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Background: Molecular understanding of muscle-invasive (MIBC) and non–muscle-
invasive (NMIBC) bladder cancer is currently based primarily on transcriptomic and
genomic analyses.
Objective: To conduct proteogenomic analyses to gain insights into bladder cancer (BC)
heterogeneity and identify underlying processes specific to tumor subgroups and thera-
peutic outcomes.
Design, setting, and participants: Proteomic data were obtained for 40 MIBC and 23
NMIBC cases for which transcriptomic and genomic data were already available. Four
BC-derived cell lines harboring FGFR3 alterations were tested with interventions.
Intervention: Recombinant tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL), second mitochondrial–derived activator of caspases mimetic (birinapant),
pan-FGFR inhibitor (erdafitinib), and FGFR3 knockdown.
sevier B.V. on behalf of European Association of Urology. This is an open access article
mons.org/licenses/by-nc-nd/4.0/).

y These authors contributed equally to the work.
� These authors co-supervised the work equally.
* Corresponding authors. Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL
Research University, Paris, France. Tel. +33 156 246 357 (F. Radvanyi). Equipe labellisée Ligue Contre
le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France (I. Bernard-Pierrot).
E-mail address: francois.radvanyi@curie.fr (F. Radvanyi).

chez-Quiles, F. Dufour et al., Proteogenomic Characterization of Bladder Cancer Reveals Sensitivity to
ted Apoptosis-inducing Ligand in FGFR3-mutated Tumors, Eur Urol (2023), https://doi.org/10.1016/j.

https://doi.org/10.1016/j.eururo.2023.05.037
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:francois.radvanyi@curie.fr
https://doi.org/10.1016/j.eururo.2023.05.037
https://doi.org/10.1016/j.eururo.2023.05.037
https://doi.org/10.1016/j.eururo.2023.05.037
https://doi.org/10.1016/j.eururo.2023.05.037


E U R O P E A N U R O L O G Y X X X ( X X X X ) X X X – X X X2
Proteogenomics
Proteomics
Tumor necrosis factor–related
apoptosis-inducing ligand
Tumor necrosis factor–related
apoptosis-inducing ligand
receptors
Please cite this article as: C.S. Groeneveld, V. San
Apoptosis Induced by Tumor Necrosis Factor–rela
eururo.2023.05.037
Outcome measurements and statistical analysis: Proteomic groups from unsupervised
analyses (uPGs) were characterized using clinicopathological, proteomic, genomic, tran-
scriptomic, and pathway enrichment analyses. Additional enrichment analyses were
performed for FGFR3-mutated tumors. Treatment effects on cell viability for FGFR3-
altered cell lines were evaluated. Synergistic treatment effects were evaluated using
the zero interaction potency model.
Results and limitations: Five uPGs, covering both NMIBC and MIBC, were identified and
bore coarse-grained similarity to transcriptomic subtypes underlying common features
of these different entities; uPG-E was associated with the Ta pathway and enriched in
FGFR3 mutations. Our analyses also highlighted enrichment of proteins involved in
apoptosis in FGFR3-mutated tumors, not captured through transcriptomics. Genetic
and pharmacological inhibition demonstrated that FGFR3 activation regulates TRAIL
receptor expression and sensitizes cells to TRAIL-mediated apoptosis, further increased
by combination with birinapant.
Conclusions: This proteogenomic study provides a comprehensive resource for investigating
NMIBC and MIBC heterogeneity and highlights the potential of TRAIL-induced apoptosis as a
treatment option for FGFR3-mutated bladder tumors, warranting a clinical investigation.
Patient summary: We integrated proteomics, genomics, and transcriptomics to refine
molecular classification of bladder cancer, which, combined with clinical and patholog-
ical classification, should lead to more appropriate management of patients. Moreover,
we identified new biological processes altered in FGFR3-mutated tumors and showed
that inducing apoptosis represents a new potential therapeutic option.

