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Abstract	

Homorepeats	 (or	 polyX),	 protein	 segments	 containing	 repetitions	 of	 the	 same	 amino	

acid,	 are	 abundant	 in	 proteomes	 from	 all	 kingdoms	 of	 life	 and	 are	 involved	 in	 crucial	

biological	 functions	as	well	 as	 several	neurodegenerative	and	developmental	diseases.	

Mainly	inserted	in	disordered	segments	of	proteins,	the	structure/function	relationships	

of	 homorepeats	 remain	 largely	 unexplored.	 In	 this	 review,	 we	 summarize	 present	

knowledge	 for	 the	most	 abundant	 homorepeats,	 highlighting	 the	 role	 of	 the	 inherent	

structure	 and	 the	 conformational	 influence	 exerted	 by	 their	 flanking	 regions.	 Recent	

experimental	and	computational	methods	enable	residue-specific	investigations	of	these	

regions	and	promise	novel	structural	and	dynamic	information	for	this	elusive	group	of	

proteins.	This	information	should	increase	our	knowledge	about	the	structural	bases	of	

phenomena	such	as	liquid-liquid	phase	separation	and	trinucleotide	repeat	disorders.		

	

	

Highlights	

-	Proteins	encompassing	homorepeats	(polyX)	are	abundant	in	all	kingdoms	of	life	

-	Several	diseases	are	caused	by	the	expansion	of	existing	homorepeats	in	proteins	

-	The	nature	of	the	amino	acid	defines	the	prevalent	secondary	structure	of	homorepeats	

-	 Specific	 amino	 acid	 enrichments	 are	 observed	 for	 the	 majority	 of	 polyX	 flanking	

regions	

-	Site	specific	isotopic	labelling	and	NMR	provide	unique	information	of	homorepeats	

	

	

Keywords:	 Homorepeat,	 intrinsically	 disordered	 protein,	 Site-specific	 Isotopic	

Labelling,	Nuclear	Magnetic	Resonance	
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Introduction	

A	large	percentage	of	protein	sequences	are	aperiodic,	showing	close	to	average	amino	

acid	 composition.	 This	 subtle	mixture	 of	 residues	 dictates	 the	 structural	 properties	 of	

proteins	 and	 their	 functional	 role.	 However,	 there	 is	 an	 important	 group	 of	 proteins	

encompassing	regions	enriched	in	one	or	few	amino	acids,	the	so-called	Low	Complexity	

Regions	 (LCRs)[1*].	Mainly	 located	within	 Intrinsically	 Disordered	Regions	 (IDRs),	 i.e.	

regions	without	permanent	secondary	or	tertiary	structure[2,3],	LCRs	are	found	in	half	

of	 eukaryotic	 proteins	 where	 they	 represent	 around	 25%	 of	 the	 coding	 sequence[4].	

Homorepeats	(or	polyX)	are	tracts	of	a	single	amino	acid	that	represent	an	eye-catching	

family	 of	 LCRs[5–7].	 Once	 considered	 as	 ‘junk’	 protein	 segments	 without	 specific	

function,	 there	 is	 a	 growing	 body	 of	 evidence	 that	 underlines	 their	 biological	

relevance[1,8**].	 Indeed,	 homorepeats	 exploit	 the	 accumulation	 of	 specific	

physicochemical	 properties	 in	 defined	 regions	 of	 proteins	 to	 perform	very	 specialised	

functions	 in	 (among	 others)	 stress	 response,	 development,	 transcription,	 organelle	

biogenesis	and	transport[7,9].	Homorepeats	provide	functional	versatility	to	proteins	by	

mediating	 protein-protein	 interactions	 and	 driving	 spatial	 localization[8**,10].	

