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Abstract. The present work is carried out in the framework of the WAS project [1] which deals 
with the WAAM process. The process relies on an automatized welding process in which a part 
is built by a successively deposed metal bead. Under a two-dimensional hypothesis, we propose 
a physically based bead topology model using the equilibrium between the hydrostatic pressure 
and the capillarity force. This equilibrium can be described by the Young-Laplace equation [2]. 
The proposed model can also estimate a bead topology that is deposed on a horizontal or 
inclined support. To do so, the Young equation is used to balance the forces at the tri-phase 
point [3]. Moreover, the bead topology model requires a deposed melted metal volume. By 
modeling a gas metal arc welding (GMAW) power generator system [4], the volume can be 
estimated and used as a physical parameter for the bead topology model. Combining the 
topology and the power generator models, the resulting synergy enables to simulate the 
topology of a weld bead of a WAAM process. In addition to the modelling, experimental profiles 
of the beads are used to validate the model.

1 INTRODUCTION
In recent years, metal additive manufacturing (MAM) has grown with very strong interest 

in academic research and industrial applications. Among MAM processes, wire and arc additive 
manufacturing (WAAM) became very popular through its advantages in the manufacturing 
medium and large-scale components [5]. Even though, the manufacturability of a part relies on 
manufacturing topology because the part’s geometry defects such as planarity defect can induce 
the collision between the welding torch and the part or the part’s geometry deviation from the 
targeted geometry. This defect is linked to the process parameters such as the synergy of power 
generator: wire-speed vs current and voltage and the robot parameters: trajectory and torch 
speed. To avoid these defects, one needs to be capable of simulating the topology of the 
manufacturing part by the weld bead deposition. Thus, it is necessary to be able to simulate the 
topology of a weld bead. Primarily, the topology of a weld bead is depending on the deposed 
wire feed volume. One needs to be able to correctly estimate the deposed volume from the wire 
feed via the power generator. Consequently, the power generator model is required to do so. A 
dynamic model of drops detaching from a gas metal arc welding electrode has been proposed 
[6]. The model allows determining the kinematics of the drops as well as the wire speed, the 
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current, and the voltage of the welding arc. The model is simplified in this study to only simulate 
the wire speed to estimate the deposed volume of a weld bead.

According to the welding process, the wire feed is melting and many drops of the metal 
liquid form a molten pool. A weld bead is formed by consecutive deposition of the molten pool. 
In the liquid state, the molten pool forms a disc section at the equilibrium by the capillary and 
gravity forces. During the solidification of the pool, the temperature at the deposed zone directly 
affects the geometry of the pool. The temperature is linked directly to the heat supply from the 
melting wire feed. When the wire feed speed is very slow, the heat supply is very low. Thus, 
the weld bead geometry is stick out because there is not sufficient energy to melt the substrate 
at the deposed zone. Otherwise, when the wire feed speed is very fast, the heat supply is very 
high. Thus, the weld bead geometry is flat. In order to obtain a weld bead geometry at 
solidification approximated to that of the molten pool, the wire feed speed should be sufficiently 
large to obtain the necessary heat supply to melt the deposed zone. Moreover, the temperature 
of the deposed zone should not be too high to assure a good grip of the weld bead on the deposed 
zone. The good temperature of the deposed zone is estimated to be between 80° and 150° to 
assure the good grip of the weld bead and the substrate [7]. 

With a good heat supply and a good temperature on a deposed zone, the weld bead section 
geometry can be approximated to a circular arc. [8] has proposed a weld bead deposition using 
the Laplace equation by the 2D prismatic assumption to simulate a 2D profile of a weld bead. 
However, to be able to simulate the profile, the model parameters (contact angle and curvature) 
need to be estimated from the experimental profiles according to the process parameters. The 
weld bead deposition is assumed to be deposed either on a horizontal plane or another weld 
bead in a single column symmetrically. To overcome the estimation of the contact angle by 
experimental profiles, [3] has proposed a thermo-dynamical equilibrium of a drop with a given 
volume to determine the contact angle on convex or concave support with symmetrical 
deposition. When a hysteretic contact angle occurs, the equilibrium is no longer satisfied. On 
the other hand, [9] has used a state equation to determine the surface tension forces of the tri-
phases using different drop volumes. In the study, on the other hand, the state equation is used 
to couple with the Laplace equation to determine the contact angle and build the 2D weld bead 
profile with different area sections. The state equation parameters are calibrated with two 
experimental profiles. 

