specif-
ically prompted the model for ”creative sentences”. Manual
editing was then applied to the output sentences in the infre-
quent situation (occurring for fewer than 10 facts) where full
sentences were generated rather than an incomplete one.

The second task is a question answering task in the mul-
tiple choice question setting (MCQ). For each triple, a two-
shot 8-bit VICUNA-13B prompt was first applied to generate
a question asking for the object of the triple. Then, a simi-
lar prompt was applied to generate four ”likely answers” to
the question. Among the four generated answers, we remove
the ground-truth one if it is present, and select the three first
remaining ones as distractors. After manually checking and
editing the generated answers in rare cases (3 occurrences)



where they semantically overlap, we then add in the correct
answer. We therefore obtain a question with four possible
choices, exactly one of which being correct.

Final dataset
After all the steps above have been applied, NOVEL-WD
consists of 338 distinct triples, and each triple contains one
associated training sentence, five incomplete validation sen-
tences, one question and three distractors.

Experimental setup
The baseline model chosen for our experiments is the 7.1-
billion parameter version of BLOOMZ (Muennighoff et al.
2023), BLOOMZ-7B1. The training was ran for up to 450
epochs using the AdamW optimizer with a weight decay of
0.1 and an initial learning rate of 3 ∗ 10−2, decreasing by a
factor of 10 after 10 epochs of non-decreasing training loss.
We did not project the prefix through an intermediate MLP
as mentioned in Li and Liang (2021), as we found that it did
not increase training stability and generally resulted in lower
performance.

For all of our models, prefix-tuning was implemented
by learning the value of the previous key and value vectors
in attention layers, resulting in two vectors per layer and
per virtual token being learned, for a total of 2∗d∗n vectors.

For each macro-experiment and number of facts k, we
divided the D = 338 facts of NOVEL-WD into non-fully
overlapping subsets of length k, and trained one copy of the
baseline model on each subset. For a given k, the number
of subsets was computed as max(5, ⌊D/k⌋). The resulting
number of experiments can be found in Table 2. For ex-
ample, for k = 3, we sampled 112 subsets of 3 facts, and
trained a separate copy of BLOOMZ-7B1 on each of those
112 subsets. Due to the restricted dataset size, there exists
significant overlap between the training sets of experiments
when k ≥ 50.

k 1 2 3 4 5 8
Subsets 338 169 112 84 67 42

k 10 20 50 100 200 Total
Subsets 33 16 6 5 5 877

Table 2: The number of subsets for each number of facts.
In each macro-experiment, one model was trained on each
split.

For consistency, during the evaluation phase, we only
evaluated a model using the sentences and questions of
NOVEL-WD corresponding to the k triples it had been
trained on.

Evaluation
To evaluate our models in the text prediction setting, we
prompt them with each of the five incomplete sentences as-
sociated with each fact from the training set, and generate
the following ten tokens without sampling and with a tem-
perature of 1. We only count an answer as correct if the

model’s output contains the exact answer’s text, capitaliza-
tion excepted, and we report the accuracy over every sen-
tence of the test set for a given model. We also measure the
proportion of learning models for a given k, by selecting
only facts of the test set for which the baseline model does
not output any correct prediction, and counting the propor-
tions of the prefix-tuned models trained on those questions
for which the test set accuracy is non-zero. In other words,
learning models are models which are able to correctly pre-
dict at least one sentence completion for facts that were not
known by the baseline.

To perform regression tests, we selected the SciQ (Welbl,
Liu, and Gardner 2017) and MMLU (Hendrycks et al.
2020a; Hendrycks et al. 2020b) datasets. For SciQ, we mea-
sure the accuracy of the baseline and prefix-tuned models in
the MCQ setting, by using the same prompt as for NOVEL-
WD, and selecting the lowest per-token perplexity choice.
We apply this method on all 1,000 questions of the test set.
For MMLU, we append each of the possible four comple-
tions to each sentence, and then select the one with the low-
est per-token perplexity as the model’s answer. This is ap-
plied to the test sets from each of the 57 categories found
in the dataset. Due to computational costs, regression tests
were ran on a random sample of 5 prefix-tuned models for
each value of k.

Results and analysis
Base setup
Our initial experiment focuses on a single prefix (n =
1, d = 1), corresponding to 8,192 trainable parameters, or
0.000116% of the baseline model’s parameters.

