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Abstract
We consider the problem of deciding whether an input graph G admits a topological embedding
into an input two-dimensional simplicial complex C . This problem includes, among others, the
embeddability problem of a graph on a surface and the topological crossing number of a graph, but
is more general.

The problem is NP-complete in general (if C is part of the input), and we give an algorithm
that runs in polynomial time for any fixed C .

Our strategy is to reduce the problem into an embedding extension problem on a surface, which
has the following form: Given a subgraph H ′ of a graph G′, and an embedding of H ′ on a surface S,
can that embedding be extended to an embedding of G′ on S? Such problems can be solved, in
turn, using a key component in Mohar’s algorithm to decide the embeddability of a graph on a fixed
surface (STOC 1996, SIAM J. Discr. Math. 1999).
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1 Introduction

Topological embedding problems. Topological embedding problems are among the most
fundamental problems in computational topology, already emphasized since the early devel-
opments of this discipline [9, Section 10]. Their general form is as follows: Given topological
spaces X and Y , does there exist an embedding (a continuous, injective map) from X to Y ?
Since a finite description of X and Y is needed, typically they are represented as finite
simplicial complexes, which are topological spaces obtained by attaching simplices (points,
segments, triangles, tetrahedra, etc.) of various dimensions together.

The case where the host space Y equals Rd (or, almost equivalently, Sd, which can be
modeled as a simplicial complex) has been studied the most. The case d = 2 corresponds to
the planarity testing problem, which has attracted considerable interest [28]. The case d = 3
is much harder, and has only recently been shown to be decidable by Matoušek, Sedgwick,
Tancer, and Wagner [22]. The general problem for arbitrary d has been extensively studied

© Éric Colin de Verdière, Thomas Magnard, and Bojan Mohar
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 1(1); Article 6; pp. 6:1–6:23

mailto:eric.colin-de-verdiere@univ-eiffel.fr
mailto:thomas.magnard@univ-eiffel.fr
mailto:mohar@sfu.ca
https://orcid.org/0000-0002-7408-6148
https://doi.org/10.57717/cgt.v1i1.11
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/


6:2 Embedding Graphs into Two-Dimensional Simplicial Complexes

in the last few years, starting with hardness results by Matoušek, Tancer, and Wagner [23],
and continuing with several algorithmic results in a series of articles; we refer to Matoušek,
Sedgwick, Tancer, and Wagner [22, Introduction] for a state of the art.

What about more general choices of Y ? The case where Y is a graph is essentially the
subgraph homeomorphism problem, asking if Y contains a subdivision of a graph X. This is
hard in general, easy when Y is fixed, and polynomial-time solvable for every fixed X, by
using graph minor algorithms. The case where X is a graph and Y a 2-dimensional simplicial
complex that is homeomorphic to a surface has been much investigated, also in connection
to topological graph theory [26] and algorithms for surface-embedded graphs [12, 8]: The
problem is NP-complete, as proved by Thomassen [31], but Mohar [25] has proved that it
can be solved in linear time if Y is fixed (in some recent works, the proof has been simplified
and the result extended [16, 18]). The case where X is a 2-complex and Y is (a 2-complex
homeomorphic to) a surface, essentially boils down to the previous case; see Mohar [24].
More recently, Čadek, Krčál, Matoušek, Vokřínek, and Wagner [4, Theorem 1.4] considered
the case where the host complex Y has an arbitrary (but fixed) dimension; they provide a
polynomial-time algorithm for the related map extension problem, under some assumptions
on the dimensions of X and Y ; in particular, Y must have trivial fundamental group (because
they manipulate in an essential way the homotopy groups of Y , which have to be Abelian);
but the maps they consider do not need to be embeddings.

Another variation on this problem is to try to embed X such that it extends a given
partial embedding of X (we shall consider such embedding extension problems later). This
problem has already been studied in some particular cases; in particular, Angelini, Battista,
Frati, Jelínek, Kratochvìl, Patrignani, and Rutter [1, Theorem 4.5] provide a linear-time
algorithm to decide the embedding extension problem of a graph in the plane.

Our results. In this article, we study the topological embedding problem when X is an
arbitrary graph G, and Y is an arbitrary two-dimensional simplicial complex C (actually, a
simplicial complex of dimension at most two—abbreviated as 2-complex below). Formally,
we consider the following decision problem:
Embed(n, c):
Input: A graph G with at most n vertices and edges; a 2-complex C with at most c simplices.
Question: Does G have a topological embedding into C ?
(We use the parameters n and c whenever we need to refer to the input size.) Here is our
main result:

I Theorem 1. The problem Embed(n, c), parameterized by c, is in XP: it can be solved in
time f(c) · nO(c), where f is some computable function of c.

Note that Theorem 1 shows that, for every fixed complex C , the problem of deciding whether
an input graph embeds into C is polynomial-time solvable. Actually, our algorithm is explicit,
in the sense that, if there exists an embedding of G on C , we can provide some representation
of such an embedding (in contrast to various results in the theory of graph minors, where
the existence of an embedding can be obtained without leading to an explicit construction).

As a byproduct of our techniques, we also prove:

I Theorem 2. The problem Embed is NP-complete.

It is actually straightforward to prove that Embed is NP-hard, because the case where C

is a surface is already NP-hard. The more interesting part, the existence of a certificate
checkable in polynomial time when an embedding exists, is not extremely surprising either;
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we prove this using the same techniques as in the proof of Theorem 1, so in most of the
article we focus on the proof of Theorem 1.

Subsequent work. Very recently, in an extended abstract [7], the first two authors improved
over Theorem 1 by proving that the Embed problem is fixed-parameter tractable in the size
of the input complex. However, the techniques are very different and rely on algorithmic
graph minor theory.

Why do 2-complexes look harder than surfaces? A key property of the class of graphs
embeddable on a fixed surface is that it is minor-closed: Having a graph G embeddable
on a surface S , removing or contracting any edge yields a graph embeddable on S . By
Robertson and Seymour’s theory, this immediately implies a cubic-time algorithm to test
whether a graph G embeds on S , for every fixed surface S [29]. In contrast, the class of
graphs embeddable on a fixed 2-complex is, in general, not closed under taking minors, and
thus this theory does not apply, at least not directly. For example, let C be obtained from
two tori by connecting them together with a line segment, and let G be obtained from two
copies of K5 by joining them together with a new edge e; then G embeds into C , but the
minor obtained from G by contracting e does not.

Two-dimensional simplicial complexes are topologically much more complicated than
surfaces. For example, there exist linear-time algorithms to decide whether two surfaces
are homeomorphic (this amounts to comparing the Euler characteristics, the orientability
characters, and, in case of surfaces with boundary, the numbers of boundary components),
or to decide whether a closed curve is contractible (see Dey and Guha [10], Lazarus and
Rivaud [19], and Erickson and Whittlesey [13]). In contrast, the homeomorphism problem
for 2-complexes is as hard as graph isomorphism, as shown by Ó Dúnlaing, Watt, and
Wilkins [27]. Moreover, the contractibility problem for closed curves on 2-complexes is
undecidable; even worse, there exists a fixed 2-complex C such that the contractibility
problem for closed curves on C is undecidable. This is because every finitely presented group
can be realized as the fundamental group of a 2-complex, and there is such a group in which
the word problem is undecidable, by a result of Boone [3]; see also Stillwell [30, Section 9.3].

Despite this stark contrast between surfaces and 2-complexes, if we care only about the
polynomiality or non-polynomiality, our results show that the complexities of embedding a
graph into a surface or a 2-complex are similar: If the host space is not fixed, the problem is
NP-complete; otherwise, it is polynomial-time solvable. Compared to the aforementioned
hard problems on general 2-complexes, one feature related to our result is that every graph
embeds on a 3-book (a complex made of three triangles sharing a common edge); thus, we
only need to consider 2-complexes without 3-books, for otherwise the problem is trivial.
This significantly restricts the structure of the 2-complexes to be considered. The problem
of whether Embed admits an algorithm that is fixed-parameter tractable in terms of the
parameter c, however, remains open for general complexes, whereas it is the case when
restricting to surfaces [25].