Physically, when the drop profile is symmetric on the support, either the thermo-dynamical 
or the state equation can be used to determine the contact angle of the drop profile. But, when 
the support is in an inclined position, the drop could lose its equilibrium and falls along the 
support. However, if the drop is in equilibrium, the hysteretic contact angle occurs. The advance 
and recession contact angles of the drop appear. [10] has proposed the equilibrium condition of 
a water drop with a given volume on an inclined plane with a hysteretic contact angle. The 
equilibrium condition is used to verify whether the drop is in equilibrium on an inclined plane. 
For a given inclined plane, the author has determined the critical volume at which the drop loses 
its equilibrium. On the other hand, in the study, we use the same equilibrium condition under 
2D assumption coupling with the Laplace equation to build a weld bead 2D profile on an 
inclined plane.
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2 METHODOLOGIES
To simulate a weld bead topology according to the WAAM process, the volume of a deposed 

weld bead needs to be correctly estimated. The volume can be computed by the matter flow 
from the feed wire, hence the feed wire speed. The wire speed is a synergy parameter related 
directly to the current and the voltage of power generator. The wire speed can be varied 
depending on the welding process employed. For example, in the Cold Metal Transfer (CMT – 
Fronius [11]) welding process, to stabilize some parameters, the wire-speed evolves during the 
welding of a weld bead, on the other hand, in the pulsed welding process, the wire speed remains 
unchanged. This work proposes a simplified power generator model of the CMT welding 
process to simulate the wire speed. Then, the wire speed is used to estimate the deposed weld 
bead area section considering the shrinkage solidification. After that, the estimated area section 
is used to feed the topology model to simulate the weld bead profile on an inclined or a 
horizontal plane. The following subsections describe a power source model for the CMT 
welding process, a method for numerically measuring the contact angle, a method for 
determining the shrinkage value, and topology models for weld bead deposition on an inclined 
and a horizontal plane.

2.1 Electro-mechanical power source model
In WAAM process technology, the CMT welding process, which has been introduced by 

Fronius [11], has been used to manufacture the weld beads considered in this work. This process 
is an evolution of the Metal Inert Gas and Metal Active Gas (MIG-MAG) welding process with 
short-circuit transfer regime, in which the electrical signal wave shape and wire supply system 
are controlled. More specifically, the arc-length (𝑙𝑎𝑟𝑐)  control method is introduced to stabilize 
the arc-length, minimize the energy consumption and reduce the deposition projection [12].

Fig. 1 illustrates a system used to simulate and reproduce the CMT process behavior. The 
power generator produces a constant voltage to feed the electrical circuit such that the wire is 
an electrode and the substrate an anode. The given synergy of wire feed speed and voltage of 
the power generator is applied to the system. As shown in figure 1., Contact Tube Welding 
Distance (CTWD), in short, CT is an external parameter that influences the resultant current 
and arc voltage wave shapes. As consequence, it impacts also the wire speed. This change in 
wire speed allows stabilizing the targeted arc-length.
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Figure 1: Welding circuit model.

The depicted system is described by a system of physical equations such as the dynamic of 
the current (𝐼), the arc tension (𝑉𝑎𝑟𝑐), the molten wire flow (𝑀𝑟), and the dynamic of the stick-
out length (𝑙𝑠) [6] as follows:

    

{
𝑑𝐼
𝑑𝑡 =

𝑉𝑜𝑐 ― 𝑅𝑙𝐼 ― 𝑉𝑎𝑟𝑐 ― 𝑅𝑠𝐼
𝐿𝑠

𝑉𝑎𝑟𝑐 = 𝑉0 + 𝑅𝑎𝐼 + 𝐸𝑎(𝐶𝑇 ― 𝑙𝑠)
𝑀𝑟 = 𝐶1𝐼 + 𝐶2𝜙𝑙𝑠𝐼2

𝑑𝑙𝑠

𝑑𝑡 = 𝑤𝑠 ―
𝑀𝑟

𝜋𝑟2
𝑤

(1)

           
Where: 
𝑉𝑜𝑐 is the voltage of the power generator;
𝑅𝑙 is electrode resistance;
𝑅𝑠 is the equivalent resistance of the power generator;
𝐿𝑠 is the equivalent inductance power source;
𝑉0 is arc voltage constant;
𝑅𝑎 is arc resistance;
𝐸𝑎 is arc-length factor;
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𝜙 is electrode resistivity;
𝐶1, 𝐶2 are fusion flow constants;
𝑤𝑠 is initial wire speed;
𝑟𝑤 is wire radius.

Equation (1) can be written as shown in [6] as follows:

{ 𝑅𝑙 = 𝜙(𝑙𝑠 +
𝑟𝑑 + 𝑥1

2 )
𝑑𝑙𝑠

𝑑𝑡 = 𝑤𝑠 ―
𝑀𝑟

𝜋𝑟2
𝑤

𝑑𝐼
𝑑𝑡 =

𝑉𝑜𝑐 ― (𝑅𝑎 + 𝑅𝑠 + 𝑅𝑙)𝐼 ― 𝑉0 ― 𝐸𝑎(𝐶𝑇 ― 𝑙𝑠)
𝐿𝑠

(2)

Where
𝑥1 is the displacement of the drop;
𝑟𝑑 is the drop radius;

As previously mentioned, we are only interested in wire speed to determine the molten pool 
volume for physical topology simulation. Moreover, the drop radius and displacement are very 
small compared to the stick-out length, thus 𝑅𝑙 ≈ 𝜙𝑙𝑠. Equation (2) can be simplified as follows:

