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State estimation in alcoholic fermentation models: a case-study in
wine-making conditions

Martin Fleurial1, Ludovic Sacchelli2 and Agustı́n G. Yabo3

Abstract— We study the problem of online state estimation
during wine fermentation. This problem becomes relevant when
trying to control the alcoholic fermentation process with a
control law relying on our capacity to estimate the full state, but
with partial measurements of the system (which is the case in
an industrial framework). We focus on studying observability
properties of an alcoholic fermentation model in wine-making
conditions. We implement an algorithm of state estimation
based on optimality principles on expanding time windows
(Full Information Estimator). In order to test the developed
algorithms, we compare the results obtained on simulated data
as well as experimental data obtained in wine fermentations
performed at a laboratory scale.

I. INTRODUCTION

Triggered by the increasing environmental issues, the agri-
food industry is undergoing a major transformation towards
sustainable practices. In particular, newer concerns are in-
creasingly becoming relevant for the wine industry, related
to the energy consumption of the process, or the reduction
of the carbon footprint. The latter not only can contribute
to a more sustainable industry—and simultaneously reduce
production costs—but also complies with the demands of a
major niche of the population that is becoming increasingly
engaged with ethical and environmental issues [1]. On the
other hand, in the current highly competitive market, it is
critical to preserve (and potentially improve) the character
and quality of wines during the transition to an eco-friendly
food industry. These issues are beyond the reach of current
enological practices, and represent a challenge for the engi-
neering community. In this context, optimization and control
theory become a key tool for their capacity to interfere and
drive in real time the fermentation process.

A fundamental starting point in the design and imple-
mentation of closed-loop control schemes is an accurate
model of wine fermentation, a process that is carried out
by yeast cells. For thousands of years, yeasts have been
central in food production—in particular in winemaking,
beer brewing and baking. However, our understanding of
yeast metabolism still remains vague due to its high level of
complexity. In this sense, there have been numerous attempts
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to develop mechanistic models of enological fermentation by
considering only the main macrochemical reactions. In this
work, we focus on the one proposed in [2] which, despite
its simplicity, is able to capture numerous physiological
phenomena such as yeast growth on nitrogen, sugar transport,
ethanol inhibition and the effect of temperature on synthesis
rates.

Moreover, a closed-loop approach to regulating winemak-
ing fermentation strongly relies on our capacity to measure
and estimate the main variables involved in the process
[3], [4]. This happens to be a non-trivial task in alcoholic
fermentation due to the nonlinearity of the mathematical
models, the strong interdependence of the variables, and
the unavailability of industrial-scaled sensors capable of
measuring them. For these reasons, it is worthwhile to inves-
tigate ad-hoc solutions to the state estimation problem that
take into account the specificities of industrial oenological
conditions. For example, one can estimate the rate of release
of CO2 through automatic monitoring of the weight loss
of the fermentor, which provides an accurate description
of the speed of the process [5]. However, measuring other
quantities, like yeast cell count, requires manual sampling
and analysis not suitable for industrial scale.

Another inherent feature of wine fermentation is the low
frequency of the measuring-estimation-control loop, mainly
due to the slowness of the fermentation process. This char-
acteristic relaxes a major constraint of regular real-time
implementations: the execution time of the algorithm. Thus,
on top of other more classical approaches, this opens up the
possibility to explore optimality-based estimation algorithms
[6], [7], often disregarded for their slow execution times.
As an example of alternative approaches, Extended Kalman
Filters have been already used in wine fermentation [8].
However, since the approach relies on a linearization of the
system, the estimator can diverge if the initial estimate of the
state is too far from the real state. Other algorithms that do
not rely on mechanistic models of the fermentation process,
such as non-parametric Gaussian trackers [9], have proved
their efficacy, but can fail to capture the constraints and non-
linearities of the real system.

In this work, we investigate the problem of online state es-
timation during wine fermentation. In Section II, we present
a simple wine fermentation model from the literature [2].
In Section III, we study its observability properties, we
propose a partially initialized model adapted to our setting,
and we introduce the optimality-based estimation scheme
used: the FIE (Full Information Estimator). In Section IV,
results using numerical and experimental data are showed.



Two optimization methods are tested and compared for the
implementation: interior point method, and particle swarm
optimization. Finally, we briefly discuss the obtained results.