Why is embedding graphs on 2-complexes interesting? First, let us remark that, if we
consider the problem of embedding graphs into simplicial complexes, then the case that we
consider, in which the complex has dimension at most two, is the only interesting one, since
every graph can be embedded in a 3-dimensional simplex.

We have already noted that the problem we study is more general than the problem of
embedding graphs on surfaces. It is indeed quite general, and some other problems studied in
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6:4 Embedding Graphs into Two-Dimensional Simplicial Complexes

the past can be recast as an instance of Embed or as variants of it. For example, the crossing
number of a graph G is the minimum number of crossings in a (topological) drawing of G
in the plane. Deciding whether a graph G has crossing number at most k is NP-hard, but
fixed-parameter tractable in k, as shown by Kawarabayashi and Reed [17]. This is easily seen
to be equivalent to the embeddability of G into the complex obtained by removing k disjoint
disks from a sphere and adding, for each resulting boundary component b, two edges with
endpoints on b whose cyclic order along b is interlaced. Of course, the embeddability problem
on a 2-complex is more general and contains, for example, the problem of deciding whether
there is a drawing of a graph G on a surface of genus g with at most k crossings. In topological
graph theory, embeddings of graphs on pseudosurfaces (which are special 2-complexes) have
been considered; see Archdeacon [2, Section 5.7] for a survey. Slightly more remotely, a book
embedding of a graph G (see, e.g., Malitz [21]) is also an embedding of G into a particular
2-complex. However, the notion of book embedding incorporates additional constraints on
the embedding, so that this concept does not fall under the umbrella of the problem we
study.

Strategy of the proof and organization of the paper. For clarity of exposition, in most of
the paper, we focus on developing an algorithm for the problem Embed (Theorem 1). Only
at the end (Section 7) we explain why our techniques imply that the problem is in NP.

The idea of the algorithm is to progressively reduce the problem to simpler problems. We
first deal with the case where the complex C contains a 3-book (Section 2.5). From Section 3
onwards, we reduce Embed to various kinds of embedding extension problems (EEPs),
namely, decision problems which ask if an embedding of a subgraph can be extended to an
embedding of the whole graph in the same complex C .

More precisely, in Section 3, we reduce Embed to EEPs on a pure 2-complex (in which
every segment of the complex C is incident to at least one triangle), and in which every
singular point of the complex is used by a vertex of the graph, by essentially guessing what
happens on the isolated edges and at the singular points. At this stage, the subgraph H of
the EEP whose embedding is fixed consists of isolated vertices.

In Section 4, we further reduce it to EEPs on a surface. To do so, we add some edges to H
in the neighborhood of the singular points, which are “smoothed” to be made surface-like.

In Section 5, we reduce it to EEPs on a surface in which every face of H is a disk. If the
input graph G embeds into the complex, it does not necessarily have a cellular embedding,
but we can assume this without loss of generality by adding few edges, which we can guess.
By adding suitable paths containing these edges to H, we can assume that H is cellularly
embedded. We remark that this is the most technical part, relying on more advanced tools
in topological graph theory.

Finally, in Section 6, we show how to solve EEPs of the latter type, as essentially proved
by the third author as a subroutine in his article to decide embedability of graphs on
surfaces [25].

2 Preliminaries

2.1 Embeddings of graphs into 2-complexes
A 2-complex is an abstract simplicial complex of dimension at most two: a finite set of
0-simplices called nodes, 1-simplices called segments, and 2-simplices called triangles (we
use this terminology to distinguish from that of vertices and edges, which we reserve for
graphs); each segment is a pair of nodes, and each triangle is a triple of nodes; moreover, each
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subset of size two in a triangle must be a segment. Each 2-complex C corresponds naturally
to a topological space, obtained in the obvious way: Start with one point per node in C ;
connect them by segments as indicated by the segments in C ; similarly, for every triangle
in C , create a triangle whose boundary is made of the three segments contained in that
triangle. By abuse of language, we identify C with that topological space. To emphasize that
we consider the abstract simplicial complex and not only the topological space, we sometimes
use the name triangulation or triangulated complex.

In this paper, graphs are finite, undirected, and may have loops and multiple edges.
In a similar way as for 2-complexes, each graph has an associated topological space; an
embedding of a graph G into a 2-complex C is an injective continuous map from (the
topological space associated to) G to (the topological space associated to) C .

We will also need the concept of branch of a graph; the number of branches of a graph can
be regarded as its “topological size”. Let H be a graph. A path P with vertices u1, u2, . . . , uk

or a cycle C with vertices u1, u2, . . . , uk−1, uk = u1 (k ≥ 2) in H is a branch of H if
degH(u1) 6= 2, degH(uk) 6= 2, and degH(ui) = 2 for every i = 2, . . . , k − 1. If H has a
component isomorphic to a cycle, we consider such a component as a branch as well. Under
this convention we treat an isolated vertex of H as a branch as well. Then every graph is
the edge-disjoint union of its branches.

2.2 Structural aspects of 2-complexes
We say that a 2-complex contains a 3-book if there are three distinct triangles that share
a common segment.

Let p be a node of C . A cone at p is a cyclic sequence of triangles t1, . . . , tk, tk+1 = t1
(k ≥ 3), all incident to p, such that, for each i = 1, . . . , k, the triangles ti and ti+1 share a
segment incident with p, and any other pair of triangles have only p in common. A corner
at p is an inclusionwise maximal sequence of distinct triangles t1, . . . , tk (k ≥ 1), all incident
to p, such that, for each i = 1, . . . , k − 1, the triangles ti and ti+1 share a segment incident
with p, any other pair of these triangles have only p in common. An isolated segment at p
is a segment incident to p but not incident to any triangle.

If C contains no 3-books, the set of segments and triangles incident with a given node p
of C are uniquely partitioned into cones, corners, and isolated segments. We say that p is a
regular node if all the segments and triangles incident to p form a single cone or corner.
Otherwise, p is a singular node. A 2-complex is pure if it contains no isolated segment,
and each node is incident to at least one segment.

2.3 Reductions to embedding extension problems
Recall that an embedding extension problem (EEP) is the problem of deciding whether
a given embedding Π of a subgraph H of G into a 2-complex C can be extended to an
embedding of G into C . We will reduce our original problem to more and more specialized
embedding extension problems (EEPs). We use the word “reduce” in a somewhat sloppy
sense: A decision problem P reduces to k instances of the decision problem P ′ if solving
these k instances of P ′ allows to solve the instance of P in time O(k). We will have to be
more precise when we consider the NP-completeness of Embed in Section 7.

For further reference, the various problems considered in this article are listed in Table 1.
We will have to explain how we represent the embedding Π, but this will vary throughout the
proof, and we will be more precise about this in subsequent sections. Let us simply remark
that, since the complexity of our algorithm is a polynomial of large degree (depending on the
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6:6 Embedding Graphs into Two-Dimensional Simplicial Complexes

Notation Description
G a graph with at most n vertices and edges
H a subgraph of G with at most m branches
Π an embeding of H into C (or S )
f a map from P to V (G) ∪ {ε}, where P is a set of at most m nodes in C containing

all singular nodes of C . An embedding Γ of G in C respects f if, for each p ∈ P , the
following holds: If f(p) = ε, then p is not in the image of Γ; otherwise, Γ(f(p)) = p.

C a 2-complex with at most c simplices without 3-books (also denoted by S if it is a
surface)

Problem Input Question
Embed G, C (possibly with 3-books) Does G have an embedding into C ?
Embed-Resp G, f , C Does G have an embedding into C respect-

ing f?
EEP-Sing G, H (a set of vertices of G), Π

(such that Π(H) contains all singu-
lar nodes of C ), C (pure)

Does G have an embedding into C whose
restriction to H is Π?