{ 𝑑𝑙𝑠

𝑑𝑡 = 𝑤𝑠 ―
𝐶1𝐼 + 𝐶2𝜙𝑙𝑠𝐼2

𝜋𝑟2
𝑤

𝑑𝐼
𝑑𝑡 =

𝑉𝑜𝑐 ― (𝑅𝑎 + 𝑅𝑠 + 𝜙𝑙𝑠)𝐼 ― 𝑉0 ― 𝐸𝑎(𝐶𝑇 ― 𝑙𝑠)
𝐿𝑠

(4)

Equation (4) allows solving for the resultant current and wire speed. The required inputs for 
the system are power source voltage (𝑉𝑜𝑐) , initial wire-speed (𝑤𝑠), contact tube welding 
distance (𝐶𝑇), and wire radius (𝑟𝑤). The fusion flow constant parameters have a direct impact 
on the molten flow. Hence, these constants are dependent directly on the synergy of weld bead 
deposition. These parameters are needed to be identified by calibration of the system and the 
experimental measures. Other parameters are chosen according to steel properties as shown in 
table 1.

Table 1: Parameters of the power source model of the steel material.
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𝑅𝑠(𝑚Ω) 𝐿𝑠(𝜇𝐻) 𝑉0(𝑉) 𝑅𝑎(𝑚Ω) 𝐸𝑎(𝑉/𝑚) 𝜙(Ω/𝑚)
75 20 15.7 4 1500 0.13

To calibrate the fusion flow constant parameters 𝐶1 and 𝐶2, we need to manufacture a weld 
bead for given synergy process parameters 𝑉𝑜𝑐, 𝑟𝑤, 𝑤𝑠 and 𝐶𝑇. For a given value of 𝐶𝑇, the 
measured wire speed is extracted from the experiment. The mean value of experiment wire 
speed (𝑤𝑠𝑚𝑒𝑎𝑠) over a straight deposed weld bead is then computed. From equation (2), we can 
express the mean value of simulation wire-speed in function of  𝐶1 and 𝐶2: 𝑤𝑠𝑠𝑖𝑚(𝐶1,𝐶2). We 
can find the optimal fusion flow constants as follows:

(𝐶∗
1,𝐶∗

2) = 𝑎𝑟𝑔𝑚𝑖𝑛(|𝑤𝑠𝑠𝑖𝑚(𝐶1,𝐶2) ― 𝑤𝑠𝑚𝑒𝑎𝑠|) (5)

The calibration and validation of the model are carried out on an experiment of a weld bead 
manufacturing with three different values of contact tube welding distance 𝐶𝑇 = 10, 15, and 
20 𝑚𝑚. The results are shown in the discussion section.

2.2 Physical topology model
We focused, in this study, on topology models of a weld bead deposed on a horizontal plane 

and an inclined plane. Weld bead topology can be described by the Laplace equation of drop’s 
hydrostatic pressure and capillary force equilibrium, but at the tri-phase line, the equation 
cannot overcome the determination of the contact angle. The Young equation is necessary to 
determine the contact angle at the line. In the following sections, we describe the 2D Laplace 
weld bead profile, a method to compute the contact angle, a method to estimate the shrinkage 
value and geometrical models for a weld bead deposed on an inclined and a horizontal plane.

2.2.1 Laplace weld bead profile
Molten pool under the electrical arc can be acted by several kinds of forces such as Lorentz 

force, buoyance force, arc shear stress, and surface tension force [8]. By considering these 
forces, the molten pool topology can have a very complicated shape. Under the 2D hypothesis 
as in [13], it is stated that the approximated topology of the molten pool can be handled by a 
static liquid state which is the equilibrium between the hydrostatic pressure and the capillarity 
force. This equilibrium can be expressed as the Laplace equation:

∆𝑃 = 𝛾𝐶         (6)

By assuming that the curvature radius is isotropic, we can write the equation in 2D as 
follows: 
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0.5𝜅― 2𝑧2 ― 𝐶0𝑧 + 2(

𝑑𝑥
𝑑𝑧

1 + (𝑑𝑥
𝑑𝑧)2

― 1) = 0
(7)

or

{ 𝑑𝑥
𝑑𝑧 =

1
tan(𝜃0)

0.5𝜅― 2𝑧2 ― 𝐶0𝑧 = 2( cos(𝜃0) ― 1)

(8)

Where 𝜃0 is Laplace contact angle illustrated in fig. 2 which is formed by a tangent to the 
contact point of the Laplace profile and the horizontal line;

𝐶0 is the curvature at point 𝑃0 (𝑥 = 0,   𝑧 = 0) the origin of the local reference frame (𝑂𝑥𝑧);

𝜅 =
𝛾

𝜌𝑔 is the capillary length;
𝛾 is the surface tension force between liquid-vapor surface;
𝑔  is the gravity;
𝜌𝑚 is the metal density at temperature 𝑇𝑚 (melting temperature of the metal);  
  

In this work, steel material is considered with the following values:
𝛾 = 1.8𝑁/𝑚,𝜌 = 7150𝑘𝑔/𝑚3 and 𝑔 = 9.8𝑚/𝑠2. 

