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THE GLOBAL STABILITY OF THE KALUZA-KLEIN SPACETIME
CECILE HUNEAU, ANNALAURA STINGO, AND ZOE WYATT

ABSTRACT. In this paper we show the classical global stability of the flat Kaluza—Klein
spacetime, which corresponds to Minkowski spacetime in R with one direction compact-
ified on a circle. We consider small perturbations which are allowed to vary in all directions
including the compact direction. These perturbations lead to the creation of massless modes
and Klein—Gordon modes. On the analytic side, this leads to a PDE system coupling wave
equations to an infinite sequence of Klein—Gordon equations with different masses. The
techniques we use are based purely in physical space using the vectorfield method.

1. INTRODUCTION

The goal of the present article is to prove the global stability of the Kaluza—Klein spacetime
for the Einstein vacuum equations

(1.1) Ryuwlgl =0

where R, denotes the Ricci tensor of an unknown Lorentzian metric g. The Kaluza-Klein
spacetime is a solution of (ILT)) on R'*3 x S! and consists of a Lorentzian metric g, given in
the standard coordinates (¢t,x) € R'™, y € S' by

3

g=—(dt)’ +) (da')* + (dy)”.

i=1
The FEinstein equations in this higher dimensional setting have, as in the standard 3 + 1
setting, a well-posed initial value formulation. The data consist of a triplet (2o, go, Ko)
where Y is a 4-dimensional manifold diffeomorphic to R3 x S equipped with a Riemannian
metric gy and Kj is a symmetric two-tensor. Solving (LI)) with initial data (X3, go, Ko)
means that one looks for a 5-dimensional manifold .# with a Lorentzian metric g satisfying
(1) and an embedding ¥y < .# such that gy is the pullback of g to ¥y and K is the
second fundamental form of ¥y. The initial value problem is overdetermined and the data
must satisfy the constraint equation.

Rlgo] — K¢ Koy + KolKoh = 0, V' Koy; — VK =0

where R|go] is the scalar curvature of gy and V is the Levi-Civita connection of gog. These
equations simply come from the vanishing of the time components of the Einstein tensor

1
Ry; = 0, Roo — §R900 = 0.

In PDE terminology, the local well-posedness of the Einstein equations was proved in the
seminal works of Choquet-Bruhat [§ and Choquet-Bruhat and Geroch [10], who show the

IWe use the Einstein summation convention over repeated indexes. Greek indexes run from 0 to 4 while
Latin indexes run from 1 to 4. Bold Greek and Latin indexes run up to 3. We use the notation z° =t and
z* =y so that 9, = 9/9z* for 4 =0,...,4 denotes any derivative along the coordinate axes.
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existence and uniqueness (up to diffeomorphisms) of a maximal globally hyperbolic spacetime
arising from any set of smooth initial data satisfying the constraint equations. This is a
local result in the sense that it does not guarantee that the spacetime solution (., g) is
causally geodesically complete. We observe that their proofs, which are performed in a 4-
dimensional setting, do not actually depend on the particular manifold .# considered (nor
on its dimension, or whether or not it is compact or a product with compact factors) and
therefore apply to the Kaluza—Klein setting. We also mention the recent work of the first
author with Valcu [22] in which initial data for the Einstein equations on manifolds of the
form R!*™ x T™ are constructed.

The articles mentioned above constitute the starting point to investigate and prove the
global stability of the flat metric g. An informal statement of our main result is the following

Theorem 1.1. Let (Xq, go, Ko) be an arbitrary set of smooth asymptotically flat initial data
satisfying the constraint equations, with Xy = R3 x St,

go = ((1 * X(TO)M/T)]?’ (1)) +90,  (I3)ij = 6ij

where géij =O0(r™ "), Ko =0(r*") asr=|z| = 00, k>0

and such that go—9d and Ky satisfy global smallness assumptions. Then, there exists a causally
geodesically complete spacetime asymptotically converging to the Kaluza—Klein spacetime.

In the above theorem, Y is a cut-off function supported outside some ball centered at 0 and
M is a positive constant corresponding to the ADM mass. We refer to the work of Dai [12]
on the positive mass theorem for manifolds including those of Kaluza—Klein type.

The global stability problem for the flat metric g can be cast into the form of a small
data global existence problem for quasilinear wave equations. The Einstein equations can
be written as a system of quasilinear wave equations for the unknown metric coefficients
gap if one works with a standard gauge, called the harmonic or wave coordinate or De
Donder gauge, in which the (harmonic) coordinates {x“},—o 4 are defined to be solutions
of the geometric wave equation@ Hgz® = g"'V,V,2% = 0, where V denotes the Levi-Civita
connection of g. Relative to these coordinates the metric g satisfies the so-called wave
condition

(0% v (0% 1 Q,
(12) g Bguuraﬁ =g Baﬁgau - 59 Baugaﬁ = 07 n= 07 oo 74
under which the wave operator [J, on functions coincides with the reduced wave operator
O, = ¢"70,0,. In this gauge the equations (L.II) become

(1.3) Uy90s = Fap(9)(9g,09) on R x S

2giv and g* denote respectively the coefficients of the inverse metric of g and g. Unless differently
specified, we lower and raise indexes using the metric g, i.e. for any tensor m,g we define TP = g"“yﬂ”ww.
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where F,5(u)(v,v) depends quadratically on v. A straightforward computation shows that
these source terms decompose into the sum of the following

~ 1
P(aag> 869) = iguugpa (8ag/waﬁgpa - 2aagupaﬁgua)
Qaﬁ(&% ag) = gwjgpoaugpa&/.QOﬁ - Q“VQ’MQM(@QM’ 891/5) + guyngQau(agvm agpﬂ)

14 g 1 14 g 1 v lo}
+ g,u gp Qﬁu(ﬁgucn agpa) + 59“ gp Qoa(ag,uw agpﬁ) + §gﬂ gp chﬁ(ag;wa agpa>
where (), denotes the quadratic null formi]

Qul/(agb, a"vb) = 8u¢8u¢ - 5u¢3u¢
The initial conditions (gag|i=0, Otgasli=o) for (L3) are defined from (3, go, Ko) as follows

gij|t=0 = 90ij5 900|t:0 = —@2, gOz’|t:0 = gz’0|t:0 =0,

(1.4) (8tgij)|t:0 = —2aKo;j, (9¢900)|t=0 = 2a3g(i]jK0ij7

1
(8t90i)t:0 = a29§l8190m - §a2g§l8igokl —ada

where a? := (1 — My(r)r~!) denotes the lapse function, so that they are compatible with the
constraint equations and satisfy the wave condition. In particular the constraint equations
yield a decay for g;; of the form

gij = (L+ Mx(r)yr)o; + O(r™%),  gu=1+0(""")

The initial data for ggo and gg; are free and we set them as in ([I.4]), following what was done
by Lindblad and Rodnianski in their work [40], for compatibility with the wave coordinates
for Schwarzschild. The condition (0gi;)|i—0 = —2aKy;; is given so that Kj is the second
fundamental form of ¥, i.e. Ko(X,Y) = —gli=o(Vx0:, Y) for any vector fields X, Y.

Any solution to the Einstein equations (I.I]) with smooth data (g, go, Ko) satisfies (L3))-
(L4)) when written in harmonic coordinates. Conversely, any solution g,z of (L3)-(L.4]) with
initial data compatible with the constraint equations and satisfying the wave condition (L.2))
will satisfy ([.2]) for all times and hence gives rise to a solution of ([L.I)) with data (2o, go, Ko)
defined from (L4). We refer to Ringstrom [49] for more details on the subject. From now
on, we will then entirely focus on the formulation (L.3])-(T.4]).

1.1. State of the art. There is a vast literature in general relativity concerning the stability
of physical solutions to the Einstein equations. In the 4-dimensional setting, the global
stability of the simplest solution, the Minkowski metric, was proved in a monumental work
by Chistodoulou and Klainerman [I1] and later revisited in the works of Lindblad and
Rodnianski [39,40] using the harmonic gauge. See also the results by Klainerman and Nicolo
[32], Bieri and Zipser [5], Hintz and Vasy [20], Choquet-Bruhat, Chrusciel and Loizelet [9]
for Einstein-Maxwell systems and by Speck [50] for Einstein equations coupled to a family
of nonlinear electromagnetic field equations.

Analogous global stability results have also been proved for other 4-dimensional coupled
Einstein matter systems. Einsten-Klein—Gordon systems were investigated by LeFloch and
Ma [37] in the case of restricted data coinciding with the Schwarzschild metric outside a
compact set, and global stability was later proved by Ionescu and Pausader [25] in the

3The quadratic form Qo (9, dY) = g 8,¢d,1 is also a null form.
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case of unrestricted data. We also cite the works by Fajman, Joudioux and Smulevici [17]
and Lindblad and Taylor [41] proving a global stability result for Einstein-Vlasov systems
for a class of restricted data, and the result by Bigorgne, Fajman, Joudioux, Smulevici
and Thaller [6] about the asymptotic stability of Minkowski spacetime with non-compactly
supported massless Vlasov matter. There is also a very rich literature concerning the stability
of other explicit 4-dimensional solutions to the Einstein equations, for instance the Kerr
solution or solutions to the Einstein equations with positive cosmological constants, but it
is not our purpose to list such references here.

Higher dimensional solutions of the Einstein equations, in particular spacetimes with addi-
tional compact directions R!™3x.#", have attracted substantial attention from the theoretical
physics community throughout the past century. Theories of higher dimensional gravity are
in fact of great interest in supergravity and string theory as possible models for quantum
gravity and are possible candidates for providing a unified description of all the fundamental
forces in nature (gravity, electromagnetism, weak force and strong force). A guiding phi-
losophy of supergravity theories is that one should be able to recover 4-dimensional physics
from higher-dimensional models, hence to perform some sort of dimensional reduction by
assuming the extra directions to be compact.

The classical mathematical approach to the unification of general relativity with electro-
magnetism goes back to the works of physicists Kaluza [26] and Klein [34]. In their original
works, one extra dimension is considered and the five spacetime dimensional gravity is com-
pactified on a circle Sk of radius R to obtain at low energies a 1 + 3 dimensional Einstein-
Maxwell-Scalar field system. We will briefly discuss the reduction from the 5-dimensional to
the 4-dimensional model in the next subsection.

In a seminal work by Witten [59] it was proved that the Kaluza—Klein spacetime g is
unstable at the semiclassical level. However, classical global stability was conjectured to
hold true and such a result was proved by the third author [60] for small perturbations that
do not depend on the compact direction. The goal of this paper is to extend the result
of [60] and to prove the global stability of g for more general perturbations that can a-
priori depend also on the compact direction. We mention that a result analogous to [60]
for cosmological Kaluza—Klein spacetimes, where the Minkowski spacetime is replaced by
the 4-dimensional Milne spacetime, has also recently been shown by Branding, Fajman and
Kroncke [7]. Furthermore global existence, without a restriction to S'-independent data, was
shown on a quasilinear system of wave equations by the first two authors in [21] and on a
semilinear wave equation on a cosmological Kaluza—Klein spacetime in [56]. In the context of
higher-dimensional gravity we also cite a result by Ettinger [16] on the global well-posedness
of a 11-dimensional, semilinear, gauge-invariant wave equation, and a global stability result
by Andersson, Blue, Yau and the third author [2] for spacetimes with a supersymmetric
compactification: that is, spacetimes (., §) with .# = R x K and § = 114, + k, where
N4n 1S the (1 + n)-dimensional Minkowski metric and (K, k) is a compact Riemannian
manifold that admits a spin structure and a nonzero parallel spinor. Their proof uses the
assumption n > 9 but the result is conjectured to hold true for n > 3.

1.2. The zero-mode truncation. The Einstein equations in harmonic coordinates reduce
to (I.3), which is a system of wave equations on the product space R x S!. Assuming for

a moment that the compactifying circle S' is replaced by the circle S}, of radius R > 0, and
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by Fourier expanding the solution g of (L3]) along the periodic coordinate

gap(t, z,y) Ze’kygaﬁ t,x)
kez

it turns out that

(=07 + Au 4+ 02)gas = > e™(=07 + A, — ([k|/R)*)gk s
keZ
which shows that the zero-modes g3 of the metric coefficients are massless waves while the
non-zero modes g ; are massive (Klein-Gordon) waves with mass |k|/R for k # 0. Equations
(L3) are hence equivalent to a system on R which couples wave equations to an infinite
sequence of Klein—Gordon equations with mass |k|/R, k € Z \ {0}.

The heuristic physics argument, as explained by Pope in [48], to deal with this phenomenon
is to assume the radius R to be very small (a choice that would justify why we “don’t see”
the additional dimensions) so that the masses |k|/ R are too large to be physically observable.
The non-zero modes are then neglected and the solution is truncated to the massless mode,
in other words one assumes that g.s(t, z,y) = gag(t, ) is independent of the y coordinate.

Under the zero-mode truncation assumption, one can reduce the Kaluza—Klein model to
a three-dimensional Einstein-Maxwell-scalar field system. As explained in [48], this is done
using the following standard ansatz, in which the higher dimensional metric coefficients gag
are expressed in terms of three-dimensional fields gag, ¢, %o by

Jap = e%d)ga/@ + e2p¢>£{adﬁ’ Jada = 62p¢>£{a’ Jaa = e*r?

where Kk = v/12/12 and p = —2/+/12. The Einstein vacuum equations (L.I]) reduce then to
the following minimally coupled (1 + 3)-dimensional Einstein-Maxwell-Scalar field system

1 1 4. 1 U
Ra,@ = §aa¢a,@¢ + 56 0 d)(yaugﬁu - Zylﬂ/yu ga/@)
V(e %0 Fag) =0

~ 3

DgQS = —51%6_6’{(25@“1/?“”

where Z o3 = 003 — 03 %. The above reduction can be also performed in higher dimen-
sional settings where .# = R'™2 x T?. In the KaluzaKlein setting, this truncation to the
zero mode is consistent in the sense that a solution to the above Einstein-Maxwell-Scalar
field system will be a solution to the original vacuum Einstein equations in 5 dimensions.

The full global stability of the Kaluza—Klein spacetime to general perturbations, that may
a-priori depend on the compact direction, involves studying solutions to a significantly more
complicated PDE system than the simpler dynamics of the above Einstein-Maxwell-Scalar
field system studied in [60]. This is the goal of the present article. We point out that we do
not want to focus here on the dependence of the solution on the radius R and, since there is
no canonical choice of the radius R, we set R = 1.

1.3. 4D Wave-Klein—Gordon systems. The dependence of the metric coefficients g,3 on
the periodic coordinate y and their Fourier decomposition along this direction reveal that
system (3] is equivalent to a system coupling wave equations to an infinite sequence of
Klein—Gordon equations with different masses. The new system is also quasilinear and the

coupling between the wave and Klein—-Gordon components of the solution is strong.
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The study of systems coupling (a finite number of ) wave and Klein-Gordon equations has
attracted considerable interest from the mathematical community, especially in the past three
decades. In terms of small data global well-posedness results in 1+3 spacetime dimensions we
cite the initial results by Georgiev [19] and Katayama [27], followed by LeFloch and Ma [36],
Wang [57,[58] and Ionescu and Pausader [24] who study such systems as a model for the full
Einstein-Klein—Gordon equations, see [37] and [25]. In [36] and [57] global well-posedness
is proved for compactly supported initial data and quadratic quasilinear nonlinearities that
satisfy some suitable conditions, including the null condition of Klainerman [31] for self-
interactions between the wave components of the solution. An idea used in these works is
that of employing hyperbolic coordinates in the forward light cone; this was first introduced
by Klainerman [29] for Klein-Gordon equations and Tataru in the wave context [52], and later
reintroduced by LeFloch and Ma in [36] under the name of hyperboloidal foliation method.
In [24] global regularity and scattering is proved in the case of small smooth initial data that
decay at a suitable rate at infinity and nonlinearities that do not verify the null condition but
present a particular resonant structure. We also cite the work by Dong and the third author
[14], who prove global well-posedness for a quadratic semilinear interaction in which there are
no derivatives on the massless wave component. Other related results are [413,33,[47.[53H55].
See also [15,23,42H46L51] for results about wave-Klein—-Gordon systems in lower dimensions,
in particular a work by the second author [5I] and a subsequent result in collaboration
with Ifrim [23], which are the only ones where 2-dimensional strongly coupled quadratic
wave-Klein—Gordon systems with small mildly decaying data are investigated. Advanced
techniques, among which semiclassical microlocal analysis, para/pseudo-differential calculus,
wave packets, modified quasilinear energies, are employed there to tackle a problem that is
critical, quasilinear and very weakly dispersive.

A now-standard tool used in most of the aforementioned works is the vector field method.
Linear wave and Klein-Gordon equations on R*" are invariant under translations, Euclidean
rotations and hyperbolic rotations (linear wave equations are also scale-invariant). These
symmetries provide a family of admissible vector fields (in the common terminology they are
also referred to as Killing vector fields of Minkowski spacetime),

8!“ Q,’j = (L’,’&j — (L’jai, QQ,’ = t&,- + SL’iat

which commute with the linear wave and Klein—Gordon operators and are used to define
higher order energy functionals which control the Sobolev regularity of the solution as well
as its decay (and that of its derivatives) in space at infinity. The rotations €;; and Q;
are also usually referred to as Klainerman vector fields. In the absence of Klein—Gordon
equations, that is in the case of wave equations only, one can also consider the scaling vector
field .7 = t0; + 2%0; (a conformal Killing vector field of Minkowski) and use the control on
higher order energies to derive fixed-time pointwise decay bounds for the solution via the
so-called Klainerman-Sobolev inequalities (see Klainerman [30])

(L5) (e )" Al = Dt )P < C Y 12 ult ) | agey-

[1]<(n+2)/2

In the above inequality Z denotes any of the vector fields 0, $2;;, s, and Z! is any
product of |I] such vector fields. Suitable energy estimates and pointwise decay bounds are

subsequently used to control the nonlinear terms in the energy inequality and are essential
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to close the continuity argument which is at the core of the proof of a long-time/global
existence result for small data.

The inequality (L) is, however, useless when dealing with Klein-Gordon equations. The
scaling vector field does not commute well with the linear operator and one cannot generally
expect to have a good control of the L? norm of . when u is a Klein-Gordon solution.
Instead, if u is compactly supported inside the light cond] t = |z| + 1 one can define higher
order energy functionals on hyperboloids t* — |z|*> = s* and exploit Klainerman-Sobolev
inequalities on hyperboloids (see for instance [18])

(1.6) sup " u(t,z)| <C > |Bullr20m)
I

[1]<(n+2)/2

where now B! are products involving hyperbolic rotations only, to get a good pointwise
control on the solution. This approach has been largely used in the case of compactly
supported initial data thanks to the finite speed of propagation satisfied by both wave and
Klein—Gordon equations, but it is not adapted to treat the case of initial data that only
enjoys some decay at infinity. Other methods have been employed to handle such cases,
based on Fourier analysis, normal forms and/or microlocal analysis: see for instance the
work by Ionescu and Pausader [24] in the 1+3 dimensional setting, by the second author [51]
and in collaboration with Ifrim [23] for the 142 dimensional case, and references therein.
See also a recent work by LeFloch and Ma [35] using a foliation that merges hyperboloids
with constant time slices.

1.4. The 5D problem: main theorem and overview of the proof. According to the
positive mass theorem, the solution g,z of the Cauchy problem (L3)-(I.4) must have a
non-trivial tail at spacelike inﬁnityﬁ which suggests to set gog = Gng + hgﬁ + hiﬁ where

r M
an Mes = x(F0Te a0

X € €°(R) with x(s) =0 for s <1/2, x(s) =1 for s > 3/4, r = |z
and look for héﬁ the solution to the following system of quasilinear wave equations
(1.8) Oyhls = Fag(h)(@h,0h) — Oyh%s,  on R x S

with data (h'|ag, Oihlg)li—2 being small and sufficiently decaying in space. The semilinear
source term in the above right hand side decompose into the following sum

F,5(h)(Oh,0h) = P,3(0h,0h) + Qas(0h, Oh) + Gop(h)(Oh, Oh)
where
- P,s(0h,0h) are quadratic weak null terms

1
Paﬁ(ﬁhv 8h> = Zgupgw (&xhup&ﬁhw - Qaahuzx&ﬁhpcr) s

- Qup(0h,0h) is a linear combination of the classical quadratic null forms,
- Gop(h)(Oh, Oh) are cubic terms. More precisely, they are quadratic in Oh with smooth
coeflicients depending on h so that G,z(0)(0h,0h) = 0.

4Any cone t = |z| + ¢ with ¢ > 0 would do.
"We choose to write this tail so that gap corresponds to the Schwarzschild metric in wave coordinates at

leading order.
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The reduced wave operator can be written as Eg = Uy +H"0,,0,, where U, = —83+Ax+8§
is the flat wave operator and H*" := g"” — g"” is the formal inverse of h,, for small A, i.e.

(1.9) H" = —p* + 0" (h?) = —3"G" hpo + O (h?).
We can now give a more precise statement of our main result.

Theorem 1.2. Let k > 0. There exists N € N sufficiently large and ey > 0 small such that,
for any 0 < € < €y and initial data gy, Ko solving the constraint equations and satisfying

itk givi itk qivi
Yoo M) (go — ¢y, (L )T RVIK||1z, < €
m<N i+j=m

3 itk aivi S+ith giv7i
ST M)AV (g0 — ¢z, + (1 7)ER VK < e

m<IN—1i+j=m

(1.10)

together with the L* estimate
Ll
11 +7) 2" (g0 — ¢)l12, < e
with r = |z| and ¢° defined by
g5 = (L4 Mx(r)r)dsg,  gu=1, g3 =0,
there exists a unique global solution gas to ([L3) with initial data given by (L4)). This solution
obeys the Einstein equations and decomposes as gos = Jap + hog + hbg, with hY g defined by
(L) and h}z satisfying the pointwise estimate
C()E
(I+t+ |z|)t

with Cy a numerical constant and ~v > 0 arbitrarily small but fized.

|h(115| <

The proof of the above result is based on a bootstrap argument, i.e. on the propagation of
some suitable a-priori energy estimates and pointwise decay bounds on the solution, which
is performed in two main steps:

Step 1: deduction of higher order energy inequalities and of sharp pointwise estimates
from the a-priori energy assumptions;

Step 2: estimates of the trilinear and quartic terms appearing in the right hand side of
the energy inequalities. In particular, deduction of suitable higher order L? estimates of the
source terms from the a-priori energy assumptions and the pointwise decay bounds.

In order to run the above argument and in view of the issues discussed in the previous
subsection, one needs to find a strategy to obtain (at least in the first instance) pointwise
decay bounds on the solution from the a-priori assumptions, knowing that inequality (L35
cannot be used and ([LO) is valid only in the interior of some light cone.

Similar to [21], the approach we take in the present paper is to decompose the whole
spacetime and study the problem separately in two regions, corresponding to the interior
and exterior of a hyperboloid@ asymptotically approaching the cone {t = |x| + 1} x S'. This
decomposition is quite natural, in that the analysis in the exterior is totally independent of
that in the interior and requires different tools. It also allows us to explain our arguments
with more clarity.