EEP-Surf G, H, Π, S (possibly discon-
nected)

Does G have an embedding into C whose
restriction to H is Π?

EEP-Conn G, H (intersecting every connected
component of G), Π, S

Does G have an embedding into C whose
restriction to H is Π?

EEP-Cell G, H (cellularly embedded, inter-
secting every connected component
of G), Π, S

Does G have an embedding into C whose
restriction to H is Π?

Table 1 The problems to which Embed is successively reduced.

complex C ) in the size of the input graph, the choice of representation is not very important,
because converting between any two reasonable representations is possible in polynomial
time.

2.4 Surfaces
In Section 5, we will assume some familiarity with surface topology; see, e.g., [26, 30, 5]
for suitable introductions under various viewpoints. We recall some basic definitions and
properties. A surface S is a compact, connected Hausdorff topological space in which every
point has a neighborhood homeomorphic to the plane. Every surface S is obtained from a
sphere by:

either removing the interiors of g disjoint closed disks, and identifying their boundaries
pairwise, where g is an even, nonnegative integer called the (Euler) genus of S ; in this
case, S is orientable;
or removing g open disks and attaching a Möbius band to each resulting boundary
component, for a positive number g called the genus of S ; in this case, S is non-
orientable.

We emphasize that we use Euler genus throughout this article. A surface with boundary
is obtained from a surface Ŝ by removing a finite set of interiors of disjoint closed disks. The
boundary of each disk forms a boundary component of S . The genus of S is defined as
the genus of the ambient surface Ŝ . A possibly disconnected surface is a disjoint union
of surfaces; its genus is the sum of the genera of its connected components. An embedding
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Figure 1 Illustration of the proof of Proposition 3. Left: The drawing of the graph G and the
dotted curve c. Right: The construction of the 3-book and the modification of the drawing.

of G into a surface S , possibly with boundary, is cellular if each face of the embedding is
homeomorphic to an open disk. If G is cellularly embedded on a surface with genus g and b
boundary components, with v vertices, e edges, and f faces, then Euler’s formula stipulates
that 2− g − b = v − e+ f (these quantities are referred to as the Euler characteristic of
the surface).

An ambient isotopy of a surface with boundary S is a continuous family (ht)t∈[0,1] of
self-homeomorphisms of S such that h0 is the identity.

2.5 Reduction to complexes containing no 3-book
The following folklore observation allows us to solve the problem trivially if C contains a
3-book. We include a proof for completeness.

I Proposition 3. If C contains a 3-book, then every graph embeds into C .

Proof. Let G be a graph. We first draw G, possibly with crossings, in general position in the
interior of a closed disk D. Let c be a simple curve in D with endpoints on ∂D and passing
through all crossing points of the drawing of G. By perturbing c, we can ensure that, in the
neighborhood of each crossing point of that drawing, c coincides with the image of one of
the two edges involved in the crossing. See Figure 1, left.

Let D′ be a closed disk disjoint from D. We attach D′ to D by identifying c with a
part of the boundary of D′ and obtain a complex homeomorphic to a 3-book. Now, in the
neighborhood of each crossing of the drawing of G, we push inside D′ the part of the edge
coinciding with c, keeping its endpoints fixed. See Figure 1, right. This removes the crossings.

So G embeds in the topological space obtained from D by attaching a part of the boundary
of D′ along c. But this space embeds in C , because C contains a 3-book. J

3 Reduction to EEPs on a pure 2-complex

Our next task is to reduce the problem Embed to the following problem on a pure 2-
dimensional complex:
EEP-Sing(n,m, c):
Input: A graph G with at most n vertices and edges; a set H of at most m vertices of G; a
pure 2-complex C with at most c simplices containing no 3-books; an injective map Π from
H to the nodes of C such that Π(H) contains all singular nodes of C .
Question: Does G have an embedding into C extending Π?

In this section, we prove the following result.

I Proposition 4. Any instance of Embed(n, c) reduces to (cn)O(c) instances of EEP-
Sing(cn, c,O(c)).
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6:8 Embedding Graphs into Two-Dimensional Simplicial Complexes

First, a definition. Consider a map f : P → V (G) ∪ {ε}, where P is a set of nodes in C

containing all singular nodes of C . We say that an embedding Γ of G in C respects f if,
for each p ∈ P , the following holds: If f(p) = ε, then p is not in the image of Γ; otherwise,
Γ(f(p)) = p.

In this section, we will need the following intermediate problem:
Embed-Resp(n,m, c):
Input: A graph G with at most n vertices and edges; a 2-complex C (not necessarily pure)
with at most c simplices that contains no 3-books; a map f as above with domain of size at
most m.
Question: Does G have an embedding into C respecting f?

I Lemma 5. Any instance of Embed(n, c) reduces to (O(cn))c instances of Embed-
Resp(cn, c, c).

Proof. Let (G,C ) be an instance of Embed(n, c). By Proposition 3, we can without loss
of generality assume that C contains no 3-books. Let G′ be the graph obtained from G by
subdividing each edge k times, where k ≤ c is the number of singular nodes of C . We claim
that G has an embedding into C if and only if G′ has an embedding Γ′ into C such that
each singular node of C in the image of Γ′ is the image of a vertex of G′.

Indeed, assume that G has an embedding Γ on C . Each time an edge of G is mapped,
under Γ, to pass through a singular node p of C , we subdivide this edge and map this new
vertex to p; the image of the embedding is unchanged. This ensures that only vertices are
mapped to singular nodes. Moreover, there were at most k subdivisions, one per singular
node. So, by further subdividing the edges until each original edge is subdivided k times, we
obtain an embedding of G′ to C such that only vertices are mapped on singular nodes. The
reverse implication is obvious: If G′ has an embedding into C , then so has G. This proves
the claim.

To conclude, for each map f from the set of singular vertices of C to V (G′) ∪ {ε}, we
solve the problem whether G′ has an embedding on C respecting f . The graph G embeds
on C if and only if the outcome is positive for at least one such map f . By construction,
there are at most (kn+ 1)k = (O(cn))c such maps, because V (G′) has size at most kn. J

I Lemma 6. Embed-Resp(n,m, c) reduces to EEP-Sing(n,m,O(c)).

Proof. Let (G,C , f) be an instance of Embed-Resp(n,m, c). Formally, we describe a set
of transformations on C , G, and f . The invariant is that they preserve the existence or
non-existence of an embedding of G into C respecting f .

Step 1. We start by iterating the following procedure: While there exists a degree-two
vertex v of G that is not in the image of f and whose two neighbors are distinct, we dissolve v.
(By dissolving a degree-two vertex v, incident to edges vv1 and vv2, we mean removing v and
replacing vv1 and vv2 with a single edge v1v2.) It is clear that the original graph G has an
embedding in C respecting f if and only if the new graph (still called G) has an embedding
in C respecting f .

Step 2. If a singular node is not used, then we can remove it without affecting the
embeddability of G. However, removing a vertex from a 2-complex does not yield a 2-complex.
We thus define a 2-complex that has the same properties. Let p be a singular node of a
2-complex C . Let T be the set of triangles and segments of C incident with p, uniquely
partitioned into T1, . . . , Tk, where each Ti is either a cone, a corner, or an isolated segment.
The withdrawal of p from C is the complex obtained by doing the following operation for
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each i = 1, . . . , k: We first create a new node pi, and then replace, in each triangle and edge
of Ti, the node p by pi.