As shown in fig. 2, the topology of the drop at equilibrium can be built by the equation 
depending on the position of the local reference frame at (𝑥 = 0,   𝑧 = 0). There are two 
different positions of local reference frame origin, for example, the origin 𝑃0 or 𝑃0′ which can 
be chosen depending on the normal direction of the support (up or down).

The above equation can be solved numerically by the finite difference method or analytically 
by the elliptic function of the first and second kinds. As illustrated in fig. 3, the solution of the 
numerical method is in good agreement with the analytical one. However, the computational 
time of the numerical method is only 0.02 s which is 15 times faster than the analytical one 
which is 0.3 s.
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Figure 2: 2D weld bead profile scheme.

Figure 3: Comparison of the numerical and analytical solutions of 2D Laplace equation.

2.2.2 Contact angle measurement
The contact angle is defined as a tangential angle to the weld bead topology at the support. 

This angle is formed by the equilibrium at the tri-phase line which is the intersection of liquid, 
gas, and solid.

While a drop is in an equilibrium state, the drop topology satisfies the Young Laplace 
equation. For the 2D hypothesis, the shape of the drop is much closed to a circular arc. As a 
consequence, using circular shape to better fit the form of the drop is the best alternative. 
However, at a configuration in which the contact angle is larger than 

𝜋
2, the circle fitting method 

can numerically generate an error. Therefore, a polynomial correction is necessary in this case. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4460746

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Chetra MANG, Xavier LORANG, Ramdane TAMI and François ROUCHON

9

This method has been proposed in [14]. 

Fig. 4 (a) displays a photo of a weld bead specimen, (b) a 3D cloud point of the center part 
of the weld bead, and (c) the experimental fit profile of the 2D projection of the cloud point 
along its axis. Because the scan of the cloud points is in low-resolution quality, the precise 
contact angle cannot be measured. It requires to focus in section profile which represents the 
circular arc to fit with the Laplace 2D profile as shown in Fig. 5 (a). Fig. 5 (b) depicts the 
mentioned contact angle measurement method. 

The proposed method is used to numerically estimate the contact angles for all the specimens 
in this study to validate the contact angle of the proposed topology model.

(a)

       
                                         (b)                                                                                    (c)           
                           

Figure 4: (a) weld bead picture, (b) cloud point at the center part of the weld bead, and (c) 2D experimental 
profile of the weld bead associated with the cloud point.
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(a) (b)

Figure 5: (a) Laplace profile fitted to the experimental profile and (b) contact angle measurement by circle arc 
fitting.

2.2.3 Solidification shrinkage
Welding induces high localized temperature and causes the metal molten. This non-uniform 

change of temperature induces non-uniform stresses because of the expansion and contraction 
of the heated metal. At the heat-affected zone (HAZ) around the molten pool, due to the thermal 
expansion, compressive stresses occur at cold parent metal and on the other hand, the tensile 
stresses at the same point occur when the molten pool is cooled down, which creates the thermal 
contraction at the HAZ. The change in thermal stresses can be observed by the volume change 
in the welded zone. More specifically, the volume change is called solidification shrinkage. 
This change follows three consecutive phases [15]:

 Shrinkage of the liquid metal when lowering the temperature at the liquid state;
 Shrinkage during the solidification at the freezing temperature passing from the 

liquid state to the solid-state;
 Shrinkage of the solid metal from the freezing temperature to the lower one.

For a given metal, in the first phase, the shrinkage value is fixed, but, in the last one, it 
strongly varies depending on the thermal stresses in the HAZ [15]. For the first two phases, the 
shrinkage of the steel is around 3% and for the last phases, the shrinkage varies and is about 
7% [16].

This section is dedicated to the evaluation of shrinkage value. Fig. 6 (a) displays the mesh 
of the scan of a weld bead which is produced by three different CT:  10, 15 and 20 mm 
consecutively. Firstly, parts 1, 2 and 3 are chosen to be the post-processing zones. This figure 
shows that when CT is larger, the sectional area deposition is also larger. With a quantitative 
value of these three sectional area depositions, the shrinkage is computed based on flow from 
the wire speed 𝑑𝑤𝑖𝑟𝑒 = ∫𝑡0+ Δ 𝑡

𝑡0
𝑤𝑠(𝑡)𝑑𝑡

Δ 𝑡
  and the torch speed 𝑑𝑏𝑒𝑎𝑑 = Δ 𝑉 × 𝑣𝑟

Δ 𝐿  where 𝑤𝑠 is instant 
measured wire speed, Δ𝑡 is the time interval in which torch travel with distance Δ𝐿  with the 
deposed volume of the weld bead Δ𝑉, and 𝑣𝑟 is torch speed. The shrinkage is computed by 𝑠 =
|𝑑𝑏𝑒𝑎𝑑 ― 𝑑𝑤𝑖𝑟𝑒|

𝑑𝑤𝑖𝑟𝑒
. Thus, the weld bead area section 𝐴 = (1 ― 𝑠)𝐴𝑠 where 𝐴𝑠 = 𝜋𝑟2𝑤𝑠

𝑣𝑟
 . We identify 

the overall shrinkage value by its maximum value of the three parts which is used to identify 
the weld bead area section in the following sections by simulating the power source model to 
obtain simulated wire-speed. The obtained value of wire-speed 𝑠 is illustrated in table 2.