6Tn this curved background, the Minkowski cone {t = |x| 4 1} is in fact only asymptotically spacelike.
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1.4.1. Exterior region: the bootstrap assumptions. The bootstrap assumptions in the exterior
region are higher order weighted energy estimates on the solution

EeR(t, ZSN Y2 < 2Cet?,
Ee,l-‘rn(t’ 8Z5N_1h1)1/2 < QCQEtU

where the weighted energy functional is defined, for any A > 0, as

BN = [ @l P Sl Py
x|>t—1}x

/ // 2+ [z — ) Vhis(r, 2, y)|*dadydr.
{o]>r— 1}><Sl

In the above integrals, V,, denotes the spacetime gradient while V = (0g,...,04) = (0, +
Or,#;,0,) denotes the tangent gradient to the cones {t = r + 1} x S!, with @; = 9; — %0,
being the angular derivatives. The parameter x in the above a-priori estimates is related to
the asymptotic decay of the data, N € N is assumed to be sufficiently large and 0 < ¢ < &
sufficiently small. Weighted Sobolev and Hardy inequalities allow us to obtain fixed-time
pointwise decay bounds on the solution from the assumptions on the weighted energies, as
for any given smooth function U

ViUt z,9)] < COL+ |2) 2+ |2] = 1)72 72 Y- B, 2'0)'2,

1/<3

U, z,9)| < C(1+ |z) "2+ |z| — ) Z IR (AL E

[]<2

They also allow us to uncover faster spacetime decay for the tangential derivatives, since
their weighted L2-spacetime norm is controlled by the energy, and to recover the well-known
property of waves that higher order derivatives enjoy better decay in terms of the distance
from the outgoing Minkowski cones, which follows from the second energy assumption above.
We point out that, in the context of waves on R'™® where the full range of vector fields
I' € {Q;5,Q,. 7} is available, the latter two properties are easily derived from algebraic
relations. In particular, one can use that

= 3 Ty 2 3 0Ty
< < N Dt i N
SRS L+t+ [t —|z| WIS L+t —|z||
[1<1 11<1

1.4.2. Interior region: the bootstrap assumptions. The bootstrap assumptions in the interior
region are bounds on higher order energies defined on truncated hyperboloids

%:{(t,l’):tz_‘x|2:52andt21—|—\/m}x§1’ §s>9

which are the branches of hyperboloids contained in the interior region, and pointwise decay
bounds on differentiated metric coefficients carrying only Klainerman vector field derivatives.
We denote the zero-mode (respectively zero-average) component of coefficient h}lﬁ by

1b 1 1,8 _ g1 1,b
h'OéB — f h de, and h'OéB — h’aﬁ - haﬁ
9



We assume that, for some large integers 1 < N; < N and some smalll 0 < ( <7v <9, the
following bounds are satisfied

E'(s, 831Z§Nhéﬁ) < Ce*stte,
E'(s, ZSNh}I’Z) < Ce*st,
E'(s,0=N"MZz=Npl ) < Ce?s’

where

// (s/t)0h ﬁ‘ + |Vh} s dady

://%‘(S/t)vxhiﬁf“_‘(l/t thﬁ‘ + Z }(l/tQ hlﬁ‘ +|8h5|2dzrdy

1<i<j<3

and with I' € {€;;, Q0 }
IDSMBL (L @) < Ce(1+ ) (L + |t — |2]]),

162051 (0" 3 | o 13 oy H1t7 504 (O'T W5 | e 13 oey < Ces™, I+ < Ny+1, | J| < Ny

In the above energy functional, V = (0i,...,0;) denotes the tangent gradient (to the
hyperboloids) with 9, = 0; + (xz/t)ﬁt for i = 1,2,3 and 9, = 0. Klainerman-Sobolev
inequalities on hyperb0101ds permit us to deduce pomtw1se decay bounds for the solution,
as for any given smooth function U one has

sup [V, U(t, 2, )| < C(L+ )7 (14 [t = [2|)72 Y Ei(s, 2'U)'2,
st 7]<3
sup IVU(t,z,y)| < CL+1)72 > Ei(s, 2'U)2.
17|<3
Note that the latter inequality shows, again, that tangential derivatives enjoy better decay

estimates than usual derivatives. We postpone the explanation of why we use the above
hierarchy of energy assumptions to later in this section.

1.4.3. Estimates on inhomogeneities: null and weak-null terms. Once energy bounds and
pointwise decay bounds are available, one has to estimate the trilinear and quartic terms
appearing in the right hand side of the energy inequalities. These involve the source terms
of the equation satisfied by the differentiated coefficients Z% héﬁ

0,25 nks = F + Fot
where
Fuy = 25 Fap(h)(0h, 0h) — (2%, H" 0,0,)hys,  Foy = 250 hoﬁ

are semilinear quadratic interactions. The explicit inhomogeneous terms F B K and the differ-
entiated cubic terms Z5 G ,5(h)(Oh, Oh) are short range perturbations of the linear equations.

n practice, {,y and § are going to be replaced with a hierarchy of increasing (x,yr and i, where k
accounts for the number of Klainerman vector fields in the product Z1, so that (; < v; < 6, for any i, j, k
and the algebraic relation ~; + §; < §; whenever j < k.

10



We do not discuss them here as they cause no issue in the analysis. The differentiated null
terms Z% Q,p(0h, Oh) are also easily controlled, thanks to the following well-known property

|Qu(0%, 09)| + |Qas (0%, 0)| < [0V]|0p] + |0]10|
< |09110¢] + 109 [19¢] + (s/1)*|0¢||0p|

and the better behavior of tangential derivatives.

The quadratic interactions that are more delicate to treat and require special attention are
the differentiated null terms Z* P,z(0h,0h) and the commutator terms [Z%, H#*0,0,]h}s.
The particular structure of such terms was first highlighted by Lindblad and Rodnianski
[38-40] in the 4-dimensional setting and shows all its potential in the null frame % =
{L,L,S" S*}U{d,}, where L = 9, + 0,, L = 9, — 0, and S', S? are smooth vector fields
tangent to the spheres S = {u € R® : u - z/|z| = 0}.

As concerns the weak null terms, one sees that if the metric tensor is expressed with
respect to % then

Pog(Oh,0h) ~ Oh2y, + Ohp Ohry, T € 7,U €%

where 7 = {L,S", 5%} U{9,} denotes the frame tangent to the flat outgoing cones. On the
one hand, the choice of gauge (in particular the wave coordinate condition) ensures that the
derivatives of hyr coefficients are well behaved, as they satisfy

(1.11) |Ohr| < |Oh| + O(h - Oh).

On the other hand, the metric coefficients hy solve quasilinear wave equations whose source
terms are null or cubic. In the exterior region, we exploit this property to prove that the
higher order weighted energies of such coefficients grow at a slower rate t“¢, where ¢ < o
is the size of the data. From this we infer an improved pointwise decay for 0ZX hyy with
|K| < N and the following weighted L? bound for the differentiated weak null terms

1

doll@+r— 1) 25N TP |, S
i=0

The above estimate shows that the weak null terms contribute to a slow growth of the exterior

energies. In the interior region, the enhanced pointwise bounds satisfied by the derivatives

of ZKhk, for |K| < N are instead obtained directly from the equations they satisfy, using

integration along characteristics as done in [40]. This approach is possible provided that we

already have at our disposal suitable bounds on the solution in the exterior region.

1.4.4. Commutator terms in the exterior region. The commutator terms also display an
important structure when expressed with respect to the null frame. The tensor H*” is
decomposed as follows

1.12 = o g g o= (D)) L ot — g,
t r

where H%" is the “Schwarzschild part” of H. The estimates of [Z%, H**9,0,]hl, are
straightforward and, similar to the weak null terms discussed above, responsible for a slow

8For any tensor T3 and any two vector fields X = X“0,, Y =Y “0,, we define mxy = ﬂ'aﬁX‘lYﬁ.
11



growth of the exterior energy. The estimates of the commutator involving coefficients H '+
are instead obtained using the fact that, for any tensor 7 and function 1,

70,00 S |mrel|0*] + || |00

so that either the tensor coefficient is a “good” coefficient 7y, or one of the two derivatives
acting on 1 is a tangential derivative. As highlighted above, in the exterior region the
enhanced behaviour of second order derivatives 90 as well as of 9% is encoded in the energy
assumptions. What is more, weighted Hardy type inequalities and weighted Sobolev-Hardy
inequalities allow us to get a good control of the higher order weighted L? norms, as well as
to recover good pointwise decay bounds, of the solution with no derivatives. Suitable higher
order weighted L? estimates for these commutator terms in the exterior region follow then
rather easily.

1.4.5. Commutator terms in the interior region. A much more delicate analysis of the com-
mutator terms is required in the interior region. On the one hand, the interior energy
assumptions do not provide us with additional information on the second order derivatives
and the interior energy functionals only give a H! type control on the differentiated solution.
The classical Hardy inequality written on hyperboloids is

I U 221 S WU 2y + 10U | 225y

where 3¢ is the exterior constant time slice that intersects the interior hyperboloid JZ; on
the boundary between the two regions. Such an inequality provides us with a control of the
L? norm of the undifferentiated solution at the costly expense of a 7~! factor. On the other
hand, no extra decay (in terms of the distance from the outgoing cones) is expected for the
second order derivatives of the solution. In fact, the zero-average component of the solution
h}xg is a Klein—Gordon type function, in that each of its Fourier mode along the y-direction
is solution to a Klein—-Gordon equation (see subsection [[.2)). As a consequence of this latter
fact one only has \8%2@\ + |8h}xg\ < (14t +7r)"%?2 which coupled with the above Hardy
inequality gives

Hthl,b . 82}7'(13;

Bl 2oy S 57V I0R sz + 108 r2gsy) S 577257,

The same inequality holds if h'” is replaced by (H'#*)’. These “wave-Klein-Gordon” con-
tributions to the commutator are the ones responsible for the s'* growth of the higher order
energies on #,. They are, however, absent in the equations satisfied by the zero-modes
zK h}x’;, as for any two functions f, g one has

(f-9)=1¢+ (g,

therefore a much slower growth is expected for the higher order energies of hig

The above observation motivates the use of a hierarchy in the interior energy assumptions
and to separately propagate the higher order energy estimates for the zero-modes. To prop-
agate the different interior energy assumptions, we then need to estimate the commutators
[ZK, 71 9,0,]¢ separately for 7 = HY, HY# and ¢ = h;’g, h;g The analysis is reasonably
straightforward when m = H™ as we can rely on the Poincaré inequality. When 7 = H'’

the analysis is finer, as we express the metric coefficients H %" relative to the null framework
12



and all derivatives in terms of &;,d, and of the tangential derivatives 9, to hyperboloids.
Doing this, we see that

2%, (H)8,0,]6|

2 — 2 ZEHY 02

< \z5mlotel + 12 Hil0o,0 + T g op) + (ZEIOZEL

The remarkable property of the above right hand side is that each quadratic term either

contains coefficients H éz and H if - which are “good” as a consequence of the wave condition

- or have an extra decaying factor (|t —r?|/t)? and (1+t+7)~!. Then suitable estimates on

the L?(7#,) norms of the above terms are obtained by using a Hardy inequality a la Lindblad

and Rodnianski with weights in ¢ — r, which allow us to better exploit the pointwise decay
of our solution. We point the reader to subsection for further details.

1.4.6. The null framework. We emphasise the importance of choosing a framework which
correctly highlights the structure of the weak null terms. In fact, the absence of “bad”
interactions, such as (Ohy, L)z and Ohpr, - Ohry in the expression of the weak null terms with
respect to the null framework, is crucially related to the fact that the transversal field L
is orthogonal to S* x S!, i.e. that g(L,A) = 0 for A € {S*,5%,9,}. On the contrary, the
framework arising naturally from hyperboloids

a

F = {0 0u=0u+"0}U{D,},

in which the “transversal field” (9, in the above example) is not orthogonal to S* x S!,
causes the analogue of the bad interaction 0hyy, - Ohpy to appear and critically fails to give
a useful expression for the weak null terms. This consideration leads us to adopt the null
frame decomposition both in the exterior and the interior region and to combine it with
the foliation by hyperboloids in the latter region. Indeed in this region, and when required,
the metric coefficients are expressed with respect to the null frame %/ (in order to use the
enhanced behavior of hyr and hpy coefficients) while derivatives are written in terms of
those in .# (in order to distinguish between the “good” tangential derivatives d,,d, and the
“bad” direction 0;). Note our approach is different from what was done in previous works on
Einstein-Klein—Gordon systems. We finally mention that a different framework than the null
one is used by lonescu and Pausader [25], which is reminiscent of the div-curl decomposition
of vector-fields in fluid models and is more compatible with the Fourier transform approach
employed there.

1.4.7. The Einstein-Klein—Gordon equations. We conclude by pointing out that our proof
can be used, mutatis mutandis, to provide a new proof of the stability of the Minkowski
solution to the Einstein-Klein—Gordon equations. To briefly illustrate this point, we recall
that in a harmonic gauge the Einstein-Klein—Gordon equations read

2

(1.13) Oyhas = Fap(h)(0h, Oh) — 2(aa¢aﬁ¢ v %gaﬁ), 01,6 = m?o.

These equations are posed on R'*3, m > 0 is a constant parameter and h is a perturbation
away from the Minkowski spacetime m defined via gog = mag — hag. The system (.13
is much simpler to treat than ([3). For example, without the S!, the metric tensor h

remains entirely wave-like and so all problematic wave-Klein-Gordon commutators no longer
13



occur. The only Klein—-Gordon field is ¢ and it couples into the equation for the metric
only via semilinear nonlinearities. This coupling is weak in the sense that the bootstrap
assumptions for hag and ¢ can be propagated separately. To conclude, due to our choice
of null framework, combined with the separate analysis used in the interior and exterior
regions, our proof provides an alternative perspective from what was done in previous works
on Einstein-Klein—Gordon systems in [2537].

1.5. Notation. Below is a list of notation, some of which have already been introduced in
the introduction, that we will use throughout the paper.

COORDINATES:

o {2}, 4 with 2 =t € R, z = (2',2% 23) € R3, 2* = y € S are the harmonic
coordinates. They satisfy the geometric wave equation ¢’V ,V,z% = 0. We will
always denote by r = |z| the radial component of x;

e u=t+rand u =t—r are the null coordinates. They are used in the exterior region.

DERIVATIVES:

® Vizy = (O, ...,04) denotes the spacetime gradient, with 0, = 9/0z*. V,, denotes
the full spatial gradient in R3 x S' while V, is the spatial gradient in R?. V,, is the
4D spacetime gradient;

e 0., denotes any of the derivatives 9; with ¢« = 1,...,4, while d, denotes any of the
derivatives 0; with ¢ = 1,2, 3. The definition of 0,, and 0y, are similar. We will use
0 and 0y, interchangeably;

o Uy = —07 +A; + 92 and O, = =07 + Ay;

e 0, = (2/r)0d; denotes the radial derivative in R?;

e () denotes any of the angular components @; = 9; — (;/r)0, of 9; for i =1,2,3;

e 0, =(1/2)(0, + 0,) and 0, = (1/2)(0; — 0,) denote the null derivatives;

oV = (dy,...,04) = (0 + 0,,;,0,) denotes the tangent gradient to the cones {t =
r+ 1} x St. Moreover V, = (0y, . ..,03) = (0; + 0,,d;);

e O denotes any of the tangent derivatives d, in R'™® x S', 9, denotes any of the
tangent derivatives 0, in R'*3;

e V=(9,,...,0,) denotes the tangent gradient to the hyperboloids in R*3 x S! with
9; = 0; + (z*/t)0; and 9, = 9,. Moreover V, = (0;, 05, 05);

e O denotes any of the tangent derivatives 9,9, in R34 xS 9 denotes any of tangent
derivatives 9, in R'3. Sometimes we will use 9, = ;.

ProbpucTs:

e Given a multi-index a = (g, a1, ..., a4) € N° its length is computed classically as
la| = S0 o We set 0% := 9500 05205205 and 92 := 071 05295*. The definition
of 97, and Jf, are analogous;

e More generally, given a family of vector fields {Xi,..., X, } and a multi-index a =

(a1, ...,0p) € N" X*= X" ... X% With an abuse of notation we will sometimes
write X% (resp. X=F) instead of D afolmk X (T€SD. D20 01k XO)-

METRICS:

o g=—(dt)?+ > ,(dz*)? + (dy)? denotes the Kaluza—Klein metric on R x S*;
e g denotes a solution of the Einstein equations (L)) on R'™ x S;
14



e 7*” and ¢*? denote the inverse of the metrics Jop and gap respectively. For any
other arbitrary n-tensor tensor m,, .a,, indices are raised and lowered using g, e.g
T

o HF = g% — g°F corresponds to the formal inverse of hag = gug — Jap- When h is
sufficiently small we have HY? = —ho# + 0*5(h?).

— 01 .
a2...0n ~ g Mﬂ-,u,az...an7

NuLL FRAME AND DECOMPOSITION:

o L = O, + 0, denotes the vector field tangent to the outgoing null cones in R'*3 x St
In components, L° = 1, L* = x*/|z| and L* = 0;

o L = 0, — 0, denotes the vector field tangent to the incoming null cones in R**3 x S
In components, L° = 1, L* = —2*/|z| and L* = 0;

e S! and S? denote orthogonal vector fields spanning the tangent space of the spheres
t = const, r = const, y € SY;

o % ={L,L,S" 5% 0,} denotes the full null frame in R'*3 x S!;

o 7 ={L,S" 5% 0,} denotes the tangent frame in R x S

o £ ={L};

e For any vector field X and frame vector U, Xy = X, U® where X, = gaﬁXﬁ;

e For any arbitrary vector field X = X9, = XFL + XLL + X5' 51 + X5°52 + X%9,
where Xt = —(1/2) Xy, XL = —(1/2) Xy, X4 = X, for A= S' S% 0,;

e For any (0, 2) tensor m and two vector fields X, Y

Xy — WQBXQYB.
For any two families ¥, % of vector fields, 7|y == > ycy ey [Tvwl;
e The metric g has the following form relative to the null frame, note A, B € {S*, 5%, 9,1,

9L =90 =904=924 =0, Jrp =91 =2, Gap=0aB-
As concerns the inverse metric, we have
ght —ghL —ghA —glA — o gFL — gLl — ~1/2, gAB — §AB.

ADMISSIBLE VECTOR FIELDS:
o {I'} ={Qj,;} is the family of Klainerman vector fields, where Q;; = z;0; — x;0;,
and Qq; = t0; + x;0;;
o {Z} ={0,,j,Q;,0,} is the family of admissible vector fields;
e For any multi-index K = (I,.J), we set ZX =0T, If [I| + |J| = n and |J| = k, we
say that K is a multi-index of type (n, k).

COMMUTATORS WITH THE NULL FRAME:
o Q05,00+ 0] = =3, — (0 +0,), [Q0g, D) = (= G + Z2%) [(8 + 0,) + 1Q0,]

o Q2,0 +0,] =0, [Qij, D) = —0ud; + dj1d
e [0, 0 + 0] = jkﬁj — mﬁfk@j
i [QOJ> ] [Qij> ay] = [aon ay] =0

COMMUTATORS WITH THE HYPERBOLIC DERIVATIVES:
L4 [QOjaat] = _aja [QOjaQa] = _mTaQJa [QOj>Q4] =0
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o [, 0] = [, 04] =0, [Qij, 0p] = 6a0; — 6ia0

j
EXTERIOR REGION:
o ¥ = {(t,x) : (t—1)> —r? = 1} x S! denotes the hyperboloid that separates the
interior and exterior region. It asymptotically approaches the cone {t = r + 1} x S!;
o 7°:={(t,x):2 <t <1+ +1+7r2} xS! denotes the exterior region;
e 75 denotes the portion of exterior region in the time slab [2,T);
e3¢ = {x € R: |z| > /(t—1)2—1} x S' denotes a constant time slice in the

exterior region;

INTERIOR REGION:

o 7' :={(t,x): t > 1 + /14 72} x S! denotes the interior region;

o = {t?—r? =s%>and t > r+1} xS! denotes a truncated hyperboloid in R x S

o Sy, =N {|x| =r} is the two-sphere of radius r on the hyperboloid .7;;

o Hss = {(t,z,y) € Z': s§ < t* — |z|* < s*} denotes the hyperbolic slab in the
interior region between J%;, and Z; when s > 2;

o Hsyoo) = {(t,x,y) € Z':2 < t* — |z|*} is the unbounded portion of interior region
above some hyperboloid 7.

1.6. From the null frame to hyperbolic derivatives. Below are some useful formulas
relating the null framework % to the hyperbolic derivatives 9,. We recall that s = /{2 — r2.
We have that

r zd r zd

J

7
LL’J’SL’
2 Qi
r

and
(1.15) UV =07 4 ¢88,0,0, + 0,0, + ¢ty 0,0, + d0; + din 0., UV ew

where

1.16
( cL)L =(1—r/t)} L= (1 —r?/t), =1 +r/t)?, Sy =0for A={S", 5% 09,1,

C%A}, =1-r/t, c%y = (1+71/t), &% =0 otherwise

C§4ay =1, ¢}, = 0 otherwise
and
0T/ S (Lt +r)7 M 0T dyy | Spp U+t +r) 1 (11> 0

(1.17) w1217 y i

iy P |8Fc vl Sip (L+t+r)7 1 |[7] > 1.
For any tensor m we have the following relations

2 2

(1.18) A(t/s)*n"Ved, = T (tj— mE + 7L (t _;T) + 7L
and

0,0, = WUVC‘{]'Q,a 9, + WUVd“ 8#
™ 0,0, = 7TUV [CUV82 + cha 85 + CUV8 81, +df 8 }



For any smooth function u = u(t, z), we have the following inequalities

— 2
Bul S 10l [0ul £ (3) 10ul + 0,ul
_ S\ 2 S\ 2 1
1.20 < (= 2 < (2 2 z <1
(1.20) 90ul 5 () 16%ul + 12,00 5 (3 ) 10%u] + £102"u
1 — 5\4 5\21 1
< Z <1 < (2 2 2) 219zt i <1
9l S 510,257, [90ul S (3) 107+ (5) S1025 Ml + 112,25 ul.

1.7. Outline of the paper. The rest of the paper is organized in three main sections.
Section 2l introduces some properties the metric coefficients inherit from the wave condition
and which will be used throughout. Section [3is devoted to perform the bootstrap argument
in the exterior region and hence to prove the global existence of the solution to (L)) there.
In section [4 we perform the bootstrap argument in the interior region and conclude the proof
of the main theorem. Two appendix sections follow: in section [A] we state and prove the
exterior and interior energy inequalities, while section [Bl contains a list of weighted Sobolev
and Hardy inequalities.

2. THE WAVE CONDITION

The metric solution g to (LIl satisfies, when written in harmonic coordinates {2*},, the
wave coordinate condition .
gy, =0, A=0/4
where Ff;u are the Christoffel symbols of g in the coordinates {z*},. The above equations
are equivalent to each of the following

1 1
(21) au (g/W \% |detg|) =0, gaﬁaagﬁu = 590501/9015’ Oag™ = 590591/#0”9&6’ v=0,4

These relations are particularly useful when written with respect to the null framework, as
they allow us to recover additional information on metric coefficients Hyr (and hence on
hrr) for any T' € 7, and to show that their derivatives have a special behavior compared
to those of general coefficients H*”. This is the content of the following Lemmas, which are
presented in a slightly different form than the ones in [40].

Lemma 2.1. Let g be a Lorentzian metric satisfying the wave coordinate condition relative
to a coordinate system {x*},_o. Let K = (I,J) be any multi-index with positive length and
assume that the perturbation tensor H* = g" — g*¥ satisfies the following

Z¥H| S0, YIK'| < [|K]/2).