For every singular node p of C such that f(p) = ε and incident to at least two segments,
we withdraw p from C . For each created node pi, we let f(pi) = ε. The fact that G embeds, or
not, on C respecting f is preserved: Indeed, if G embeds on the original complex respecting f ,
then this corresponds to an embedding on the complex obtained by withdrawing p, and
avoiding p1, . . . , pk, thus respecting f ; conversely, if G embeds on the complex obtained by
withdrawing p, respecting f , then it avoids the pis, and, after identifying together the nodes
pi, 1 ≤ i ≤ k, to a single point p, this embedding avoids p, and thus respects f .

Step 3. At this point, every singular node p with f(p) = ε is incident to exactly
one segment, and to no triangle. For each isolated segment pq of C such that u := f(p)
and v := f(q) are both different from ε, and G contains an edge uv connecting u and v, we
remove uv from G and remove pq from C . We need to prove that this operation does not
affect the (non-)existence of an embedding of G respecting f . First, assume that, initially,
there was an embedding Γ of G on C respecting f ; then either segment pq is used by uv, in
which case clearly there is still an embedding after this operation, or edge uv does not use
segment pq at all, in which case we can first modify Γ by embedding edge uv on segment pq
and by moving the edges on pq on the space where uv was before, so we are now in the
previous case. Conversely, if after this operation G has an embedding on C respecting f ,
trivially it is also the case before.

Step 4. For each isolated segment pq of C such that u := f(p) and v := f(q) are both
different from ε, but G contains no edge connecting u and v, we do the following. In C , we
remove pq and add a new segment p′q′ where p′ and q′ are new nodes; we also extend f by
letting f(p′) = f(q′) = ε. Finally, if G contains at least one edge of the form ux, where x
has degree one and is not in the image of f , we remove a single such edge; similarly, if it
contains at least one edge of the form vy, where y has degree one and is not in the image
of f , we remove a single such edge. This operation does not affect our invariant, for similar
reasons; for example, if initially there was an embedding of G respecting f , then the relative
interior of segment pq can only contain (a) connected components of G, each reduced to a
single edge of G, which we can re-embed on the new segment p′q′, or (b) edges of the form
ux or vy, where x and y have degree one and are not in the image of f .

Step 5. For each isolated segment pq where u := f(p) is different from ε but f(q) = ε,
we remove pq from C and add a new segment p′q′ where p′ and q′ are new nodes; we also
extend f by letting f(p′) = f(q′) = ε. Finally, if G contains at least one edge of the form
ux, where x has degree one and not in the image of f , we remove a single such edge. The
invariant is preserved, for reasons similar to the previous case.

Step 6. Now, every segment of the complex (still called C ) is incident to one or two
triangles, except perhaps some segments that are themselves connected components of C

and whose endpoints are not in the domain of f . If there is at least one such segment, we
remove all of them from C , and remove all edges uv from G that are themselves connected
components of G and such that u and v are not in the image of f ; as above, this does not
affect whether G embeds into C respecting f .

Step 7. Finally, for each node p of C incident to no segment, such that u := f(p) is
different from ε, we do the following: If u has degree zero, we remove p and u; otherwise,
we immediately return that G does not embed into C respecting f . For each node p of C

that is incident to no segment and such that f(p) = ε, we remove p, and remove a single
degree-zero vertex of G not in the image of f , if one exists.
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Conclusion. Now, C has no node that is itself a connected component; each of its
segments is incident to one or two triangles. Also, f maps each singular node of C to a
vertex of G. It may map some other nodes of C to ε, but such nodes are non-singular and,
if an embedding uses them, a slight perturbation will avoid them, so we can remove the
nodes p such that f(p) = ε from the domain of f without affecting the result. Now, we have
an EEP as specified in the statement of Proposition 4.

Finally, it is easy to check that, in each of the seven steps above, the numbers of vertices
and edges of G do not increase, and the number of simplices of C increase by at most a
multiplicative constant. Moreover, the domain of f also does not increase (it increases when
we withdraw singular nodes, but the images of the new nodes are ε, and such nodes are later
removed from the domain of f). J

Proof of Proposition 4. It follows immediately from Lemmas 5 and 6. J

4 Reduction to an EEP on a possibly disconnected surface

The previous section led us to an embedding extension problem in a pure 2-complex without
3-books where the images of some vertices are predetermined. Now, we show that solving
such an EEP amounts to solving another EEP in which the complex is a surface:
EEP-Surf(n,m, c):
Input: A graph G with at most n vertices and edges; a subgraph H of G with at most m
branches; an embedding Π of H into a possibly disconnected surface S without boundary,
represented as a triangulation T with at most c simplices, such that Π and T have O(c)
crossings.
Question: Does G have an embedding into S extending Π?

To represent the embedding Π in such an EEP instance (G,H,Π,S ), it will be convenient
to use the fact that, in all our constructions below, the image of every connected component
of H under Π will intersect the 1-skeleton of S at least once, but only in a finite number of
points. (Note that H may use some nodes of S .) Consider the overlay of the triangulation
of S and of Π, the union of the 1-skeleton of S and of the image of Π; this overlay is the
image of a graph on S ; each of its edges is either a piece of the image of an edge of H or a
piece of a segment of S ; each of its vertices is the image of a vertex of H and/or a node
of S , or an intersection point between the 1-skeleton of S and the image of Π. By the
assumption above on Π, this overlay is cellularly embedded on S , and we can represent it
by its combinatorial map [20, 11] (possibly on surfaces with boundary, since at intermediary
steps of our construction we will have to consider such surfaces).

In this section, we prove the following proposition.

I Proposition 7. Any instance of EEP-Sing(n,m, c) reduces to an instance of EEP-
Surf(O(n+m+ c), O(m+ c), O(c)).

We will first reduce the original EEP to an intermediary EEP on a surface with boundary.

I Lemma 8. Any instance of EEP-Sing(n,m, c) reduces to an instance of EEP-Sing(n+
O(c),m+O(c), O(c)) in which the considered 2-complex is a possibly disconnected surface
with boundary.

Proof. Let (G,H,C ,Π) be an instance of EEP-Sing(n,m, c). The key property that we
will use is that, since C is pure and contains no 3-books, each singular node is incident to
cones and corners only.
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Figure 2 The modification of singular vertices in the proof of Lemma 8. We transform the
neighborhood of each singular vertex to make it surface-like. Moreover, we add to H one loop per
cone or corner, and for each corner, we add a vertex and an edge.

Figure 3 In the proof of Lemma 8, we push some parts of the graph outside Sp by an ambient
isotopy of S that moves a small enough open disk or annulus (in blue), which is disjoint from Lp

and Ep, to a larger part.
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Figure 2 illustrates the proof. Let (G,H,Π,C ) be the instance of EEP-Sing. We first
describe the construction of the instance (G′, H ′,Π′,S ) on the possibly disconnected surface
with boundary. Let p be a singular node; we modify the complex in the neighborhood of p
as follows. Let cp be the number of cones at p and c′p be the number of corners at p. We
remove a small open neighborhood Np of p from C , in such a way that the boundary of Np

is a disjoint union of cp circles and c′p arcs. We create a sphere Sp with cp + c′p boundary
components. Finally, we attach each circle and arc to a different boundary component of Sp,
choosing an arbitrary orientation for each gluing; circles are attached to an entire boundary
component of Sp, while arcs cover only a part of a boundary component of Sp. Doing this for
every singular node p, we obtain a surface (possibly disconnected, possibly with boundary),
which we denote by S .

We now define H ′, G′, and Π′ from H, G, and Π (again, refer to Figure 2). Let p be
a singular node of C and vp the vertex of H mapped on p by Π. In H (and thus also G),
we add a set Lp of cp + c′p loops with vertex vp. Let qp be a point in the interior of the
punctured sphere Sp; in Π, we map vp to qp, and we map these cp + c′p loops on Sp in such a
way that each loop encloses a different boundary component of Sp (thus, if we cut Sp along
these loops, we obtain cp + c′p annuli and one disk).