� 2023 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction MIBC, an international consensus transcriptomic classifica-
Bladder cancer presents either as non–muscle-invasive
bladder cancer (NMIBC; 70–75% of patients) or as muscle-
invasive bladder cancer (MIBC; 25–30% of patients). Among
NMIBC cases, about 70% are noninvasive papillary urothelial
carcinoma, low or high grade (stage pTa); 1–3% urothelial
carcinoma in situ (CIS), a flat high-grade lesion (pTis); and
the remainder invasive urothelial carcinoma (pT1), virtually
all high grade [1]. From clinical, pathological, and molecular
data, two major pathways have been proposed in bladder
cancer [2,3]. The pTa low-grade papillary pathway has a
low risk of progression to MIBC. The second pathway pro-
gresses along CIS and/or pTa high-grade papillary urothelial
carcinoma to pT1 and muscle-invasive tumors. Activating
point mutations of the tyrosine kinase receptor FGFR3 are
a common molecular feature of pTa low-grade papillary
tumors but are also encountered in 12–15% MIBC cases [4].

Five-year survival rates for NMIBC patients are favorable
(>90%) [5], but MIBC is an aggressive disease associated
with a 5-yr survival rate of 60% for patients with localized
disease and <10% for patients with distant metastasis [6].
Despite the advent of immunotherapy and targeted thera-
pies, �75% of patients treated with immune checkpoint
therapy [7] and �55% of patients with FGFR3 mutations
treated with the anti-FGFR erdafitinib [8] exhibit no
response, demonstrating the need for a deeper understand-
ing of bladder cancer biology.

RNA- and DNA-based ‘‘omic’’ analyses of bladder cancer
have revealed clear molecular heterogeneity and led to the
identification of subtypes in both NMIBC and MIBC [4,9–
15]. The most recent transcriptomic classification of NMIBC
[15] identified four subtypes: classes 1 and 3, both enriched
in FGFR3-mutated tumors; class 2a, an aggressive subtype;
and class 2b, an immune-infiltrated subtype. Concerning
chez-Quiles, F. Dufour et al.,
ted Apoptosis-inducing Liga
tion identified six consensus subtypes (luminal papillary,
luminal unstable, luminal nonspecified, basal/squamous
(Ba/Sq), stroma rich, and neuroendocrine like) [16]. The
luminal papillary subtype includes the majority of FGFR3-
mutated MIBC tumors.

High-throughput proteomics through liquid chromatogra-
phy coupled to tandem mass spectrometry (LC-MS/MS) is
increasingly used to study cancer [17]. Integration of protein
data with transcriptomics and genomics constitutes a new
fast-growing field of cancer research, leading to a better
understanding of the molecular basis of cancer and accelerat-
ing the translation of molecular findings into the clinic [17,18].
This approach has already been applied in several cancers [17–
24] with the potential to improve therapeutic outcomes.

Stroggilos et al [25] were the first to apply high-
throughput proteomics to a large bladder cancer cohort.
Recently, Xu et al [26] integrated matched proteomic, tran-
scriptomic, and genomic data from formalin-fixed paraffin-
embedded tumors.

Here, we extend recent efforts to provide integrated pro-
teogenomic characterization of bladder cancer by perform-
ing a joint proteome, transcriptome, and genome analysis of
63 fresh frozen samples (23 NMIBC and 40 MIBC).

2. Patients and methods

For detailed methods, see the Supplementary material.
2.1. Patients

Sixty-three bladder tumors were studied. Clinical and histopathological

features [1] including age, gender, invasiveness, World Health Organiza-

tion grade, tumor stage, histological subtypes, presence of CIS [27], and

papillary and/or endophytic growth pattern are summarized in Supple-

mentary Table 1.
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2.2. Proteomic quantification and analyses