Moreover,	 their	presence,	even	 in	essential	proteins,	 facilitates	protein	divergence	and	

evolvability	 to	 rewire	 interactions[11,12].	 It	 has	 been	 also	 shown	 that	 proteins	

containing	 homorepeats	 have	 denser	 and	 more	 diverse	 interactomes[8],	 and	 these	

containing	 multiple	 polyX	 are	 more	 often	 involved	 in	 disease,	 including	 neurological	

disorders	and	cancer[13,14].	Although	protein	length	is	a	factor	that	needs	to	be	taken	

into	account	because	 it	necessarily	 increases	 the	probability	 to	 find	more	polyX,	 these	

two	 observations	 underline	 the	 role	 of	 homorepeats	 in	 signalling	 and	 regulatory	

processes.		

The	 accumulation	 of	 a	 given	 physicochemical	 feature	 can	 also	 have	 detrimental	

consequences.	 Indeed,	 repeats	 of	 certain	 amino	 acids,	 such	 as	 cysteine,	 tyrosine	 or	

tryptophan,	are	rarely	found	in	proteomes,	suggesting	their	inherent	toxicity.	Moreover,	

the	 uncontrolled	 expansion	 of	 poly-glutamine	 (polyQ)	 and	 poly-alanine	 (polyA)	 in	

specific	proteins	cause	a	series	of	rare	neurodegenerative	and	developmental	diseases,	

including	Huntington’s	disease,	several	ataxias,	synpolydactyly	syndrome	and	Ondine’s	

curse	 [15–18].	 These	 pathologies	 are	 triggered	by	 the	 incorporation	 of	 few	 additional	

residues	in	a	previously	existing	homorepeat,	demonstrating	the	subtle	balance	between	
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function	 and	 toxicity[19].	More	 recently,	 polyG	 aggregates	 originating	 from	 expanded	

(CGG)n	repeats	 located	in	5’-untranslated	regions	of	certain	genes	have	been	identified	

in	 patients	 of	 (among	 others)	 neural	 intranuclear	 inclusion	 disease	 and	 fragile	 X	

tremor/ataxia	syndrome[20**,21].		

Despite	the	growing	attention	to	homorepeats,	the	structural	bases	of	their	function	and	

malfunction	remain	poorly	understood,	precluding	rational	intervention	for	biomedical	

purposes.	Moreover,	a	precise	control	of	the	structural	determinants	of	these	sequences	

would	 pave	 the	 way	 to	 design	 of	 IDRs	 with	 targeted	 functions	 in	 biotechnology[22].	

LCRs	 in	 general	 and	 homorepeats	 in	 particular	 pose	 fundamental	 problems	 for	 the	

application	of	 traditional	high-resolution	structural	biology	methods.	On	the	one	hand,	

their	 inherent	 flexibility	 precludes	 the	 general	 use	 of	 X-ray	 crystallography	 and	 cryo-

electron	microscopy.	On	the	other	hand,	the	similarity	of	the	chemical	environments	in	

repetitive	sequences	hampers	the	application	of	standard	Nuclear	Magnetic	Resonance	

(NMR)	 frequency	 assignment	 strategies[23].	 These	 limitations	 have	 fostered	 the	

application	 of	 low-resolution	 methods	 and	 computational	 approaches	 in	 order	 to	

establish	 connections	 between	 the	 structure	 of	 homorepeats	 and	 their	 biological	

function[24–26].	 Complementary	 to	 these	 methods,	 computational	 and	 genomic	

approaches	have	been	applied	 to	assess	 the	distribution	of	homorepeats	 in	proteomes	

and	to	evaluate	their	interactome	and	evolutionary	dynamics	[27–30**].	

In	 this	 review,	 we	 summarize	 present	 structural	 knowledge	 for	 the	 most	 abundant	

homorepeats	 and	 describe	 recent	 developments	 to	 study	 the	 structure/function	

relationships	of	this	elusive	group	of	proteins.		