The proportion of prefix-tuned models with increased ac-
curacy in the prediction setting is given in Figure 1, and Fig-
ure 2 contains the mean accuracy obtained in the prediction
setting for different numbers of facts.

Figure 1: Percentage of prefix-tuned models obtaining in-
creased accuracy over the baseline in the prediction setting,
with error bars spanning 95% confidence intervals.



Figure 2: Mean accuracy of prefix-tuned (PT) models and of
the baseline in the prediction setting, with error bars span-
ning 95% confidence intervals.

For 1 ≤ k ≤ 3, between 54.1% and 55.4% of the mod-
els are successfully able to learn at least one information
over the baseline. This amount stays relatively consistent for
k ≤ 10, with the proportion of learning models ranging from
40.5% to 55.4%. For k = 20, this proportion drops to 18.8%,
and none of the models trained for k > 20 achieved any ac-
curacy gains over the baseline.

The baseline model obtains a consistent accuracy ranging
from 3.0% to 6.3%, suggesting that a small number of facts
found in the dataset are either already known or easily de-
ducible by the model. In contrast, the prefix-tuned models
obtain a mean accuracy peaking at 29.1% for k = 3, and
gradually decreasing for k > 3 until k = 50, for which the
results are no longer significantly better than the baseline.

This initial result suggests that during training, the prefix
is usually able to select and remember 1 to 3 facts well, and
up to 20 with decreasing accuracy. Furthermore, this learn-
ing is conditional on having a low enough number of facts
present in the training data; having more than 10 facts seems
to hamper the model’s ability to learn even a single fact.

Error analysis In the case of k = 1, close to half of the
facts found in NOVEL-WD were not successfully learned by
a single prefix. While we could not identify any meaningful
semantic or content differences between the types of facts
that were learned and those that were not, we report in Table
3 quantitative statistics between those two categories. For
each reported statistic, the NL value was found to be signif-
icantly larger than the L one, as measured using a one-sided
Welch’s t-test (p = 0.05).

This suggests that the facts that were not successfully
learned are typically longer and are farther from the base-
line model’s distribution, both in their sentence form and in
the text completion setting, which might result in an inabil-
ity for prefix-tuning to sufficiently steer the model towards
learning them.

Train set Test set
Metric NL L NL L
Length (characters) 57.8 51.0 73.5 66.2
Length (tokens) 15.5 13.3 18.2 15.9
Length of o (characters) 17.8 15.6 - -
BLOOMZ-7B1 per-token ppl 4.56 4.30 4.26 4.18

Table 3: Quantitative comparison of the facts of NOVEL-
WD that were successfully learned (L) and those which
were not (NL) within a single prefix. Reported values are
averaged per category.

Detecting overfitting and forgetting
We report in Figure 3 the final training loss of each experi-
ment, and in Figure 4 the norm of the two vectors contained
in the prefix at the end of the training phase of each experi-
ment.

Figure 3: Final training loss of each experiment in the basic
setup.

We observe that for k = 1, almost all experiments end
with a training loss approaching zero, with the exceptions of
a few outliers for which the loss remains high. This confirms
our previous finding that the prefix is almost always able to
learn a single fact, but may not be able to generalize in the
prediction setting. When increasing k, the losses increase
linearly up to k = 10 (median value: Ltrain = 0.38). For
n ≥ 20, the loss increases sharply and quickly approaches
the baseline model’s loss of 4.38. We interpret this inflec-
tion as consistent with our previous observations, suggest-
ing that a change of learning mode occurs in the vicinity
of k = 15: For lower values, the model is efficiently able to
learn and generalize novel information, while for higher val-
ues, we hypothesize that the model is no longer able to store
all facts and instead unsuccessfully attempts to learn a com-
bined representation of the training set. These findings are
also consistent with the evolution of the prefix norm given:
For 1 ≤ n ≤ 3, we observe a linear increase in prefix norm,
which may indicate that the model does not make full use
of the available prefix capacity. For 3 ≤ n ≤ 10, the prefix



Figure 4: Frobenius norm of the key and value vectors of the
prefix at the end of each experiment in the basic setup.

norm is nearly constant and may signal increasing compres-
sion within the prefix. Finally, for n ≥ 10, the prefix norm
decreases rapidly.

Finally, we report in Table 4 the results of the evalua-
tion over SciQ and MMLU, which shows that the prefix-
tuned models do not seem to forget facts learned during pre-
training or incur any loss of reasoning capabilities, for any
value of k. Surprisingly, our prefix-tuned models even per-
form consistently and significantly better than the baseline
for all values of k. We did not have time to study this differ-
ence in detail, and leave this question open for future work.