II. DYNAMICAL MODELS OF WINE FERMENTATION

A. Dynamical model

The model represents a fermentation process carried out
by the yeast Saccharomyces cerevisiae developed in [2], and
describes the kinetics of the two main metabolic pathways
involved in wine fermentation: 1) the consumption of as-
similable nitrogen N and conversion into biomass X , and
2) the production of ethanol E and CO2 from glucose
S. In the model, time t is assumed to be measured in
hours; substrate concentration S, ethanol concentration E
and assimilable nitrogen concentration N in g.L−1, and
biomass X in L−1. The temperature is denoted by T in
◦C. Substrate consumption by each yeast cell is modeled as
proportional to the number of glucose transporters per cell
NST , and their ethanol-inhibited glucose transporter activity
νST , so that

dS

dt
= −XNST (N0 −N,X, T )νST (S,E, T ), (1)

where N0 denotes the initial concentration of nitrogen. Like-
wise, nitrogen is assimilated through an ethanol-inhibited
absorption mechanism

dN

dt
= −XνN (N,E, T ). (2)

The yeast population is modeled as following a logistic
growth where maximal population is induced by the initial
assimilable nitrogen N0

dX

dt
= k1(T )X

[
1− X

Xmax(N0)

]
. (3)

Ethanol is produced in proportion to substrate consumption
so that

dE

dt
= −µ

dS

dt
(4)

with µ = 1/2.17. The ethanol-inhibited models are, for
glucose transporter activity,

νST (S,E, T ) =
k2(T )S

KS + S(1 +KSiEαS )
,

and for the absorption mechanism,

νN (N,E, T ) =
k3(T )N

KS +N(1 +KNiEα
N )

.

Finally, the number of glucose transporters per cell is mod-
eled such that

k2(T )XNST (∆N,X, T ) = (λa + λcT )∆N

+ (λbT + λd)X,

and Xmax(N0) = −109(649N2
0 + 698N0 + 7).

Equations (1)-(2)-(3)-(4), with nonnegative initial condi-
tions, constitute the Malherbe et al. wine fermentation model
introduced in [2]. See Figure 1 for a simulation. Possible
values for temperature dependant parameters k1, k2, k3, as

well as λa, λb, λc, λd, KS , KSi, αS , KN , KNi, αN , are
discussed in [2] and recalled in Appendix II
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Fig. 1. Example of a trajectory of the dynamical model. Initial state S0 =
202 g.L−1, N0 = 0.280 g.L−1, X0 = 1 · 109 L−1, T = 24◦C.

B. Experimental data

The model was originally calibrated using measurements
of cell population of yeasts (X), assimilable nitrogen (N), and
CO2 release. Cell population is measured using an electronic
particle counter device, while nitrogen is calculated as the
difference between the measurements of total nitrogen and
ammonium in the must. These methods require sampling at a
certain frequency throughout the fermentation process, and
posterior manual analysis of the sample performed by an
operator, a procedure quite standard in a laboratory setting,
but rather uncommon at an industrial scale. However, CO2

production rate can be easily computed from weight loss
of the must, which gives a precise measurement of CO2

release [5]. In order to emulate real-time conditions, we
consider that only the measurements of CO2 production rate
are accessible, and we base the observability analysis on this
hypothesis.

III. STATE ESTIMATION

A. Model discussion in regard to estimation

We consider the problem of state estimation using the
more easily available measurement, that is of CO2 produc-
tion. The bioprocess is assumed to start from an initial
condition CO2(0) = E(0) = 0. As the main chemical
reaction in alcoholic fermentation yields an equal amount of
ethanol and carbon dioxide per unit of glucose, this implies
CO2(t) = E(t),∀t ≥ 0, and so CO2 measurements are
equivalent to measuring E. Thus, we assume that we have
access to the output y = E and we wish to provide an
estimate of the unknown initial state (S(0), N(0), X(0)). We
now discuss the model in regard to that particular goal, as
well as two reductions adapted to more specific scenarios.



1) Malherbe et al. model: We discuss the dynamical
model (1)-(4) with measurement y = E and unknown

(S(0), N(0), X(0)) = (S0, N0, X0).

The construction of the model defines Xmax(N0) as a degree
2 polynomial in N0 with two distinct real roots N−

0 < N+
0 ,

such that Xmax > 0 on (N−
0 , N+

0 ). The roots are such that
−0.1 < N−

0 < 0 and 1 < N+
0 < 1.1. For simplification

purposes, we impose N0 ∈ [0, 1]. We define the set of
suitable initial conditions

Ω0 = {(S0, N0, X0) : 0 ≤ S0, 0 ≤ N0 ≤ 1,

0 ≤ X0 ≤ Xmax(N0)}.