	

Abundance	of	homorepeats	

Several	studies	have	surveyed	the	abundance	of	polyX	in	various	organisms,	finding	high	

variability	 between	 species	 in	 frequency	 and	 type	 of	 polyX[10,31,32].	When	 assessing	

this	 variability,	 the	 definition	 of	 the	motif	 used	 for	 identification	 (minimal	 length	 and	

allowed	non-X	residues)	is	critical,	as	it	changes	the	sensitivity	in	detecting	functionally	

relevant	 polyX[33].	 While	 several	 studies	 indicate	 that	 eukaryota	 tend	 to	 have	 more	

polyX	 than	 prokaryota,	 there	 is	 no	 trend	 associating	 a	 larger	 content	 of	 polyX	 with	

particular	organismic	properties	(like	being	multicellular).	For	instance,	there	are	DNA	

viruses,	such	as	Pandoraviruses[34],	that	have	more	polyX	than	many	non-viral	species	
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(10%	 of	 their	 proteins	 contain	 at	 least	 one	 homorepeat),	 and	 some	 unicellular	

organisms	have	the	highest	content	of	polyN.	For	example,	Dictyostelium	discoideum	and	

Plasmodium	 falciparum	 have	 51%	 and	 56%	 of	 their	 proteins	with	 at	 least	 one	 polyN,	

respectively[35].	 The	 ensemble	 of	 these	 surveys	 indicates	 that,	 despite	 the	 fact	 that	

polyX	are	widely	distributed	among	species,	their	enrichment	in	functional	classes	is	not	

necessarily	conserved[6].		

	

Intrinsic	conformational	preferences	of	polyX	

The	chemical	nature	of	the	repeated	amino	acid	is	the	main	determinant	of	the	preferred	

secondary	structure	of	a	polyX.	Systematic	surveys	of	polyX	fragments	in	the	PDB	have	

identified	 some	of	 these	 conformational	preferences[1,6,36–38].	Although	 insightful	 in	

some	 cases,	 the	 low	 abundance	 of	 polyX	 in	 crystallographic	 structures,	 their	 limited	

length	 and	 the	 strong	 influence	 exerted	 by	 the	 flanking	 regions	 (see	 below)	 limit	 the	

generalization	 of	 these	 observations.	 Using	 the	 LS2P	 server[39],	 which	 quantifies	 the	

structural	 variability	 of	 concatenated	 tripeptides	 derived	 from	 high-resolution	

structures,	 the	 intrinsic	 conformational	 preferences	 for	 the	 20	 polyX	 were	 predicted	

(Figure	1).	 PolyX	 can	be	 structurally	 classified	 in	 four	 groups.	 (i)	 A,	 C,	 E	 and	L	have	 a	

strong	 tendency	 to	 adopt	 ɑ-helical	 conformations.	 (ii)	 Extended	 (β-strand	 and	 PP-II)	

conformations	are	preferred	 for	H,	 I,	P,	V,	W	and	Y,	mainly	due	to	 the	bulkiness	of	 the	

side	chains	that	hamper	compact	helical	conformations[40].	(iii)	Homorepeats	of	D,	G,	M,	

N	 and	 S	 mainly	 adopt	 non-canonical	 conformations.	 (iv)	 Finally,	 F,	 K,	 Q,	 R	 and	 T	

homorepeats	 exhibit	 non-negligible	 populations	 of	 canonical	 and	 non-canonical	

conformations.	The	plasticity	observed	in	these	two	last	groups	is	interpreted	as	a	sign	

of	structural	disorder	and	the	possibility	to	be	conformationally	influenced	by	flanking	

sequences	 and	 the	 environment.	 Interestingly,	 chemically	 similar	 residues	 can	display	

different	behaviour.	For	 instance,	homorepeats	of	 the	two	acidic	amino	acids,	D	and	E,	

belong	 to	 two	 different	 groups.	 Similarly,	 polyL	 seems	 to	 prefer	 ɑ-helical	 secondary	

structure,	 in	 contrast	 to	 also	hydrophobic	polyI	 and	polyV,	which	prefer	 the	 extended	

one.	Finally,	while	positive	amino	acids	K	and	R	have	a	~15-20%	tendency	for	extended	

conformations,	polyH	shows	a	92%.	
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Influence	of	sequence	context	in	the	structure	of	homorepeats	

The	second	main	factor	governing	the	structure	of	a	homorepeat	is	its	sequence	context.	