Then
— S\ 2

(2:2) 0H| 2 < |0H| + |H||0H| 5 (3 ) 10H] +12,,H| + | H|[0H
and in any region where r 2>t 2 1
(2.3)

1ZX0H| 47 +102%H| 27 < Y (10Z¥H|+r7'2XH)+ Y [2MH||02"H]

|K'|<|K| | K1+ K2|<|K|
5\ 5 K K’ 1| K’ K K
< Y (;) 025 H| +102 H + 125 H|+ Y |25 H|j02%H]
|K'|<|K| | K1+ K2|<|K|
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Similar estimates hold for the metric tensor hy, = guw — Guu-

Proof. We write g"” in terms of the perturbation metric H*”. From the following equality
g"\/|detg| = (g" + H") <1 — %trH + ﬁ(Hz))

and the wave condition (Z.I]) we obtain that

(2.4) o, (1 %g’“’trH FOM(I)) =0, where (1) = 0(|HP?).

The divergence of a vector field can be expressed relative to the null frame as follows

(2.5) O, F" = L,0,F" — L0, F" + A, 0aF", A€ {S1,50,}

so setting HM = HM — % g"trH and contracting (2.4) with any 7' € .7 we deduce that

(2.6) OuHyp = 0,Hpp = 0,Hpp — OaHar + O(H - OH).

The first of the above equalities follows from the fact that g*Z = g*4 = 0. Relation (2.0
and the first two inequalities in (L.20) imply immediately (2.2]).

We now recall the commutators between any admissible vector field Z and the null frame,
which can be summarized in the following formula

3 3
3 3 i az Q r i
[Zv 804] = § :Cgaaﬂ + § :dZZa7 + €za : ) CgavdZweza = ﬁ(f)
B=0 i=1

r

where &5, d%., ez, are smooth homogeneous functions of x such that cga =e9o = 0,d%, =0

and
1050l +10Td50] + 10" ezal S v71, |11 20,
Using an induction argument on | K|, one can show that for any sufficiently smooth function
w the following inequality holds true whenever r 2 ¢
(2.7) 125, 0wl < > (1025w +r 7025w+ Y 125w,
|K'|<| K| |K|<| K|
As concerns the commutators with the transverse vector field, we simply have
(2.8) 25,0, - 0wl S > 1025w < Y (0,25 w| + 02" w).
|K'|<| K] |K'|<| K|
In order to obtain (23]), we apply Z¥ vector fields to both sides of equality (Z6). Using
(270) we find that
1Z250,H| 27 < > (0Z2¥H|+r Z¥H)+ > |ZMH||02%H|
|| <| K| | K1 |+ K| <| K|
which, together with (2.8]), yields
0,25 H g7 < > (025 H|++7Z25H)+ Y [ZH||02"H]
| K/ |<|K| | K|+ K| <| K|
+ Y 10,25 Hl 2.

|K'|<|K]
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The conclusion of the proof of the first inequality in (23] then follows by induction on |K]|.
The latter follows using also (L20). Finally, inequalities (2.2) and (23)) for h simply follow
from the equality H* = —h* + O'(h?). O

Inequalities (2.2) and (2.3)) hold true also for the tensor H** introduced in (L.I2]).
Lemma 2.2. Under the same assumptions of the previous lemma, we have that

1Z50H |97 + 1025 HY 27 S Y (1025 H'| +r7|ZX HY))

29) K <IK]
’ Myol(t/2 <r < 3t/4
S SR LT A R CUEEE R
|1 [ o< K] (L+t+7)
and
Z50H 37 + 025 H 25 S Y ( ) 025 HY + 025 HY| + Y 25 1|
2.10) |K<IK]

Mxo(t/2 <r < 3t/4)

ZK1H1 ZK2H1
D D e TR

| K1 |+ K2 <|K]|

where Xo(t/? <r< 3t/4) is a cut-off function supported for t/2 < r < 3t/4. Similar
estimates hold true for h'.

Proof. We set Ho := HO% — 1gmtr(H°) and derive from the definition of H° that

r70,puv / f %
(2.11) 9, H™M = 2x <t>x(r) -

We inject the above formula into (2.4]) and obtain that

10

250, (H"W) = —7K9,0m (H?) — ZK(2X’<§)X(T)%5”O>.

t2
Then the result of the statement follows using the same argument as in previous lemma’s
proof. Furthermore, from (LI2) a similar inequality can be proved for h,. O

3. THE EXTERIOR REGION

The goal of this section is to prove the existence in the exterior region Z° of the solution
hys of (L8) with data satisfying the hypothesis of theorem The proof is based on
a bootstrap argument in which the a-priori assumptions are bounds on the higher order
weighted energies of haﬁ, introduced below.

For any fixed x > 0, we define the exterior weighted energy functional of h} op A8

E* (t, hlg // (24 |z| = )72 Vimyhis(t, z, y) | dedy
{Jz|>t— 1}><Sl

/ // 2+ |z| = 0)*|Vhis(T, z, y)|*dzdydr
{\x\>7‘ 1}><Sl



and denote E®*(t,h') = > s E*"(t,h}z). We fix N € N with N > 7 and assume the
existence of a positive constant Cyy and of some small parameters 0 < ¢ < k/3 < 1 such
that the solution h' of (L) exists in 2§, and for all t € [2,T) it satisfies

(3.1) Eer(t, ZSN Y)Y < 2Cet”

(3.2) BT (4, 025N B2 < 20 et

The result we want to prove here affirms the following

Proposition 3.1. Let N € N with N > 6 be fized. There exists a constant Cy sufficiently
large, 0 < €y < 1 sufficiently small and a universal positive constant C' such that, for every
0 <€ < e if h' is a solution of (L) in the time interval [2,Ty) and satisfies the bounds
BI)-B2) for allt € [2,Tp), then in the same interval it actually satisfies

(33) Eje’ﬁ(t7 ZSNhl)l/2 < C’Oet%—l—CCoe
(34) B, 0257 h) < Cpet 4600

The time Tj in the statement of the above proposition is arbitrary and one can hence infer
that the solution exists globally in Z°. We also observe that, as a consequence of the energy
assumptions (3.I)-(B3.2), there exists an integrable function [ € L'([2,Tp)) such that

(3.5) 12 +7 =07 0Z5Vh| o gy < 2C0et”

(3.6) [(2+7—1)° 9Z=Nht| g < 2Coe/1(t)t7
(3.7) @47 =) PZVR| ey < 2C0et”

(3.8) 2+ 7 = 8)F DOZZN Y| o gy < 2C0oe /1D,

The first step to recover the enhanced bounds (B.3)-(34) is to compare the equation
satisfied by the differentiated unknown Z*hl, for any K = (I,J) with |K| < N + 1, with
the linear inhomogeneous equation (A)). The commutation of ZX with equation (.8 shows
that Z%h/ s solves

(3.9) O,Z25hks = Fls+ Foy'. Fay = Z50,hd,

with source term Fl; given by

(3.10) Fly = Z" Fog(h)(0h,0h) — (2%, H*0,0,]h%
The second step consists in recovering suitable pointwise decay estimates and L? estimates
for tensors h,s and H* and their derivatives. Our aim is in fact to apply energy inequality
(A2) with W = ZKhl;, F = FE + ) and w(q) = (247 —t)2 % with i = 0, 1 depending
on K. Such estimates allow us, on the one hand, to justify the use of ([A.2) and, on the
other, to suitably estimate the different contributions to the right hand side of such energies,
and hence to propagate (B.I)-(3:2). The derivation of these bounds is the content of the

following subsections.
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3.1. Pointwise bounds. A first set of pointwise decay bounds for the metric perturbation
hls. as well as for tensor H'*# are obtained from the a-priori energy assumptions (3.1)-(3.2)
via the weighted Sobolev and Hardy embeddings stated in appendix [Bl As concerns the mass
term, a straightforward computation using directly the expression of hgﬁ in ([.7) shows that
for all (t,z,y) € R x St

(3.11) sup |07 Z7h°| < e(1 + )11
st

Proposition 3.2. Let us define the weighted pointwise norm

u(®)lx = sup (L+t+7)(2+7r— 1) u(t,z,y)|.
(e:0)€%¢

Assume that the solution hjg of (IL8) ewists in the time interval [2,Ty) and satisfies [B.1))-
B2) for allt € [2,Ty). Then the following estimates hold true in g,

(3.12) 0ZSN=3RY 4 [0 Z5N 30 jarw S Coet?
(3.13) 0ZN3RY 1 g + (002N 301, S Coet” /1)
(3.14) | ZSN72RY ) < Coet”

(3.15) | ZSN3RMA e S Coet®.

Estimates B12)-@B.I4) hold true also for tensor HF.

Proof. Estimate ([3.12) (resp. (BI3)) for the second order derivatives 9% (resp. 09) of
Z=N=3p1 follows from the energy bound ([B.7) (resp. (3.8)) and from inequality (B.2)) applied
with =14+ Xand A = 1/2 + k (resp. A = k).

Estimate (3.12) (resp. ([313)) for the first order derivatives 9 (resp. 9) of Z<N=2h! follows
from the energy bound (B7) (resp. (8:8)) and inequality (B.5]) applied with 8 = 1+ & (resp.
f =1/2+ k), and estimate (3.I5]) follows using in addition the Poincaré inequality.

Estimate (B:I4) follows from the energy bound (B8.5) and inequality (B.5]) with 8 = k.

Finally, one can show that estimates (B.12)-(B.14) hold true for HY*® using (L.9). O

As a result of inequality (2.9]) and the pointwise bounds we just obtained, we can show that
the metric coefficients h} . satisfy enhanced pointwise decay estimates compared to those in
Proposition

Proposition 3.3. Under the assumptions of Proposition[3.2, we have

(3.16)
0Z<N 73t (L, y)| < Coe[(L+t+r) " VIt) 2+ — t)—%—“ +(1+t+r) 72+ —1)7"]
(3.17) | Z<NARL (8 m, )| < Coe(1+t+1) 22 (2 4+ 1 — t)2"
and
Chet? Ity 1
<Np1 < 0 1
(3.18) 1252 bt v S Gy — g7 o 7):

The same bounds are satisfied by H} 5.
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Proof. From relation (L9) and pointwise bounds 311, (B12), (314)), it is clear that the
estimates ([3.I6) and ([BI7) for h}, are also satisfied by H} .

Bound (BI6) follows immediately from inequality (2.9) coupled with (312)-(3.14).
The proof of (8I7) requires more work because a naive integration of (B.16) along the

integral curves of 0, — 0, does not produce the required result due to the factor \/i(t) (it
would if this was replaced by the explicit decay ¢t~/2). Of course, the estimate is satisfied in
the region where r > 2t simply after (8.14). We then restrict our attention to the portion of
exterior region for which r < 2t and proceed as follows:

- first, we recover a better bound for 9Z<V~*h} .. than the one in (BI0)), in which +/I(¢)
is replaced by a decay t~2%. This is obtained by the integration of 9,0Z<N""hi,
along hyperboloids in some dyadic time slab, where 0, = %on;

- then, we deduce the desired estimate on Z<N=*hl, by integration of the bounds
obtained in step 1 along the integral curves of d,,.

Step 1. From the relation 0, = f—:on and inequality (3.16]), we see that in fact

10,025 hip| S (L4t +7)70Z=" " hig
S Coe(1+t+1) IR +r =) 275+ Coe(l+t+7) 2 (2 +r — )"
Moreover, thanks to the pointwise bound (B.12]) we have that on the cone r = 2t
|0Z<N 0] (t 2, )| S Coe(1 4t 4 7) 72757,

We dyadically decompose the time interval [2,Tj) = Uzozl[Qk , 28N [2, Ty) where ko ~ Iny Ty
and denote ¢ the portion of the exterior region in the time slab [2%, 21) so that € =
Uy €¢. Tnequality ([B.I6) and the fact that [ € L'([2,Ty)) imply the existence, for every
fixed k, of a time 7, € [2%,2571) N [2, Tp) such that

3.,
0Z<N 0t (T, 2, y)| S Coery, 2t (24+7r— Tk)_%_“ + Coery 229 (2 + 1 — 73,) 7"

For every fixed (t,7,y) € %¢, we then integrate 9,0Z<"~*hl. along the integral curve
7+ (1) of 8, passing through (¢, z, )} until its first intersection with {r = 7} U{|w| = 27}.
We denote (77, x},y) the point at which such an intersection occurs first and observe that
7 ~ 2% ~ t. We deduce that

t
02N hpp(t, 2, y)| < 02N hig (7 2 )| + 12,025 hpp(v(7))|dr
S Coe(l4+t+7) 2 (24— ) 2" 4 Coe(1+t +7) 2272+ 7 — 1),

Step 2. We now integrate (8.19) along the integral lines of d,,, up to # = {r = 2t}U{t = 2}.
After (3.14]), we have that

|ZSN 20 S Coe(T+t +7r)2(2+ 7 — ).

9These are the hyperboloids {72 — |w|> = t> —r2}. If t = r they degenerate into the cone {7 —|w| =t —7}.
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Therefore, from ([3.19) we get that

t
25 b2, )] <12 b O o)+ [ 18,25 bl ()l

Ak

t
SCoe(l+t+7) 22471 —t)+ (L+t+r)2% [ Coe(2+t+r—27)2 "dr
o

t
14+t +7)22 [ Coe(2+t+ 17— 27) "dr
A%

and

25N (b2, y)| S Coe(L+t+71) 2727 (247 — )75,

As concerns the proof of ([B.I]), we begin by applying inequality (B.G) with 5 = u to
Z=Npl.. We get that

2+ 7=t 25 hi || Ta ey S // 2+ 71 = )"(0Z2=  hyr)*dwdy.
We decompose the above right hand side into
//e\ze (2471 — )2 (02N ) dwdy + //e (2 4+ 7 —t)"2(0Z=Nh} ) Adxdy.
t 2t 2t
The integral over X5, is simply estimated using the energy bound (B.3]) as follows
// (2+r—t)"*(0Z2=N ) dudy < 207 // (2+r—t) 2 0Z=NB Pdady S E2H),
5t ¢
The integral over X¢ \ X5, is estimated using (2.9) for h'
// (247 — (D2 R V2drdy
F\35,
< // (247 — )M E (/2 < r < 3t/4)r *dady
ZH\S,

+ // 2+7— t)1+2“<|EZ§Nh1|2 2SN Y |ZK1h1|2|8ZK2h1|2)d:):dy,
T\ZS,

|K1|+|K2|<N

where xo(t/2 < r < 3t/4) is a smooth cut-off function supported in ¢/2 < r < 3t/4.
We observe that the portion of such support contained in the exterior region is bounded.
Therefore we get the following:

- from the smallness assumption on M and the above observation

// \ (247 — )M A (/2 < r < 3t/d)r Hdady < 7Y
£\25
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- from the energy bound (B.6))
// (2 +7 — )22V Pdady
C\ZC
5 t1+2(,u—n) // (2 4 — t)2n‘EZ§Nh1‘2dxdy SJ €2t1+2(u—n+a)l(t>;

- from inequality (B.4) with 5 = 2x — 1 and the energy bound (B.5)

// (247 — )22 25V P dady < 2 n=—r // (247 — ) Z=Nh Pddy

6\2 e\z

S t2 H—K) // (2 +r— t)l+2n|azSNhl|2d$dy 5 €2t2(u—n+a);

- from the energy bound (8.5 and the pointwise bound (BI4]) that

// 2_'_7,,_t)l+2,u‘ZK1h1|2|8ZK2h1|2dxdy
|K1|+\K2|<N AL
|K1|<|N/2]

< € t2o // 2 +r— )1+2(u—n)r—2|aZ§Nh1|2d$dy S €4t_2+40;
6\2

- finally, from the decay bound ([B.12)), inequality (B.4]) and the energy bound (3.1)
S // (24 7 — )2 Z5 20252 1 2dady
e

| K|+ Ko <N 7Y Z0\E5
|K2|<|N/2]

< €2t2a // 2 +r— ) 1+2(u—n),r,—2|Z§Nhl|2dl,dy
9\2

< 2y // (247 — 1)F2|9Z5V B 2dady < 2,
Summing up, t
// (24— Q7N Ly drdy £ CREPEO (14 11(1))
which concludes the proof of (3.18]). U

3.2. The null and cubic terms. The combination of the energy assumptions and the decay
bounds obtained in proposition yield easily the following weighted L?(X¢) estimates of
the differentiated null and cubic terms.

Proposition 3.4. Fizi=0,1. Under the a-priori energy assumptions (3.1))-B3.2) we have
(3.20) (247 — )2t HF ZEN Qup(9h, Oh) || 2y S C2EE 27 \/1(t) + CRe2t 242
and

(3.21) 12+ 7 — £)34550 25N Gl (1) (Oh, D) 2 gy <GP+,
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Proof. We write h = h' + h° and inject this decomposition into Q.5 and G.5. We prove
estimates (3:20) and (321 for null and cubic interactions involving only h'-factors. The
remaining interactions, i.e. those involving at least one hY-factor, can be easily treated
thanks to (B.11)) so we leave the details to the reader.

It is well-known that the admissible vector fields Z preserve the null structure, in the sense
that for any null form @)

ZQ(0¢,00) = Q(0Z¢,00) + Q(d¢,0Z¥) + Q(d¢, 0)

where @ is also a null form. Together with the fundamental property

Q(0¢, 0)| < |00]|0] + |06][0 |,
it implies that for ¢ = 0,1

0 Z<NQup(Oh' 00 < Y (00" Z5 Y |00" 25k,
Ki|+|K2|<N
| IImIIzI‘:i

We observe that at least one of the two indexes in the above summation has length smaller
than |[N/2]|. Therefore, if N is sufficiently large (e.g. N > 6) so that [N/2] < N — 3 we
deduce the following;:

- from (B13)) and (B.5)

STl =0T 250 00" 25 hY | pasyy
| K|+ K| <N
K< V/2)
||+ =i

S Coet IO Y N2 41— )5 00 Z5VRY| oy S CRETTV/1(D);

j<i
- from (B12)) and (B.6)

S @t - O)FIZEN 00 25| sy

|K1|+|K2|<N
|K2|<|N/2]

S CQEt_l—i_O—HEZSNthLZ(Eg) ,S 002€2t_1+20 l(t),
- from (B12)) and (B.8)

S @+ = 050025 h 020 | gy

|K1|+|K2|<N-1
|K2|<[(N-1)/2]

SJ Co€t_1+0||(2 +r— t)%gaZSN_lhl H[ﬂ(gf) 5 CgEzt_1+2U l(t)
As concerns the cubic terms, we have that

0 Z=N Gop(RY) (OB, 0RY)| < > |01 2Kt |00™ 252 pY ||00% Z 53 h! .
| K1 |+ | Ka|+|K3|<N
1]+ 12|+ 13]=i
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From (3.12)), inequality (B4) with 8 = 2x — 1 and (3.3)), we deduce

Z H (2 +r— t>%+i+nZK1h1 00" 7K1 ools 7 Ks HL2(E§)
[ £y [+ Ko [+ K3|[ <N
| Ka|+|K3|<|N/2]
|I2]+|13|=1
3—i

S G2 4 — )7 T2V R gy

< C§e2t_2+2”||(2 +r— t)%+ﬁaZ§Nhl||L2(gg) < Cge3t_2+3".

The other interactions are easier to treat and their estimates are obtained similarly to what
has been done above for the quadratic terms. We leave the details to the reader. O

An immediate consequence of the pointwise bounds ([B.12)-(3.14) is the following:

Proposition 3.5. Under the assumptions [B.1)-(B.2) we have that

(3.22) | Z=N2Qup(0R, 8h1)(t)|%+2n < Ciet T /U(t),
(3.23) |Z=N73G L 5(hM) (OB, OhY) (1) 148 S Coedt™215.

3.3. The commutator terms. The goal of this section is to get suitable weighted L?(X¢)
estimates of the commutator terms [Z*, H*9,0,]h}; for |[K| < N. Such terms have a
remarkable property when written in the null frame, which was first highlighted in [40]. We
present below a slightly different version of this, which involves expanding first in the null
frame before evaluating the commutators.

Lemma 3.6. Let K be any fized multi-index and assume that % is a tensor satisfying
[Z¥xl <€, VK| < ||K]/2).
Then for any smooth function ¢

125, 7 0,0,]0l S Y 1257220725 ¢| + |25 70027 |

| K]+ K2|<|K|
(3.24) | K2|<| K]
D DA VA
| K1 |+ K| <| K|
and
(3.25)
)[ZK, 000 — S (2N 25+ 2Ny - 0,0, + 2Ky - 022520) ‘
| K1 |+ K| <|K]|
| K2|<|K|
‘t2_7"2‘ K 27K K K ‘ZKlWHaZKQCM
< ARY dIle VA yARY dIte s VAR )
S Y SNzl 1200, 2+ Y,
| K1 |+ K| <|K| | K1 |+ K| <|K]|
| K2|<|K|
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Proof. Let U,V denote any vector field in 7. Inequality ([3.:24)) follows from the following
decomposition

(3.26)
(25,7 0,0,)¢ = (25, 77V UV]p = Y (ZFa" UV ZReg+ 255V (250 uVie
| K1 |+ K| <|K|
K2 |<| K]
and the fact that
(3.27) 127, TUlgl < Y 10027 ¢+ Y 110z ¢).
|7]<|J] 77|<]J]

Using instead (LI3) we find that!]
(Z%, 7 0,0,]¢ = [Z, 7 0,0, )0 + (2, 7" 0,0,)¢ + (2", 770,040
[ZK TV 0710 + (25, 7V (R 005 + Y0y + dypy0,,)19
+ 2%, 7tY0,U)¢ + (27, 7" U b4 ¢

where, thanks to the fact that |9'T7¢) | <7y (12 —r?)/t* and 9; = 9; — %40, and up to
homogeneous zero-order coefficients, we schematically have the following equalities

t2 2
25 7V R = > 2w, 072" ¢+ gz“ P72+ 75700, 752 ¢,
| K1 |+ K| <|K]|
|Ka|<|K|
JASE NG VA
25, 7 (0,0 + B 0ady + Al o= Y 200,770 T 0T
K|+ Kol <K "
|Kal<|K]
25, 70U = Y ZNmp 0,025+ 25 my - 0227 + 257 0,0, 2"
| K1 |+| K| <|K]|
|Kal|<|K]

Proposition 3.7. Under the energy assumptions (B3.1)-B.2) we have fori = 0,1

|@+r—pir e z=N, 10,0, S et Bt 9 75N Rk )1

L2(%f)
+€2t Hp+2o( 1/2\/7+t )
Proof. We set ¢ = hl; in [3.24) and begin by observing that, for every K with [K| < N, the

terms in the last line of the right hand side have already been estimated. In fact, the cubic
terms satisfy (B.21]) and the following bound was obtained in the proof of proposition [3.14]

(3.28)

2,—3420
S et

> ewr—prrtonzion. gon 2|
i=0,1 L2(%%)
|K1]+|K2|<N

[T1|+|12|=i

10We recall that 9, = o
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Using (B.I1) and (B7), (38), it is straightforward to prove that for i = 0,1

S |l@+r -ttt IR0 2ok 2! S et EST(' Z5N 02,
[ K|+ K2|<N
|111H-|122|=i

HLZ(zg)

hence we only focus on estimating the terms of the first line in the right hand side of (3.24))
with h replaced by h'. We choose exponents (py, p2) such that

(2700)7 1f|K1| =N
(p1,12) = { (00,2),  if |[Ko| =N —1
(4,4), otherwise.