Proteome was quantified using the super-SILAC method and an LC-MS/

MS analysis. Proteomic data were initially explored using a principal

component analysis (PCA), followed by clustering using
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ConsensusClusterPlus. Identified unsupervised protein groups (uPGs)

were compared with the transcriptomic NMIBC [15] and MIBC subtypes

[16]; characterized using a protein expression differential analysis, a

gene set enrichment analysis (GSEA) pathway enrichment analysis, asso-
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Fig. 2 – Analysis of unsupervised proteomic groups (uPGs). (A) Comparison of uPGs and transcriptomic subtypes. Point size and color represent p values
calculated by Fisher’s exact tests, adjusted using the Benjamini-Hochberg method. (B) Characterization of tumors within each uPG. Bladder tumors were
clustered into five groups: uPG-A, uPG-B, uPG-C, uPG-D, and uPG-E (see Supplementary Fig. 3). The uPGs were described according to transcriptomic subtype,
most differentially expressed proteins, clinical and histopathological variables, selected common genetic alterations, MCPcounter scores measuring the
abundance of microenvironment cell population, and multiomic factor (MOFA) scores (see also Supplementary Fig. 5). Variance explained by MOFA factors in
each omic is presented to the right of the MOFA score panel. Within each uPG, samples were ordered by clustering based on MOFA scores. (C) Main biological
processes enriched for each uPG. Biological processes derived from the transcriptomic IC analysis or curated annotated databases: KEGG, Reactome Database
(RDB), and MSigDB Hallmarks (HM). Ba/Sq = basal/squamous; CNA = copy number alteration; ECM = extracellular matrix; IC = independent component;
LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal unstable; MIBC = muscle-invasive bladder cancer; NE = neuroendocrine;
NMIBC = non–muscle-invasive bladder cancer.
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ciation with histopathological features, genomic alterations, and a mul-

tiomic factor analysis (MOFA); and validated using two independent

proteomic series [25,26].
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Pathways potentially activated in FGFR3-mutated tumors were identi-

fied based on the GSEA analysis of differentially expressed genes/proteins

between FGFR3-mutated and FGFR3 wild-type tumors.
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Nonparametric tests were used for comparisons (Kruskal-Wallis for

multiple groups and Wilcoxon rank-sum for two groups). Kolmogorov-

Smirnoff tests were used to compare subsets with the overall distribu-

tion of CNA/protein, CNA/mRNA, and mRNA/protein correlations.

One-sample t tests and Fisher exact tests were used when appropriate.

Reported p values are adjusted using the Benjamini-Hochberg method

with a false discovery rate of 5% unless otherwise specified.

2.3. Functional experiments

Pharmacological and knockdown experiments were performed as

described in the Supplementary material.
3. Results

3.1. Proteome quantification and correlation between omic
data in bladder tumors

We profiled the proteome of 23 NMIBC and 40 MIBC cases
from the Carte d’Identité des Tumeurs (CIT) series, previ-
ously characterized at the transcriptomic and genomic
levels [11,28]. This multiomic characterization was per-
formed on the same fresh frozen tissue samples, thanks to
a triple extraction method [29]. We selected 63 tumors
from all the different transcriptomic subtypes according to
the UROMOL 2021 classification for NMIBC and the consen-
sus classification for MIBC, while maintaining the propor-
tions of subtypes found in larger cohorts [15,16]. The
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clinical, histopathological, and molecular data are shown
in Supplementary Table 1. We quantified the proteome
using a super-SILAC strategy, where a common heavy-
labeled internal reference from a mix of cell lines allows
for accurate comparisons of protein ratios between tumors
(Fig. 1A) [30]. We quantified 15 714 proteins and kept
3781 proteins including only those identified by three or
more different peptides in �66% of samples (Fig. 1A, and
Supplementary Fig. 1A and 1B). These 3781 filtered proteins
represented the whole proteome diversity, as shown by
their wide-ranging isoelectric point, molecular weight, and
solubility (Supplementary Fig. 1C). They had the expected
dynamic range of protein functions and were localized in
diverse subcellular compartments (Supplementary Fig. 1D
and 1E).