The	conformation	of	the	residues	flanking	a	homorepeat	can	propagate	in	it,	or	can	alter	

the	intrinsic	structural	properties	of	the	homorepeat,	especially	if	it	is	short[27,41].	Only	

polyQ	and	polyA	have	been	analyzed	in	detail	in	this	regard[33,37,42,43].	In	both	cases,	

specific	 amino	 acid	 enrichments	 in	 flanking	 regions	 were	 observed.	 In	 polyQ	 this	

enrichment	was	asymmetric,	with	L	and	P	overrepresented	in	the	N-	and	C-flanks	of	the	

homorepeat,	respectively[33,42,43].	Conversely,	a	symmetric	enrichment	in	P	and	G	was	

found	in	polyA	flanking	regions[37].		

Here,	 we	 have	 extended	 the	 bioinformatic	 sequence	 context	 study	 to	 all	 different	

homorepeats	 in	 the	 human	 proteome.	 Homorepeats	were	 identified	 using	 the	 polyX2	

tool	in	standalone	mode	with	a	lax	threshold	of	a	minimum	of	4	identical	residues	in	a	

window	 of	 6	 amino	 acids[44*].	 Then,	 we	 calculated	 the	 amino	 acid	 abundance	 per	

position	in	the	five	N-	and	C-terminal	amino	acids	surrounding	each	homorepeat	(Figure	

2).	 Results	 show	 that	 most	 polyX	 display	 an	 enrichment	 of	 the	 amino	 acid	 X	 in	 the	

vicinity,	with	the	exception	of	polyL,	polyV	and	polyS.	In	other	words,	most	polyX	types	

are	 located	 in	X-rich	 regions.	 Interestingly,	 enrichments	 of	 amino	 acids	 different	 from	

the	one	of	the	homorepeat	are	also	observed.	For	instance,	positions	around	polyD	are	

highly	enriched	 in	E	and,	 conversely,	positions	around	polyE	are	highly	enriched	 in	D,	

pointing	to	highly	charged	DE-rich	protein	regions[45].	We	observe	a	similar	association	

for	 S	 and	 T.	 The	 capacity	 of	 both	 amino	 acids	 to	 be	 phosphorylated	 could	 strongly	

modify	 the	structural	and	 functional	properties	of	 these	regions	upon	external	stimuli.	

Flanking	regions	of	polyK	are	enriched	in	E	and	R,	giving	rise	to	highly	charged	protein	

stretches.	Some	amino	acids	appear	enriched	 in	 the	 flanking	regions	of	multiple	polyX	

types.	For	instance,	G	is	found	specially	enriched	in	polyA,	polyP	and	polyS	flanks,	while	

P	is	found	close	to	polyA,	polyG,	polyQ,	polyS	and	polyT.	

	

PolyQ	as	the	prototypical	example	of	homorepeat	

PolyQ	is	one	of	the	most	abundant	homorepeats	in	eukaryotes.	Computational	analysis	

of	 their	 sequence	 context	 in	 proteins	 and	 some	 experimental	 evidence	 suggest	 that	

polyQ	have	 a	 function	 in	 extending	 the	 conformation	of	 an	 adjacent	N-terminal	 coiled	

coil	region	upon	its	interaction	with	the	coiled	coil	of	another	protein[19,46].	This	would	
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explain	 why	 genetic	 mutations	 changing	 the	 length	 of	 the	 polyQ	 could	 affect	 their	

interactome	 resulting	 in	 pathogenic	 interactions	 and	 aggregates	 [30,47].	 Indeed,	 nine	

inherited	 human	 diseases	 have	 been	 lined	 to	 aberrant	 expansion	 of	 polyQ	 and	

