
HAL Id: hal-04269563
https://hal.science/hal-04269563v1

Submitted on 6 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating Phase and Quantitative susceptibility
mapping with Scan-Specific Complex Convolutional

Neural Networks
Nimje Swetali, Thierry Artières, Ludovic de Rochefort

To cite this version:
Nimje Swetali, Thierry Artières, Ludovic de Rochefort. Accelerating Phase and Quantitative suscepti-
bility mapping with Scan-Specific Complex Convolutional Neural Networks. 2023 ISMRM & ISMRT
Annual Meeting & Exhibition, Jun 2023, Toronto, Canada. �hal-04269563�

https://hal.science/hal-04269563v1
https://hal.archives-ouvertes.fr


Accelerating Phase and Quantitative susceptibility mapping with Scan-Specific Complex 

Convolutional Neural Networks 
 

Swetali NIMJE (1,2), Thierry ARTIÈRES (1) Ludovic de Rochefort (2) 

 
1Laboratoire d'Informatique et Systèmes UMR 7020 Aix-Marseille Univ., CNRS, Ecole Centrale de Marseille, Marseille, France. ; 

 2 CRMBM, CNRS Aix-Marseille Univ., Marseille France. 

 

Introduction: In recent years, the MR image reconstruction task has been successfully performed with deep learning strategies. Most studies focus on 

magnitude and disregard phase images. However, it is crucial to know the phase of MRI for many applications, such as field mapping, Quantitative 

Susceptibility Mapping (QSM) [2], phase contrast velocity mapping etc. Typically, reconstruction networks separate real and imaginary components 

into real-valued channels, which is suboptimal to represent complex numbers, as well as the derived phase information. Recent studies suggest that 

deep neural networks based on complex-convolutions have high representational power and accuracy, which will allow them to be applied to MRI 

reconstruction [1], including for phase-based applications based on highly undersampled data. We propose a novel crRAKI, a scan-specific complex-

valued residual convolutional neural network (CNN) for 2D MRI data as well as its extension for 3D for phase-mapping and QSM. It is compared to 

GRAPPA [3] and rRAKI [4] for accelerated MRI reconstructions. 

Methods: Reconstruction Network, crRAKI aims to produce a fully sampled k-space from undersampled k-space. The network is trained using 

AutoCalibration Signal (ACS) [3] which is fully sampled in the center of k-space. Fig. 1a illustrates a Train-Validation Partition (TVP) scheme for early 

stopping in order to avoid overfitting. 

Standard GRAPPA estimates the missing k-space lines in each coil by a linear combination of its neighbourhood acquired data overall coils, which can 

be formalized as a one-layer complex convolution. RAKI [5] non-linearly estimates the missing k-space lines using multiple convolutional layers and 

non-linear activation layers Rectified Linear Unit (ReLU). This reconstruction is similar to GRAPPA but uses CNNs instead of linear convolutional 

kernels for interpolation in k-space. Recently the proposed rRAKI (residual RAKI) utilized both linear convolutions and a CNN that takes the sampled 

lines as input. However, it treats the convolution by concatenating the real and imaginary parts and may only support 2D MRI data. Here, we investigate 

the use of crRAKI (for 2D) and crRAKI3D (its 3D extension) which support a true complex implementation for 2D/3D MRI data respectively as shown 

in Fig. 1b. crRAKI is Line-by-Line complex-2D-CNN, with 3 complex-conv-blocks of the size Conv(5x2), Conv(1x1), Conv(3x2) with LeakyReLU 

with the residual connection. Similarly, crRAKI3D is a 3-layer CNN as shown in Fig. 1b and 1c. 

Interleaved multi-slice (24) 2D GRE multi-echo (6 echos) with an in-plane resolution of 1 mm, slice thickness 3 mm matrix size 256x256, TR=802 ms, 

Tacq=1.4 min, at 3T with a 20-channel coil array were acquired. Acquisitions with acceleration factors R=2 were performed with 24 ACS lines. Multi-

echo (6) 3D GRE brain acquisitions with isotropic voxel-size of 1 mm, matrix size of 256x256x160, at 3 Tesla (Siemens Vida) with a 64-channel coil 

array were performed (TR=35 ms). Acquisitions with various acceleration factors were acquired (R=2 and 4x3 shown, with Tacq=10 min and 2 min, 

respectively) with 64x64 ACS lines. ACS region and undersampled data are acquired on a healthy volunteer in a separate mode. 

Results and Discussions:  

2D results: Fig. 1c & 1d show the qualitative comparison of crRAKI reconstructed magnitude and phase maps along with GRAPPATVP and rRAKI, for 

R=2 and 4 and for the first and last echoes. GRAPPATVP and rRAKI reconstruction have significant undersampling artifacts at R=4 whereas the crRAKI 

reconstruction has almost no artefacts on magnitude/phase images. Filtered field maps corroborate this point with artefact-free crRAKI images. Our 

method can perform phase-mapping reconstruction up to R=4 in these 2D acquisition settings. 

3D results: Fig. 1e shows the echo combined magnitude image, R2* and QSM for the default GRAPPA reconstruction for R=2, as well as with the 

GRAPPATVP and crRAKI acclerated at R=4x3. Despite a visible reduction of SNR, both methods are able to perform reconstructions for R=4x3 and 

display similar paramagnetic deep grey matter structures. 

In this study, a qualitative preliminary evaluation of the reconstruction was conducted. Standard GRAPPA was adapted to the neural network to leverage 

the train-validation scheme that can improve reconstruction quality. Our results showed less undersampling artefacts at high acceleration rates on phase 

in the 2D case for crRAKI, and similar performance in 3D for GRAPPATVP and crRAKI. Subsequent QSM was successfully performed on accelerated 

3DGRE data with a preserved contrast as well as with an expected loss of SNR. It demonstrates that phase maps from these highly accelerated 3D multi-

echo scans can be exploited for QSM. R=4x3 is a significant gain in terms of acquisition times as compared to the usual 2x-3x clinical routine used 

GRAPPA. 

Conclusions: crRAKI achieves superior image quality both for magnitude and phase as compared to real-valued CNNs rRAKI and GRAPPA on multi-

echo gradient echo 2D acquisition in which phase is of primary importance for multiple applications. We are able to perform reconstruction at an 

acceleration rate of 4 in a scan-specific manner in 2D. GRAPPA was also revisited to prevent overfitting during training by using a train-validation 

partition specific to uniform undersampling. This reconstruction strategy has been extended to 3D and is able to perform reconstruction, R2* and QSM 

at a higher acceleration rate of 4x3. Further work will focus on quantitatively validating these reconstruction strategies, as well as assessing end-user 

ratings of images. 
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Figure 1: (a) Train-Validation scheme for 3D, (b) crRAKI3D architecture, (c) After the training is performed, the weights are applied on the 

undersampled k-space data to each echo, (d) Magnitude and phase at R=2 for 1st and last echoes, (e) Magnitude and phase at R=4 for 1st and last 

echoes, (f): Filtered field maps for GRAPPA, rRAKI, crRAKI at R=2 & 4, Fourier-transform images were combined using an estimation of coil 

sensitivities from a low pass filtered version of the first echo image. (g)  Magnitude, QSM (MEDI [6]) and R2* at R=2,4x3 for GRAPPA and 

crRAKI3D. 
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