We examined the correlation across tumors between
mRNA and protein expression (Fig. 1B and Supplementary
Table 2). Overall, 90.1% of the mRNA/protein pairs showed
a significant positive correlation (adj. p < 0.05). The mean
Spearman correlation coefficient we obtained (q = 0.47;
Fig. 1B, upper panel) was within the range reported in pre-
vious studies (0.39–0.53) [20–24]. The mRNA/protein corre-
lations can differ significantly depending on the biological
processes [21,23,24]. This was also observed in our series
considering Reactome Pathway Database gene sets
(Fig. 1B, middle panel). We also investigated the biological
processes that we previously identified in bladder cancer
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using an independent component (IC) analysis from tran-
scriptomic data (Fig. 1B, lower panel) [28], and found high
correlations for mRNA/protein most associated with ICs.

Next, we examined the effects of copy number alter-
ations (CNAs) on mRNA and protein levels (Fig. 1C and 1D,
Supplementary Table 3, and Supplementary material). The
mRNA/CNA correlations were significantly higher (KS test
p <10–15) than the protein/CNA correlations (Fig. 1C), in
agreement with previous findings in other cancers [19,24].
In addition, higher correlations were found for genes pre-
senting the highest frequency of genomic alterations
(Fig. 1D).

3.2. Identification and characterization of bladder tumor
proteomic groups

We first performed a PCA of the filtered proteomic data of
the 63 tumors (Supplementary Fig. 2 and Supplementary
Table 4). Lower values of PC1 were associated with high
expression of proteins of the microenvironment and
immune- and/or stroma-infiltrated tumors (NMIBC class
2b, MIBC basal tumors, and stroma-rich tumors). Lower val-
ues of PC2 were associated with high expression of prolifer-
ation markers and most MIBC basal, luminal unstable, and
neuroendocrine-like tumors.

We then performed unsupervised consensus clustering
of the 63 tumors on the filtered proteomic data. Five uPGs
(A–E) emerged (Supplementary Fig. 3A–C). The uPGs
showed coarse-grained similarities to transcriptomic
NMIBC and MIBC subtypes (Fig. 2A and 2B [top panel] and
Supplementary Fig 3D). We characterized the uPGs accord-
ing to protein expression data, clinical and histopathological
characteristics, common bladder cancer genetic alterations,
and biological process enrichment (Fig. 2B and 2C, Supple-
mentary Table 5, and Supplementary Fig. 4A). Altogether,
uPG-A was enriched in Ba/Sq tumors and overexpressed
basal markers; uPG-B was highly heterogeneous but
grouped tumors with high expression of cell cycle and
DNA repair proteins; uPG-C was related to luminal non-
specified tumors; uPG-D, which displayed enrichment of
proteins and pathways related to smooth muscle and extra-
cellular matrix, was enriched in both NMIBC class 2b and
MIBC stroma-rich tumors, and contained the remaining
Ba/Sq tumors; and uPG-E, strongly enriched in class 1/3
NMIBC samples, was also enriched in proteins correspond-
ing to the transcriptomic IC Ta pathway. Accordingly, it con-
tained all but one of the pTa tumors and most of the FGFR3-
mutated tumors. Using an mRNA-based microenvironment
cell population estimation tool (MCPcounter) [31], we also
found that the uPGs differed in the expression of markers
of multiple microenvironment cell populations (Fig. 2B
[MCP panel] and Supplementary Fig. 4B) and in the expres-
sion of PD-L1 (Supplementary Fig. 4C).

To further characterize our series, we used a MOFA [32]
to jointly reduce the dimensionality of the three omic data
types. We identified ten MOFA factors and could biologi-
cally interpret five of them (factor 1: Ta pathway; 2: DNA
repair; 3: stroma; 5: lipid metabolism; and 6: immune;
Supplementary Fig. 5, Supplementary Table 6, and Supple-
mentary material). The DNA repair, lipid metabolism,
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stroma, and Ta pathway factors were associated with
uPG-B, uPG-C, uPG-D, and uPG-E, respectively (Fig. 2B,
MOFA panel); uPG-B also presented the highest levels of
genomic instability (Fig. 2B, genetic alterations panel), as
expected given its association with the DNA repair factor.