From the Sobolev’s injections H?(S* x S') C L>®(S?* x S') and H'(S? x S') ¢ L*(S* x S')
ST @+ —pEtzEt 900k 25 h! |}

Lz(EC
| K|+ K2|<N
[I2]|=1
1+2i+2kK K111 I Kol
< ¥ / (247 — )Y ZEUIZ, D00 2|2 0y
>t—1
K|+ Ko <N 7T
[I2]=1i

S [ @ 2N 0 [0075 R sy
r>t—1
so using the inequality (B.6) with 8 = k and the energy assumptions ([B.3]), ([B.6) we get

< H 2+7— t)z+HaZ<Nh1H / (247 — )22 T R R ga e
r>t—1

5 t—1—2l~€

(247 —t)Fraz<ip’

|2+ r— )" 002N ""n'! A ()

. [

The same Sobolev’s embeddings, coupled with the decay bound (B.I8) and the energy as-
sumption (B.0), also yield for ¢ = 0, 1

S e iz, gz
| K1+ K2|<N '
|I2]=i

5/ (247 = )22 25V R T2 g2 |00 Z 5N T R |2 g g0y dr
r>t—1

. 2
(2+r — t)2HHre9 Z =N -1 p!

< €2t—2(li—p)+20(t—ll(t) +t_2) 2( )
L2(3g

~Y

S €4t 2(k— p+4a( l() 2).

Finally, when 7 = 1 the remaining terms to discuss are of the form dZ*thy; - 8*Z**h' and
0ZK1ht - 90ZK2h! but those behave like null terms (the former thanks to (Z9) for A') and
hence satisfy (8.:20). The details are left to the reader.

O

We also have the following pointwise estimate of the commutator terms involving a smaller

number of vector fields. It will be useful in the proof of Lemma .12
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Lemma 3.8. Under the energy assumptions B1)-B2), there exists &' > 0 such that
(3.29) (25N 1Y 9,0,)hts| S C2722\/I(t) + 7270 (241 — 1) 2.
Proof. We use (3.24) with 7 = H' and ¢ = h/;. Pointwise bounds (312) and (3.17) yield

S©o |ZFE], 02250 < Gl (2 4 — )T
| K|+ K2|[<N—4
for some 0 > o, bounds (B.13)) and (BI4) give
oo |2 HY 007250, S CRETTNI) (2 — 1) T
| K|+ K2|<N—4

and finally (3.12]) and (3.14) imply

S rTNZMEHY - 0Z5h) | S CRETT (24 — )T

| K14+ K2|<N—-4

The result of the statement follows by setting 6’ = 6 — 0. O

3.4. The hl;; coefficients. In this subsection we show that, for any 7' € 7 and U € %,
the coefficients hi.; satisfy better energy bounds than (B.I]), more precisely that for any fixed
0 < p < kK there exists some positive constant C' such that

(3.30) EerP(t, ZSNh )Y < Coet®e, e [2,Ty).

This estimate essentially follows from the fact that no weak null terms appear among the
source terms in the equation satisfied by hi,;. This can be simply seen by applying T°U”
to (L8) and then commuting with Z%, which shows that ZXhl,; is solution to

(3.31) 0,25 by = By + B, Fft = FYfTeu?
with source term FX, given by
FE, = —[2%, H"9,0,)hky; + Z% Fry(h)(0h, 0h)
+ D 2" hag + Dt e 2" heg

tof K1 prpv K. ap Ky pruv K
Y Bwsw 2 Y 3.2 s+ i, 0, 2 HY - 25,
[ |+ K2 <[ K]

and smooth coefficients C;O{f K E}O‘UBW K, =00, D%BU K Fﬁgw K.k, = O(r™?). Besides
the additional terms arising from the commutation of vector fields 7" and U with the reduced
wave operator, the main difference between the source terms Fof{ﬁ and Ff; lies in the fact
that the latter is a linear combination of quadratic null terms and cubic terms only, as
PTU = PQBTQUB and

(3.33) |Pro(¢,v)] < 10¢]|04] + [0¢]|0¢].
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We compare ([B.31]) with equation (A.)). Thanks to the smallness of H provided by (B.IT)
and ([BI7), we can apply the result of proposition Al with W = ZXhl, . F = FE, + Foif
w(q) = (2417 — )12 and ¢, = 2,t, = t. We obtain that
(3.34)

E50(t, 7% by

1 r M
_ p\14+2(k—p) r M Kpl |2 Kpl |2
+/ﬁ§%+r t) [(2<1+ 2)—|—X<t)x(r) )02 Wy 2 + 22"y 2] dwdy

// (21— 72D (|LZE R P + [V 25 By |P) drdady < ES5(2, 25 hky)

Do)

// (247 =) O ER + Fpif + 0 Ho” 0,75 ) 02" hipy |drdaudy

Do)

// (247 —7) 209, H,° 0,25 Wiy, 0 ZK By | drdady

Dy

// 247 — 1) H 0,25 Wk, 0, Z5 Wiy | drdxdy

e

// (247 — 1) P (=H" 4 w; HI)0, Z5 hiyy 0,25 Wy | drdady.

[2,¢]
We start by estimating the contributions coming from the source term Fﬁf

Lemma 3.9. There exists 6 > 0 such that, under the energy assumptions [B.1)-B.2) and
fori=20,1, we have

(3.35) (2 +7r— t)%““aizﬁNigthHLQ(ED < et 34 70,
Consequently

1247 — )3T P 2SN D | gy S et + 27240,
Proof. We recall that definition (7)) of h° and that Eghgﬁ = F% + FO' + F%2 with
(3.36)  F" =0hy,, —h%9,0,h g, F%2 = (=h"" + 0" (h?))0,0,ho 4

The fundamental remark is that J(M/r) = 0 away from r = 0, which implies that F% is
supported for t/2 < r < 3t/4. Consequently, suppF% N 95, is bounded and from (3.11)

¢
(14 )3+’

From (B.I1) we also see that

|8iZ§NF00| < 1(2+7r— t)%+i+n8izﬁNF00HL2(2§) < 31

2
i <N 01 €
7P S
itk ai T4k —2+kK
’|(2+T—t)2++ aZSNFOIHLZ(Eg) 562”7” 2t ||L2(Z§) §€2t 2+ .
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From (B.I1)), the Hardy inequality (B.4]) with 5 = 2x — 1 and estimate (3.5), we have that
ST @+ = )z R 9,0,0% 252 h0 | sy

| K1 |+ K2|<N
[I2]|=i
Sell2+r - t)%ﬂﬁr_g_iZthl’W||L2(2§) Set 2247 - t)%“@Zthl’WHLz(zﬁ) < e,

The cubic terms ﬁ““(h2)ﬁuﬁyhgg verify similar estimates, the details are left to the reader.
O

In order to estimate the contributions due to the curved background, we first highlight
the following relations.

Lemma 3.10. For any sufficiently smooth function ¢ we have

(337) 0 Ho 056 = 5 (OuHur — 0,Hus + 0 Har)Lo + (0 H)T6
(3.38) 0" 0,60°0 = JOH1s (Lo + OH™ (0,0)(T)
(339 H90,0.0,6 = Hua (L6 + H*(T9)(00)

(3.40) (~H + w;H%)0, = 3 Huy Lo + HLT(T6)

Proof. The proof of the above equalities follows after expressing all vector fields relative to
the null frame % = {L,L,S",S? d,} and observing that

—HY + w;H° = g, [FH" = H.°.
O

Lemma 3.11. Under the a-priori assumptions (B1))-[B.2) we have that for i = 0,1 and any
multi-index K with |K| < N

// 247 — ) PN H, - 0,0 Z bl - 0,0' 25 b} 5| drddy

(3.41) e
// (241 — )20 9,H,° - 0,0 Z5 B, 8“8iZKhig| drdzdy < Cjé’

D0
and

// 2+ r—7)9NH0, O Z5N) s - 0,0' 2% hlg| drdady

Do

(3.42) // 2+ r— 1) (—HY + w; HI7) - 0,0' Z5 Dl 5 - 8,0' Z" b g|drdady

[2,4]

eEe Ji+K T, 8zth1
S / ( ) dr + Cje’.
2 T

For any 0 < p < K, the same inequalities hold with (k, hlz) replaced by (k — p, hipy).
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Proof. We start by remarking that from inequality ([2:2)) and bounds (311 to (314
7/t 2

VIO ).
r2+r—t)r 2
which together with the energy bounds (3.5]) and (3.7) implies

12+ r — )2 (|OH | + |0H|)00' Z=NhH | p2ieey S CHEt 27 /1(t) + CFet 157
From the pointwise estimates (3.11), (8.12) and energy bounds ([B.6]), (3.8)) we also have

12+ 7 — O)F T OH - 00 Z5NhY| 2oy S C2E 2\ /1(1).

The Cauchy—Schwartz inequality, relation (B.37) and the above estimates yield that for ¢ €
12, T¢

(OHwe| + [DH| S [Oh'] +0R°] + [hl|0h] S Coe(

// 247 =) P H,T 0,0 Z5 Ry - 0,0 Z hly| drdady

D0

< /2 1@+ 7 — 1) RO HL T - 0,00 Z5 B | gy B (r, 0 25 L) 2 < O,
Similarly, using relation (B3.38)) we get

// (247 —7) 20|, H,7 0,00 275D, - 049 ZK bl 5| drdady

Do,

// (247 —7)2tH50H, ;- 00 750 gl 2 BT (7,00 Z5 b g) P dr dady

2,4]
//e (247 —7)2THPOH - 00" Z5 Wl gl po(sg) BV (1, 0" Z5 Wl ) P drdady S Cieé.
[2,t]
Finally, from formulas (8:39) and (3.40) and pointwise bounds (3.I1), (314) and (B.I])
// (247 — )2 H 0,0 Z5RL - 0,0 25 by drdudy

[2t

// 2 T — )2(24—/@ ‘( HOcr + wJHJO’) o azZKhlﬁ 8t81ZKh(1lﬁ|dexdy

[2t

// (247 — 020 [| ][00 251 2 + |H|[B0 25 B |08 Z5 1L ] drddy

[2t

cEe R T, azZKhl
< / < ) dr + Cjé’
2

~ T
]

Proposition 3.12. Let 0 < p < k be fized. Under the energy assumptions [B3.1))-(B.2)) there
exists a constant C' > 0 such that [330) holds for all t € [2,T}).

Proof. The result follows from inequality (3.34]) and the estimates we have obtained so far.

The quadratic semilinear terms in Pry are now null, as observed in (3.33), therefore from
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320) and 32I)) and the smallness of € it follows that
1(2+7r— t)%Jm_pZSNFTUHm(zg) S CSEQt‘l”" I(t) + CSEZt_2+3U.

The only terms that still need to be addressed are the contributions to (3.32) arising from
the commutation of the null frame with the reduced wave operator. Using the energy bounds

([B6) we see that
Lyp— Toy ik p 1T
@7 = P D25 R sy S 1247 = OF P T2y

StE 2+ — )"V Z= hogll 2 S Coet 277+ /1(1)
while from ([3.3) and the weighted Hardy inequality (B.4]) with 8 = 2k — 1 we get
k- e lik—p —
1247 — 1) 72D - Z5Vhigll oy S N2+ =) r 225V Rl g o)
1 ol 1 1,
SN+ =) 225 hogllramy) SN2+ 1 — 62025 hog| 2y
S CoEt_l_p+U.
We then recall the decomposition (ILI2) of the tensor H, with H%* satisfying (3.11]) and
H# verifying the bounds (3.12)-(3.14). We similarly get

1, (1% v
Z [(24r—1t)3" pETUB/w,Kle CZR b aiZK%(llBHL?(E?)

[ K1+ K2|<N
| K1 |<[N/2]
1, )
+ Z ||(2 +7r— t>2+ﬁ pE;"O[l]BpV,KlKQ ’ ZKlHOHuV ' a’l:ZK2h'<13c5||LQ(Z§)
| K1)+ K2|<|K|

S Coet?||(2+ 1 — )2 Pr N Z5V B || oy S G222 7742\ /I(1)
and

L, (1% v
Z 12 +7r—1)27" pET[ﬁuu,Kle - ZR H az‘ZKQh(lxﬁHL?(E?)

|K1|+|K2|<N
| K2|<|N/2]

S Coet” U2+ 7 = )2 r 2 ZEN Y sy
S Coet T JI)]|(2 4 7 = ) FHOZEN HY | sy S CRTI0 T2 1(7),
Finally,
Do M@= O e, - 2 H - 2R 1
|K1|+|K2|<N
< Coet?[[(2+ 7 — 1) TP 25N oy S CRELTEITY

By substituting the above estimates together with (B:28), (3:33), (34I) and (3.42)) into
[B34) and choosing ¢y < 1 sufficiently small so that Cye < 1 we finally find the existence of

a universal constant C such that

dr.

t CeBenb(7, 75D
B0 (t, Z5Nyy) < CE" (2, Z5hky) + CC2E + / BT 27 hy)
9 T
Observe that E**~7(2, ZKhkt, ) < Eo%(t, h'). Gronwall’s inequality and the energy assump-
tion (B.]) allow us to obtain
EP(t, Z8 hyy) < C(E©"(2, Z5hY) + CHeNe < 20CFe "
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and hence conclude the proof. [l
An immediate consequence of ([3.30) are the following weighted L? bounds
Lik— €
(3.43) (24 r—t)zter aZSNthUHLQ(Eg) < Cpet®
(3.44) |2+7—t)" 0ZNhiy |, = S Coet““+/1(t)

for all t € [2,Ty), where | € L'([2,Tp)). The weighted Sobolev injection (B.2) with 8 =
1+ 2(k — p) also yields the following pointwise bound

(3.45) 0Z=N by |1 S Coet®.

-1
3.5. The weak null terms. The goal of this subsection is to recover suitable higher order
weighted L?(X¢) estimates for the quadratic weak null terms P,g(0h, Oh) defined as

1
P,s(0h,0h) = Zg“pg”" (OahyupOshue — 200h, 0800 ) -

These estimates are based on the following remarkable property, highlighted in the works of
Lindblad and Rodnianski [38-40], on Lemma 2.2 and on the bounds ([B.43), ([3.45) satisfied
by hiy.

Lemma 3.13. Let 7,60 be arbitrary 2-tensors and P be the quadratic form defined by
1_ ~vo
P(m,0) = Zg“pg (Tppbvo — 270,05 ) -
Then
|P(m,0)| S |7l7a 0l 7a + |7 2210 + 70| 22

Proposition 3.14. Fiz i = 0,1. There exists some constant C' > 0 such that, under the
a-priori enerqy assumptions (B.1)-B2]), we have

(3.46) H(Q +7r— t)%ﬂ'ﬂaiZSNpaﬁ <2 [t—1+cs + 720 J1t) + Et—g+2a]

L*(2f)

Proof. We write h = h' 4+ h° and plug this decomposition into P,z(dh,dh). Using (B.11)
and the energy bounds (B.1), (B.7) it is straightforward to prove that there exists some small
0 > 0 such that

Sl — )2 2K 00" 2 | a5 S CReTHH
i,j=0,1
[ K|+ K2|<N
|I1]|+|I2|=i

Hence we focus on proving that estimate (3.46]) holds true for P,s(0h',Oh').
We start by noticing that for any multi-index K, ZX P,5(0h', Oh') is a linear combination

of terms of the form P, (0Z%'h',0Z%2h') for some multi-indexes K7, K, such that |K;| +
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| K, < |K|and p,v =0,...,4. Applying Lemma B3T3 and Lemma[2Z2 we see that fori = 0, 1

\8iZSNPag(8h1,8h1)| 5 Z \8811ZK1h1\,7%|8812ZK2h1\,7%

| K|+ K| <N
[I1]|+]|I2|=1
+ Z |00 Z51hY||00" ZF2ht 4 vt 0 Z5 R |00™ 252 b
|K1|+|K2|<N
(3.47) el =i
+ > 01 251 pY |09 252 b1 |00 253 b

| K1|+|Ka|+|K3|<N
[T1|+[I2]+|13]|=i

Mxo(t/2 <r <3t/4
(1+t+r)?

) > 107 Z=Nhl,

J<i

where yo(t/2 < r < 3t/4) is supported for t/2 < r < 3t/4. Since the intersection of this
support with the exterior region in bounded, it is immediate to see that the weighted L?(3¢)
norm of the last term in the above right hand side is bounded by Cpe?t 2.

The cubic terms and the quadratic terms involving a tangential derivative have been
estimated in proposition B4 and satisfy ([3.2I) and (3.20) respectively. The weighted L?
norm of the quadratic term with the extra r~! factor is bounded by C2e2t=3/2727 we leave
the details to the reader. Finally, from (3.43)) and (8.43]) with p > 0 such that & > 2p

> e —nErmaon zn 5y 00" 25 0 5y

. )
1=0,1
[K1 |+ Ko <N
Ll | =i
.1
< Coet 0 S | = 0 02 VN gy || S CReIOC

L2(%¢
i—o1 =7)

O

From Lemma and bounds (BII), (312), BI6), (B4H) we also get the following

pointwise estimate for the differentiated weak null terms.

Proposition 3.15. There exists a constant C' > 0 such that, under the a-priori assumptions

BH)-B.8), we have that

(3.48) | 2= Pap(0h, 0R) ()|, S CRe® (1712 + 17127 /i(1)).

SIS

3.6. Propagation of the energy estimates. We now proceed to the proof of proposition
B We recall that for any multi-index K, the differentiated coefficients Z% h}lﬁ solve (3.9)
with source term [BI0). We set i = 1 if ZX = 9ZK and |K'| < N, i = 0 if simply
|K| < N. Thanks to the smallness of H provided by (3.11]) and (3.I7), we apply (A.2) with
W = Z%hl,s F = FJ +F£’BK, w(q) = (2+r ;5t)1+2(i+“) and w = z/|z|. For every t € [2,Tp)



we get the following energy inequality
(3.49)
EC70(t, Z5hlg)

. 1 r M
o \14+2(i4k) r M K1 |2 K1
—i—/%t@—i-r t) [(2(1+T2> X (5) X5 )02 B 4 [V 25 L ] dedy

< EYTR(2, Z5nk, // 247 — 1) PN ES + 04 H, - 0,2%h}5)0,2" hig|drddy

D 1)

// (24 1 — 7)) [|F2’K8tZKhlﬁ\+|8t 9, Z5N! - aﬂthlﬁ\] drdzdy
b

// (247 — 72| HP 9,25 BL - 0,2 b 5| drdady

Do,

// 2+ r— 7)) (—HY + w; HI)0,Z5 ) 5 - 0,25 b} g|dTddy.
[2t

The above inequality is satisfied for all ¢t € [2,T) and the implicit constant is a universal
constant.

Proof of proposition[3.1. We recall the definition of the source term F f/; = ZKF,5 where
Fog(h)(Oh,dh) = Pag(0h,0h) + Qap(Oh, Oh) + Gap(h)(dh, Oh).
The combination of estimates (3.20)), (B.21]) and (B:46]) yields that for i = 0,1
(247 — )2 Stith pK K o) < O2¢2 (t—l-i-Ce 12 l(t))
which together with the Cauchy-Schwarz inequality and energy assumptions (3.1]), (8.:2)) gives

// 2+ 7 — 7)) EE 5,25 D) g drdady

Do

t
S [ M@= DR gy B, 2 b ) b
2

¢
5 / CSE?’(T_1+C€+U + 7_—1-‘:—20 l(T))dT 5 Cg€3tce+g.
2
From estimate (3.35) we also get that

// (247 —7) P ENE 0,25} 5| drdady S Coe®.
R
By injecting the above bounds, together with (3.41]) and (3.42]), into (8.49) we deduce the
existence of a constant C' > 0 such that for all ¢ € [2,Tj)
Ee,i-}—/i(t’ ZKh(lyﬁ)
,

_onNIR26+R) | (. - = o Kpl |2 K
+/fét(2+r ! [<2(1+r2)+X<t>X(T)2r>|@Z hagl® + [N.25 ol | drdy

B ' N B _ t Ee,i—i—n T, ZKhl
< CE™7(2,Z%hlg) + CCoe® + CCRe* et + C’e/ ( ap) dr.
9 T
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By Gronwall’s inequality we then deduce that
BT (t, 2K RL ) < C(B#(2, ZKhLg) + Coe® + Cie3tCeo)1c,

We denote the sum C + C simply by C. Finally, we choose Cy > 1 sufficiently large so that
3CE"%(2,Z%hls) < (Coe)? and 3C' < Cy, then € > 0 sufficiently small so that 3CCjey < 1
and 2C¢y < o to infer that

Eje,i—l—l@(t7 ZKhtllﬁ) S C§€2tcr+Ce.

As a byproduct, we also deduce that
(3.50)
r

| 1 M
/%3(2+r—t)1+2(z+") [(mw (2) X(r)2—r> 025 R+ [V 25 b 2| dady < Cieto+Oe.

O

4. THE INTERIOR REGION

The goal of this section is to prove the existence in the interior region 2' of the solution
héﬁ to (L8) with data satisfying the hypothesis of theorem The proof is based on a
bootstrap argument in which the a-priori assumptions on the solutions are bounds on the
higher order energies on truncated hyperboloids 77, as well as pointwise decay bounds on a
certain number of Z derivatives acting on it.

We define the interior energy functional as follows
(4.1

)
E'(s, h,llﬁ) = // (s/t)2|8th,115|2 + |Zh,115|2 dxdy
H,

://%(S/t)ﬂvmhiﬂ?+t—2\fhiﬁ‘2+t—2 Z (bl 2 4 9,1 drdy,

1<i<j<3

where . = t0, + x - V, is the scaling vector field and €2;; = 2;0; — x;0; are the Euclidean
rotations in R3. Using Parseval’s identity, we also define the energy functional associated to
the zero-mode hig of the solution as well as that of its zero-average component hi’g, so that

i i b i ;
E (37 hflxﬁ) =k (Sv h’iﬁ) +E (Sv hig)

We fix N, N; € N two integers sufficiently large with N > 14 and N; = N — 5 and assume
the existence of two positive constants 1 < (7 < (5, as well as of a finite and increasing
sequence of parameters 0 < (g, Vx, 0 < 1 with

such that:
e for 5o close to 2 (e.g. so = 21/10) and for any arbitrarily fixed Sy > so, the solution h}g

exists in the hyperbolic strip s, s;),
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e for any s € [so, Sp), any multi-index K = (I, J) of type (N, k), it satisfies the following
energy bounds

4.3 E'(s,0Z5hL )2 + Ei(s, ZXhL )2 < 20 es2
af af
(4.4) E'(s, ZXh5)% < 20, es
and for multi-indexes K of type (N, k) with & < Ny
(4.5) E'(s, ZKh}lﬁ)% < 20 €es%
e for any s € [sg, Sp), it satisfies the following pointwise bounds
(4.6) [t TR e () S 2Coes™ with | J| =k < Ny,

Ht%s8m(8IFJhi’E)!|LgOLg<%> + ||t%a§1(8lr‘]h;’g)HLg°L5(%§)
(4.7) _ J2Cee, if [I| < Ny, |J|=0
S\ 2Ches™, i |1+ || < N+ 1, [J] =k < N,

The result we aim to prove states the following

Proposition 4.1. There exist two constants 1 < C; < Cy sufficiently large, a finite and
increasing sequence of parameters 0 < (i, Vi, 0 << 1 satisfying (£2) and 0 < ¢ <K 1
sufficiently small such that for every 0 < € < €q, if h}lﬁ is solution to ([L.8]) in the hyperbolic
strip sy s0) that satisfies the bounds [@3)-@T) for all s € [s0,So) and the energy bounds
BI)-B2) globally in the exterior region, then for every s € [so, So) it actually satisfies the
following:

for multi-indezes K of type (N, k)

(4.8) Ei(s,aZKh}lﬁ)% + E'(s, ZKh,llg)% < Cres?t
(4.9) Ei(s, Z%hk%)7 < Cres™;

for multi-indexes K of type (N, k) with k < Ny

(4.10) Ei(s, ZXhl5)? < Cres™

and finally

(4.11) [t TR ey < Coes™ if |J] =k < NNy,

1 1, 3 1,
1625 02 (0T Bi) o r2 oy + 18205 (T hH) | e 2

(4.12) _Jcee if [I| < Ny, |J|=0
o CQES%, Zf|]|+|J|§N1+1, |J|:]€§N1

Remark 4.2. The a-priori assumptions (A.3))-(4.7) are satisfied when s = sy as a consequence
of the assumptions on the initial data and the local existence result for the Einstein equations.
The hyperbolic time Sy in the above proposition is arbitrary. This implies the existence of
the solution in the unbounded region 7, ), hence in the full interior region.