Finally, we add to H (and thus also to G) a set Ep of c′p new edges, each connecting
vp to a new vertex. In Π, each new vertex is mapped to the boundary component of Sp

corresponding to a corner, but not on the corresponding arc.
Let us call G′ and H ′ the resulting graphs, and Π′ the resulting embedding of H ′. Note

that, from the triangulation of C with c simplices, we can easily obtain a triangulation
of S with O(c) simplices, and that the image of each edge of H crosses O(1) edges of this
triangulation.

It remains to prove that the two EEPs constructed are equivalent.
Let us first prove that any solution Γ of the EEP instance (G,H,Π,C ) yields a solution

of the EEP instance (G′, H ′,Π′,S ). Let p be a singular node of C , and let vp be the vertex
of H mapped to p. We need to modify Γ locally in the neighorhood Np of p that is removed
when transforming C to S . Without loss of generality, up to an ambient isotopy of Γ that
does not move H, we can assume that the image of Γ intersects Np exactly in straight line
segments having p as one endpoint. To build a solution of (G′, H ′,Π′,S ), we first remove
the part of Γ inside Np, and we reconnect qp (to which vp is mapped) to each point of the
image of Γ lying on the boundary of Np, by paths on Sp; this is certainly possible because
each point of Sp not in the image of Ep ∪ Lp can be connected to qp by a path that does not
meet the image of Ep ∪ Lp (except at qp). Thus, (G′, H ′,Π′,S ) has a solution.

Conversely, let Γ′ be a solution of the EEP (G′, H ′,Π′,S ); we build a solution of
(G,H,Π,C ). As above, let qp be a point of S that was obtained from a singular node p
of C . We now show that we can assume that Γ does not enter Sp, except for vp, Ep, Lp, and
the edges in G′ incident to vp.

First, let Dp be the connected component of Sp minus the image of Lp that is a disk.
The part of Γ lying in Dp corresponds to a planar subgraph of G, connected to the rest of G
by vp only; we can re-embed this planar subgraph of G in Sp \Dp. Next, consider a cone
at p. The part of Sp enclosed by the corresponding loop of Lp is an annulus; the situation is
as on Figure 3, top, and, by an ambient isotopy of S , we can push the part of Γ that lies in
the annulus outside it, except for those edges touching vp. Finally, consider a corner at p,
and the annulus that is the part of Sp enclosed by the corresponding loop in Lp. The local
picture for this part of Sp is as shown on Figure 3, bottom, and similarly by an ambient
isotopy of S we can push the part of Γ on Sp outside it, except for those edges touching vp.
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Figure 4 The removal of boundary components in the proof of Lemma 9. We attach a disk to
every boundary component of the surface. Moreover, if there is a boundary component c containing
at least one vertex of H, say v1, . . . , vk, we add to H a new vertex v, mapped inside the corresponding
disk, and add, in H, one edge between v and each of the vis, that edge being mapped inside the disk.

Now, a solution of (G,H,Π,C ) can be obtained by the following procedure, for each of
the singular nodes p: (1) Remove the sphere Sp, together with the image of Γ inside Sp; (2)
add the neighborhood Np of p; (3) reconnect to p the points on the image of Γ that lie on
the boundary of Np. J

We now deduce from the previous EEP the desired EEP on a surface without boundary.

I Lemma 9. Any instance of EEP-Sing(n,m, c) on a possibly disconnected surface with
boundary reduces to an instance of EEP-Surf(n+O(m), O(m), O(c)).

Proof. Figure 4 illustrates the proof. Let (G,H,Π,S ) be an instance of EEP-Sing on a possi-
bly disconnected surface with boundary. We first describe the construction of (G′, H ′,Π′,S ′),
the instance of EEP-Surf.

Let S ′ be obtained from S by gluing a disk Db along each boundary component. Let
b be a boundary component of S . If Π maps at least one vertex to b, then we add to H
(and thus also to G) a new vertex vb, which we connect, also by a new edge, to each of
the vertices mapped to b by Π. We extend Π by mapping vertex vb and its incident edges
inside Db. Let us call G′ and H ′ the resulting graphs, and Π′ the resulting embedding of H ′.
For each vertex of H on a boundary component, we added to H and G at most one vertex
and one edge and thus at most two branches. There remains to prove that these two EEPs
are equivalent. Clearly, any solution of (G,H,Π,S ) yields a solution of (G′, H ′,Π′,S ′).
Conversely, let Γ′ be a solution of (G′, H ′,Π′,S ′); we build a solution of (G,H,Π,S ). Let
b be a boundary of S . There are two cases:

If no vertex of H is mapped to b, then Π′ maps H ′ outside the closure of Db, so, by an
ambient isotopy of Γ′ that does not move H ′, we can push Γ′ outside Db.
Otherwise, the disk Db is split into sectors by the edges of Π′(H ′) incident to vb. The
pieces of Π′(H −H ′) in a given sector can be pushed out from that sector by an ambient
isotopy that keeps the image of H ′ fixed.

After doing this for every boundary component b, we obtain that the restriction of Γ′ to G is
a solution of (G,H,Π,S ). J

Finally:

Proof of Proposition 7. It suffices to apply Lemmas 8 and 9. J
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5 Reduction to a cellular EEP on a surface

Let us consider the following problem.
EEP-Cell(n,m, g):
Input: A graph G with at most n vertices and edges; a subgraph H of G with at most m
branches, intersecting every connected component of G; a cellular embedding Π of H into a
surface S (connected and without boundary) with genus at most g.
Question: Does G have an embedding into S extending Π?

In this section, we prove the following proposition.

I Proposition 10. Any instance of EEP-Surf(n,m, c) reduces to (n+m+c)O(m+c) instances
of EEP-Cell(O(n+m+ c), O(m+ c), c).

For the proof of Proposition 10, which is given in the rest of Section 5, it will be necessary
not to store an embedding Π of a graph G on a surface S by its overlay with the triangulation,
as was done in the previous section. Instead, we forget the triangulation. In other words,
we have to store the combinatorial map corresponding to Π, but taking into account the
fact that Π is not necessarily cellular. We need to store, for each face of the embedding,
whether it is orientable or not, and a pointer to an edge of each of its boundary components
(with some orientation information). Such a data structure is known under the name of
extended combinatorial map [6, Section 2.2] (only orientable surfaces were considered there,
but the data structure readily extends to non-orientable surfaces). We start by converting
(in polynomial time) the instance of EEP-Surf(n,m, c) to this representation; note that
the genus of the surface S in the instance of EEP-Surf is at most c.

5.1 Reduction to connected surfaces
We first build intermediary EEPs over connected surfaces:
EEP-Conn(n,m, g):
Input: A graph G with at most n vertices and edges; a subgraph H of G with at most
m branches intersecting every connected component of G; an embedding Π of H into a
surface S (connected and without boundary) with genus at most g.
Question: Does G have an embedding into S extending Π?

I Lemma 11. Any instance of EEP-Surf(n,m, c) reduces to O(c(m + c)c) instances of
EEP-Conn(n,m+ c, c).

More precisely (and this is a fact that will be useful to prove that Embed is in NP, see
Theorem 2), any instance of EEP-Surf(n,m, c) is equivalent to the disjunction (OR) of at
most (m + c)c instances, each of them being the conjunction (AND) of O(c) instances of
EEP-Conn(n,m+ c, c).