Stroggilos et al [25] performed label-free proteomic
quantification of 1515 proteins in a cohort of 98 NMIBC
and 19 MIBC cases, and identified three NMIBC proteomic
subtypes (NPS1–3). We developed a classifier of NPS1–3
from their data and applied it to our bladder cancer series
(Supplementary material). We found a strong correspon-
dence between NPS2 and NPS3 with uPG-D and uPG-E,
respectively, with a close overlap of the overexpressed pro-
teins (Supplementary Fig. 6A). We further compared our
uPGs with the label-free proteomic quantifications from
formalin-fixed paraffin-embedded samples in the study by
Xu et al [26], who reported three proteome clusters incor-
porating both NMIBC and MIBC (from U-I to U-III; Supple-
mentary Fig. 6B and 6C). In the data of Xu et al’s [26]
study, uPG-E corresponded to a subset of U-I and contained
almost all FGFR3-mutated tumors (p = 0.001), U-II tumors
displayed high expression of uPG-B markers spanning both
NMIBC and MIBC, and U-III corresponded to both uPG-A and
uPG-D tumors. Thus, despite using distinct proteomic meth-
ods and source material, both datasets showed strong
concordance with four out of the five uPGs (uPG-A, uPG-B,
uPG-D, and uPG-E).

3.3. Proteomic analyses highlight potential roles of mutated
FGFR3 in apoptosis in bladder cancer

To better characterize the biology of FGFR3-mutated
tumors, we compared them with wild-type (WT) FGFR3
tumors at the proteome and transcriptome levels. We calcu-
lated pathway enrichment scores using GSEA from pro-
teomic and transcriptomic fold-change values between
FGFR3-mutated and WT tumors (Supplementary Table 7).
Most of the statistically significant pathways (231/269) pre-
sented similarly positive or negative enrichment scores in
both proteomic and transcriptomic data, with the remain-
ing 38 pathways showing opposite enrichments (Fig. 3A).
Three biological processes related to apoptosis were signif-
icantly positively enriched, specifically in the proteomic
data, in FGFR3-mutated tumors compared with WT tumors
(Fig. 3A and 3B [quadrant IV]). We thus focused on the
apoptosis pathway (Fig. 3C). At the protein level, we
observed differences between FGFR3-mutated and WT
tumors that were less or not apparent by a transcriptome
analysis, most notably for the initiator caspase-8 and its
effector, BID, as well as the apoptosis effectors caspase-3
and caspase-6, which were all upregulated at the protein
level in FGFR3-mutated tumors. This proteomic-based
observation suggested that tumor cells harboring FGFR3
mutations could be particularly sensitive to proapoptotic
stimuli. One such stimulus could include the tumor necrosis
factor–related apoptosis-inducing ligand (TRAIL), since at
the transcriptomic level, FGFR3-mutated tumors showed
higher gene expression of both TNFRSF10A and TNFRSF10B,
encoding for TRAIL receptors TRAIL-R1 and TRAIL-R2,
respectively (Fig. 3C and Supplementary Table 7).
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3.4. Tumor cell lines harboring genetic alterations of FGFR3
are sensitive to TRAIL-mediated apoptosis

