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A B S T R A C T

This work compares the catalytic activity of iron catalysts supported on porous furfuryl alcohol derived resins for
the selective conversion of benzyl alcohol to benzaldehyde using hydrogen peroxide as the oxidant and assisted
by microwave irradiation. The catalysts were prepared mechanochemically by ball-milling in the dry state.
Initial results showed that the pressure in the reaction medium and the oxidant load are essential to achieve
significant conversions. An apparent minimum catalyst load of 0.05 mol% Fe was required for significant re-
activity at 132 °C.

1. Introduction

Selective oxidations of organic compounds are key transformations
in organic synthesis. Whereas in the past strong oxidants (e.g. chrome,
manganese and permanganate derivatives), N-chlorosuccinimide or
hypervalent iodine were used for the oxidation of organic compounds
[1–3], currently oxidants including hydrogen peroxide (H2O2), tert-
butyl hydroperoxide (tBu-OOH) and molecular oxygen (O2) are em-
ployed to reduce the environmental impacts (as water is in theory the
only by-product). The main advantage of using H2O2 over O2 is that it is
a liquid, miscible with water and relatively easy to handle. On the other
hand, H2O2 can undergo radical-induced decomposition to H2O and O2,
often catalyzed by metallic impurities [4] and therefore it needs to be
added in excess amounts. Alcohols are further classified in aliphatic,
allylic, benzylic and heterocyclic groups, as well as in primary, sec-
ondary and tertiary alcohols. In general, aliphatic alcohols are more
difficult to oxidize [5].

Selective catalytic oxidation has been the subject of numerous
publications, in particular from alkanes and olefins (Wacker process)
[6]. When starting from alcohols, Ru complexes perform very well
[7–9]. Many oxidation catalysts consist of a transition metal, which in
reduced form transfers electrons to the substrate and which then is
subsequently re-oxidized by the stoichiometric oxidant. However, this
process is kinetically constrained and therefore decomposition of the

reduced metal may occur, e.g. formation of ´palladium black´ [10].
Electron transfer mediators (ETMs) were introduced to overcome these
limitations, e.g. CuCl in the conversion of ethylene to acetylene with Pd
(II) and air [6]. Another example is benzoquinone which acts as the
hydrogen acceptor (oxidant) in the dehydrogenation of benzyl alcohol
to benzaldehyde using a homogeneous RuCl(OAc)(PPh3)3 catalyst and
Co(salophen) as co-catalyst to re-oxidize the hydroquinone formed,
with benzaldehyde yields ca. 60% and turnover number (TON) up to 70
[9]. This catalytic system was also applied for other alcohols, including
secondary ones. Besides Pd and Ru, other metals such as Cu and Fe were
introduced for aerobic oxidations. However, the catalytic systems that
combine Cu with ETMs are rather are limited, mainly because they
require stochiometric amounts of base (e.g. KOtBu) [11] or other co-
catalysts, e.g. 2,2,6,6-(tetramethylpiperidin-1-yl)oxyl (TEMPO) [12].

When using H2O2 as the oxidant, various metal complexes based on
V, Mo, Ti, W, Ru, Os, Pt and Fe have been proposed as catalysts, as well
as various (layered) mixed oxides [13]. Whereas homogeneous catalysts
(assisted by co-catalysts) are much more effective in the activation of
H2O2, heterogeneous catalysts in turn can be recycled. Studies that use
heterogeneous iron catalysts for selective oxidation are limited. Fifteen
years ago, FeBr3 (20 mol%) was proposed for the oxidation of menthol
in the presence of 5 eq. of H2O2[14]. In acetonitrile solvent, menthone
yields ca. 92% were reported after 24 h at room temperature. With
15 mol% catalyst, the yield dropped to 72%. Five years later, a catalytic
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system for the oxidation of secondary benzylic alcohols was reported,
consisting of small amounts of FeCl3 (2 mol%) with aqueous tBu-OOH
(3 eq.) as oxidant in pyridine at 82 °C, with excellent yields (ca. 90%)
after 24 h [15]. When using H2O2 instead of tBu-OOH, the yields were
much lower. The authors attributed this to the decomposition of the
oxidant on Fe(III). No clear relationship was observed with the iron
oxidation state; Fe(ClO4)3 gave the best results among others (Fe
(ClO4)2, FeCl2 and Fe(acac)3). FeCl3 was chosen for safety issues (risks
related with ClO4