Proof. Let (G,H,Π) be an instance of EEP-Surf(n,m, c). We start by removing the
connected components of G that are planar and disjoint from H. (Testing planarity takes
linear time [14].) This does not change the solution of the EEP, because such connected
components can be embedded on an arbitrarily small planar portion of S (provided S

is non-empty, but otherwise the original EEP-Surf instance can be solved trivially). So
without loss of generality, every connected component of G disjoint from H is non-planar.
Let V0 be an arbitrary set of vertices, one per non-planar connected component of G disjoint
from H. Without loss of generality, the number of vertices in V0 is at most the genus of S ,
and hence at most c, because otherwise the initial EEP has no solution.
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Let H ′ := H ∪ V0; every connected component of G intersects H ′. For each vertex of V0,
we guess the face of Π it has to be embedded in, and extend Π accordingly, by adding the
images of V0 in Π; let Π′ be the resulting embedding of H ′. By the previous paragraph, the
number of these guesses is at most (m+ c)|V0| ≤ (m+ c)c. It is clear that the initial EEP
has a solution if and only if one of these EEPs (G,H ′,Π′,S ) has a solution.

These EEPs are almost of the form announced in the lemma, except that S can be
disconnected. However, in any solution of this EEP, we know the connected component of S

each connected component of G has to embed in, because each connected component of G
intersects H. We can thus reformulate the EEP as the conjunction of several EEPs, one per
connected component of S . (Of course, we can discard the connected components of S

disjoint from H.) J

5.2 Simplifying the faces
The strategy for the proof of Proposition 10 is as follows. For each EEP (G′, H ′,Π′,S ′) from
the previous lemma, we will extend H ′ to make it cellularly embedded in S by adding either
paths connecting two boundary components of a face of H ′, or paths with endpoints on the
same boundary component of a face of H ′ in a way that the genus of the face decreases. We
first define an invariant that will allow us to control the number of steps needed until this
process terminates.

Let Π be an embedding of a graph H on a surface S . The cellularity defect of
(H,Π,S ) is the non-negative integer

cd(H,Π,S ) :=
∑

f∈F(Π)

genus(f) +
∑

f∈F(Π)

(number of boundaries of f − 1)

where F(Π) denotes the set of faces of Π.
Some obvious remarks: Π can contain isolated vertices. By convention, each of them

counts as a boundary component of the face of Π it lies in. With this convention, every face
of H has at least one boundary component, except in the very trivial case when G is empty.
This implies that Π is a cellular embedding if and only if cd(H,Π,S ) = 0. We will also use
the following property, usually without mentioning it.

I Lemma 12. Let S be a surface with genus g and let H be a graph with m branches that
is embedded in S . Then cd(H,Π,S ) < 2m+ g.

Proof. We have∑
f∈F(Π)

genus(f) ≤ genus(S ) = g.

Similarly, every boundary component contains a branch of H and each branch of H partic-
ipates in at most two boundary components (or twice in the same boundary component).
Thus,∑

f∈F(Π)

(number of boundaries of f − 1) ≤ 2m. J

We need some auxiliary definitions and lemmas. The reversal of a walk w in a graph is
denoted by w̄. The concatenation of two walks w and w′ is denoted by w · w′. We use the
same notation for paths on a surface. A lollipop in a graph is a closed walk of the form
p · q · p̄, where p is a (simple) path (possibly reduced to a single vertex) and q is a cycle, such

CGT



6:16 Embedding Graphs into Two-Dimensional Simplicial Complexes

that p and q share exactly one vertex (the end-vertex of p). The basepoint of the lollipop
is the initial vertex of p. The following lemma reduces an EEP to EEPs with a smaller
cellularity defect.

I Lemma 13. Let (G,H,Π,S ) be an instance of EEP-Conn(n,m, g) such that (H,Π,S )
has positive cellularity defect. Then this instance reduces to O(m2n2) instances (G′, H ′,Π′,S )
of EEP-Conn(n+ 1,m+ 3, g) where cd(H ′,Π′,S ) < cd(H,Π,S ). For each such instance,
the graph G′ is obtained from G by adding exactly one edge, and the subgraph H ′ is obtained
from H by adding a path or a lollipop containing the added edge that is embedded under Π′
in one of the faces of the embedding Π of H in such a way that it does not separate that face.

Admitting Lemma 13, the proof of Proposition 10 is straightforward:

Proof of Proposition 10. Starting with an instance of EEP-Surf(n,m, c), we first apply
Lemma 11, obtaining O(c(m+ c)c) instances of EEP-Conn(n,m+ c, c). To each of these
EEPs, we apply recursively Lemma 13 until we obtain cellular EEPs. The cellularity defect
of the initial instance (G,H,Π,S ) is O(m+ c), by Lemma 12. Thus, the number of instances
of EEP-Cell at the bottom of the recursion tree is (n+m+ c)O(m+c), in each of which the
size of the graph is O(n+m+ c), the pre-embedded subgraph has O(m+ c) branches, and
the surface is the same, thus having genus at most g. J

5.3 Proof of Lemma 13
It remains to prove Lemma 13. The proof uses standard notions in surface topology, homotopy,
and homology. We refer to textbooks and surveys [26, 30, 5]. We only consider homology
with coefficients in Z/2Z.

Let f be a surface with a single boundary component and let a be a (possibly non-
simple) arc in f intersecting the boundary component of f exactly at its endpoints. If we
contract the boundary component to a single point, the arc a becomes a loop, which can be
null-homologous or non-null-homologous, and one-sided or two-sided. We employ the same
adjectives, null-homologous, non-null-homologous, one-sided, and two-sided, for the arc a.

I Lemma 14. Let f be a surface with boundary, let b be a point in the interior of f , and let
b1, b2, and b3 be points on the boundary of f . For each i, let pi be a (possibly non-simple)
path connecting bi to b. Let a1 = p2 · p̄3, a2 = p3 · p̄1, and a3 = p1 · p̄2. Let P be any of the
following possible properties of the arcs ai:

“the endpoints of ai lie on the same boundary component of f”;
“ai is null-homologous” (if b1, b2, and b3 lie on the same boundary component);
“ai is two-sided” (if b1, b2, and b3 lie on the same boundary component).

Then the following holds: If both a1 and a2 have property P, then so has a3.

(We remark that being null-homologous or two-sided makes only sense for arcs with endpoints
on the same boundary component, whence the restriction that f has a single boundary
component in the second and third items.)

Proof. This is a variant on the 3-path condition from Mohar and Thomassen [26, Section 4.3].
The first item is immediate. The second one follows from the fact that homology is an
algebraic condition: The concatenation of two null-homologous paths is null-homologous,
and removing spurs (subpaths of the form q · q̄) from a path does not affect homology. The
third one is similar: The concatenation of two two-sided paths is two-sided, and removing
spurs does not affect sidedness. J
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I Lemma 15. Let G be a graph, H a subgraph of G, and Π be an embedding of H on S . Let
K be a subgraph of G that is either a (simple) path intersecting H exactly at its endpoints, or a
lollipop intersecting H exactly at its basepoint. Also, assume that there exists an embedding Π′
of H∪K extending Π such that the embedding of K does not separate the face f of Π it belongs
to. Let f ′ be the face of Π′ corresponding to f . Then cd(H ∪K,Π′,S ) = cd(H,Π,S )− 1.
Moreover:
1. If K has its endpoints on two distinct boundary components of f , then f ′ has the same

genus and orientability character as f , and one boundary component less than f .
2. If K has its endpoints on the same boundary component of f , then we have the following

possibilities:
if K is two-sided, then the genus of f ′ equals that of f , minus two, and the number of
boundary components of f ′ equals that of f , plus one;
if K is one-sided, then f is non-orientable, the genus of f ′ equals that of f minus one,
and the number of boundary components of f ′ equals that of f . Moreover:

if the genus of f is one, then f ′ is orientable;
if the genus of f is even, then f ′ is non-orientable.

Proof. Let us first prove that cd(H ∪K,Π′,S ) = cd(H,Π,S )− 1. By the choice of K, we
have that the Euler characteristic of f ′ exceeds that of f exactly by one. (Proof: The Euler
characteristic is a topological invariant. Take any triangulation T of f containing K. If K
is a path, cutting T along K to obtain a triangulation of f ′ duplicates p + 1 vertices and
p edges of T , where p is the number of edges of K, so the Euler characteristic increases by
one. The same statement holds if K is a lollipop.) Moreover, the Euler characteristic of f
equals two, minus its genus, minus its number of boundary components, and similarly for f ′.
The result on the cellularity defect follows.