Various susceptibilities of urothelial cancer cell lines to
TRAIL have been reported [33–35], though the link with
FGFR3 alteration status was never previously assessed. Here,
we evaluated sensitivity to TRAIL in five cell lines, four har-
boring genetic alterations of FGFR3 (mutations for UM-UC-
14 and MGH-U3; FGFR3-TACC3 fusions for RT112 and
RT4), and one presenting WT FGFR3, already shown to be
resistant to TRAIL (UM-UC-9) [35], used as a negative con-
trol (Fig. 4A). In line with our hypothesis, all FGFR3-
altered cell lines were sensitive to TRAIL. To validate a rela-
tionship between FGFR3 activation and sensitivity to TRAIL,
we pretreated UM-UC-14 and MGH-U3 cells with erdafi-
tinib, a pan-FGFR inhibitor (Fig. 4B), or FGFR3 siRNA
(Fig. 4C) prior to treatment of the cells with TRAIL. These
pretreatments significantly dampened the impact of TRAIL
treatment on cell viability, demonstrating that the sensitiv-
ity to TRAIL of FGFR3-mutated cell lines depends on FGFR3
expression.
Fig. 5 – FGFR3 activation through genetic alterations induces accumulation of
Affymetrix array (U133plus2.0) of TRAIL-mediated apoptosis pathway players
(encoding TRAIL-R2) after FGFR3 knockdown using siRNA in MGH-U3, RT112,
[36,37]. Western blotting of TRAIL-R1, TRAIL-R2, and c-FLIP in UM-UC-14 and MG
erdafitinib or DMSO control for 24 h. Blots are representative results of three in
factor–related apoptosis-inducing ligand.
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3.5. FGFR3 activation favors accumulation of TRAIL
receptors and inhibition of c-FLIP

To gain insight into the mechanism of FGFR3-mediated sen-
sitization to TRAIL, we assessed expression levels of key
genes within the death receptor pathway after FGFR3
knockdown by siRNA using our previously obtained tran-
scriptomic data in UM-UC-14, RT112, and MGH-U3 cells
(Fig. 5A) [36,37]. We observed decreased expression of
TNFRSF10A, encoding TRAIL-R1, whereas the expression of
CFLAR, encoding the pro-caspase-8/-10 inhibitor c-FLIP,
known to regulate sensitivity to TRAIL-induced apoptosis
in urothelial tumor cells [33], was increased (Stouffer aggre-
gated p = 0.00001 and 0.001, respectively). Accordingly, we
observed a decrease of TRAIL-R1 and an increase of c-FLIP at
the protein level, after FGFR3 knockdown (Fig. 5B) and
FGFR3 inhibition using erdafitinib (Fig. 5C) in UM-UC-14
and MGH-U3 cells. Of note, although not significant at the
mRNA level (Fig. 5A), we also observed a slight decrease
in TRAIL-R2 protein levels after FGFR3 modulation (Fig. 5B
and 5C). In agreement, we observed the upregulation of
TRAIL receptors and loss of c-FLIP. (A) Gene expression level assessed by
CFLAR (encoding c-FLIP), TNFRSF10A (encoding TRAIL-R1), and TNFRSF10B
and UM-UC-14. Data were obtained from previous studies from our group
H-U3 cells (B) transfected with indicated siRNA for 48 h or (C) treated with

dependent experiments. DMSO = dimethylsulfoxide; TRAIL = tumor necrosis
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Tnfrsf10b in our FGFR3-induced bladder cancer model in
mice [38]. Taken together, our results indicate that FGFR3
activation through genetic alterations confers sensitivity
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to TRAIL-induced apoptosis by favoring the accumulation
of TRAIL-agonistic receptors with concomitant inhibition
of c-FLIP, the main caspase-8/10 endogenous inhibitor.
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3.6. Birinapant synergizes with TRAIL to decrease cell
viability in FGFR3-altered cell lines