SciQ acc. MMLU acc.
k Min Max Avg

Baseline 0.757 0.130 0.463 0.307
1 0.833 0.184 0.512 0.343
2 0.864 0.189 0.517 0.341
3 0.840 0.189 0.517 0.340
4 0.838 0.184 0.517 0.339
5 0.827 0.191 0.509 0.339
8 0.833 0.184 0.509 0.341

10 0.834 0.193 0.509 0.341
20 0.808 0.185 0.515 0.328
50 0.835 0.190 0.518 0.335
100 0.826 0.192 0.512 0.340
200 0.828 0.189 0.524 0.342

Table 4: Accuracy of the models on the MMLU and SciQ
datasets, averaged over 5 random models for each value of k.
For MMLU, we report the score obtained by the lowest and
highest accuracy as well as the average across categories.

Effect of prefix size
Table 5 contains the results obtained when prefix-tuning in-
stances of BLOOMZ-7B1 while varying the number of vir-
tual tokens n contained in the prefix.

We observe significant improvement in accuracy for

n=1 n=20 n=100
k Acc pLM Acc pLM Acc pLM
1 0.274 0.541 0.353 0.601 0.365 0.619
2 0.279 0.548 0.333 0.613 0.357 0.607
3 0.291 0.554 0.315 0.589 0.358 0.616
4 0.247 0.464 0.321 0.607 0.337 0.619
5 0.227 0.493 0.316 0.582 0.304 0.612
8 0.177 0.405 0.256 0.524 0.270 0.452

10 0.159 0.485 0.245 0.601 0.268 0.512
20 0.123 0.188 0.199 0.500 0.218 0.500
50 0.076 0 0.116 0.167 0.113 0.167
100 0.053 0 0.086 0.400 0.096 0.400
200 0.055 0 0.063 0 0.070 0

Table 5: Proportion of learning models (pLM) and mean pre-
diction accuracy for different number of virtual tokens n in
the prefix. Bold values denote statistically significant im-
provements over n = 1, using a one-sided z-test for pro-
portions for pLM and a one-sided t-test for the accuracy
(p = 0.05).

nearly all values of k when increasing the prefix size from 1
to 20, as well as significant gains in the proportion of learn-
ing models for k ∈ {1, 4, 20, 100}. Similar results are ob-
tained when further increasing the prefix size from 1 to 100.
However, none of the variation in accuracy or proportion of
learning models between n = 20 and n = 100 are statisti-
cally significant.

We interpret those results as follows: Increasing the prefix
size only modestly increases the chances for a model to be
able to learn at least one fact. However, such an increase has
a strong impact on the prediction capabilities of the model,
which suggests that the model is able to learn more facts and
to generalize better.

We hypothesize that the former may stem from the vary-
ing complexity of the facts in our dataset: for some facts,
the base model may already contain information about the
the subject and predicate, and prefix-tuning might only be
needed to learn the value of the object. A typical example
of this situation can be found in facts of the type ”[histor-
ical figure] was born on [date]”. On the contrary, there ex-
ist more complex facts for which the subject and predicate
themselves might be novel, and for which the base model
might not contain information. We also note that increasing
the prefix size past 20 brings no further improvement to the
learning and generalization capacities of our model, which
may indicate that prefixes are inherently limited in terms of
information capacity.

Effect of prefix depth
We report in Table 6 the results obtained by increasing the
number of layers spanned by the prefix in our initial setup
from d = 1 (minimal depth) to d = 30 (full-depth prefix).

We observe that increasing the prefix depth as a signifi-
cant effect on both the accuracy and the proportion of learn-
ing models. For all values of k, the average accuracy is in-
creased by 8 to 31%, with the highest increase reached for
k = 10. The highest average accuracy is obtained for k = 3,



d=1 d=30
k Acc pLM Acc pLM
1 0.274 0.541 0.354 0.590
2 0.279 0.548 0.441 0.667
3 0.291 0.554 0.520 0.768
4 0.247 0.464 0.467 0.690
5 0.227 0.493 0.470 0.731
8 0.177 0.405 0.487 0.690

10 0.159 0.485 0.476 0.789
20 0.123 0.188 0.401 0.813
50 0.076 0 0.275 0.333
100 0.053 0 0.130 0.800
200 0.055 0 0.101 0.000

Table 6: Proportion of learning models (pLM) and mean pre-
diction accuracy for different prefix depths d in the prefix.
Bold values denote statistically significant improvements
over d = 1, using a one-sided z-test for proportions for pLM
and a one-sided t-test for the accuracy (p = 0.05).

which once more suggests that up to three facts can be effi-
ciently stored within a prefix, but performance stays compa-
rable up to k = 10.