Proposition 1: Under isothermal conditions (T constant),
for any 0 ≤ t1 < t2, System (1)-(4) is observable over
[t1, t2]. That is, for any two trajectories of (1)-(4) with
initial conditions such that (S0, N0, X0, ), (S̃0, Ñ0, X̃0) ∈ Ω,
E|[t1,t2] ≡ Ẽ|[t1,t2] implies (S0, N0, X0) = (S̃0, Ñ0, X̃0).

Proof is found in Appendix I. The proposition can be
extended to include some sufficiently general non-isothermal
conditions. However, this extension is quite intricate (but not
challenging) and falls out of the scope of this paper.

2) Partially initialized model: The above problem can be
refined for estimation purposes in the particular case where
a measurement of the initial substrate concentration was
experimentally obtained. This is sometimes the case in the
experimental setting described in sections I and II-B. Under
these assumptions, it may be more reasonable to not use
the same estimation method when one of the unknowns is
actually measured. However, the initial measurement may be
biased, so we propose a new formulation of the estimation
problem with bias that shares its observability properties with
the original problem.

We denote the initial (biased) measurement with Sexp
0 , and

we linearize the system around the trajectory that has S0 =
Sexp
0 , so that we still have dE

dt = −µdS
dt , but we assume

S = Sexp + Slin, with

dSexp

dt
= −XNST (N0 −N,X, T )νST (S

exp, E, T ) (5)

and

dSlin

dt
= −XNST (N0 −N,X, T )×

∂SνST (S
exp, E, T )Slin. (6)

Under this assumption, the unknown S0 is replaced with Slin
0 .

Proposition 1 holds with S = Sexp + Slin.
Proposition 2: Under isothermal conditions, for any

0 ≤ t1 < t2, System (5)-(6)-(2)-(4) is observ-
able over [t1, t2]. That is, for any two trajectories of
(5)-(6)-(2)-(4) with initial conditions such that (Sexp

0 +
Slin
0 , N0, X0, ), (S

exp
0 + S̃lin

0 , Ñ0, X̃0) ∈ Ω, E|[t1,t2] ≡
Ẽ|[t1,t2] implies (Slin

0 , N0, X0) = (S̃lin
0 , Ñ0, X̃0).

The proof can be found in Appendix I.
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Fig. 2. Example of a trajectory of the partially linearized model. Initial
state Sexp

0 = 212 g.L−1, Slin
0 = −10 g.L−1, N0 = 0.280 g.L−1 and

X0 = 1 · 109 L−1, T = 24◦C. The value of Slin
0 has been voluntarily

picked large to highlight the difference in the trajectories near the end of
the reaction.

Behavior of the solutions of this system near the tail end of
the reaction do not agree with the biological setting (Sexp+
Slin can have positive derivative for a short period of time
near the end of the reaction, see Figure 2). This is not an
issue for the estimation problem at hand, where we focus
on the beginning of the reaction for control purposes. For
what regards the dynamical model for the last part of the
reaction, when both N and X are stabilized. We can use
another simplified model.

3) Tail end model: Study of the trajectories of System
(1)-(4) (see Figure 1, for instance) reveal that, under the as-
sumptions of the Malherbe et al. model, both nitrogen N and
biomass X reach their equilibria, Nf = 0, Xf = Xmax(N0),
relatively early in the overall fermentation process (at least if
we consider the batch case, without nitrogen introduction).
The necessary time to reach these equilibria is of the order
of twice the time to peak of dCO2

dt , around the 40 to 60 hour
mark in our case. For this reason, we mention an alternative
linearized model and briefly discuss its properties, but we
do not present further experiments on the model, as we wish
to focus on earlier parts of the fermentation. We denote by
NST (N0, Xf , T ) = NST f , and we assume that at t = t∗,
N = Nf = 0, X = Xf are valid approximations, so that

dS

dt
= −XfNST fνST (S,E, T )

dE

dt
= −µ

dS

dt
y = E.

(7)

Now, the set of unknowns to estimate is divided between
the initial state S∗ = S(t∗) and the unknown parameter
XfNST f = Xmax(N0)NST (N0, Xmax(N0), T ).