The members of the inhibitor of apoptosis protein (IAP)
family, including XIAP, are also negative regulators of cas-
pase activation and can be inhibited by the second
mitochondrial-derived activator of caspases (SMAC). Com-
bining SMAC peptidomimetics, such as birinapant, with
TRAIL has been identified as an efficient TRAIL-sensitizing
strategy in several models [39]. Notably, SMAC was also
highly upregulated at the protein level in our FGFR3-
mutated tumors (Fig. 3C). We, therefore, evaluated the
impact of recombinant TRAIL in combination with birina-
pant in our four FGFR3-altered bladder cancer cell lines.
We observed an increase in apoptosis, measured through
caspase-3/7 activity (Fig. 6A, top panel), and a concomitant
decrease in cell viability (Fig. 6A, bottom panel) in the pres-
ence of both drugs as compared to single treatments. We
further characterized the combination of the two drugs by
treating UM-UC-14, MGH-U3, and RT112 cell lines with
increasing concentrations of each drug (Fig. 6B, left panel)
and used these results to calculate synergy scores using
the zero interaction potency (ZIP) model (Fig. 6B, right
panel). The addition of birinapant resulted in synergistic
sensitization to TRAIL in all three cell lines (ZIP score >10).
Altogether, we conclude that apoptosis is efficiently
induced by TRAIL in FGFR3-altered bladder cancer cells
and SMAC inhibition represents a promising treatment
combination.
4. Discussion

Our proteomic classification demonstrated coarse-grained
similarities with transcriptomic-derived NMIBC and MIBC
subtyping, but also revealed heterogeneity within transcrip-
tomic subtypes. Further exploring the heterogeneity of
NMIBC subtype 2a, highlighted by our proteomic analysis,
is of clinical interest, as this subtype has been shown to
be the most aggressive of the NMIBC subtypes [15]. Like-
wise, considering the heterogeneity of basal tumor
microenvironments could be of interest for improving
immunotherapy treatments. While our proteomic analysis
showed the heterogeneity of several transcriptomic sub-
types, the proteome enabled the grouping of tumors that
differed in transcriptomic classification but shared common
features, as exemplified by uPG-B tumors, which shared
high proliferation and genomic instability. These clues
could lead to common treatments for these tumors.

Our proteogenomic analyses also highlighted a higher
abundance of apoptosis proteins in FGFR3-mutated tumors,
which had not been reported previously. Our functional
in vitro experiments identified TRAIL treatment as a promis-
ing therapeutic strategy for FGFR3-altered bladder tumors.
These results are of particular interest given that pan-FGFR
inhibitors are limited by the rapid emergence of resistance
[8]. As clinical use of SMAC mimetics, such as birinapant,
raised safety concerns due to cytokine-release syndrome
[40,41], intravesical instillation would provide a safe and
efficient strategy to combine birinapant with TRAIL-based
proapoptotic agents for FGFR3-mutated NMIBC (which
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represent approximately 70% of NMIBC cases). Investiga-
tions to extend TRAIL treatment strategies to FGFR3-
altered tumors in other cancers would be of interest since
multiple myeloma cell lines OPM-2 and KMS-11, harboring
FGFR3 mutations, are highly sensitive to TRAIL [42].

Our work has some limitations. The number of samples
was relatively small (23 NMIBC and 40 MIBC cases); how-
ever, this limitation was partly circumvented by using vali-
dation cohorts with proteomic data. Additional multiomic
studies including proteomic data are still warranted in blad-
der cancer. We noted that some non–FGFR3-mutated
tumors respond to TRAIL [33–35], but the mechanisms
involved have still to be identified to be able to select the
non–FGFR3-mutated cancers that could also respond to a
TRAIL-based treatment.
5. Conclusions

This study provides a proteomic, genomic, and transcrip-
tomic resource for NMIBC and MIBC investigation. It bol-
sters and refines existing classifications of bladder tumors
and identifies potential subtype protein markers that pave
the way for future immunohistochemical subtyping that
could easily be implemented in clinical practice. Based on
new insights underlying FGFR3-mutated tumors, we
demonstrated that FGFR3 alterations confer sensitivity to
TRAIL-induced apoptosis, which can be potentialized using
sensitizers such as birinapant. In the clinic, anti-FGFR treat-
ment has shown clear benefits for patients with FGFR3-
mutated bladder cancer, but treatment resistance is a major
challenge. Therefore, the alternative approach proposed
here warrants further clinical investigation.
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