Table 2: The wire speed feed and of the weld bead by the torch speed and the shrinkage computation of the 
three parts of the weld bead.
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Part 1
CT = 20 mm

Part 2
CT=15mm 

Part 3
CT=10 mm

𝑠𝑚𝑎𝑥

𝑑𝑏𝑒𝑎𝑑(10―7𝑚3) 1.337 1.218 1.092

𝑑𝑤𝑖𝑟𝑒(10―7𝑚3) 1.356 1.320 1.193

𝑠 0.014 0.077 0.084 0.084

Figure 6: Mesh of the scan of the weld bead with the three parts of CT=10, 15, 20 mm. 

2.2.4 Inclined plane deposition
A liquid drop is equilibrated on an inclined plane due to the occurrence of the hysteretic 

contact angle [2]. This angle is defined by the difference between the advanced contact angle (
𝜃𝑎) and the recession contact angle (𝜃𝑟) of a drop on an inclined plane of angle 𝛼 as shown in 
fig. 7. Guéré [10] has demonstrated a method to determine the equilibrium condition of a known 
volume of water drop on an inclined plane.

The surface tension force 𝑓𝑝 = 𝑙𝛾(cos(𝜃𝑟) ― cos(𝜃𝑎)) at the tri-phase line is balanced with 
gravity force 𝑓𝑔 = 𝜌𝑔Ωsin(𝛼) where 𝑙 is the tri-phase line length, 𝜌 is the density of the liquid, 
Ω is the volume of the liquid, 𝑔 is the gravity constant. The equilibrium condition is satisfied 
when 𝑓𝑝 ≥ 𝑓𝑔.

In the case of weld bead deposition, a molten pool is formed by the deposition of a mount of 
metal liquid drops. The volume of the molten pool is very difficult to estimate.  According to 
the 2D topology profile, a sectional area can be correctly computed. To simplify the volume 
estimation, we suppose that 𝑙 ≈ Ω/𝐴 where 𝐴 is the sectional area of the weld bead. We can 
express tension force per unit length as 𝑓𝑙

𝑝 ≈ 𝛾Δ𝜃sin(𝜃) where hysteretic contact angle Δ𝜃 = 𝜃𝑎

― 𝜃𝑟 and mean contact angle 𝜃 = 𝜃𝑎 + 𝜃𝑟

2  and gravity per unit length 𝑓𝑙
𝑔 = 𝜌𝑔𝐴𝑠𝑖𝑛(𝛼). The 

equilibrium condition can be written as 𝑓𝑙
𝑝 ≥ 𝑓𝑙

𝑔.To construct a complete profile of 2D topology 
weld bead on an inclined plane, we can solve the following system of the equation:
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{ 𝑑𝑥
𝑑𝑧 =

1
tan(𝜃0)

0.5𝜅― 2𝑧2 ― 𝐶0𝑧 = 2( cos(𝜃0) ― 1)
𝐴(𝑓)(𝐶0) = 𝐴

γΔ 𝜃 sin(𝜃) = 𝜌𝑔𝐴𝑠𝑖𝑛(𝛼)

(9)

Where 𝑓 is the Laplace profile of the weld bead;

We solve the system step by step as follows:
 First, solving for the Laplace profile 𝑓 for a given 𝜃0 and 𝐶0 by the first two equations 

of the equation system (9);
 Second, with the Laplace profile, solving for 𝐶0 to satisfy the third equation of the 

equation system (9);
 Third, solving for 𝜃0 such that the last equation of the equation system (9) is satisfied. 

The angle can be called the critical Laplace contact angle;

The validation of the proposed simulation of the weld bead deposition strategy on an inclined 
plane will be performed according to experimental specimen manufactured with different 
inclined angles. The results are illustrated in the discussion section.

Figure 7: A weld bead on an inclined plane with advance and recession contact angles.

2.2.5 Horizontal plane deposition
When a weld bead is deposed on a horizontal plane, a hysteretic contact angle doesn’t appear. 

In this case, the global equilibrium cannot be used. To determine the contact angle, we can only 
use the Young equation for the equilibrium at the tri-phase line [3]:
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{ 𝐴𝑠𝑙 = 𝛾𝑠𝑣 + 𝛾𝑙𝑣 ― 𝛾𝑠𝑙
𝐴𝑠𝑙 = 𝛾𝑙𝑣(1 + cos(𝜃))

(10)

Where 𝐴𝑠𝑙 is the adherent force between solid and liquid surface;
𝛾𝑠𝑣 = 𝛾𝑠 is the surface tension force between solid and vapor surface;
𝛾𝑙𝑣 = 𝛾 is the surface tension force between liquid and vapor surface;
𝛾𝑠𝑙 is the surface tension force between solid and liquid surface.