HWe recall that a multi-index K = (I, .J) is said to be of type (N, k) if |[I| +|J| < N and |J| < k
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Remark 4.3. The result stated above builds upon the energy and pointwise estimates the
solution has been proved to satisfy in the exterior region. This can be already seen in the
energy inequality (4L.I0) below, where the energy flux through the separating hypersurface
Hs,,s), which is controlled by the exterior energies, appears in the right hand side of the
inequality. Constants C1, g, 0 in proposition [4.] will in particular be chosen relative to
Co,0,k so that C7 > Cy, 0 < 7 < 0p < Kk and 0, K Kk —o forall k =0,...,N. For
this reason and throughout the rest of this section, we will often replace Cy by C; in the
inequalities obtained using bounds recovered in the exterior region.

In order to recover the enhanced energy bounds (4.8)-(4.I0), we compare the equation
satisfied by Z% hlﬁ and 7K haﬁ respectively with (Al and apply the energy inequality of
proposition [A2l We recall that Z*h/; satisfies the following quasilinear wave equation

(4.13) O, Z5hks = Fi + Fot
with source terms
(4.14) Folt = 750,005, FE = Z5XF,5(h)(0h,0h) — [Z5, H"0,0,]h}s
and that the equation of Z¥ haﬁ is obtained by averaging (L.I3) over S*

174 ) 174 ) b ) )
(4.15) O, 2505+ (H"™) - 0,0, 250 + (H™)" - 8,0,Z25h5) = FLy + FOf

where F fﬁ’b = fo Flydy. If the tensor H satisfies suitable decay bounds in sy, e.g. if
for some § > 0

€ €
H(t < ——————,  |Hp(t S ————=
‘ (7x7y>|r\/ (1+t—|— )37 | LL( ,ZL’,Z/)|N (1—|—t—|—7’)1+6

we derive the following two energy inequalities, which hold for any s € [s, Sp)
(Eéli.(lﬁ)ZKh}lﬁ) S Ei(Soa ZKh}xg)
+ /%0 (ﬁ +x (Z) X(T’)2—]\f)|atZKhlﬁ|2 + |V Z5h! 5|* dzdy
// |5+ O + 0" H, - 0,250l 41|10, 25 bl + |at 70, 25Nl - 0" ZN Nl | dtdudy
Hsp,s]
and
(4.17)
E'(s, Z5n}) < E'(so, Z5h%2)
+ / (ﬁ +y (%) X(r)Q—]\f)mtthlgF + |V, Z5 B2 da
// |FE + FOf + 0r 1, - 0,250 25 hlh| + |at 70,25} - 0" 28 hlY)| dtdx
Hsg,s]
//)f{ ((H™) - 0,0,Z515) (10,251 dedz.

50,5]
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The energy flux through the boundary ,%;;03, which appears in the right hand side of both
of the above inequalities, is suitably controlled using ([3.50) with ¢ = ¢, = s2/2

1 r M o+Ce.
(4.18) /% (m +x (;) X(r)§)|0tZKhlﬁ|2 |V, Z5 R P dady S C2e5%

The current section is therefore mainly devoted to estimating the remaining integrals in the

right hand side of (4.TI6]) and (4.17).

4.1. First sets of bounds. Below is a list of L? and L* bounds for /g, h}x; and h}x’g, which
are a straightforward consequence of the a-priori bounds. All bounds stated below hold true
also for tensor coefficients H'* after decomposition (.I2) and bound (B.IT]).

4.1.1. L%, bounds on hyperboloids. From a-priori energy assumptions (E3)-(@4), the Parse-

val 1dent1ty and Poincaré inequality applied to the zero-average components haﬁ, we derive
the following L? bounds on .5, for any multi-index of type (N, k) and i = 0, 1,

(4.19) [(s/)00" Z  hag| Loy + 1120 Z Rl 12 1y < 2Ches™

) Kilp Kilp < Cr
(4.20) H(s/t)az ni|, %)+HQZ - _20163

4.21 H HaZKhlv“ HZKh1h ) < 2(h s+
(4.21) ( 5| 2y 122 R ey T o8| 2y < 20165
and
(4.22) t‘ljﬂZKhl"’ S+ t'TZ5n} < 20 es

o L2
(4.23) Ht— . Ht 1FZKh1“‘ - < 20y estH,
L2

For multi-indexes K of type (N, k) with £ < N; we have

(4.24) (/D002 hag 2oy + 1027 hagl oy < 2C1es™

(4.25) I +|oz"ni +||Zz< ] < 20 es™
L2(s5) L2(55) L2(5)

and

(4.26) [£71S 25 hag| oy + 1 TZ5 hp]] o) < 2Cnes™

Moreover, provided that o,e¢ < 1 are sufﬁmently small so that U—I—Ce <(foralll <k <N,
from the Hardy inequality (B.7), energy assumption (£I9) and the exterior energy bound
(B3) (recall that t, = s?/2) we also deduce the following bound when |J| = k < N

(427) Hr_lrJhlﬁHL2 ) 201€S%+<k + COGSO"'FCE S 201€S%+<k

(4.28) Hr‘lf‘]h}l’g < 201 €es% + Ches® T < 20, es*
L2(os)

For |J| = k < Ny, we instead get from (£.24) that

(4.29) “r‘lf‘]hlg}}Lz L) 201635k + Cpes® ¢ < 20 es*
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4.1.2. LY Lz bounds on hyperboloids. These are obtained using the Poincaré inequality, lemma
B.5 relation 9; = t71Qy; and energy assumption (Z.21)).
For multi-indexes K of type (N — 2, k)

(4.30) [fogzsns| ok esonzint] < Cesttan
Lo L§(As) L L2 ()

for multi-indices K of type (N — 3, k)

(4.31) t2 050,253 ths 0,0, 25 h1% < Cpeshtn,
L L3 () L Ly (H3)

for multi-indexes K of type (N — 4, k)

(4.32) t3 8§1Q2ZK}1(1;§ ) +55 8“@52](@’2 < 01€S%+C’“+4.
Lo L2 (H5) Lo L2 ()

Moreover, for multi-indexes K of type (N — 2,k) with k < N; — 2

(4.33) ‘ £ 05 25k < Cpestie,

L Ly (Hs)

t25 0 250

L L2(4)
for multi-indices K of type (N — 3, k) with £ < N; — 3

(4.34) 2 9=10,25n t35 0,0, 2 hLS < Cpes™s:

L L2 () Lge L3 (H3)

for multi-indexes K of type (N — 4, k) with k < N; — 4

(4.35) R A +||t25 0,02 2% hLS < Cres®+,

L L2 () L LE(5)

4.1.3. L3, bounds on hyperboloids. These are obtained from the energy assumptions using
Poincaré inequality, lemma [B.5] and Sobolev embedding on S*.
For any multi-index K of type (N — 3,k) and i =0, 1

(4.36)  |[ts2 00" 2% nly oy sz S et
Lg?/ 7s Lg?/ Hs

(4.37)  |[t2s0Z%R + |12 925k N A4 < Cyesstrts

Bl Lgg () Pl rgg (2) Ol Lgg ()
(4.38) t2s 0ZKh(11’Z ) + ‘ t2 QZKh(ll’E,H < Chesth+2

Lo (H5) L2 (5)

and
(4.40) 2.7 Z5 hiill ey + 182 D25 BN 1) S Chrese,

From the pointwise bounds (Z.7) and the Sobolev embedding on S' we also have that

Che if [1] < Ny, |J] =0
Coes™  if |I|+|J| < Ny +1, |J| < N,

<

4.41
(4.41) Ly

t2 9"/ hl

which coupled to (438) gives that, for any |I|+ |J| < Ny < N —3,|J| =k >0,

2 3 max(Cx .
(4.42) ||t%88(8IFJhiB)HL%;(%) + ||t2Q(aIFJh(115)HLg§/(jfs) < Ches (Ch+2,7%)
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For |J| = k < N — 3, we also have the following bound on coefficients without derivatives
(4.43) 162 T/ | o ) S Chres™+2.

Such a bound is satisfied by I'’/ h;g thanks to (£37), while for I'* h}x; it is obtained by
integration. More precisely, on the initial truncated hyperboloid 7, such an estimate is

obtained by integrating (A38]) along the hyperboloid itself and up to the boundary 0.7, =
Sso.r Where 79 := max{r > 0: S, C 4} = O(1). In fact, for any r» < ry and w = x/|z|

0
ID7RL (83 + |22, rw)| < \rt’h;’g(\/sgwg,row)H/ 007125 (\/ 53 + p2, pw)|dp
© ¢
< ‘F‘]h;’g(\/sgjtrg,row)} +/ Cle(s§+p2)_%+ kz”dp

T

Sk+2
2 2\—1
S Cre(sg+re) at e

where we estimated the first term in the above right hand side using the exterior bound
BI4). For all other points (t,x) € H,.s,), the decay bound ([€43) is instead obtained by
integrating (4.38)) along the rays with ¢ + r and w fixed, i.e. along

SiNE MN8N = (t+7— N\ w)

where \* is the first time §()\) intersects the lateral boundary .# (in which case \* =

%) or the initial hyperboloid 4%, (in which case \* = (t;éi;)s%). In both cases

A* = O(t + 1), so from the estimates on S following from (B14) or on the initial truncated
hyperboloid 7, derived above, we get

)\*
07 hegg (8, 0)| S DR (4 7 = X, X'w)| + / (DT ) (5(N)) A

A*
< (Co+ Ch)e(1+t+71) 25%2 4 Cre(l + ¢+ 1) ke / (t+ 1 —2)) "2 H%e2 )

< (Co+ Cy)e(L+t+7) 28k,

4.1.4. Lg; bounds for the good metric coefficients. These refer to the enhanced bounds sat-
isfied by the metric coefficients H}, as a consequence of the wave condition, more precisely
of inequality (ZI0), and of the pointwise bounds obtained above. As remarked above, these
bounds are also satisfied by the hl, metric coefficients.

Proposition 4.4. Under the assumptions of proposition [{.1], we have that for any s €
(S0, S0), any multi-index K of type (N — 3, k) and i = 0,1

(4.44) 100" ZX H || Loy S Cres®+
and for any multi-index K of type (Ny, k)

(4.45) 112025 Hygll o) S Cres®™+2.
Furthermore, for any multi-index K of type (N — 2, k)

(4.46) [#202" (H}g) | 1wiomy S Cres®+
(4.47) 42t/ 2% (Hig) || o) S Chreshe.
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Proof. The proof of the above estimates is based on inequality (2.I0). Estimate ([£44) (resp.

(E49)) is in fact obtained using (436) (resp. (£42)) and (£.43). Estimate (£.46) is deduced

similarly, after taking the zero norm of both left and right hand side of (ZI0). We recall, in
particular, that for any two integrable functions f and ¢ defined on S', we have

(4.48) (fo) = P'd + (F'd")’,  (f9)t = Pd" + f'g" + (f*g")".

Therefore, ([£.46) follows from (£.37), (4.38) and (4.43).

Finally, estimate (.47 is satisfied in the interior of the cone t = 2r after (4.43]). In the
portion of interior region where ¢ < 2r, it is instead obtained from the integration of (4.40])
along the rays with ¢t + r = const and w = const and up to the boundary of the interior
region. From (B.I7) we derive that

|25 (Hig)'(t,2)] S 125 (Hir) (6(X)| +/ 02" (HLr) (C(V)|dA

)\*
S1ZEHLYP GO + [ Crelt + ) 352 (0 41 — 20) 72 dA

T

Cht2 Clt2

S Coe(L+t+7) 2 2 (t— )2 + Cre(t +r) 2772 (t—r)+ >
2 T2)1+<k;2

t2

[NIES

5 016 t 2.

O

Remark 4.5. By combining together the wave gauge estimate (ZI0]), with the energy bounds

(@20) and (£28)) (respectively (£I9) and (£.27)) and the pointwise bounds (A.38) and (£.43)

(respectively (£42) and (4.43])), we obtain the following estimate (resp. the second)

2k if K is of type (V, k)
449 8ZKH1,|7 < C S 3 )
(4.49) | irllieon S G s it i of type (N +1,k) with k < N.

4.2. The null and cubic terms. The L? and L* bounds deduced in subsection E1] from
the a-priori energy bounds, coupled with the a-priori pointwise bounds, allow us to suitably
estimate the null and cubic contributions appearing in the equations for Z% h}lﬁ and ZX hig
Quadratic and cubic interactions involving a h° factor are the simplest ones to analyze. They
satisfy the following estimates, which follow from a straightforward application of the energy

bounds (LI19), (A27) and the pointwise bounds (311, (E42) and (L43).

Lemma 4.6. Let Q = Q(¢,¢) and C = C(6)(¢,v) denote a quadratic and a cubic form
respectively. Under the a-priori assumptions (A3))-(47), there exists some small constant
0 <n <1 depending linearly on i, O, Cx, such that for 1 =0,1

(4.50) > N0 Z=NQON, Oh™) |2y S Cre®s™H 2
0<l4+m<1
(4.51) > o ZENC () (0On™, 0h) | 1) S CTEPsT.
0§11+m-i;q§2

43



Proposition 4.7. Under the a-priori assumptions (L3)-(1) there exists some small con-
stant 0 < n < 30y <K 1 depending linearly on i, Yk, Ok, such that fori =0,1

(4.52) 10" Z=" Qap(0h, 0N) || 12() S (Cre)?s™H 7

(4.53) 10" Z5N Gag(h) (Oh, 0h)|| 12 (1) S (Cre)s ™2/,

and multi-indezes K of type (N, k) with k < Ny

(4.54) 125 Qas(Oh, Oh) || 2 ) S (Cre)?s™/24

(4.55) 12" Gas(h) (O, 8h)||L2 sy S (Cre)s ™.

Moreover, for multi-indexes K of type (N, k)

(4.56) 125 QR (00,0112 % (Cr)° (Z s +s—1+<k.>
i=1

Proof. Throughout the proof, 7 will denote a small positive constant that depends linearly
on 7, and dg. We do not need to keep track of the explicit value of 7, which may change
from line to line.

We start by decomposing each occurrence of h in Q,s and G,s into h° + h'. Owing to
lemma (4.6, we only need to prove that the above estimates are satisfied for null and cubic
interactions involving h'! factors only.

We recall that the admissible vector fields Z preserve the null structure and that for any
null form @

It2 |
(4.57) |Q(0¢, 0v)| < 199]|0¥[ + |9¢][0v| +

For any M € N, we then have

109104

2 _ .2
0 Z<M Qap(OR',0R )| < Y (00" 25 0|00 252 h | + @m&h ZKipt |00 252 h|.
| K |+ K| <M t
|11 |4 |12|=t
We observe that at least one of the two indexes K in the above right hand side has length
smaller than [M/2]. When M = N and since N and N; are such that | N/2] +1 < Ny, we
deduce from energy bound (4.19) and pointwise estimate (4.42)) that

> eohzFwt - 00" 2% n!

K1+ K 2| <N
|1+ I2|=i

< Y (lersaon

| K|+ K| <N
|K1]<|N/2]
[I1|+|12|=i

+ > oo z"eh),
| K1 |+ K2|<N
| K2|<[N/2]
|I1|+|I2|=i

,+[(s/t)200" 25 nt - 00" 2" 1!

HL2 L2, ()

oy () ) H(S/t)aaszzhl

ey T (s/0)00" 2% b,

2, ()

(016)28_1+77.

}Qall Zthl

5 () () ~
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Similarly, when K is of type (N, k) with & < Ny, we get from energy bound ([£24) and
pointwise bound (&42) that

> Jjao" z" it 00" z2n!

|K1|+|K2|<N
[I1|+|12|=i

ey T lI(s/1)?00" Z5 - 00" 27201 |

HLgy( L2, ()

< (Cye)?s—2tm,

Estimate (£52]) can be slightly improved if we only consider the zero mode of the quadratic
null interactions. We recall that the zero-mode of a product decomposes as in ([A48]), hence

2 (OB, OhY) = Qua(OR*?, ORM) + (Qap(Oh'*, ORM)) .

The pure zero-mode interactions are treated using the null structure. From the energy bound
(420) and the pointwise bound (£38)) we derive that

2 .—24n
Sefs 2

HZSNQQB(ahl’b, ahl,b) HL%(%)

The null structure is instead irrelevant when estimating the quadratic interactions of pure
non-zero modes. Using the Cauchy-Schwartz and Poincaré inequalities and assuming N, V;
are such that | N/2] +1 < Nj, we derive from the pointwise bound (7)), the energy bounds

(E19), (£21) and ([£25) (recall that Ny = N — 5) and relation (£2]) that

b
H(ZKQaﬁ(ahl’uaahl’u»‘was)fz > lozfnte-ozfentd L 0
| K1+ K2 <| K|
< D ez

| K1 |+ K2|<|K]|
| K1 <||K]/2]

VAR

L L3(H4) L2, ()

4
3 ] )
< 010262(S—§+77 +og G 4 Z S—1+%+¢kﬂ)‘

i=0
As concerns the cubic terms, we have that
0 Z=M G op(RY) (DR, ORY)| < > |01 2K pt||90" 252 p1 ||00% Z 53R} .
||+ | Ko |+ K3 | <M
[Ty |+|I2|+|I3]|=1

When M = N, we get from energy bound (£19) and pointwise bounds (£42), (£43) that

o ohzFnt-00mz ht - 00" 25 b}
|1+ | Ka|+[ K3 <N
[ K[+ K2 <[ N/2]
T3]+ [ T2 |+ |13] =i

S > |(t/s)0" Z5 nt - 00" 2> 1} |
| K1+ Ka|+ | K3|<N
| K |+ K2| <[ N/2)
1|+ 12| +[I3]=i

L3y (H5)

LS () H(S/t)aalszKShIHLgy(%g)

< (Che)dsatn
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and from (£27), (£36) and (4.42)
> |25 ht - 00" 2" " - 00" 2% |

| K1|+|Ka|+|K3|<N
| Ka|+| K3|<|N/2]

L2,(A2)

|I2]+|13|=1
-17K131 Iy 7Ky 1 I3 7 K371 3.—2
< > Ir= 250 | s oy P00 2520 - 008 20|, () S (Cre)s™2 40,
| K|+ | K|+ | K3| <N
| K2 |+|K3|<|N/2]
|I2]+|13|=1
Similarly, we deduce from ([@.24), (£.42), (£43)) that when K is of type (N, k) with & < Ny
Z Hahzfﬁhl . aangthl . 8813ZK3h1‘ 12,0%) 5 (016)38_2+n

| K1|+|Ka|+|K3|<N
| K1 |+ K2 <|N/2]
[T1|+[I2]+|13]=1

while from (4.29) and (4.42))
> |Z5+nt - 90" 252kt - 00" 2" !

| K1|+|Ka|+|K3|<N
| Ka|+|K3|<|N/2]
[I2|+|I3|=1i

< (Cre)®s™2m,

L3y (H5)

O

Lemma 4.8. There exists some small constant 0 < n < 30y < 1 depending linearly on
Chy Vi, O such that for multi-indezes K of type (Ny, k) we have

(458) 1225 Qus (01, 01) | 55 oy S Ces™
(4.59) [1£2 2% G (h) (Oh, OR) || s () S CLO3E3s247,
while for any quadratic form N we have

(4.60) |t 0Z" N(0h, 0h)| L () < OePs™H,

Proof. This is a direct consequence of bounds (£42)) and (E43). O

4.3. Second order derivatives of the zero modes. As expected for solutions to wave
equations on R'*3, the second order derivatives of the differentiated coefficients Z% h}x; enjoy
better decay estimates compared to (4.20)) and (4.42]) respectively.

Lemma 4.9. There exists some small constant 0 < n < 20y < 1 depending linearly on
Cky Vi, O such that for any multi-index K of type (N1, k)

(4.61) t3(s/t)* P Z %Nl < Ches™ 7.

Lo (A,

Proof. The flat wave operator can be expressed in terms of the hyperbolic derivatives as
. wy LT3

(4.62) —Ope = (s/1)%07 + 2(2*/t)0,0, — 00, + t—gat + ;815

and from (LI5) the curved part can be written as

(H") 0,0, = (H"V Vi 0a0g + (HYY ) dlh0,,.
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Equation (£IH) for Z% h}x; becomes
(/0% + (H"V Y eify) 7 25 = S1(Z5hig) + Sa(Z )

(4'63) Kp 0,K\b K1,8\b
+E+ (Fyy ) — ((H"™)*-0,0,Z hed)

where F Of;’b is the average over S! of the source term in (£1I4]), and S;(p), So(p) are defined
as follows for an arbitrary two tensor p

2
3
Si(p) = —(2(a®/1)0,0; — 90, + :—3@ + 20
Sa(p) i= —((H"V V(50405 + (H"V) 00,0, + (H"V) dfry,0,,)p.
We note that, if e is sufficiently small, relation (LI8) with 7 = (ZXHYV)’, bounds (311,
(E43) and ([Z47) yield
(4.65) }(ZKHUV)I’C%OV‘ < Cret™V2(s/t)2s%+2 < (1/2)(s/t)?,

hence it is enough to prove that the right hand side in (&63) is bounded by Cyet=3/257 14243,
This is the case for the S;, S, terms with p = ZK h}x’;, as follows by using the pointwise

bounds (A3]), (£43)) and (LIT) together with the fact that 9, = Qo4 /1.