− species). Iron oxide (γ-Fe2O3) species also have been
reported as effective oxidation catalyst of 0.2 M benzyl alcohol using
1 eq. of H2O2[16]. When using 1 mol% catalyst, a conversion ca. 30%
with 97% selectivity to benzaldehyde was reported after 12 h at 75 °C.
Note that the H2O2 was added continuously in small amounts over the
total reaction course, which can improve the oxidant atom efficiency.
Most importantly, conversions ca. 86% were reported when using cat-
alyst nanofractions (3–5 nm) instead of bulky fractions (20–50 nm).
However, the selectivity to benzaldehyde dropped to 35%. The authors
stated that when using nano γ-Fe2O3, quasi homogeneous catalyst
conditions are approached.

Benzaldehyde is an important organic intermediate used in flavors
such as almond and cherry and in various fragrances for soaps and
toiletries. It is also used in the manufacture of pharmaceuticals such as
ampicillin, pesticides such as dibenzoquat and in phenolbenzaldehyde
resins for fire resistant materials. It can be synthesized by the hydrolysis
of benzyl chloride or by the oxidation of toluene [17]. This work de-
monstrates the catalytic activity of small amounts of iron supported on
furfuryl alcohol derived resinic materials for the oxidation of benzyl
alcohol to benzaldehyde in acetonitrile, using 1.5–2.3 eq. of H2O2 in
relatively short reaction times using microwave irradiation.

2. Experimental

2.1. Synthesis of furfuryl alcohol based resins

The P500 material was prepared by adding 1.00 g (885 μL) furfuryl
alcohol in 1 L of 5 M H2SO4 aqueous solution at 20 °C, causing a color
change to brown. The suspension was left stirring overnight.
Subsequently, the resin particles were three times washed with distilled
water and separated by centrifugation (10,000 rpm, 4 °C, 40 min). The
P420 resin material was prepared identically, but instead 0.01 g (10 μL)
of furfuryl alcohol was added to 990 μL of water, followed by the ad-
dition of 10 mL 9 M HCl. A rapid change of color was observed upon the
addition of furfuryl from yellow to violet. The mixture was stirred for
1 h. The resin spheres were purified with distilled water and separated
by centrifugation (12,000 rpm, 4 °C, 40 min).

2.2. Mechanochemical synthesis of supported nanoparticles

The supported iron catalysts were prepared mechanochemically in
dry conditions: 1.0 g solid support and 0.020 g FeCl2·4H2O (equivalent
to 0.5 wt% Fe) were milled together in a planetary ball mil (Retsch 100)
under previously reported optimized conditions (350 rpm, 10 min)
[18]. The solids were recovered and heated overnight at 120 °C in air.

2.3. Catalytic activity in open vessel

Microwave experiments were carried out using a CEM-DISCOVER
model with PC control. In a 50 mL round-bottom flask equipped with a
cooling system, benzyl alcohol (0.2 mL, 1.92 mmol) was solubilized in
acetonitrile (2 mL), followed by the addition of 1.5 or 2.3 eq. oxidant
(0.3 mL of a 33 or 50 w/v% aqueous H2O2 solution) and the catalyst.
The reaction was stirred and heated with microwave irradiation at
300 W, achieving temperatures in the 90–132 °C range, as measured by
an infra-red probe. After a certain time, the reaction was stopped and
upon cooling the mixture was immediately filtered off and subsequently
analyzed by GC-FID.

2.4. Catalytic activity in closed vessel

Microwave experiments were carried out using a CEM-DISCOVER
model with PC control. For the experiments performed in closed vessels,
the protocol was identically as in the open vessel experiments, except
that a pressure controlled closed vessel was used under continuous
stirring. The reaction mixtures were stirred and irradiated at 300 W,
achieving temperatures in the 90–132 °C range, as measured by an
infra-red probe. The autogenous pressure ranged from 5 to 17 bar, with
an average of 16 bar.