The quadruple parameters (𝛾𝑠𝑣,   𝛾𝑙𝑣,   𝛾𝑠𝑙, and    𝜃) are difficult to experimentally identify. 
Lie and Neumann [17] proposed a state equation that can be used with several liquid drop 
volumes and their profile to determine these parameters by assuming that  𝛾𝑠𝑣 = 𝛾𝑠 is constant 
for an identical solid surface and that 𝛾𝑙𝑣 = 𝛾 is constant for an identical liquid in the same 
environment. The state equation can be written as follows:

𝛾(1 + cos(𝜃)) = 2 𝛾𝛾𝑠 exp( ―𝛽(𝛾 ― 𝛾𝑠)) (11)

Where  𝛽 is a constant related to the volume of the liquid drop.

From the state equation, a procedure is proposed to calibrate 𝛽 and determine the contact 
angle 𝜃:

 For any given 𝛾,  𝜃 and 𝛽, 𝛾𝑠 can be determined:

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = |𝛾(1 + cos(𝜃)) ― 2 𝛾𝛾𝑠 exp( ―𝛽(𝛾 ― 𝛾𝑠))| (12a)

𝛾∗
𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝑠(|𝛾(1 + cos(𝜃)) ― 2 𝛾𝛾𝑠 exp( ―𝛽(𝛾 ― 𝛾𝑠))|) (12b)

 As we can accurately evaluate the section area of a weld bead, 𝛽 is supposed to be 
expressed as a function of the area section 𝐴:

𝛽 = 𝐶𝐴 (13)

Where 𝐶 is a constant;
 Based on a 2D experimental profile, 𝐴1 and 𝜃1 can be measured. Then, for any chosen 

value of 𝛽 = 𝛽1, the area section can be expressed:

𝛽 = 𝛽1
𝐴
𝐴1

 (14)

 Thus, equation (12) can be re-written as:
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𝜃(𝐴,𝛽1) = arccos (2 𝛾𝑠(𝛽1)
 𝛾

exp ( ― 𝛽1
𝐴
𝐴1

(𝛾 ― 𝛾𝑠(𝛽1))) ― 1) (15)

 Another experimental profile is needed to calibrate 𝛽1. Let’s assume that 𝐴2 and 𝜃2 
are measured by a second 2D experimental profile. 𝛽1 can be determined by:

𝛽∗
1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽1(|𝜃(𝐴2,𝛽1) ― 𝜃2 |) (16)

 Hence, we can determine the contact angle as function of the section area 𝐴 as 
follows:

𝜃(𝐴) = arccos (2 𝛾∗
𝑠(𝛽∗

1)
 𝛾

exp ( ― 𝛽∗
1

𝐴
𝐴1

(𝛾 ― 𝛾∗
𝑠(𝛽∗

1))) ― 1) (17)

With different process parameters, the manufacturing of different weld beads is carried out. 
The power source model is used to compute the wire speed in order to properly estimate the 
area section. The discussion in the following section details numerically the above proposed 
procedure to determine the contact angle by the state equation of Lie-Neumann in order to 
validate the simulated contact angle vs the experimental one.

3 RESULTS AND DISCUSSIONS

3.1 Calibration and validation of power generator model
In this section, the fusion flow constant parameters 𝐶1  and 𝐶2 of the power generator model 

is calibrated with the mean value of the measured wire speed of 𝐶𝑇 = 15𝑚𝑚 (blue line as 
illustrated in fig. 8). Then, with these calibrated values, the power generator model is used to 
simulate the wire speed in order to validate the results according to mean values of the measured 
wire speed of 𝐶𝑇 = 10𝑚𝑚 and 20𝑚𝑚. Table 3 indicates the synergy parameters used in the 
power generator.

Table 3: Parameters for the power generator.

𝑉𝑜𝑐(𝑉) 𝑤𝑠(𝑚/𝑠) 𝑟𝑤(𝑚𝑚)
17.2 0.133 0.5

Using the calibration method as indicated in the section 2.1, table 4 shows the values of the 
fusion flow constant parameters calibrated for 𝐶𝑇 = 15𝑚𝑚.

Table 4: Calibrated value of the fusion flow constant parameters.
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𝐶1( × 10―11) 𝐶2( × 10―11)
9.6 87

Table 5 displays the comparison between the experimental wire speed and the simulated one. 
The maximum error is under 5%. It shows a good agreement between the experimental and 
simulated wire speeds.

The power generator model is used in the following section with given process parameters 
in order to estimate the weld bead area section considering the solidification shrinkage.

Figure 8: Evolution of the wire speed of the three parts of the weld bead.

Table 5: Comparison of the simulated and measured wire speed.

𝐶𝑇(𝑚𝑚) 𝑤𝑠𝑚𝑒𝑎𝑠(𝑚/𝑠) 𝑤𝑠𝑠𝑖𝑚(𝑚/𝑠) 𝑒𝑟𝑟. 𝑟𝑒𝑙𝑎(%)
15 0.166 0.166 0
10 0.151 0.155 2.9
20 0.169 0.178 4.8

3.2 Weld bead simulation for inclined plane
This section is dedicated to the validation of contact angles (advance and recession) of weld 

bead model on an inclined plane and by comparison to experimental measures. The inclined 
angles of 5.47°, 12.5°, 25.6°, 33.9°, and 44.2° are chosen to manufacture the weld beads. 