The other assertions also follow from Euler characteristic arguments. Specifically, we
first remark that, in all cases, the claim on the number of boundary components of f ′ is
correct (this only depends on whether K connects the same or different boundary components
of f , and whether it is one- or two-sided). Then the genus follows, as above, from Euler
characteristic arguments. The claims on the orientability use the following facts: If f is
orientable, then so is f ′; if f ′ has genus zero, then it is orientable; if f ′ has odd genus, then
it is non-orientable. J

Proof of Lemma 13. Since cd(H,Π,S ) ≥ 1, there must be a face f of H with either (1) at
least two boundary components, or (2) a single boundary component but positive genus. We
will consider each of these cases separately, but first we introduce some common terminology.

Let F be an arbitrary spanning forest of G−E(H) rooted at V (H), namely, a subgraph
of G − E(H) that is a forest with vertex set V (G) such that each connected component
of F contains exactly one vertex of V (H), its root. The algorithm starts by computing an
arbitrary such forest F in linear time.

For each vertex u of G, let r(u) be the unique root in the same connected component
of F as u, and let F (u) be the unique path connecting u to r(u). If u and v are two vertices
of G, let Guv be the graph obtained from G by adding one edge, denoted uv, connecting u
and v. (This may be a parallel edge if u and v were already adjacent in G, but in such a
situation when we talk about edge uv we always mean the new edge.) Let F (uv) be the
unique walk in G between u and v that is the concatenation of F (u), edge uv, and F (v).
Thus, F (uv) intersects H precisely at its endpoints. Note that F (uv) is either a path with
its ends in H or a lollipop with its basepoint in H (and otherwise disjoint from H).
Case 1: f has at least two boundary components.
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u

v

u
r(u) r(v)

Figure 5 Illustration of the proof of Lemma 13, case 1. Face f of H is an annulus. Only the
spanning forest F , together with edge uv, are shown. The thick lines depict F (uv) (a path), with
edge uv even thicker.

Assume that (G,H,Π,S ) has a solution Γ. We claim that, for some vertices u and v
of G, the embedding Γ extends to an embedding of Guv in which the image of F (uv) lies in f
and connects two distinct boundary components of f (see Figure 5).

Indeed, let γ be a curve drawn in f connecting two vertices of H in different boundary
components of f and chosen such that it intersects the boundary of f exactly at its endpoints.
We can deform γ so that it intersects Γ only at the images of vertices, and never in the
relative interior of an edge. We can, moreover, assume that γ is simple (except perhaps that
its endpoints may coincide if they join occurrences of the same vertex in different boundary
components of f). Let v1, . . . , vk be the vertices of G encountered by γ, in this order. We
denote by γ[i, j] the segment of γ between vertices vi and vj . For some i, we have that
F (vi) · γ[i, i+ 1] · F (vi+1) connects two different boundary components of f : Otherwise, by
induction on i, applying the first case of Lemma 14 to the three paths γ[1, i], F (vi), and
γ[i, i + 1] · F (vi+1), we would have that, for each i, γ[1, i] · F (vi) has its endpoints on the
same boundary component of f , which is a contradiction for i = k (for which the curve is γ).
So let i be such that F (vi) · γ[i, i+ 1] · F (vi+1) connects two different boundary components
of f . By letting u = vi and v = vi+1, and embedding the edge uv as γ[i, i + 1], gives the
desired embedding of Guv. This proves the claim.

By definition of F (uv), and since it connects two distinct boundary components of f , it
is actually a path (without repeated vertices) in f . (Its endpoints may coincide on S .) The
strategy now is to guess the vertices u and v and the way the path F (uv) is drawn in f ,
and to solve a set of EEPs (Guv, H ∪ F (uv),Π′,S ) where Π′ is chosen as an appropriate
extension of Π.

Case 1a: Let us first assume that f is orientable. One subtlety is that, given u and v,
there can be several essentially different ways of embedding F (uv) inside f , if there is more
than one occurrence of r(u) and r(v) on the boundary of f . So we reduce our EEP to the
following set of EEPs: For each choice of vertices u and v of G, and any occurrences of
r(u) and r(v) on the boundary of f , we consider the EEP (Guv, H ∪ F (uv),Π′,S ) where Π′
extends Π and maps F (uv) to an arbitrary path in f connecting the chosen occurrences of
r(u) and r(v) on the boundary of f .

It is clear that, if one of these new EEPs has a solution, the original EEP has a solution.
Conversely, let us assume that the original EEP (G,H,Π,S ) has a solution; we now prove
that one of these new EEPs has a solution. By our claim above, for some choice of u
and v, some EEP (Guv, H ∪ F (uv),Π′′,S ) has a solution, for some Π′′ mapping F (uv)
inside f and connecting different boundary components of f . In that mapping, F (uv)
connects two occurrences of r(u) and r(v) inside f . We prove that, for these choices of
occurrences of r(u) and r(v), the corresponding EEP described in the previous paragraph,
(Guv, H ∪ F (uv),Π′,S ), has a solution as well. These two EEPs are the same except that
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u

v

r(u) = r(v)

Figure 6 Illustration of the proof of Lemma 13, case 2. Face f of H is a torus with a single
boundary component. Only the spanning forest F , together with edge uv, are shown. The thick
lines depict F (uv) (a lollipop), with edge uv even thicker.

the path F (uv) may be drawn differently in Π′ and Π′′, although they connect the same
occurrences of r(u) and r(v) on the boundary of f . By Lemma 15, under Π′, the face f is
transformed into a face f ′ that has the same genus and orientability character as f , but one
boundary component less. The same holds, of course, for Π′′. Moreover, the ordering of
the vertices on the boundary components of the new face is the same in Π′ and Π′′. Thus,
there is a homeomorphism h of f that keeps the boundary of f fixed pointwise and such that
h ◦Π′′|F (uv) = Π′|F (uv). This homeomorphism, extended to the identity outside f , maps any
solution of (Guv, H ∪ F (uv),Π′′,S ) to a solution of (Guv, H ∪ F (uv),Π′,S ), as desired.

It also follows from Lemma 15 that the cellularity defect decreases by one. To conclude this
case, we note that the number of new EEPs is O(m2n2): indeed, there are O(n) possibilities
for the choice of each of u and v, and O(m) possibilities for the choice of each of the occurrence
of r(u) and r(v) on the boundary of f .

Case 1b: Let us assume that f is non-orientable. The same argument works, except that
there are two possibilities for the cyclic ordering of the vertices along the new boundary
component of the new face: If we walk along one of the boundary components of f (in an
arbitrary direction), use p, and walk along the other boundary component of f , we do not
know in which direction this second boundary component is visited. So we actually need to
consider two EEPs for each choice of u, v, and occurrences of r(u) and r(v), instead of one.
The rest is unchanged.
Case 2: f has a single boundary component and positive genus. The proof is similar
to Case 1. The main difference is that, instead of curves connecting different boundary
components of f , we now consider curves in f that are non-null-homologous. Another
difference is that the walks F (uv) may repeat vertices and edges; however, by construction,
F (uv) is either a (simple) path or a lollipop.

Case 2a: Let us assume that f is orientable. Assume that (G,H,Π,S ) has a solution Γ.
We claim that, for some vertices u and v of G (allowing the possibility that u = v), the
embedding Γ extends to an embedding of Guv in which the image of F (uv) lies in f and is
non-null-homologous. See Figure 6. The proof is similar in spirit to the corresponding claim
in Case 1: We let γ be a non-null-homologous curve in f intersecting the boundary of f
exactly at its endpoints; we can assume similarly as before that it is simple and intersects
only vertices of Γ, in the order v1, . . . , vk. For some i, F (vi) · γ[i, i + 1] · F (vi+1) must be
non-null-homologous, by induction and by Lemma 14; this gives an embedding of Guv.