2.5. Product analysis

The filtrates collected from the reaction mixtures were analyzed by
GC, using an Agilent 6890N GC model equipped with a Supelco 2-8047-
U (60 m × 25 m × 25 μm i.d.) capillary column and an FID detector.
The temperature of the column was ramped at 10 °C min−1 to 100 °C
(0 min hold time), then at 20 °C min−1 to 120 °C (20 min hold time)
and finally to 180 °C at 20 °C min−1 (10 min hold time). The nitrogen
gas flow was set at 1.8 mL min−1. The retention times benzyl alcohol,
benzaldehyde and benzoic acid were 1.80, 1.35 and 3.20 min, respec-
tively.

Fig. 1. Benzyl alcohol conversion and selectivity using Fe nanoparticles supported on
P420 resin as compared to free dissolved FeCl2, using 1.5 and 2.3 eq. H2O2.

Fig. 2. Benzyl alcohol conversion and selectivity using Fe nanoparticles supported on
P500 as compared to dissolved FeCl2, using 1.5 and 2.3 eq. H2O2.
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3. Results and discussion

3.1. Catalytic activity in open vessel

Initially, the experiments were conducted in open vessels. Whatever
the nature of the oxidant (H2O2 or tBu-OOH), the amount of catalyst
(25, 50 or 100 mg) and the reaction time (5 or 30 min), no significant
benzyl alcohol conversion was observed (< 5% in all cases). These
results show that high temperature and pressure are required for the
reaction to proceed.

3.2. Catalytic activity in closed vessel

First, the free dissolved iron catalyst (0.5 mol% FeCl2) was tested for
the oxidation of 0.77 M benzyl alcohol with 2.3 eq. H2O2 in acetoni-
trile. After 5 min microwave irradiation, 53% conversion with 78%
selectivity to benzaldehyde was observed. When using an iron catalyst
supported on P420 resin, but with 10 times lower Fe content (0.05 mol
%), the same selectivity was obtained in the product mixture, but with
22% lower conversion (Fig. 1). Similar results were observed for the
iron catalyst supported on the P500 resin (Fig. 2). This was the apparent
threshold catalyst load (with 0.03 mol% Fe there was only 6–8% con-
version). On the other hand, when the catalyst load was increased to
0.12 mol% or higher, similar conversion and selectivity were obtained,
but in 3–4 times shorter reaction times. The question whether conver-
sion increased further in time in those experiments or not remains open,
as the reaction was aborted when the pressure limit of the vessel in the
microwave equipment was reached. This shows that the as synthesized
catalysts were very active in the activation of H2O2, or to state in an-
other way (i.e. when metal oxides are the actual kinetic active catalytic
centers [19]), they were re-oxidized very efficiently with H2O2.

Next to the catalyst load, the most determining factor was the excess
amount of oxidant. The selectivity could be improved using less H2O2

(1.5 instead of 2.3 eq.). This effect is most noticeable in the case of
0.05 mol% Fe (see Figs. 1 and 2). For this reason, the continuous ad-
dition of H2O2 might be beneficial to the selectivity in the final reaction
mixture, by preventing further oxidation to benzoic acid [16]. Table 1
compares the activity with that of previously reported catalysts for the
oxidation of benzyl alcohol with H2O2. The results clearly show the
potential of the presented supported iron catalysts, as the TON was the
highest among the studies compared, even after short reaction times,
enabled by the use of microwave irradiation.

4. Conclusions

This work demonstrates that small amounts of mechanochemically
prepared iron particles on a porous furfuryl alcohol derived resin sup-
port were very active for the oxidation of benzyl alcohol using
1.5–2.3 eq. of hydrogen peroxide. The use of microwave irradiation
allowed the reaction to proceed very fast. An apparent minimum cat-
alyst load of 0.05 mol% Fe was required for significant reactivity. At

this catalyst load and using 2.3 eq. of oxidant, similar selectivity to
benzaldehyde was observed as compared to 0.5 mol% of free dissolved
FeCl2 catalyst, however with 15–22% lower conversion.
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