Fig. 9 (a) and (b) illustrate the measured advance and recession contact angle of a weld bead 
on the inclined plane of 33.9°. Fig. 10 (a) depicts the evolution of surface tension and the gravity 
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force as a function of the Laplace contact angle. At the intersection of the two forces, the critical 
Laplace contact angle can be determined, then the advance and recession contact angles are 
estimated.

Fig. 10 (b) shows the simulated weld bead profile and the computed advance and recession 
contact angles. The simulated contact angles are close to the measurement one with a maximum 
error of 0.6°.

Table 6 displays the comparison between the advance and recession contact angles of 
different inclined angles. The maximum error is around 2°.  The larger is the inclined angle, the 
smaller is the error. Globally, the simulated contact angles are in good agreement with the 
experimental ones. 

When the inclined angle increases, the gravity force in the direction of the inclined plan also 
increases. The balance of forces could possibly not reach its equilibrium. The weld bead on 65° 
inclined plane is simulated. The advance and recession contact angles are estimated around 
99.5° and 79.5° respectively. Fig. 11 (a) shows the weld bead profile on the inclined plane such 
that at 66°, the force balance cannot reach its equilibrium. This angle is considered as the critical 
angle for a weld bead deposition with a given volume.

When the inclined angle decreases the gravity force along the inclined plane decreases. The 
capillary force also decreases because the hysteretic contact angle becomes smaller. The 
divergence of the resolution algorithm of equations (9) is observed due to the balance of forces. 
The optimal critical contact angle cannot be determined. At the inclined angle of 1°, we can 
simulate the weld bead profile as shown in fig. 11 (b). The advance and recession contact angles 
are estimated around 60.6° and 61.1° respectively.

The weld bead topology model on 1° angle inclined plane is simulated with different process 
parameters to simulate contact angles. The angles are used to compare with the angles simulated 
by the state equation which is described in the next section.

(a)                                                                      (b)
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Figure 9: Measure of the advance (a) and recession (b) contact angle of a weld bead on the inclined plane of 
33.9°.

                    

(a)                                                                          (b) 

Figure 10: (a) Evolution of the gravity and capillary forces as function of contact angle. (b) Simulation results

Table 6: Comparison of the measured, and simulated advance and recession contact angles for different 
slopes.

𝛼(°) 𝜃𝑎,𝑚𝑒𝑎𝑠(°) 𝜃𝑟,𝑚𝑒𝑎𝑠(°) 𝜃𝑎,𝑠𝑖𝑚(°) 𝜃𝑟,𝑠𝑖𝑚(°)
5.47 58.34 55.08 60.32 57.81
12.5 62.27 54.23 62.46 56.72
25.6 65.93 53.45 65.18 54.00
33.9 67.41 53.30 68.01 53.56
44.2 71.23 54.57 71.54 54.15
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(a)                                                                 (b)

Figure 11: Weld bead profile for the inclined angle (a) 65° and (b) 1°.

3.3 Weld bead simulation for horizontal plane
This section describes the procedure for computing the contact angle of a weld bead deposed 

on a horizontal plane as well as the validation of the model. The process parameters are used as 
indicated in the power generator section. The torch speed values considered are 0.5, 0.75, 1., 
1.25, and 1.5 m/min. The change in torch speed induces the change in deposed volume as well 
as the area section of the weld bead. Using power generator model with shrinkage value, we 
can estimate the area section of the weld bead as displayed in the following table:

Table 7: Estimated area section of the weld beads with different torch speeds.

𝑣𝑟(𝑚/𝑚𝑖𝑛) 1.5 1.25 1. 0.75 0.5
𝐴( × 10―6𝑚2) 4.9 6.1 7.4 9.7 14.2

Fig. 12 illustrates the evolution of the residual curves of the state equation (equation 12a) for 
𝛽0 = 0.25 and 𝛽′0 = 1. as function of the surface tension force between solid and vapor 𝛾𝑠 with 
𝑣𝑟 = 1.5𝑚/𝑚𝑖𝑛 corresponding to the measured contact angle 𝜃0 = 50.8° and estimated area 
section 𝐴0 = 4.9 × 10―6𝑚2. The curves show that there is a unique minimum value of 𝛾𝑠. 

Fig. 13 displays the evolution of minimum value of 𝛾𝑠 in function of 𝛽 for a fixed   𝜃0 = 50.8°
. The curve shows that 𝛾𝑠(𝛽) is monotonously increased.  