subsequent	 amyloid	 formation[17].	 In	 these	 pathologies,	 the	 polyQ	 length	 and	 the	

number	of	 consecutive	CAG	codons	are	correlated	with	 the	propensity	 to	aggregate	 in	

vitro	 and	 to	 form	 inclusions	 in	 neurons,	 as	 well	 as	 the	 disease	 severity	 and	 age	 of	

onset[17,48].	As	a	consequence,	polyQ	is	the	most	studied	homorepeat	from	a	functional	

and	 structural	 perspective[49].	 Despite	 these	 efforts,	 contradictory	 structural	models,	

mainly	 based	 on	 sparse	 or	 low-resolution	 data,	 have	 been	 proposed	 to	 explain	 the	

molecular	mechanism	of	pathogenicity[26,50–53].	

Recent	works	have	shed	light	into	the	main	parameters	governing	the	structure	of	polyQ	

and	 the	 influence	 of	 their	 flanking	 regions.	 NMR	 investigations	 of	 an	 N-terminal	

fragment	of	the	androgen	receptor	(AR)	and	the	exon-1	of	huntingtin	(HttExon-1)	have	

demonstrated	the	presence	of	hydrogen	bonds	between	both	the	backbone	and	the	side	

chain	 amines	 of	 glutamines	 in	 position	 i	with	 residues	 located	 in	 position	 i-4	 (Figure	

3A)[42,54**].	 These	 bifurcated	 hydrogen	 bonds	 propagate	 and	 stabilise	 the	 α-helical	

structure	 along	 the	 polyQ.	 Interestingly,	 the	 four	 leucines	 and	 the	 phenylalanine	

preceding	the	AR	and	the	HttExon-1	polyQ,	respectively,	are	key	to	 the	stabilisation	of	

these	 hydrogen	 bonds	 and	 consequently	 of	 the	 helical	 structure.	 Indeed,	 by	mutating	

residues	in	the	flanking	regions	one	can	control	and	modulate	the	helical	propensity	of	

polyQ	 tracts	 (Figure	 3B)[42,54**].	 In	 order	 to	 rationalize	 these	 observations,	 a	

systematic	investigation	of	the	effect	of	N-flanking	residues	on	the	structure	of	AR	polyQ	

was	performed,	showing	that	large	and	hydrophobic	residues	in	this	position	(W,	Y,	F,	I,	

V	 and	L)	 strongly	 stabilize	 the	α-helical	propensity[55].	The	 role	of	α-helix	 stability	 in	

the	aggregation	propensity	is,	however,	unclear.	While	in	AR	the	helical	destabilisation	

seems	 to	 enhance	 aggregation[56],	 the	 inverse	 effect	 has	 been	 reported	 for	 HttExon-

1[57**].	Importantly,	the	enrichment	of	L	in	the	proximity	of	polyQ	tracts	and	glutamine-

rich	 proteins	 in	 eukaryotes	 suggests	 that	 this	 is	 a	 general	 evolutionary	 conserved	

structural	mechanism[33].	

The	 recent	development	of	 Site-Specific	 Isotopic	Labelling	 (SSIL)[58],	which	 combines	

the	 tRNA	 suppressor	 strategy	 and	 cell	 free	 protein	 expression,	 is	 a	 promising	

methodology	to	derive	new	high-resolution	structural	information	of	homorepeats	in	a	
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length-independent	manner[23].	 SSIL	has	 enabled	 to	 resolve	highly	degenerated	NMR	

spectra	 of	 non-pathogenic	 (16Q)[42],	 within	 the	 threshold	 (36Q)[59]	 and	 pathogenic	

(46	and	66Q)[57**]	versions	of	HttExon-1	to	obtain	structural	information	that	was	out	

of	 reach	 for	 traditional	 approaches.	 The	 combined	 analyses	 of	 NMR	 data	 with	 Small	