So we reduce the original EEP to the following set of EEPs: For each choice of vertices
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u and v of G, and each occurrence of r(u) and r(v) on the boundary of f , we consider the
EEP (Guv, H ∪ F (uv),Π′,S ) where Π′ extends Π and embeds F (uv) in f in such a way
that (1) F (uv) is non-null-homologous, and (2) F (uv) connects the chosen occurrences of
r(u) and r(v) on the boundary of f . As before, the only subtlety is to prove that, if we have
two EEPs (Guv, H ∪ F (uv),Π′,S ) and (Guv, H ∪ F (uv),Π′′,S ) such that F (uv) are not
embedded exactly in the same way in Π′ and Π′′, but are non-null-homologous in f and
connect the same occurrences of r(u) and r(v) on the boundary of f , then these EEPs are
equivalent. This follows from Lemma 15: The image of F (uv) in Π′ is non-null-homologous,
thus non-separating, and thus cuts f into a face that is an orientable surface with two
boundary components and with (Euler) genus that of f minus two; the same holds in Π′′.
Moreover, the ordering of the vertices along the boundary components of the new face is the
same in both Π′ and Π′′. Thus, as in the previously treated case, there is a homeomorphism h

of f that keeps the boundary of f fixed pointwise and such that h ◦ Π′′|F (uv) = Π′|F (uv).
We complete the proof in the same way as before. It also follows from Lemma 15 that the
cellularity defect decreases by one. The number of these new EEPs is O(m2n2).

Case 2b: Let us assume that f is non-orientable. Also assume that (G,H,Π,S ) has
a solution Γ. We claim that, for some vertices u and v of G (allowing the possibility that
u = v), the embedding Γ extends to an embedding of Guv in which the image of F (uv) lies
in f and is one-sided. The proof is as in Case 1a, replacing “non-null-homologous” with
“one-sided”.

Then, the genus of f is even or equal to 1, then a similar argument can be used: Regardless
of the way we embed F (uv) in a way that (1) it is one-sided and (2) it connects the chosen
occurrences r(u) and r(v) on the boundary of f , cutting f along F (uv) results in a surface
whose topology is uniquely determined, by Lemma 15. (Note that F (uv) is non-separating
because it is one-sided.) Moreover, the ordering of the vertices along the boundary of the
new face is uniquely determined. The cellularity defect also decreases by one, and the same
argument as above concludes.

Finally, if the genus of f is odd and at least three, then cutting f along F (uv) results
in a surface in which the ordering of the vertices along the single boundary component is
uniquely determined, but this surface, with one boundary component and with genus that
of f minus one, can be orientable or not. Thus, for each choice of vertices u and v of G, and
each occurrence of r(u) and r(v) on the boundary of f , we actually need to consider two
EEPs, one in which F (uv) is embedded as a one-sided curve in a way that it cuts f into
an orientable surface, and one in which F (uv) is embedded in a way that it cuts f into a
non-orientable surface. The rest of the argument is unchanged. J

6 Solving a cellular EEP on a surface

I Theorem 16 ([25]). There is a computable function f : N2 → N such that every instance
of EEP-Cell(n,m, c) can be solved in time f(m, c) ·O(n).

When solving EEPs on surfaces, a useful property of the embedded subgraph is the
following one. We say that a subgraph H of G has property (E) if H has no local bridges.
This means that every branch of H forms an induced subgraph of G, and for every connected
component of G− V (H), its neighbors in H are not all contained in a single branch of H. In
fact, what we need is a weaker version of property (E) where we first prescribe a subset V0
of vertices of H, where V0 contains all vertices whose degree in H is different from two, and
possibly a constant number of vertices whose degree in H is equal to two. To each vertex
in V0, whose degree is 2 in H, we add an edge to make it a degree-3 vertex. Let Ĥ be
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the resulting graph. Then we say that H has property (E) with respect to V0 if the above
property holds with respect to the branches of Ĥ.

Proof of Theorem 16. This is essentially the main result from [25]. The algorithm from [25]
first reduces the problem to an instance (G′, H ′,Π′,S ) such that H ′ satisfies property (E)
with respect to a subset V0 that contains all vertices of H of degree different from two (all
these are also vertices in H ′ of degree different from two) plus a constant number of vertices
of degree two in H ′, where this constant number is bounded from above in terms of the
genus of S , which is itself bounded from above by c. For this purpose, [25] relies on another
paper [15]. After achieving this property, the paper [25] reduces the EEP to a constant
number (where the constant depends on c) of “simple” extension problems [25, Section 4],
which are then solved in [25, Theorem 5.4]. J

7 Proof of Theorems 1 and 2

We can finally prove our main results. First, let us prove that we have an algorithm with
complexity f(c) · nO(c) for some computable function f .

Proof of Theorem 1. This immediately follows from Propositions 3, 4, 7, 10, and The-
orem 16. Consider an instance of Embed(n, c). Proposition 3 allows to discard the 2-
complexes containing a 3-book. Proposition 4 reduces the problem to (cn)O(c) instances
of EEP-Sing(cn, c,O(c)). Proposition 7 reduces each such instance into an instance of
EEP-Surf(O(cn), O(c), O(c)). Proposition 10 reduces that instance into O(cn)O(c) instances
of EEP-Cell(O(cn), O(c), O(c)). Theorem 16 shows that each such instance can be solved in
time f(O(c), O(c)) ·O(cn) ≤ f0(c)n for an appropriate computable function f0 : N→ N. J

Finally, we prove that the problem Embed is NP-complete:

Proof of Theorem 2. Let us first prove that the problem is NP-hard. The following problem
Graph-Genus is NP-hard: Given a graph G and an integer g, decide whether G embeds
on the orientable surface of genus g [31]. This almost immediately implies that Embed is
NP-hard; the only subtlety is that in Graph-Genus, g is specified in binary, thus more
compactly than a triangulated surface of genus g (and thus Ω(g) triangles). To be very
precise, given an instance (G, g) of Graph-Genus, we transform it in polynomial time into
an equivalent instance of Embed as follows: If G has at most g edges, then we transform
it into a constant-size positive instance of Embed (every graph with g edges embeds on
the orientable surface of genus g); otherwise, we consider the instance (G,C ) where C

is a 2-complex that is an orientable surface of genus g; since G has at least g edges, the
transformation takes polynomial time in the size of (G, g).

We now prove that the problem Embed belongs to NP. The case where C contains a
3-book is trivial; let us assume that it is not the case. The proof of Proposition 7 shows
that an Embed instance is positive if and only if at least one instance of EEP-Surf, among
(cn)O(c) of them, is positive. The certificate indicates which of these instances is positive
(this requires a polynomial number of bits), together with a certificate that this instance is
indeed positive (see below). To check this certificate, the algorithm builds the corresponding
instance of EEP-Surf (as done in Section 4—this takes polynomial time) and checks the
certificate.

Here is a way to provide a certificate for an instance of EEP-Surf. In Section 5, we have
proved that, if we have an instance (G,H,Π,S ) of EEP-Surf, then there exists a cellular
embedding Γ′ (in the form of a combinatorial map) of a graph G′ containing G, and such
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that Γ′ extends Π. Moreover, G′ is obtained from G by adding a number of edges that is
O(c), where c is the size of the original complex. (Recall that in the instance of EEP-Surf,
the size of H is O(c).) The cellular embedding Γ′ of G′, given as a combinatorial map, is the
certificate that (G,H,Π,S ) is positive: Given (G,H,Π,S ) and this certificate, we can in
polynomial time check that G′ contains G, that the restriction of Γ′ to H is indeed Π, and
that the combinatorial map of Γ′ is indeed an embedding on S . J
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