All quadratic and cubic terms in F Of;’b, except for the commutator terms, are estimated

using (E60) and (£59) respectively, while from (3.36), (3.11) and (£38) we have
182 (Fg )l () S €

~Y

From the pointwise bounds (A7), (£37)) and relation (£.2]), we have that for multi-indexes
K of type (N1, k)

| Z5((H"™)* - f’hé’uh;ﬁ)b\
SOOI L LR D S (G Sl

|K'|<|K| | K1 |+ K2|<|K|
|K2|<| K]

(4.64)

10,0, 21}

LeL? LL2

1
S 01025215—2S—§+Ck+3 + 0226215—28_1_,_%'

We observe that the above bound can be improved if |[K| < Ny — 1 to C3e*t2s7 1%,
Finally, for the purpose of this proof it is enough to write the commutator terms which
only involve zero-modes as

DAY A

[ K|+ K2|<|K]|
|K2|<| K|

which is estimated by C)Cye?t=3/257172%+2 ysing (£38) whenever Z%1 contains at least a
usual derivative, and (4.0]) together with (£38) otherwise.
The conclusion of the proof follows by assuming e sufficiently small so that Che < 1. O

We highlight that the proof of the above Lemma also yields the following
Corollary 4.10. For every multi-index K of type (N1 — 1, k) we have

(4.66) [|*((H""™)"- 0,0, Z%h%% )+Ht2([ZK,Hl’“”ﬁuﬁu]hiﬁ)b”po( < CfePs™H,

b
Vi w0y S
47



Lemma 4.11. There exists some small constant 0 < n < 20y < 1 depending linearly on
Cky Vi, O such that for any multi-index K of the type (N — 1, k) we have

(4.67) H(s/t)2a2zf<h;g < Ches™ 147,

L2(A3)

292 Kilpb < —%-}—7]
(4.68) H(s/t) ROZNS S Cres

Proof. This is based on (£63) and (4.64]). We only detail the proof of estimate (LG7), since
(4.68)) is obtained in a similar way by replacing energy bound (£.20]) with (4.19) whenever it
occurs.

We make use of (£.63), (£64) and (Z.6GH) to estimate the S, Sy terms. From 9, = (1/t)Qq,
the energy bound (&20) and the pointwise bounds ([B.I1), (E43) we derive that

> sscemi)

We recall that the quadratic null terms satisfy (456)), while the cubic terms verify (L.53)).
In general, the zero-mode of a quadratic interaction can be estimated as follows: using (4.20)

and (438) we find
Z HaZ[ﬁhl,b_aszhl,b”L%(%) < Z 0168_1+6N||(S/t)azK/hl’b||L2(%) < 012628—1+26N
[ K|+ K2|<|K]| |K'|<|K]|
while, since | N/2| +1 < Ny, from ([@7) and (£21]) we get
ST 2R 02 Y ey S D CoesTEIM (s /)25 B 1z, o

| K1 |+ K| <|K]| |K'|<|K]|

< tyorstzkpl ) S Chesti,
Ly ¥ |(s/t)0 sllze 1€8

5 0102628—14-251\; )
From (47) and (£21]) we also have
AN K1 1h\b < 2 —1+¢
|- fuo,25n5) |, 2 it

Finally, from (3.36)), estimate ([3.I1), the Hardy inequality (B.7)) and energy estimates (B8.1))
and ([4.20) we get
(4.69) 1Z5 0,00 2y S €572

O

4.4. The hiy; coefficients. In this subsection we show that for any 7' € .7 and U € %, the
differentiated metric coefficients 0Z<N~1hL, satisfy better lower order decay bounds than
the ones in (4.42) obtained via Klainerman-Sobolev inequalities. More precisely, we want to
prove the following:

Proposition 4.12. There exists a constant C' > 0 such that, for any multi-index K of type
(N7 — 1, k) and any multi-indexes I with |I| < Ny — 1, we have that

(4.70) Sup 100 Z5 Wiy | < Cret™TC¢
s

(4.71) sup 10,0 Wy | < Cret ™.
S
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We observe that the above bounds are satisfied by any dZ%hyf, with |[K| < N; as a
consequence of (AA4I]). In the interior of the cone ¢ = 2r they follow immediately from
(4.38)), where one has t* — r? > 3t? /4 and consequently

025N =Bhla(t, @, y)| S Cret =32,

For all other points in the interior region, (L.70)-(ZT1]) are instead obtained by integration
along characteristics, see lemma[L.I3. The difference between h},; and any general coefficient
h}lﬁ relies on the fact that weak null terms do not appear in the equation (3.31]) satisfied by
the former. We only sketch the proof of the following lemma, see [40] for additional details.

Lemma 4.13. Let s > so and D5 be the set of points (t,x) in the cone t/2 < |x| < 2t —3
with t > 2 such that

2] < VB2 —s2if (t,x) € D' or t<s*/2 otherwise.
We denote by OpYs the lateral boundary of Ds, i.e.
0D, = {(t,z) : |z| =t/2 and t < 8/3 or |x| =2t — 3 and t < s*/2}.

Let u be a solution to the wave equation on the curved J-dimensional spacetime Egu =F,
where g = (guw) is a Lorenztian metric, g=' = (g"¥) is its inverse and F is some smooth
source term. Let m = (my,,) denote the Minkowski metric, m~' = (m*) its inverse and
T = gt —mM¥ . For any spacetime point (t,x) € Dy, let (1,¢(1;t,x)) be the integral curve
of the vector field

1-— 7TLL/4

O + Oy
! 1+ 7TLL/4
passing through (t,x), i.e. o(t;t,x) = x. Assume that
|t — 7|

|7TLL(T,,LL’)‘ <1/4 and |mpp(t,z)| <e V(t,z) € Y.

t+r’
Then for any (t,x) € D5 one has that

t t
(4.72) t|(0r — Op)u(t, z)| < sup |(0r — Oy )(ru)] —i—/ | M, 7|(T)|dT —i—/ T\ F|ro(rst,2)) AT
2 2

OBYs

where
(4.73) M[u, W](T) = <r|Ag1u\ + |7T‘g,7 (r@au\ + \8u\) —+ ‘7T|7"52u|) |(T7¢(T;t@)).

af

Proof. ~From the hypothesis on 7w, —2¢"L =1 —27L > 1/2 and §*¥ = _ggLL is well-defined.
From O,u = F one has that

F

af _
Oyu + 070,05u = —ogiL

where 0% := G — m*? satisfies the following

O =0, Opr = (—2¢"5)'mpr, w0 = (—2¢") 7 (®0 + 7)., 0] S |7l

1 — _
0" 0u05u — ~0**L*(ru)| 5 |r|.2.7|00u] + 7|07 + |7|r—|ul.
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We recall that the flat wave operator can be written as follows

1
Dxu = ;(8t + &)(@ — 87)(’/"'&) + Aglu.

Therefore
1— 7y /4 _ _
(84 =TE20.) 0, - 0,)(r)| £ rlsrul + [l (r{D0u] + Ou]) + x}r{2ul + [rF].
1 + 7TLL/4

Due to the smallness assumption on 7wy, any integral curve (7, p(7;t, z)) passing through a
point (t,x) € Zs must intersect the boundary dg Zs. The result of the lemma finally follows
from integration along the characteristic curve, from which we get

(0 = 0,)(ru)(t, 2)| < (9 = Op) (ru) (to, 2o)| + /t | M{w, 7(T)] + T Flr oyt AT

where (%o, zo) is the first point at which the intersection with the lateral boundary occurs. [

Proof of Proposition[{.13. Throughout this proof we will denote by 7 any small positive
constant that linearly depends on (i, Vg, 0r. After the above observations, we only need to
prove that (LT0) and (LTI are satisfied in the exterior of the cone t = 2r. Such estimates
are satisfied by the (s/t)?9; and 9, derivatives as a consequence of ([£38). Moreover, since

_t—r z® r _ B T
O = ; at+t+réa+t+r(8t Or), O =0, tat

we can reduce to proving them for the 0y — 9, derivative, which we do by applying Lemma
13l We remark that for a point (¢,x) € Z; N Z', the integral curve (7, p(7;t,2)) may have
a non-empty intersection with the exterior region, which explains why in the following we
invoke some pointwise estimates obtained in section [3

The integration of (3.3I)) along S* shows that ZX h(llg is solution to the following equation

(4.74) O, 250k + (H™)°0,0, 725 bk, = FRY + FOK — (H*)'- 0,0,25 0k

where F) = (FE,)” and FE, is given by ([B32). We recall that tensor H* decomposes as
in (LI2). The hypothesis of Lemma are met thanks to the pointwise bounds (B.IT),
(BI7) and ([@.A41), therefore for all s > sy and all (¢, x) € Z;

(4.75)

t
(9, = 0,)Z"hgy;(t,0)| < ¢ sup (9 — 0,)(rZ" higy)| + t‘l/ | M[Z" hyyr, H)(r)ldr
aB@s 2

t
+t_1/ 7 (RHS of (&74))dr
2

where M-, ] is given by the formula in (£73).
From the interior pointwise bounds (£38]), (£.43) and the exterior pointwise bounds (3.12),
(BI4) we see that
sup (0 — 0,)(rZ%hyyy)| < Cret™277,
0 s
As concerns the contribution coming from M[ZK h;z,H "], we see from formula (73]

together with the fact that §; = f—;Q” and the exterior pointwise bounds (3.12)-(314) that
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for points (t,z) € P, N P°
\M[ZE Ry, H)(t, 2)| < Coet 727 \/1(t) + C2e2t=2+2,
In 2,N 9", we rewrite (A73) using inequality (.20)

2
MIZ5 Ry, H\(t,2)| S 1025 25 hig)| + | .27 (r(3) 1022 hig)| + 102 25 ki )
4 2
1| (r(3) 10225 k| + () 1025 2Ny | + 1025 2 iy |
and hence deduce from pointwise bounds (B.11), (438)), (£38)), (£43), (£.47) that
\M[Z5 R H)(t, )| < Cret™377.

Overall, M[Zthlp’(b], H’)|(rp(rt.) 18 an integrable function of .
We next show that the right hand side of (4.74]) multiplied by ¢ is integrable in 7 along
the characteristic curve. Concerning the contributions to Fj{{[}b, see formula ([B.32): the weak

null terms do not appear in Fy/, hence from (3:22), 3:23) and [@58), @5J) we have that
| ZEF (8, @) S C2247 31 + C2e27 2720\ 1(1).

The terms arising from the commutation of the null frame with the wave operator are
estimated, on the one hand, using (3I1]), pointwise interior bounds (£38), (£.43)) and the

exterior bounds (3.13)), (3.14)
> Cild:25 hij| + | Dt 2% i | S Cret ™34 4 Coet > /1(8).
IK'[<IK]
On the other hand, using additionally the a-priori bound (4.6]) we see that
(16} v b (e} 1 v b
Z }ETUBMV7K1K2 (ZKlHM 'aiZth(llﬁ) } + }FTgwf,Kle (ZK H" - Zthfllﬁ) ’
[ |+ K[ <[ K|
S CYCoe?t ™3 + O3\ [I(1).
From (4.66)), together with (3.12)) and (B.14]), we have that
()2 0,0,25h38) (8, 2)| + | (125, HY9,0,]h3%) (8, 2)] S CRet370.
Thus all together
HEN — (25, HO# 0,0, ha| + t| () - 8,8, Z5035) (L, )]
< Cret™ 247 + Coet 427\ /1(t).
Using the structure highlighted in Lemma B.9, one can easily show that
|Ep(t, )] S et
Finally, if K is such that ZX = 9! is a product of derivatives only, with |I| < Ny, we

derive from (3.11)), (3.12) and (4.38) that
0 (H 0,008 S 30 Ho" HO| (020 hgy | S Cuett-2oe,

[ 11]+|12|=|1]|
[I1]>1

This is an integrable quantity, as all others above, therefore we obtain (£.7T]).
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Bound (ET0) follows then by induction on the number k of vector fields in Z¥ since

125, (H")0,0,00k < S QR ZER Y |25 HY|0PZ h|

|11 |+| K5 <|K| | K|+ Ky |<IK]
11| >1, | K5 <| K| | K5 [<| K]

1 ! 1 1 b
< 7|822K hl,b | + 7|822K hL ‘
- Z L+t47)2 v Z L+t+r v

|K'|<|K| ( ) |K"|<|K] ( )

where K’ is a multi-index of type (|K|—1,k) and K" is of type (|K|— 1,k —1).

4.5. The weak null terms. In this section we prove estimates on the weak null terms.

Lemma 4.14. For any multi-index K of type (N, k) and i = 0,1, we have that

(4.76) |6°Z% P (0h, 0h)|

2 2 —14¢
2,00y = 1€

while for any multi-index K of type (N, k) with k < N;

(4.77) | Z% P.s(Oh, 0h)| < CPPs™ 10k,

L2,()

Moreover, for K a multi-index of type (N, k) we have

K pb

(4.78) ||Z Paﬁ(8h>ah)HLgy(jﬂ)

< Cres™ ZEi(S’ ZE RIY2 4 Opes 140 Z Bi(s, 7K p) V2 4 012628_%+26N
K/ K”

4
+ C23 0k, <Z g A G- 4 S_H_Ck)
i=1
where K’ is of type (|K|, k), K" of type (|K|— 1,k — 1), and where dy~n, = 1 when k > Ny,
0 otherwise.

Proof. We start by decomposing each occurrence of h into the sum h° + h' and observe that
the quadratic interactions involving at least one factor h° verify (E50). We hence focus on
estimating the weak null terms only involving factors h' and distinguish between the region
inside the cone t = 2r and its complement in 2'.

In the interior of the cone t = 2r (where s ~ t), the bounds of the statement do not
depend on the weak null structure: consequently they are the same as the bounds for the
null terms (A.52), (A54) and (£.56]).

The estimates in the region 2' N {t < 2r} follow from the particular structure of the weak

null terms and the wave condition. We have already seen that these two yield inequality
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(B47) which, after (I.20), can be also written in the following form

‘aiZKPaﬁ(ahl’ 8}2,1)} 5 Z |88[1ZK1]11‘,7%|88[2ZK2]11‘,7%

| K1 |+ K| <|K]|
[I1]|+]I2|=t
2
Y (5) 100"zt 00" 25 + 90" 25 |90" 2% Y
[ |+ K2 | <| K|
(4.79) [T [ +[12|=i

+ Y et ztook Zz et + Y 91 2 b [90" 2 h 00" 24 b

| K1|+| K2 |<|K]| | K1 |+| K|+ | K3|<|K]|

[I1]+|I2|=i [I1]|+|I2|+|I3]|=i

Myo(t/2 < r < 3t/4)

00'Z="h'|.
(14+t+r)? | |
We observe that the quadratic terms on the second line of (£79]) are null and hence satisfy
(@52), (@54) and (LE50); the ones on the third line are cubic (or cubic-like) and satisfy
(453), (4.55); moreover

HMXO(t/2 <r< 3t/4) H < C 6 s S-}—ék
(L+t+r)? L2~

00' Z=Kp!

<es? H (5/)00" Z=K p!
L2

Finally, from the enhanced bounds (L.70), ({.71]) satisfied by the hly; coefficients we derive

Y 00"z hyy 002 2 iy e S Y (t/9)90" Byl | (s/1)0 2" hipy | 12

| K1 |+ K| <|K]| |I1 |+ K| <|K|+i
|I1|+]2|=1 [ <[ (1 K[+19)/2]
+ > 1/ )00 T by || oo | (5 /) D Z 2 by || 2

[T1|+| 1|+ | 2| <| K |+i
[Ta]+[ 1| <L(|K]+49) /2]
|J1>1

S Cres™ Y NI(s/1)0F Z5K by || 2 + Cres™ 29 ||(s/1)00 255 By |12

j=0 7=0

O

4.6. The commutator terms. The goal of this section is to get suitable estimates for the
trilinear terms involving commutators in the right hand side of energy inequalities (.10
and (LI7). More precisely, we will prove the following.

Proposition 4.15. There exist some small positive parameters 0 with 0 < 0 K Op11 <K K
and 6 < kK — o for k =0,...,N such that, under the assumptions of Proposition [{.1 we
have the following inequalities for all s € [sq, So):
for multi-indexes K of type (N + 1, k) with k < N
(4.80)
4
// ZK HY uua a h15}|8tZKh |dzvdydt < (Cg + 012)02263<Z stYitCe—itCe 4 81+2Ck),
Hsg.s) i=1
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for multi-indezes K of type (N, k)

(4.81) // ((Zz", H"*9,0,]h) ) 10,2 n3 | dwdt

Sos

4
+ // (20,0, 2" L3) |02 B |dadt S (C3+CRC3E (D0 574t 4 520
Hs.s] i=1

for multi-indezes K of type (N, k) with k < Ny

(4.82) // (25, H""9,0,)hk 5|10, Z% bl g|dxdydt < (C§ + CF)C3es™™

[so s]

and for multi-indexes K of type (N — 1,k) with k < N;

(4.83) // (125, H"9,0,)hL5)’ 10,2 n | dwdt

Sos

+ // | ((H )7 8M8VZKh;’g)b}|8tZKhl bldzdt < (C3+ C)Cae.
Hsg.s]

We postpone the proof of the above proposition and first observe that, because of (4.48),
we will need to estimate quadratic terms (in fact, commutators) that are either pure products
of zero modes, or pure products of non-zero modes, or mixed products. We proceed to the
analysis of those separately, in the lemmas that follow.

Lemma 4.16. There exists 0 < n < 20y < 1, linearly depending on (j, Vi, O, such that for
any multi-index K of type (N, k) we have
i b 1,b 1,h i 1
10725, (H ) 0,0, hgs — Y Z5Hpy - 870 2503 1o
|K1]+|K2|<|K|

M fi =1 and |K| =
< 10y °
~> tae {S_S—H] ifi=0

Proof. The proof is based on inequality ([3.25) applied to 7 = H*” and ¢ = h}lg We will
focus on discussing only the following terms, the remaining ones being simpler:

2 125 HyE - 020" 25 i

| K|+ Ka|<|K]|
|K|<[IK[/2]), | K| <| K]

and
> |ezMHp - 0pZ"h,
| K |+ | Ko |<|K]|
We remark that the latter sum only appears in the case i = 1.
Concerning the first sum with ¢ = 0, pointwise bound ([£47) and L? bound (&67) yield

1,b Lb -1 "1 1,b
> N2 HE B 2GS CresT=T Y I(s/0°07 25 b
| |+ Ko< K| |K7|<|K|
| |< LK /2], [l < K]

BHL2 ()"

_3
< Ciefs2 M,
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When i = 1, the L? bound (4L6]) gives
S g ooz

[ K|+ Ka|<|K]|
K| <[1K[/2], [ K2 <|K]

The second sum is estimated using (£19) and (4.46]) whenever |K;| < N — 2, and using
(A38) and (Z49) otherwise
> oz mEy 072" n,

[ K1+ K2|<|K]|

2 .1+
L2() 01026 S 1,

bl 2oy S Cles™.

Lemma 4.17. For any fized fixed multi-index K and any smooth function ¢, we have

3 // V2R HL 2R Oldrdt  (CF+ CHCR

| K|+ K| <|K|
|K2|<[|K|/2]

(4.85)

with
1 if = Z%hlg and K is of type (N + 1,k), k < N
(4.86) ko =140, if¢=25hY} and K is of type (N, k)
0 if = Z%hlg and K is of type (N, k), k < N
Proof. We restrict our attention to the case where Z%1 = I'1 as the ones where Z51 =
O/t with |I;] > 1 can be estimated as in the proof of lemma Z.16]

For any K, K5 in the selected range of indexes and any fixed v such that 20, < v < 1,
we write the following

// \ZK |y \\82ZK2hlg||8t¢|d:cdt</Ei(T,qﬁ)%HZKlHi’E~82ZK2h15H

Hsg.s] S0

S . 1 S
5/ 67'_1_”E1(7',gz5)d7‘+—/ / Tl+”|ZK1H£’z|2|8QZK2hlg| dxdr
€ Jso J ot

S0

L2 Jﬂ)d

1 [
< CPeds™o + = / |25 H P02 Z 2 h P dadt
€ S0 6
where 4, = {x € R : /(12 —s2)* < || < /(t—1)2—1} and t, = s?/2. The latter
inequality is obtained by injecting the energy assumptions (4.3), (£4), (£5) in the first
integral on the second line and by performing a change of coordinates in the second one.
We use (£61) and the Hardy inequality of corollary B with y=1—-npanda=1—-n—v
to estimate the above integral. For any fixed y/ > 0, we get that

e
- / |25 Hyp (07 25 by P4 ddt

/ / | Z5 H |2 dxdt
o (L4+t—r)20=n (14t 4 7)1V

8ZK1H1 ‘2 ts (1+‘T—t|)1+“,
<2 LL 2 K1 pplb2
[ [ L s . [ o e




We estimate the first integral using (E49):

L7l
/ / |0 AL HLL|2d dr < / 0202 3_—2(1-n— ”+45k1d7 S 01202263
£

7—2an

For the latter one, we pick 20, < v < k and p' := 2k —n—2v so that ¢/ > 0. From inequality

(29) we get

(14 |r — )+
026/ / ‘8 ZKlHll/L‘2(1+t+r)1—n—ydxdt

ts ts ,
SC3e // Y2+ r— ) [az5 1Y) dmdt+// Y24 r — )2 Y 2K 7Y 2dedt

|K'|<| Kl

ts
- > Cge/ /t— 2+ — )2 |(Z5H - 07" H") Pdadt

[ ] |+ K5 | <| K1

ts
+C26/ / 2+ — )2 M?*x3(1/2 < r/t < 3/4)r 1V dxdt.

The above right hand side is bounded by C3CZe3. For the first integral, this follows using
B6) and the fact that v > 20, > o; for the second one, it follows from the weighted Hardy
inequality (B.4) and (B.3); for the third one, from the pointwise bounds ([B.12)), (B.I4), the
weighed Hardy inequality (B.4]) and the energy bounds ([3.3), (3.6); for the last one, from
the fact that the domain of integration of the latter one is uniformly bounded in (¢,z). O

We now estimate the different contributions to the commutator [ZX, (H") 3,0, ]h(llg,

which appear in the equation satisfied by Z*h/,
Lemma 4.18. For any fived multi-index K of type (N + 1, k) with k < N, one has

4
(4.87) 125, (HY) 0,0, g5l 20y S CLCaé® (Z §TATI G 8_%+Ck>

i=1
and for K of type (N, k) with k < N;
(4.88) (25, (H ) 0,0, ]hlﬁHLz ) S C1Ce?s 1%,
Proof. The terms in the commutator are of the form
7K1 [rlb 92 7K, hl’g

with each K of type (|Kjl, k;) and such that |K;| + |Ky| < |K|, | K| < |K|. We focus on
the case where |K| = ki, that is where Z%1 = I'1 the remaining ones being simpler, and
also recall that N = N; + 5.

In the case where |K;| < Ny, we estimate 1 H" in L> with ([&6). Together with the
energy bounds (4.21)) and (4.24]), and the relation (£.2)), this yields

S_1+5k, if |k’2| S Nl
24 OS_%+’Yi+<k7i7 if Ny < |k‘2| <N

1=

P HY 2252 hil| o) S CrCae® {
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In the case where N; < |K;| < N, we estimate 82ZK2h;’g in L with ([@7) and TX1 {1
in L? using (£28)

||FK1H1b82ZK2hlﬁHL2 ) < € 0102 (S 54k + ZS FHvi+Ce— 1)
i=1
The conclusion of the proof follows from relation (£.2]) and the observation that, if K is a

multi-index of type (N, k) with k < Ny and |K;| > Ny, then I'5t contains at least one usual
derivative. 0

We conclude this subsection with some estimates on commutator terms involving H 2

Lemma 4.19. We have that

(4.89) (|25 ((H") 0,0,h58) | 12 )

oo { T ST 0 K of type (N K)
S Cila —345, if K of type (N — 1, k) with k < N,
and
w 1
(4.90) [|[Z", (H""*)*0,0,] hyj L2, ()

i d T ST T i K of type (N + 1K) with k < N
~ IR g if K of type (N, k) with k < N;

Proof. We observe that if K is a multi-index of type (N — 1,k) then 025 = ZX' with K’
of type (N, k). The first bound (resp. the second) in (4.89) simply follows from (4.2)), (£.7]),
(@21 (resp. (4.29)) and the fact that | N/2] +2 < N;. Similarly, the first bound (resp. the

second) in (4.90) follows from (4LI19) (resp. (£25)) and (Z.A41). O

Lemma 4.20. We have that
(4.91)

T2, (H 0,0, ]k,

< 2 s 1+20n if K of type (N +1,k) with k < N
zy(H5) §™3+20N if K of type (N, k) with k < Nj.