Angle	 X-ray	 Scattering	 and	 molecular	 dynamics	 simulations	 have	 shown	 the	

concomitant	 increase	 of	 helicity	 upon	 polyQ	 expansion	 through	 the	 presence	 of	

bifurcated	 hydrogen	 bonds	 (Figure	 3C).	 This	 gradual	 effect	 is	 less	 apparent	 in	 AR,	

probably	 due	 to	 the	 lack	 of	 structural	 information	 for	 pathogenic	 versions	 of	 this	

protein.	Importantly,	the	increase	in	helicity	has	been	shown	to	be	a	key	element	in	the	

aggregation	 propensity	 of	 HttExon-1	 and	 other	 polyQ-hosting	 proteins,	 probably	 by	

enhancing	the	 formation	of	productive	dimers,	 tetramers	and	other	oligomers	through	

coiled-coil	 interactions[60–62]	 that	 eventually	 can	 phase	 separate[63,64]	 and/or	

produce	inclusion	bodies	in	neurons	[65,66*].	

	

Connecting	structure	and	function	for	other	homorepeats	

The	 structural	 knowledge	 accumulated	 for	 homorepeats	 different	 than	 polyQ	 is	more	

limited.	In	this	section,	we	have	compiled	the	present	structural	understanding	for	some	

of	them.		

PolyA	 has	 attracted	 a	 great	 deal	 of	 attention	 because	 there	 are	 eight	 developmental	

diseases	caused	by	the	abnormal	expansion	of	this	homorepeat	in	several	transcription	

factors[15,16].	 Successive	 studies	 of	 short	 capped	 peptides	 provided	 contradictory	

evidence	indicating	either	a	strong	propensity	to	adopt	α-helical	structure[67]	or	to	be	

disordered	 with	 some	 prevalence	 for	 extended	 poly-proline-II	 conformations[68,69].	

However,	when	polyA	is	studied	 in	 its	protein	context,	a	α-helical	propensity	has	been	

reported[22,70,71].	A	recent	SSIL	study	of	the	two	polyA	tracts	of	Phox2B,	containing	9	

and	20	alanines,	confirmed	the	helical	tendency	for	this	homorepeat,	and	highlighted	the	

correlation	between	polyA	length	and	conformational	stability,	suggesting	the	presence	

of	 cooperative	 effects[72].	 This	 last	 feature	 can	 explain	 some	 of	 the	 functional	

observations	 of	 alanine-rich	 proteins,	 including	 the	 enhanced	 aggregation	 and	 phase	

separation	propensities	of	expanded	polyA	in	disease-related	proteins[73,74].	Similarly	

to	polyQ,	upon	expansion,	longer	and	more	stable	polyA	α-helices	could	favor	coiled-coil	

intramolecular	 interactions[75**,76].	 Indeed,	 the	 enrichment	 in	 alanine	 residues	 has	
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been	observed	in	several	frameshift	mutations	inducing	genetic	diseases	associated	with	

misregulation	of	phase-separation	phenomena[77].		

PolyP	regions	participate	in	protein-protein	interaction	networks,	often	through	specific	

interactions	with	domains	such	as	SRC	homology	3	(SH3)	and	the	WW[78,79].	However,	

profilins,	small	actin-binding	proteins,	are	the	only	reported	example	requiring	at	least	

6-8	 consecutive	 prolines	 for	 high	 affinity	 binding[80,81].	 In	 aqueous	 solutions,	 polyP	

adopt	extended	rod-like	helix	known	as	poly-proline	type-II	structure	that	 is	stabilised	

by	n->π*	interactions	between	adjacent	carbonyl	groups	(Ci-1=Oi-1…Ci=Oi)[82–84].	Due	to	

its	 cyclic	 nature,	 proline	 is	 the	 only	 amino	 acid	 that	 presents	 cis/trans	 isomeric	

equilibrium	in	noticeable	amounts	to	be	detected	experimentally.	Whether	this	capacity	

is	maintained	within	polyP	tracts	remained	an	open	question.	Using	smFRET,	it	has	been	