Two experimental profiles are used for calibrating the state equation’s parameter 𝛽. The 
contact angles and section areas of the profiles are (𝜃0 = 50.8°, 𝐴0 = 4.9 × 10―6𝑚2) and 
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(𝜃1 = 56.9°, 𝐴1 = 7.4 × 10―6𝑚2) respectively. Fig. 14a shows the evolution of 𝛾𝑠(𝜃) with an 
initial parameter 𝛽0 = 1.5. In this case, we obtain 𝛽1 = 2.25, 𝛾𝑠 = 1.65 𝑁/𝑚 and estimated 
contact angle 𝜃1 = 60.33°. Using equation 15 and 16, we can find the optimal parameter 𝛽′0
= 0.25. In this case, we obtain 𝛽1′ = 0.377, 𝛾𝑠′ = 1.437 𝑁/𝑚 and estimated contact angle 𝜃1

′ ≈ 𝜃1 = 56.9°. Fig. 14b displays 𝛾𝑠(𝜃) at which the parameter 𝛽0 is calibrated. The values of 
(𝛽0,   𝛾𝑠) are used to estimate the contact angle for different values of section area by equation 
17. Fig. 15 shows that the contact angles with different values of section area are obtained by 
the intersection of black line and different curves of 𝛾𝑠(𝜃) .

On the other hand, we employ the topology model of weld bead on the inclined plane of 
angle 1° to determine the contact angle. Table 8 resumes the estimation of the contact angles of 
the weld beads on the horizontal plane with the two methods with different area sections. The 
simulated contact angle with the topology model of the weld bead on an inclined plane 
generates large errors for the smaller and larger estimated area sections of the weld bead. 
However, the simulated contact angles by the state equation well estimate the measured contact 
angles. The maximum error is around 3°. 

Fig. 16 depicts the simulated profiles using contact angles obtained by the state equation 
resolution compared to the experimental ones for (𝑎) 𝑣𝑟 = 0.5 𝑚/𝑚𝑖𝑛, (𝑏) 𝑣𝑟 = 0.75 𝑚/𝑚𝑖𝑛, 
(𝑐) 𝑣𝑟 = 1.𝑚/𝑚𝑖𝑛, and (𝑑) 𝑣𝑟 = 1.5 𝑚/𝑚𝑖𝑛. One can employ the state equation and Laplace 
equation to simulate different process parameters by coupling with power generator model for 
weld bead deposition on the horizontal plane.

Figure 12: Evolution of the residual of the state equation for two different values of weld bead volume-related 
parameters 𝛽.
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Figure 13: Evolution of surface tension force between the solid-vapor surface in function weld bead volume-
related parameters.

(a)
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(b)

Figure 14: 𝛾𝑠 curves as function of contact angle and calibration of 𝛽0 with 𝜃0 and targeted contact angle 𝜃1 (a) 
initial value and (b) calibrated value.

Figure 15: Evolution of 𝛾𝑠 curves with different process parameters and contact angle estimation with 𝛾0
𝑠 from 

the 𝛽0 calibrated.

Table 8: Comparison of the measured contact angles and the simulated ones by 1° inclined angle topology 
model and state equation.
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𝐴𝑟𝑒𝑎  ( × 10―6𝑚2) 𝜃𝑚𝑒𝑎𝑠(°) 𝜃𝑠𝑖𝑚, 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑(°) 𝜃𝑠𝑖𝑚, 𝑠𝑡𝑎𝑡𝑒―𝑒𝑞𝑛.(°)
4.9 50.8 45.15 50.80
6.1 51.1 50.5 53.29
7.4 56.9 54.1 56.90
9.7 57.9 60.3 60.32

14.2 64.3 74.15 67.81

(a)                                                               (b)

                                    (c)                                                              (d)

Figure 16: Comparison of the experiment and simulated weld bead profiles with contact angles computed by 
state equation for different torch speeds (a) 0.5 m/min, (b) 0.75 m/min, (c) 1. m/min, and (d) 1.5 m/min.

4 CONCLUSIONS
A methodology using a power generator model to couple with a physical topology model 

has been introduced to simulate the topology of a deposed weld bead on an inclined or a 
horizontal plane. The description of a simplified power generator model has been detailed. The 
fusion molten flow constant parameters need to be calibrated with the measured wire-speed for 
a given process parameter. The simulated wire speed is in good agreement with the measured 
one for different values of 𝐶𝑇. The power generator model is used to simulate the wire speed 
to estimate the section area from the conservation of the flow. However, according to the large 
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temperature gradient the solidification shrinkage occurs. A method to approximate the 
shrinkage value for this study has been demonstrated to estimate correctly the area section of a 
deposed weld bead. 

In addition, a method for accurate estimation of contact angle has also been presented to 
determine the contact angle from the experimental profiles as well as the simulated ones in 
order to validate the simulated contact angle by the physical topology model. 

On an inclined plane, we have proposed a simplified physical model to simulate the 2D 
topology of a weld bead using the Laplace equation and the capillary-gravity force equilibrium. 
Step by step resolution method is proposed to solve the proposed system of physical equations. 
Moreover, on a horizontal plane, the state equation of Lie-Neumann is used to determine the 
contact angle. The experimental validation of the weld bead profiles and contact angles for both 
cases (weld bead topology on an inclined and a horizontal plane) has been performed.

Using this physical weld bead topology model coupling with a power generator model, one 
can depose a weld bead with different process parameters on an inclined or a horizontal plane. 
We need to extend the work to find a simplified model able to simulate a weld bead profile 
deposed on any substrate.
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