Proof. We begin by writing that

(25, (0,0, < S 2K HY0P 2Rk,
| K1 |4+ K2 |<|K|
| K2l <IK]
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For any multi-index K of type (N + 1,k) with £ < N, energy bound (£20) and pointwise
bound (30) yield

DR e
|K1|+| Ko | <| K] o
K1 < (K] /2], Kal <|K|
S > H(t/S)ZKlHl’hHLgOLgH(S/t)yZKthﬁHLz < 225 at N

| K|+ Ka|<|K]|
|K1|<|IK|/2], | K| <| K]

while energy bound (£I9)) and pointwise bound (£42) yield
Z HzKlHl,b . 82

| K1 |+ K| <|K]|
| Ko |<[|K]/2]

S X Ezel 2, 5t

| K[+ K| <|K|
|Ka|<||K|/2]

If K is instead a multi-index of type (V, k) with k£ < Ny, the above estimate can be improved
to C2e25™2 729V ysing energy bound ([E25).
O

Proof of Proposition [[.15. We decompose H'** and h o appearing in the commutator terms
into their zero mode and their zero-average component and express all commutators involving
(H'#)> with respect to the null framework.

From (£34)), (4.85) and the energy bounds (£.I9), (£20) and ([£24) we derive that
// 125, (8,0, 125 |06\ dadydt < (CF + C2)és

Hsg.s]

with 4 given by (486]), while from (£39) and (Z£.20)

4
// |25 ((H): -aua,,h;vg)ﬂ|atZKh;vg|dxdt5Cf&(Zsmﬂww+s2u<k)
=0

SO s]
where p = 0 if K is of type (N — 1,k) with & < Ny, = 1 otherwise. These two estimates

together imply (8T]) and (Z83).
Additionally, for K of type (N + 1,k) with & < N we get from (£L87) and ([EI9) that

// ZK Hl;uz) 8 o ]hlg||8tZKh15|dxdydt < (03+C2 6 S(ZS’YH-@ i+Ck) +S2Ck>

[so s]

while for multi-indexes of type (N, k) with £ < Ny, estimates (£.88) and (4.24) yield

// (Z5, (H"0,0,]n 5110 Z5 b gldwdydt < (CF + CF)eds™.

Hsg.s]

Finally, from (4.91]) and the energy bounds (4.19), (£.24]) we get
// [Z5, (H"¥)20,0,1h510:25 bl gldadydt < Cie’s”
[s0,s]

58



with g = 1if K is of type (N 4+ 1,k) with k < N, p =1 if K is of type (N, k) with k£ < Nj.
This concludes the proof of (&80) and (4.82). O

4.7. Propagation of the pointwise bound (4.7). This section is devoted to the propa-
gation of the pointwise estimates (4.7]) on the zero-average component Bl op Of the solution.

EFhe (;quatlon satisfied by ZXh! g is obtained from the subtraction of (415)) from (4.13):
4.92

Oy Z5hE5 + (H™)0,0,Z5hEs =F5* — (HY)8,0, 2% hk5 — ((H"™)'9,0,25hL%)*
where Ffﬁ’h = FX - FY g > and FK op is defined in (£I4). We observe that, after (£48), pure

zero-mode interactions do not appear in the above right hand side.
The proof relies on the following result, which is motivated by the early work of Klainerman
[29] and can be found in slightly different forms in the works of LeFloch-Ma [37], Dong-

Wyatt [14] and Huneau-Stingo [21].
Proposition 4.21. Suppose that ¢ is a solution of the equation
(4.93) Oy + (H")0,0,6 = F, (t,z,y) € R*3 x St

such that [, ¢ dy = 0. For each (t,z) in the cone {t > r}, let s = V12 —r? and Y, Ayy, Big
be functions defined as follows
2

V2O = [ 5o+ (Fon| -+ Nla0Pdy

A (A) = sup ‘)\_1 (5” ((t/s)z(Hl’UV)bc%OV )\} + Sglp ‘)\_l(y(Hl’44)b),\}
+sup P\ x(E/r)x (r )(t/s)QM)A‘

BL(N) = / A (Rl dy,
st
where fu(tz,y) = F(2, 22 4) and Rlg] = Role] + X2, R6] + S°°, RU[6] — s°F with
Ro[)] := s20%0,¢ + x°2°0,,0,¢ + 30 + 32%0,0

R[9] = s™x(t/r)x(r )M (/)00 + (2% /)0, 0:0 — 909 + (3/1)0:0)

RYe] = x(t/r)x <>Mt2j;“ QU

RY] 1= (MY Y (80,050 + % 0,040 + iy 0,0, + dfn 0,0

Rylg] i= —(t/s)(H"V ) cpfy - 5 (30,0 + 2°0,040)
Ryl¢] = —(t/s)*(H"V ey - Q9]

and
Qlo] = (3 + 5% (2(x*/1)00; + s 220,08, + (r*/t7)0; + (3/1)0, + 35722%0,)) ¢.
Then, in the hyperbolic region H,, sy), the following inequality holds

3 1 At
52 ([[0ll2@n) + 10y0llL2en)) + 52l 2y S (th(SO) +/ Bm(A)dA) expleo AP
50
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Proof. The wave operator in question writes in terms of the 0, and 9, derivatives as follows
—ay = (8/1)20F + 2(2*/1)0,0, — 30, + (r*/t*)0; + (3/t)0; —

For some A > 0 and fixed (¢, z,y), we define wy,,(A) := A32¢(2, 22 y) to be the evaluation
of ¢ on the hyperboloid 4 dilated by A\*2. We compute

wtwy = )‘1/2 (%¢ + (y¢)>A
By = A2 (PO)y = N2 (39 + 3(F9) + (£207 + 2ta®0,0; + 1°2°0a0p)9) , -

A calculation shows that
(4.94) Po = 5" (—Opy + 0°0, + D)) ¢ + 2%0°0,056 + 310,06 + 2.
Using equation (A93) we derive that wy,,()) satisfies

Oty — DyWimy = AV (H"™)°0,0,0) 5 + AV Ro[¢]x — /2 Fy.

For the curved part in the above expression, we expand (H")” = (H“*)’ 4 H*" where
HY is defined in (LI2). Starting with the H° piece, we compute

H""8,0,¢ = H*"0,0,¢ = —a(t,z) (1 + (r/t)?) 97¢ + s *RI[g].

where for simplicity we put a(t, ) := x(r/t)x(r)2. Using the calculation for P¢ given in

(E94)), we find
AT (Sa(t a) (L (r/6)?) 87g)n = =A% (alt, 2)(t/9)* (L + 12 /82) - s°(s/1)°8} ),
== (a(t, 2)(t/5) (1472 /8)) Doy + AR [D)1
For the H'? part, we use (LI6) and (II9). We find
(H0,0,6 = [(HYV Pl 3F + (HYY Pty 0,0, + (HYP5) 6+ 5 Rllo)
Since we can write Wy, = A2 (3¢ + (s2/1)0i¢ + 1%0,0) ,, we find

NV HYY Y 00,008 = ((#/9)(HY Ve, (025 00) )
= ((t/s)(HYY ), 0ty + A2 Ry [0
In a similar way, using also the calculation for P¢ given in (4.94)), we find
NV (HDYY R 07 o) = ((8/9)2(HYYY V) ey + ATV R[]

For simplicity, we henceforth write wy,, = w(\) and suppress also the |, notation. Putting
the above computations together, we have

(4.95) b(t,z)0 — (14 (HY))Ayw — (t/s)(H"UV Y L0,0 = A\7V2R[g)
where
(4.96) b(t,x) :=1— (t/s)z(Hl’UV)bc(l}ov + X(t/r)x(r)g(t/s)z(l + 72 /t2).
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We multiply (£95) by dyw, integrate over S' and integrate by parts to get:

/ Ow (b@?\w — (14 (HY""))Ayw — (t/s)(HYTYY 240, 0,\w> dy
st

_ 41 2 1,447\b 2 _1/ ;
_dx<2/glb|a*“| dy + (1+ (H)|0,0[) = 5 [ ooty

Recalling the definition of b in (4.96]), we obtain

([ ol + (14 (1Y) 10,0y

= _ /Sl Oy ((t/3)2(H1,UV)bC%OV) |Oyw|?dy + /1 O (X(t/r)x(r)(t/s)2(1 + r2/t2)) %\c%wﬁdy
[ P+ )0, () 0Py +2 [ ATV RIGl0Nwdy,

St
We crucially can drop the third term on the RHS above using the fact that y > 0, M > 0
and the identity 9\(%)y = —(2L),. Note also that the cut-off function x is supported for

ST

2r >t > 2 and so in the region {t > r + 1} we have |x(t/r)x(r)2(t?/s*)| S e.

By relation (LI8) with 7 = H, the estimates (LI17), (&43)), and (Z47), and the fact
that ¢/s*> < 1 in the interior of the light cone, we find

Sup (/)2 (HYY Ve | + (M) S e

~Y

All together, we obtain

Ly2(0) £ AuOIYE0) + a0Vl

with Ay, By, Ve as in the statement. From Gronwall’s lemma, we have

(197) Yia(s) < (Ym(so) [ Bmu)cu) exp ( [ Amu)dA) ,

S0

and the conclusion follows from the Poincaré inequality. O

Proposition 4.22. There exists a constant Co sufficiently large, a finite and increasing
sequence of parameters 0 < g, O, G < 1 satisfying [A2), and 0 < eg <K 1 sufficiently small
such that, under the assumptions of Proposition [{.1], we have (AI12).

Proof. Throughout the proof, 0 < n < 20y < 1 will denote a constant that linearly depends
on C, Yk, 0. We apply Proposition .21 to the variable W = 811“‘171;’; with |I] + |J| <
Ny +1=N —4and |J] < Ny, governed by the PDE (4.92).

1. The Ay (N) term: this is the same for all values of W. Bound (£40) gives that

sup A (L (HYM)),| < ex—2to2,
Sl

For the other piece of A;,(A\) we use (LIS) with 7 = H'’, the identities .#(s) = s and
S (t+r) =t+r, the pointwise bounds (LA0), (£45), (£47) and the fact that ¢/s* < 1 in
the interior of the lightcone, to derive

|7 ((¢/s)(HMYVeiy) | < I(S/t)QYHLLIGJlr (/) (HL) |+ | S Hyp| S es™



Note that the estimate of the second term in the above right hand side is obtained using
also the following decomposition of the scaling vector field

(4.98) S ={t—=r)0+ (r—1)0, + (2%/r)Qoa.
Consequently
—1| (5/ ((t/s) (Hl UV)b 00 )) | < e~ 2-l-'y1

Finally, we use that x(r) = O(1) on its support, so that we can bound |x/(r)] < r~2 and
thus get

Ot/ T)X ()(8/8)*M)A| S ex 7.

Bringing all this together gives

(4.99) / A (VA < e

S0

2. The Yy, (so) term: We evaluate all the expressions here on the hyperboloid .7, for s
close to 2. We observe that 1+ ¢+ = O(1) on J4,, so by (£98) and lemma [B.5]

3
S\ 35 .
(4.100)  |Yauls0)| S [IWeqllaz + | (FWaollez + 10, Waollzz S () B (s0, 252W)'
3.a. The Ry term in By, (\): By (£30), (431]), and (4£.32)) we obtain
3
(4.101) IAV2(Ro[ Wiz S Cre=3+Gs (;) ’,

9.b. The R} term in By, (\): First note that in the region {r < t} we have |¢&,| < 1 using
(LI7) and straightforward computations. Thus, by (4.6]), (£30) and (31,

AW 3 [109] (100WI5 7 [ W)
(4.102) 5 5\ 3
< (22 —5+70+Cers [ 2 ) 2
NCIEA 2 (t) ’

3.c The R term in By, (\): using (&86), (£30), ([E3T) we get
AW € A (/5 (Y Vi), |10, W s + ¢ 10,0W1) )

S Crextonin (2))
3.d.i The R} term in By, ()\): we observe that from (Z30), (£3T), (£32)
1QWIlzz S (IWllsg + [|#°2*W |, + 120W |5 ) + ([[s*00W ||, + [|(s*/1)oW ], )
S Cret™ 253 TCha 4 O et 5 530k
which, coupled to (6] and the fact that s72 < ¢! yields again

3
s\ 2
||)\_1/2(R§[W])AHL§ 5 (8—%(t/8)2(H1,UV bC?]OV) H|Q Hij 5 01262>\—%+’70+Ck+3 (;)2

3.e The RY and RS terms in By, ()\): satisfy the same bounds as R} and R} respectively.
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In summary, for W = 9'T7h} with [I]+|J| < N —4 = N; + 1

3
(4.103) A 2RI + 8 ) ey S Cren H (27

4.a The source term F: we simply distribute derivatives and vector fields across the
nonlinearities given in (£92). We begin by analyzing the quadratic interactions of zero-
average component with itself, which are of the form

S (@) a(aferzzM))h + (@010 (Tt

11|+ I2|=]1]
|J1 |+ J2|<|J]

and recall that there must exist an index [ = 1,2 such that |[}| + | )| < [Ny + 1/2].
To estimate the first sum, we use (L71) and (£.41]) to obtain that

> o

[T1]+|12|=]1|
[J1]+[72|<]J]

(8(8I1FJ1hLU> . 8(812FJ2h17b>)hH 5 )\% HﬁZSNl_lhl’uHL;}o H@ZSNlhl,hHLg
Ly

2
< 012€2>\_%+17 <§) :

All terms in the second sum are estimated in the same way, besides the one corresponding

to |Is| + |Jo| = |I| + |J| = N1 + 1. For this one we use (£30) and (£41)), together with the

assumption (4.2)) on the parameters (i.e. (; < 7; for any ¢, j), and derive that
Mm@ n )

2
s S CrCaer (2

S AR g (|07 (0'T
Lj
Let us note that this term is highly specific to the Kaluza—Klein problem and is absent in the
Einstein-Klein Gordon equations. We also observe that, in the case where |I|+ |J| = N1+ 1
but |J| < Ny — 2 we can use (£33)) instead of (A.41]) to obtain

S\ 2

AR (W-a%af’r‘fhlvﬂ))h 50102&—%“7(;).

2
Ly

Next we turn to the mixed interactions between the zero mode and the zero-average
component. We begin with the commutator terms [0/T7, (H 1’“")b8u8,,]h(11’g, which we rewrite

using ([3.25) with # = H'?. We focus on treating the following products

(4.104)
oML Hyy - 9(9RT2hE), 9N HL - 9,0,(07T72RL%),  9NTT HY - 9291 72hL%)
for |1+ |1 = 1], ||+ 1l < 17 ||+ 12| < |T| + 1]

the remaining ones being simpler. The latter term can be rewritten using the equation, i.e.
02(0"T 7 hy}) = <(s J1)?07 +2(x% [4)0,0, — 0, + (r*/17)0; + (3/t)8t) (0"T72h %)
+0,, (9T h ).

If |I;] > 0, we estimate the first two terms in (L104) using (A7) and (£46) and the latter

one using (38) and (7)), hence getting that they are all bounded by CjCoe2A~2+7(s/t)2.
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If [I;] = 0 and |J;] > 0, we use ([A6) and (L71) for all terms, together with the algebraic
relation (4.2)), obtaining

Mmoo )| s 02262(2)%—1%.

Turning now to the semilinear interactions between the zero-mode and the zero-average
component, we immediately obtain from (£7) and ([£3]) that

S

2
< C10262>\_%+"<¥> L)+ || < Ny

AZ[9(@N TN R [[a(0 T2 L, <
Y

When || + |Jo] = |I]|+|J| = N1+ 1, (£1) does not provide us with the right power of (s/t),
which we instead get using the structure of the semilinear terms. On the one hand, using

(A.57) together with (A1), relation 0, = (1/t)Q0q, [£37) and [@.38), we easily derive that
2
A [lQen, o' T ), 5 o t(2)

The cubic terms also satisfy the same estimate as above, we leave the details to the reader.
On the other hand, using lemma [B.13] we see that

| Past@n™, 00T 1),
SO0 T W) (|2 + [0h 1100 T 1) il 2 + [0 |10(0 T M) i 2.

From (A7) and (47T
ARG 100 T ) < Crox o (2)'

from (4.7)) and (4.40)
MR 100 TR ) iy S a3 (2)

finally, since
0" TR ) | < (00T R ) pp| + |00 TR i
from lemma 2.2 and pointwise estimates (4.6)), (4.7), (438)), (£.46) we deduce that

||8(81FJh1’u)LL||L§ < Coet 287
and consequently that
_3 5\ 2
|8h£|||a(alrJhl’h)LLHL§ S C1Coe* \ 2+77(¥) )
In summary,

3 _§+ . B
)‘%||F>\||L2§02262<§)2 {)\ 2t At [I| < Ny, |[J] =0

t AN G I+ [ S N+ 1, | =k <Ny

and

s < 2 2v(5) 2
[ S @er B s e N L =k <

s\i (1 i[I[<Ny, |J]=0
S0 t
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Finally, from Proposition [£.21] we obtain that there exists a constant C' > 0 such that
3
o5 @R e + 7 DT 12 < O(2) B s, 2220 0 1))

1 <N, =0
elte; C“(—) ’
FOCEGAG) Yon, it [+ 1] <M+ 11| =k <N,

The conclusion of the proof then follows from the following relation
J k

t tx Ts; TiT
&gzgey—?éj, 8J:QJ—8—557—|— J2 Qk

and by choosing C» sufficiently large so that CC; < Cs and CE'(sg, Z<2(d'T/hM))z <
(Cse), together with €q sufficiently small so that C'Cqe < 1. d

Remark 4.23. It will be useful in view of Proposition to observe that the loss s in
the estimate of 8IFJh(11’g when |I| + |J| < Ny and |J| = k is only due to the following
contributions, which arise from the commutator term between zero modes and zero-average
components

[ 92 (9'T2hLE), | Ji] > 0.

4.8. Enhanced energy bounds for the zero modes. The goal of this subsection is
to show that the lower order energies of the zero-modes enjoy enhanced energy estimates

compared to (4.4]).

Proposition 4.24. Under the assumptions of Proposition [{.1, we have that for any fived
s € [s0,S0) and any multi-indez K of type (N — 1, Ny)

(4.105) E'(s, ZERY")Y2 < Cres®™

where 0 < 0 K g 15 the rate of growth of the exterior energies.

The proof of the above statement is based on energy inequality (4I7). We recall the
estimates already obtained in the previous subsections on the quadratic null terms (454,

Ol quadratic weak null terims anda on tie cublc terms appearing in , , as we
dratic weak null t d on the cubic t ing in FLy’ I

as on the commutator terms (A.83]) and on the contributions coming from F O?BK #69). We
complete the picture with the estimates of the remaining trilinear terms appearing in the
right hand side of (4.I17).

Lemma 4.25. For any multi-index K of type (N, k) we have that

(4.106)
8“H 70, Z5hogl|0 2 hlgl + = |8t T O, ZKhL s - 9 Z R 5| dbda S O3B st

I,

(4.107)
// 0" H," - 0,25 h3 1025 bl + = |at 0, 25Nk - 0 Z5h dtde S e,

HMso.s]

and for multi-indexes K of type (Ny, k)

(4.108) // |0"H,” - 0,Z"h B||8tZKh15|+ 0,.H,7 - 0, 2" hlg - 0" Z iy dtdx < CFe?

Hsg.s]
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Proof. It is a straightforward consequence of [3.37), (3:38) applied to ¢ = Z¥h} 4 and ¢ =
A hlﬁ respectively, coupled with the pointwise bounds (B.I1), (£38), (£.406) and with the
energy bounds (£I9) to get (£100), with (£.20)) to get (A.I07) and with ([£24]) to get (AI08).

U

Proof of Proposition[{.2]). This follows by plugging the estimates obtained so far in the en-
ergy inequality ([AIT). In fact, from Lemma [0, estimates (454)), (£55), (A7S), ([AZ3)

and the a-priori energy bound (4.20) there exists a constant C' > 0 such that for any fixed
multi-index K of type (N7 — 1, k) we have

I

F(h)(0h, 0h)||0,2" hl}| dzdt + // |((HY™) - 9,0, 25 hE5) || 0,25 hLS | ddt

Hsg.s] HMsg.s]

§/ C'C’leT_lZEi(T,ZK/hl’b)l/QEi(T,ZKhi’g)lﬂdT
S0 K’

—I—/ CCer—1H0e Z E'(r, ZK”hl’b)l/in(T, ZKhi’g)lﬂdT + (C2 + C?HC3é?

S0 K"

where K’ denote multi-indexes of type (|K|, k) and K" multi-indexes of type (|K|—1,k—1).
Furthermore, from (3.1T))

// 125, 1O 0,0, |h 10,25 h? | dudt

[sos

< / Cer™ > E'(r, ZX'n")\2E'(r, 25h;)"dr.

S0

Summing the above estimates up together with (I8, (4.69) and ([ALI0T7) we get that there
exists some positive constant C' > 0 such that

E'(s, Z<Khl}) < CE\(so, Z55hY5) + CC2e2s*7 9 + C(C2 + C}) e

+/ CChrer! ZEi(T, ZK/hl’b)l/QEi(T, ZSKhl"’)l/QdT
S0 K’
/ CCyer™ 1+CEZE1 T, ZK”hlb>1/2E1( Z<Kpl, b)1/2d
Kll
Performing an induction argument on k, it then follows that there exist some positive con-
stants ¢; < ¢p < --+ < ¢y such that

Ei(S, ZSKh}I’Z) < C'(Ei(so, ZSKh};Z) + 00362 + (C’g + 012)02263)820+cke

so the end of the proof follows from the smallness assumptions on the data and after choosing
0 < ¢p < 1 sufficiently small so that cyey < 0. O

The improved lower-order energy estimate (4I03]) leads to the following improved sup-
norm estimates. These are obtained following the proofs of their analogues with s% losses

and using the energy bound (£I03) in place of (A20). For any multi-index K of type
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(N —3,Ny), bounds (A38) and ([£43) are enhanced to the following ones

1 Kilb 3 Kilpb LK1 1b 30
(4.109) [5t20Z" hejg | 1 ey + 12025 heig || e ey + 1182 25005 | e gy S Cres
and bounds (£40]), (4.47) are improved to

3 1
(4.110) [t20Z" (Hig) |l + 182 (t/5)°Z5 (Hpp) | o) S Cres™ .

Furthermore, for multi-indexes K of type (N — 4,k) we can also improve (L6I]) to the
following

3 b —1460
(4.111) 142 (s/t)°0; ZX hog | Lo (i) S Cres™ 407

4.9. Propagation of pointwise bound (£6). This section is dedicated to the proof of
the enhanced pointwise bound ([4.0]), see proposition .31l We will make use of the following
lemmas, which are due respectively to Alinhac [1], Asakura [3] and Katayama-Yokoyama [28].