shown	that,	in	long	polyP,	the	cis	population	of	inner	prolines	is	severely	reduced	(≈2%)	

with	 respect	 to	 these	 positioned	 at	 the	 termini	 (≈10%)[24].	 This	 has	 been	 recently	

confirmed	 in	 a	 NMR	 study	 using	 SSIL	 samples,	 where	 the	 cooperativity	 of	 n->π*	

interactions	 was	 suggested	 as	 the	 origin	 of	 the	 reduced	 cis	 population	 for	 inner	

prolines[85*].	 The	 inherent	 stiffness	 of	 polyP	 has	 been	 associated	 with	 its	 protective	

role	in	the	C-terminus	of	aggregation-prone	polyQ,	being	HttExon-1	the	most	notorious	

example[41,42,86].	Indeed,	the	coevolution	of	both	homorepeats	has	been	suggested	as	

general	mechanism	where	polyP	emerge	in	evolution	after	a	polyQ	has	been	established	

[19,42,87,88].	 Moreover,	 the	 structural	 rigidity	 of	 polyP	 has	 been	 exploited	 to	 design	

molecular	rulers	and	scaffolds	for	bioengineering	applications[89,90].	

In	line	with	our	bioinformatics	analysis	(Figure	2),	polyS-containing	peptides	have	been	

described	 to	 adopt	 distinct	 conformations	 depending	 on	 the	 sequence	 context[91].	 In	

addition	 to	 their	 role	 in	 protein	 localization	 and	 regulation	 of	 phase	

separation[92,93*,94],	 polyS	 can	 also	 emerge	 through	 frameshift	 or	 repeat-associated	

non-AUG	translation	of	polyQ	tracts,	eventually	contributing	to	the	overall	toxicity	of	the	

expanded	 gene[95,96].	 In	 a	 recent	 study,	 it	 has	 been	 shown	 that	 in	many	 cases	 polyS	

originating	from	aberrant	translation	adopt	helical	structures	with	a	high	propensity	to	

form	 coiled-coils,	 which	 promote	 the	 oligomerization	 and	 fibrilization	 in	 vitro[91].	 In	

this	sense,	polyS	behaves	similarly	to	previously	described	polyQ	and	polyA.	
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Concluding	remarks	

There	 is	 a	 growing	 body	 of	 evidence	 showing	 that	 protein	 homorepeats	 perform	

multiple	 pivotal	 biological	 functions	 in	 all	 kingdoms	 of	 life.	 As	 these	 observations	

originate	 mainly	 from	 functional	 and	 computational	 studies,	 the	 link	 between	 the	

biophysical	 and	 structural	 features	 of	 homorepeats	with	 their	 functions	 is,	 in	 the	 vast	

majority	of	cases,	poorly	understood.	In	recent	years	novel	NMR	strategies	based	on	13C-

detected	experiments	have	demonstrated	their	power	to	resolve	highly	crowded	spectra	

and	provide	residue-specific	information	for	relatively	long	polyP	and	polyQ,	especially	

when	 these	 tracts	 exhibit	 high	 levels	 of	 structuration[56,97,98].	 The	 capacity	 to	

isotopically	 enrich	 individual	 residues	 provided	 by	 the	 SSIL	 strategy	 renders	 high-

resolution	NMR	 studies	 independent	 of	 the	 length	 and	 level	 of	 structuration	 of	 polyX	

stretches.	At	present,	only	glutamine[58],	proline[85*]	and	alanine[72]	are	available	for	

specific	 labelling,	but	the	extension	to	other	amino	acids	should	make	SSIL	a	universal	

tool	 to	 study	 polyX	 stretches.	 In	 the	 absence	 of	 extensive	 structural	 data	 for	

homorepeats,	 computational	 structural	 biology	 approaches	 represent	 an	 excellent	

alternative.	Great	 efforts	have	been	done	 in	 the	 recent	years	 to	deliver	 robust	protein	

force-fields	and	water	models	to	derive	atomistic	models	of	disordered	proteins	with	the	

capacity	 to	 reproduce	 experimental	 data[99–102].	 The	 refinement	 of	 these	 physical	

models	to	accurately	simulate	LCRs	and	homorepeats	is	a	logical	subsequent	step[103*].	