The second main observation is the fact that the propor-
tion of learning models significantly increases for all values
of k except k = 1, with gains of up to 80% for k = 100.
Generally, we hypothesize that increasing the prefix depth
allows for much more complex information to be learned,
and enables the model to learn at least one information for
all but the highest amount of facts in the training set.

Increasing the value of d from 1 to 30 effectively multi-
plies the number of trainable parameters by 30, but far sur-
passes the results obtained by increasing the prefix length by
a factor of 100. We therefore remark that prefix depth seems
to have a much stronger effect on model performance than
prefix length.

Effect of base model
To investigate the effect that the type and size of the base
model may have on prefix-tuning, we repeat our initial ex-
periments on two additional models: BLOOMZ-1B7, the
1.7 billion parameter version of BLOOMZ, was chosen for
scale comparisons.

We report in Table 7 the prediction accuracy obtained on
the entire dataset with no prefix-tuning, and in Table 8 the
results obtained after prefix-tuning.

Model BLOOMZ-1B7 BLOOMZ-7B1
Acc 0.044 0.050

Params/prefix 4,096 8,192

Table 7: Comparison of the baseline models through their
accuracy in the prediction setting over the entirety of
NOVEL-WD, and the number of parameters contained
within a single prefix (n = 1, d = 1).

We first observe that BLOOMZ-1B7 and BLOOMZ-
7B1 share a similarly low baseline accuracy, despite the lat-

BLOOMZ-1B7 BLOOMZ-7B1
k Acc pLM Acc pLM
1 0.293 0.565 0.274 0.541
2 0.273 0.556 0.279 0.548
3 0.262 0.589 0.291 0.554
4 0.213 0.464 0.247 0.464
5 0.189 0.403 0.227 0.493
8 0.152 0.286 0.177 0.405

10 0.112 0.394 0.159 0.485
20 0.085 0.189 0.123 0.188
50 0.053 0 0.076 0

100 0.045 0 0.053 0
200 0.039 0 0.055 0

Table 8: Proportion of learning models (pLM) and mean
prediction accuracy for different number of virtual tokens
n in the prefix. Bold values denote statistically significant
improvements over the previous column, using a one-sided
z-test for proportions for pLM and a one-sided t-test for the
accuracy (p = 0.05).

ter being significantly larger than the former.
In terms of scaling, we first note that there are no sig-

nificant improvements in terms of the proportion of learning
models between BLOOMZ-1B7 and BLOOMZ-7B1. This
strengthens the intuition that this may be due to the inherent
complexity of some facts in the dataset, and to the fact that
the ability to learn a fact is already present in smaller models.
However, increasing the model size has a noticeable effect
on the prediction accuracy, which increases by several per-
centage points for k ∈ {4, 5, 10, 20, 50}. We believe that this
is partially due to the scaling generalization capabilities of
the models. However, as the number of trainable parameters
almost doubles between BLOOMZ-1B7 and BLOOMZ-
7B1, these improvements may also be explained by an in-
crease in prefix capacity.

Conclusion
In this study, we have developed a dataset for novel fact
learning in pre-trained language models. We have shown
that prefix-tuning can be used to learn new facts, and inves-
tigated the effect of various factors on prefix-tuning perfor-
mance. Our main recommendation is to use full-depth pre-
fixes when training, but to limit the prefix length to a maxi-
mum of 20 virtual tokens.

We see several major avenues for future research based on
this work. While we measured the effect of different factors
independently, their combined effect might be different. In
particular, it is hard to predict how prefix length and depth
may interact together. Another research direction is the use
of different and more recent baseline architectures such as
Falcon (Almazrouei et al. 2023). Finally, a long-term goal
could be to scale our approach to larger datasets, for exam-
ple by using a mixture of prefixes at capacity along with a
routing module. This could allow the use of a small, regular
stream of new information to continually update a model.

The entirety of the code used to create NOVEL-WD and
perform our experiments can be found on GitHub.
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