Lemma 4.26. Let u = u(t, x) be the solution to the inhomogeneous wave equation Hyu = F
on the flat space R with zero initial data. Suppose that F is spatially compacted supported
and that there exist some constants Cy > 0, p,v > 0 such that the following pointwise bound
is satisfied
|F(t,z)| < Cot™(t —r)~*.
Defining ®,(s) = 1,log s, s* /(1 —u) according to u > 1,=1,< 1 respectively, we then have
(1) If v > 2,

>l/—2

lu(t, z)| < CCo®, ({t — T>)<t;+2

(1+6)7"
(ii) If v =2,
lu(t, z)| < CCOCI)u((t — r>)(1 + 1) tlog(1 +t)

(iii) If v < 2,
(L)

2—v
Lemma 4.27. Let ¢,1) be smooth functions on R? such that

0 S CA+|2))7 7" [V + [ < O+ fof) 77"

for some constant C > 0 and some fired 0 < < 1. Let u be the solution to the homogeneous
wave equation Ou = 0 with initial (u, yu)|—o = (¢,1). There exists a constant C > 0 such
that u satisfies the following inequality

lu(t,z)] < CCo®,((t — 1))

cC
(1 +t+ |£L’|)(1 + |t — r|)“'

Ju(t, )] <

Lemma 4.28. Let u be the solution to the inhomogeneous wave equation Uu = F with zero
data and F be a smooth function on R'¥3. Let u,v > 1 be fized constants. Provided the
following right hand side is finite, u satisfies the following inequality

(t+ 2|yt — |z} Hult,2)] S sup  sup  |y[(m + [y} (T — [y))"|F (T, y)|.

T7€[0,t] |z—y|<|t—7|
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The idea of the proof of Proposition B3] is to look at u = I'’ h;’g, for any fixed J with
|J| = j < Ny, as the solution to a Cauchy problem of the following form

Dmu =F
(u, Ou)|i=2 = (9, ¥)

for some given smooth initial data ¢, and source term F', and to successively decompose
u as the sum of three waves vy, vo, v3 such that

{mmvl =x(r+12/mF {m = (1= x((r +1/2)/t)F
(’Ul, 8tv1)|t:0 = (O, 0) (Ug, 8tv2)|t:0 = (O, 0)

and v3 is the solution to the homogeneous wave equation with data (¢, ).
In the above systems, x is a cut-off function equal to 1 on the ball By /5(0) and supported

in B1(0), so that the source term in the equation of v; is supported in the interior of the
cone t = 1 + 1/2, while the source term in the equation of v, is supported in the portion of
exterior region such that ¢t <r+1/2.

The solutions vy, vy, v3 are estimated using lemma [4.26), and respectively. The

combination of such estimates will provide us with the desired estimate on u = Z¥ hig
Let us denote by D5 the nonlinearity in equation (fI5) satisfied by I'/ h}x’;, ie.

Jb v b Jp J v b
Dy = —(H™) - 0,0, hyy + Fg + Fg — (H™)" - 9,0,07h ).

We start by estimating the source term Dig in the interior of the cone t = r 4+ 1/2. Since
the intersection of this cone with the exterior region Z° is non-empty, we will make use of
some estimates obtained in Section Bl

Lemma 4.29. For any multi-index J with |J| = k < Ny, any s € [0, S0) and any (t, )
with t* —r? = s* and t > r + 1/2 we have that

D23t )] S (Coe)*t s ™2

Proof. From the pointwise bounds (8:11), (8:12)) and (BI4) we get that for any (¢, z,y) € 2°
such that ¢t > r +1/2 and t* — r? = s?

Z |00 h - OT72h| < G2t 2127(2 4 — 1) 72720 < 2t 172140
|J1]+|J2| <k
Z T/ H - 9°T%2h| < 00262t_2+2"(2 4o — t)—%—Zn < CgeZt_ls_2+4“.
[J1]+|J2|<k
In the interior region, we recall the pointwise decay estimates already obtained in lemma

for the quadratic and cubic terms involving at least one h°.
Turning next to the pure quadratic zero-mode interactions, we derive from (£I09) that

Z }8F‘h hLb . al—\Jz hLb‘ S 012€2t—1$—2+60
|J1]+]J2|<k
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and from (3.25) and bounds (EI09), (ZI11) that
’FJ((Hl,uu)b . 8“8,,]1;’2)’ 5 Z ‘FJIHi ‘ |82FJ2}L16‘ + < ) ‘FJ1H1b| ‘82FJ2}L1 ‘

|J1|+|J2|<k
+ Y (At+r) T DIHY IR S CRl s
|J1]+] T2 <j

As concerns instead the pure interaction of the zero-average components, we derive from

([40) and the algebraic relation (A.2]) that
Z |(8FJ1h17ﬂ . arthl,h)b| + }((H’W)h . auauFJhi;g)b‘ S 0226215_35%-
[J1]+|J2|=k

The conclusion of the proof follows from the fact that 90 < 7. O
Remark 4.30. It is important to observe, in view of Proposition [£.32], that the loss s7 in the

above estimate for D/ 5 is only caused by the pure interactions of the zero-average components
of the metric perturbations. All other interactions cause a smaller loss s%°

We are now able to propagate the a-priori pointwise bound (4.0l).

Proposition 4.31. There exist two constants 1 < Cy < Cy sufficiently large, a finite
and increasing sequence of parameters 0 < (g, Yk, O < 1 satisfying [E2) and 0 < g < 1
sufficiently small such that, under the assumptions of Proposition[{.]], the enhanced estimate

(AT is satisfied.

Proof. We split T h;g into the sum of three waves v{ 4, v4 5 and vy 5, where

O] s = x((r +1/2) /D% [Ovd s = (1 — x((r +1/2)/0)) D2
(0] 5y O] 0) =2 = (0,0) (0 5 003 )l = (0, 0)]2

and
Dt:cvg af = =0
(vy B vy a5)|t 2 = (F‘Ihag, 0tF"hi’E)lt:2.

From Lemma [1.29] we get that in the interior of the cone t =r + 1/2
(4.112) D2t )| S CRedt™1 ™0 S CRA72 5 (¢ — ) T E
Then, Lemma with v =2 — % and p = 1 — 2 yields
(4.113) 0l (t,2)] S CRE(1+ )" F (t — 1) %

As concerns the region exterior to the cone t = r 4+ 1/2, we recall the estimates ([3.22]) for
the quadratic null terms, (3.23)) for the cubic interactions, (3.29) for the commutator terms
and (3.48) for the weak null interactions. For any (¢, z) with ¢t < r + 1/2, we at least have

IDI3(t,)| S CR7 22 (24 — )73

so that
sup  sup  |2(7 + |21 — |2} D25 (2, 7)| S CREXt + |a])*

T7€[0,t] |z—z|<|t—7|
69



provided that u, v > 1 are chosen so that p =140 and 1 < v < 3/2. From Lemma .28 we
then have

|via6(t, 2)| S C2E(t + )t — )T
Finally, the initial data satisfy

M7 h5(2, ) S Coe(L + )%, [ViI7h5(2, )] S Co(1 + |2)) >~
as a consequence of the assumptions on the initial data (II0) and the pointwise bounds
(BI2) and ([B.14)), so that Lemma implies

Coe
L+t |z))(1+ |t —r])F
Summing all up, we find that there exists a constant C' > 0 such that

|U?{,o¢6(t7 .CL’)| SJ (

Tk

\FJhZCB(t, 7)| < O(Coe + C3)(t +r) 139t — )7 4 COZEX(t + 7‘)_”% (t—r)=2

so the result of the statement follows from the fact that ¢ < vy and by choosing Cy > 1
sufficiently large so that C'(Cy + Cpe) < (Cq¢)/2 and 0 < ¢y < 1 sufficiently small so that
CCQEO < 1/2 O

Following Remarks[4.23]and [4.30, we conclude this section with enhanced pointwise bounds
for the metric perturbation.

Proposition 4.32. There exists a constant ¢ > 9 such that the metric perturbation satisfies
the following

(4.114) TR o) S Ches™  if || = k < Ny — 1,

1 3
1£25 0 (' T R | e 2 oy + 18205 (O' T ) | oo 2 o)
(4.115) _ 20, i< N =0
S\ 2Ches,  if |1+ < Ny, | J] = k < Ny — 1.

Proof. The proof proceeds by induction. We assume that there exists a finite increasing
sequence ¢, with 9 < ¢, < ¢p41 and ¢; + ¢; < ¢ whenever 4, 7 < k, such that

[t TR e () S 2Coes™ if |J| =k < Ny — 1,
125 000 (0T hf) |13 + 16205 (O T hh) | e 13
- {2026, if 7] < Ny, |J| =0
=) 2Cses, i [I|+ |J] < Ny, |J| =k < N, — 1
We then have that, whenever |I|+4|Ji|+|Jo| < Ny with |J1| = k1 > 0 and |J5| = ko < N;—2,
IF"lhl’b|Hﬁz@IF"QhZEHLg 5 022€2t—%s—1+(ck1+ck2)0 5 022€2t—%8—1+ckcr'

The arguments in the proof of Proposition [4.22] show that

3
5 TR+ s G < 02 Bisg, 2220 R

WWolte, +C“(
(Cre 2€") t sk A | I+ |J| < N+ 1, [T =k < N
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and an appropriate choice of constants allows us to get (ALITH). Furthermore, whenever
[Jil + ]2 < [J[ < Ni—1

Z |(0F‘h pLb. (‘)Fthl,h)b| + ’((Huu)h . 8u8urjhi’g)b} < 022€2t—38cka
[J1|+]| 2=k
which implies, following the proof of Lemma | that
D, 5‘ S (CF 4 )t sm2rere,
Using lemma .26 with v = 2 — %% and = 1 — %%, we can then replace ([LL.I13) with
ol (t0)] S G+ 6) 72 (b =)
and the arguments in the proof of Proposition [4.31] yield (4.114). O

4.10. Propagation of the energy bounds. In this section we propagate the a-priori en-
ergy bounds (4.3))-(4.5) and hence conclude the proof of Proposition 4.1

Proof of Proposition[{.1. We note first that, using bound (4.II5) instead of (A7) and the
fact that o < (p so that co + (; < (, whenever j < k in the proof of Lemma [£.14] and
Proposition T8, allows us to replace the loss 87+~ for i = 1,4 in (ET]), (ES30) and (3T
with s%, hence having

(4.116) ||Z2%P.4(0h,0h)| .,

0165 1ZE1 ZK’hlb)1/2

K/
+ Ces™1HCe Z Ei(s, ZK”hl,b)l/2 + 012628_%+26N + 012625k>]\h8—1+<xc
K//

L3y () ™

for multi-index K of type (N, k),

(4.117) //

for multi-indexes K of type (VN + 1,k) with £ < N, and

ZK H""0,0,)hls|10: 2% bl gldudydt < (Cf + CT)Cye’s' 2

(4.118) // (2%, H""9,0,]his }|atZKh1"|da:dt
Hsg.s]
// (HY™)" - 0,0, 25B5) |02 hES | dwdt < (C2 + CF)C23s%
[so s]

for multi-indexes K of type (IV, k).

For multi-indexes K of type (N + 1, k), we substitute (4.I8)), (£52), (£53), (4.69), (4L.76),

([A.106), (£ITT), together with the energy bound (£I9), into (£I6) and hence deduce the
existence of a constant C' > 0 such that for all s € [sg, Sp)

Ei(s, Z5hY) < O(Bi(s0, Z5hY) + 576 + (CF + CF)Cheds 142,

The enhanced energy estimate (@E)}s obtained by picking C'; > 1 sufficiently large so
that 3CE(sg, ZXh') < C%e* and 3C < (), and 0 < ¢ < 1 sufficiently small so that

3(C2+1)C3¢p < Cy and 20 + Ce < 26y,
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Analogously, if K is of type (N, k) with & < N, we derive from (£I8), ([£54), (£53),
[E89), @7T), [ES2), (EI08), together with the energy bound ([E25) that there exists another

constant C' > 0 such that for all s € [sg, Sp)
E'(s, Z5h') < C(E\(sg, ZXh') + €219 + (CF + 012)02263825k).

Choosing accordingly C; and ¢, yields (£10).
Finally, for any multi-index K of type (N, k), we have the following estimate for the energy

of ZKh;’g, which is obtained by plugging (I8, (£53), (£50)), (L69), (LI107), ([EI116), (Z113)
and the energy bound (£20) into (4.I7)

Ei(S’ ZKhl,b) < C‘(Ei(so, ZKhl,b) 4 2g20+Ce 4 (002 + 012)0226382<k),

for a new constant C. Again, the enhanced energy bound (#9) follows by choosing C, €y
appropriately.
O

APPENDIX A. ENERGY INEQUALITIES

In this section we group together different energy inequalities that are useful in the paper.
We denote by W the solution of the following linear inhomogeneous wave equation

guuauauw - F
which can be also written
(Al) (—8? + Ax + 8§)W + H'“Vauauw — F’ (t, x’y) c R1+3 % Sl

where the tensor components H*” are assumed to be sufficiently small functions and F is
some source term.

In this section, a particular attention will be given to the energy flux on hyperboloids.
These are spacelike hypersurfaces in Minkowski spacetime, but have a degeneracy caused
by the fact that they are asymptotically null. This is something which could be destroyed
by perturbations of the metric. We take advantage of the Schwarzschild component of H,
introduced in (LI2), to show that the hyperboloids remain spacelike everywhere.

Proposition A.1 (Exterior energy inequality). Let W be a solution of equation (Ad]) de-
caying sufficiently fast as |x| — oo and assume that there exist € > 0 small such that tensor
H satisfies the following bounds

€ r

; )HLL + X <¥) x(r)

< )
S Attt

\H@xwﬂﬁ(

2M‘ €
1+t47r)i

”
where x is a cut-off function such that x(s) =0 for s <1/2, x(s) =1 for s > 3/4 and ) is
any fized positive constant. Let w(q) be a smooth function that only depends on the distance

q =r —t from the light cone and such that w(q),w'(q) > 0. For any 2 < t; < ty, let e%;iltz

denote the portion of S in the time interval [t1,ta] and due be its surface element. We
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have the following inequality

(A.2)
1 r M -
2 r ) )
=, w(q)|Viay W | dzdy + /e%;%m w(q) [2(1 +r2) +X <t> x(r) 27‘] O W |+ w(q) VW [*dzdy
+// w’(q)(|LW|2+ |Y7W|2)dtd:)sdy 5/ w(q)|meW|2dxdy
oje 2

[
[t1,t2] t

+ // w(q)|(F + 0, H"™ 8, W), W | + w(q) |0, H" 8, W 0, W | dtdxdy
.0]6

[t1.t2]

+ // w'(q)|H”0,W0o,W| dtdzdy + // w'(q)|(—H™ 4 w; H)0,WO,W | dtdxdy
@[etwfz] “@[etbtz]

where V = (04, - - ,54) is the tangent gradient to %Z, i.e. éz =0; + %@ fori=1,2,3 and
dy =0, and w; = z; /7.

Proof. We start with the following computation
1
@W (g’“’@ua,,W) :0M (g“"@,,W@tW) — 5@ (g“"@qu?VW)

(A.3) X
— (. H")0,WOW + - (0,H")9, WO, W.

Multiplying by w(q) we obtain

W)W (50,0,W) =0, (w(a)g W) ~ 2, (wla)g" 0, WO, W)
(A.4) — w(q)(9,H"™)0, WHW + %w(q)(atﬂﬂ")aﬂwayw
~ (0,0(0)) (O WOW) + 3 (Ouw(a) (9" 0, WO,W)

We integrate (A.4)) in the spacetime portion of the exterior region included between the
two spacelike hypersurfaces X§ and X7 , denoted by (t1.ta] We treat the divergence term
via Stokes’ theorem, meaning

Hiyty

/ (0, XM)dtdady = [ X'dwdy — [  X°dady + /
9,

e (= (=
[t1,t2] Ztg Ztl

(XO — £—1X> dzdy.

Applying this to we obtain

/ w(q)e%““’ala:aly+/~ w(q)ec}’"”da:dyjt// w'(q) B dtdxdy
€ 7 .@

e
Mty (t1.t]

_ / w(g)egdr + //j - w(e)(C -~ F)dadt

ty [t1,t2]
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where the curved energy densities are defined by

(A.5) e — —gh09 WO, W + 1gﬂ"apwayw

(A.6) U = — "9, WW + ; 9" OWOW + o wa WO,W
and the bulk terms are given by

(A7) B = ~(0,0) (0" 0. WOW) + 1 (2ha) (9" 0, WO, W)
(A.8) C = —(8,H")9, W, W + - (atHW)a Wo,W.

We have

1
e = = (((‘wv)2 + |V W[+ (0,W)*) + O (HIVW?) ,
so with the hypothesis |H | < 555 we casily obtain
1 ((8tW)2 + VWP + (0,W)?) <™ <4 ((0,W)* + [VW,|> + (8,W)?).

We have to be a little more careful with ei}]‘”. We have

1 1
=3 (W) + VLW + (0, W)7) + -0 WOW — iy (OW)?

+O(H - dW - OW) + (1 ) (HIVW*) + O(H|[VW|?)

L awy ’ 2 1

+O(H - OW - OW) + (1 ) (HIVW?) + O(H|[VW|?)

We note that on . we have (t —1)?> = 1+r2. Using the decomposition (L.I2) of H we write

(g~ 1782) @O = (g x () x5 - L) 0wy

so that

(ﬁ _ %HLL) (W)? + O(H - OW - gW) + (1 - t—l) O(HIVW)

= (ﬁ + x (%) X(T)Q—]\f +O(H} ;) + O(e_§|H|2)) (O W)?

(1 - i) O(H(OW)?) + O(e2|[VWVW|?).
Under the hypothesis
< ¢
Hil 3 (14t +7r)t+o
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we obtain that for not too large values of r (e.g. r < 1/(2¢)), H} is small in front of ;

M
2"

1+r 2(1+r2)>
while for r 2 1/(2¢) it is small compared to the then dominant term
Under the hypothesis on H we obtain

BL, + e 2| HPP| < ——

(1+r)-1=°
Consequently for not too large values of r (e.g. r < 1/(2¢)) we have that
1

HP <

A = 100(1 + r2)’

on the other hand, when r 2 1/(2¢) the dominant term is M /(2r) and for € sufficiently small
M

HP| < -
1007

|h1LL L2

|hLL+e 2

Consequently, we can bound

G+ () x<r>2—]‘f) oW+ [TWE)

1 r M -
< curvy < - W 2 W 2 ]

Finally, a simple computation shows that

= [LW]* + |[YW]* + HW@ W .0, W + (— v + %Hi")aywatw
0

Proposition A.2 (Energy inequality on hyperboloids). Let W be a solution of (Al and
E'(s, W) be the energy functional defined in (&I)). We assume that H satisfies the same
hypothesis of proposition[A 1] For any 2 < s; < s9, let %’2132 denote the portion of,%z bounded
by the hyperboloids F¢;, with i = 1,2. We have the following inequality

T

o

M .
=) X5, [10W + [T W dady

. . 1
E'(s9, W) < E'(s1, W) + / [7
Sy 2(141r2)
// \(F +0,H" 0,W)0,W| + |0, H" 0, W 0, W | dtdxdy.
S1 ‘92
The implicit constant in the above inequality is a universal constant.
An analogue inequality holds true for solutions W to (AJ]) on RT3,

Proof. The proof is analogous to that of proposition [A Tl except that we integrate (A.4]) with
w = 1 in the portion of interior region bounded above by J%,, below by ., and laterally
by ffm, which we denote by 7, ,,). This yields

/ U dydy = / U dxdy + / S ddy + // (C — F)dtdxdy,

52 s1 51852 Zs182]

where e/ and C have been defined in (A.6) and (A.8]) respectively and

1 i
e =~ WOW + g ), WO, W + ZLg"0, WO W.
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In the region 7, ,,) we have

1

9 2
1 (Slawr+ 1wwr) < e <4 (Slawp+[vwr)

In fact, we have that » <t — 1 and the mass term can be absorbed in the following way

r M _(t—r)t+r) s
X( )X(T)7 S 00+ )7 1002

2

APPENDIX B. SOBOLEV AND HARDY INEQUALITIES

We start by listing some weighted inequalities that are used in section 8l Their proofs can
be found in Huneau-Stingo [21].

Lemma B.1 (Weighted Sobolev inequalities). Let 5 € R. For any sufficiently smooth
function u we have the following inequalities

(B.1) sup (247 — )% r?|u(t, z,y)|
2

< // (247 — )20, Z252u)* + (2 + r — )71 (Z5%u)? dady,

(B.2)  sup(2+r — )%rult, . y)]* < // (2+r—t)2ﬁ<(8rZ§2u)2+(ZS2u)2>dxdy,
3¢ ¢

(B.3)
sup (241 — 71 Ju(t, ) age sy S // (247 = )P, + 2+ 7 — )2 dedy.
¢ ¢

Lemma B.2 (Weighted Hardy inequality). Let 5 > —1. For any sufficiently reqular function
u for which the left-hand side of the following inequality is finite we have

(B.4) // (2+r- )P utdedy < // (2+r- )P T2(0u) dady.

Corollary B.3. Let 5 > 0. For any sufficiently reqular function u we have the following
mequalities

(B.5) 247 —t)Pr|ut,z,y)| S |[(2+7r — t)1/2+58232u(t)]|L2(2te)

(B6) (2 +r— t)BT’HU(t, 7’)||L2(S2XS1) 5 H (2 +7r— t>1/2+58U(t)||L2(25)

Proof. Inequality (B.A]) (resp. (B.6)) is a straight consequence of the combination of (B.I])

(resp. (B.3))) and (B.4). O

Below are some Sobolev and Hardy inequalities that are useful in section @l Lemma [B.4]
is standard while lemma [B.5lis a simple adaptation of a result in [I§]. The result of lemma

can be also obtained with small modifications from the one in [40].
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Lemma B.4. For any sufficiently smooth function u we have the following Sobolev inequality

33 3_1 _(5_3)
HUHLP(%)SJHZUHL?(;%) u”i?(%;)+3 270 Jull L2y, 2<p<6

as well as the trace inequality
lullpas,) S IVullzon) + 57l 2en)-

Lemma B.5. Let B = {Q; : j = 1,2,3}. For any sufficiently smooth function v = u(t, )
we have ,
sup [t2u| S || B=2ull 12(n)-

s

Lemma B.6. Let s > 0, v := max{r|S, C 4} and ty = /s> +rs. For any sufficiently
smooth function v = u(t, z) we have that

(B.7) Ir = ull 2y S N0ullzaery + 0uts)2cs.,)
Proof. 1t is a straightforward consequence of the classical Hardy inequality applied to
o) = {u(\/m, x), if x| < rg
u(ts, ), if |z > 7s.
O

Lemma B.7. Let 0 < a <2, 1+ pu >0 andy > 0. For any function u € 65°([0,00)), any
arbitrary time t > 0 and s > 0 there exists a constant C, depending on a lower bound for
and 1+ p, such that

/t u? r2dr +/°° u? r2dr
sy (LHE=r)2 (I+t+r)> ), (T+r =) 7 (1+t+7)*

(B.8)
|0,ul? r2dr /°° S(L+r =)
< |t —--—— r°d
C/st (I4+t—r)r(1+t+r)™ +C . 0] (I+t+r)™ rar
where r(s,t) = /(t? — s?)*.

Corollary B.8. Under the same assumptions of Lemma[B.7, we have that

// |u? dxdt
o (L+t—r)2Hr (1+t+r)>

|aru|2 /ts 2(1—|—|T—t|)1+7
<
N/SO/T (1+t(7)—T)“(1+t(7)+r)adxd7+ ) 2§|8TU| Atiire dzdt

Proof. The proof is a simple application of inequality (B.8]) and of a change of coordinates.
O
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