However,	this	improvement	can	only	be	robustly	achieved	if	enough	experimental	data	

on	these	systems	is	made	available	to	computational	scientists.	In	this	context,	the	two	

most	complete	structural	studies	of	the	polyQ	proteins	have	combined	residue-specific	

NMR	 data	 with	 MD	 simulations	 to	 unveil	 the	 atomistic	 details	 governing	 the	

conformation	of	this	homorepeat,	highlighting	the	power	of	this	combination[54**,57**].	

The	characterization	of	intermolecular	interactions	involving	homorepeats	giving	rise	to	

aggregation	or	phase	separation	represents	a	crucial	challenge	for	the	future[104].	From	

a	computational	perspective,	 these	studies	are	normally	addressed	by	using	simplified	

coarse-grained	 protein	 models,	 whose	 parametrization	 will	 also	 depend	 on	 the	

availability	of	accurate	experimental	data[105–107].	

In	 summary,	 uncovering	 the	 role	 of	 structure	 in	 defining	 complex	 functions	 of	 the	

different	 homorepeats	 will	 require	 the	 combination	 of	 low-resolution	 and	 residue-

specific	 information	 from	 experimental	 methods	 in	 combination	 with	 accurate	
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computational	approaches	and	 large-scale	bioinformatics	studies.	We	believe	that	only	

the	application	of	these	integrative	strategies	will	bring	light	to	the	fraction	of	the	“dark	

proteome”[108]	represented	by	homorepeats.	
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Figures:	

	

	

Figure	1.	Secondary	structure	preferences	in	pure	stretches	of	amino	acids.	Fraction	of	

predicted	 α-helical,	 extended	 (β-strand	 and	 PP-II)	 and	 Others,	 which	 joins	 all	 other	

secondary	 structure	 combinations.	 Predictions	 were	 performed	 for	 30-residue	 long	

polyX	 fragments	 with	 the	 LS2P	 program[39].	 Note	 that	 only	 the	 central	 stretch	 was	

analysed.	 Amino	 acids	 are	 classified	 in	 four	 groups	 according	 to	 their	 preferred	

predicted	conformation.	
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Figure	2.	Ratio	of	amino	acid	frequency	per	position	in	relation	to	polyX	regions	(taken	

as	 position	 0)	 versus	 the	 background	 amino	 acid	 prevalence	 in	 the	 human	 proteome.	

The	 complete	 human	 reference	 proteome	 from	 UniProtKB	 release	 v2023_01	 (20,591	

proteins)	was	used	for	the	analysis.	Only	homorepeat	types	found	at	least	1000	times	in	

the	human	proteome	are	shown.	
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Figure	 3.	 ɑ-helix	 propagation	 along	 polyQ	 tracts.	 (A)	 Structural	 model	 of	 bifurcated	

hydrogen	bonds	between	HttExon-1	N17	and	polyQ	(left),	or	between	glutamines	inside	

the	homorepeat	(right).	(B)	Zoom	of	overlapping	15N-HSQC	spectra	of	wt	HttExon-1	with	

46	 glutamines,	 and	 two	 mutants	 that	 either	 reduce	 or	 increase	 the	 polyQ	 helical	

conformation	 (green	 and	 purple,	 respectively).	 (C)	 Cα	 secondary	 chemical	 shift	 (SCS)	

profile	 of	 AR	 (red)	 and	 HttExon-1	 (blue)	 with	 polyQ	 tracts	 with	 different	 lengths.	

Experimental	Cα	chemical	shifts	are	compared	with	a	neighbour–corrected	random	coil	

database[109].	

	