Proposition 3: Under isothermal conditions, for any t∗ ≤
t1 < t2, System 7 is observable in the sense that for any
S∗, S̃∗ ≥ 0 N0, Ñ0 ∈ [0, 1], E|[t1,t2] ≡ Ẽ|[t1,t2] implies
(S∗, N0) = (S̃∗, Ñ0).



Again the proof can be found in Appendix I.

B. Estimation method

The long duration of the wine fermentation reaction al-
lows considering offline estimation methods for the online
estimation and control of the process. For instance, in the
experimental setting described previously, a measurement of
emitted CO2 is taken every 30 minutes. For this reason,
optimization-based methods appear to be well suited for
the estimation problem at hand. In particular, we consider
MHE (Moving Horizon Estimation), the estimation side of
model predictive control [10], [7]. In particular, we consider
a subclass of MHE, known as FIE (Full Information Es-
timation), which consists of minimizing the least squares
energy over the time interval [0, Tk] at each measurement
time Tk. For that, let us rewrite (1)-(4) as dξ

dt = f(ξ), with
ξ = (S,N,X,E). For a given trajectory ξ(·), we assume
knowledge of a measurement function y = E + v, where
v is a measurement noise, that we assume to be of class
L2(R). See Figure 3 for one such experimental situation. For
any initial condition ξ0 ∈ Ω′

0 := Ω0 × {0}, we can define
t 7→ yξ0(t) the model predicted output. For an increasing
sequence of time horizons Tk > 0, the moving horizon
estimate over [0, Tk] is for us the trajectory ξ̂k such that
ξ̂k(0) solves

argmin
ξ0∈Ω′

0

Jk(ξ0) :=α|ξ̂k−1(0)− ξ0|2

+

∫ Tk

0

|y(s)− yξ0(s)|
2
ds.

(8)

The quantity α ≥ 0 is a weighted memory term that can be
set to 0.

Remark 4: In full generality, process noise should be
accounted for in such problems. They are left for a later
study at the moment.

In that context, observability of (1)-(4) with output y = E
yields a soft convergence result. The statement itself is a
reformulation of the classical MHE globally asymptotically
stable convergence theorems (such as the ones found in [6],
[7]), se we do not re-prove it.

Proposition 5: Under the above assumptions, there exists
a K-class function ω such that

|ξ(t)− ξ̂k(t)| ≤ ω(∥v∥L2(0,Tk)), ∀t ∈ [0, Tk]

In particular, ξ = ξ̂k on [0, Tk] if v = 0. Furthermore, if
∥v∥L2(Tk,+∞) → 0 as k → 0, then ξ̂k(0) → ξ0.

IV. RESULTS

A. Implementation

Two methods were implemented to numerically solve the
optimization problem (8): interior point method (see, e.g.
[11]) and particle swarm optimization (see, e.g., [12]). They
are denoted, respectively, IP and PSO in the results tables.
In order to quantify the success of the method over a full
fermentation, we propose for each numerical experiment the
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Fig. 3. Example of a fitted trajectory (in black) from experimental data
(in red).

computation of two quantities ∆J and ∆ξ. For given true
initial state ξ0, measured output y over [0, T ], estimated
initial state ξ̂0 and generated output ŷ, we define ∆J :=
∥y − ŷ∥L2(0,T )/∥y∥L2(0,T ) and ∆ξ := supi∈{1,2,3} |(ξ0 −
ξ̂0)i|/|(ξ0)i|. This allows to obtain a relative estimation
error. See Figure IV-A for an illustration of the estimation
algorithm.

For each method, we experimented with the estimation
strategy over multiple data sets corresponding to three cases.
First, we applied the estimation method to trajectories gener-
ated from the dynamical model, with 30 randomly selected
initial conditions. These experiments correspond to the “0%
noise” row in the result tables. The second case corresponds
to noisy output: for a given ξ0 and the associated output y,
we assume that the measured output fed to the algorithm
is y = (1 + ε/10)y, where ε is a random unit Gaussian
noise, also with 30 randomly selected initial conditions.
These experiments correspond to the ”10% noise” row in the
result tables. Finally, we implemented the algorithm on 15
experimental CO2 production measurements (see section II-
B). In each of these cases, we give the mean values for ∆J
and ∆ξ, as well as their standard deviation. See Table I.
The same exercise, in the same conditions, has been done
focusing on the partially initialized model of Section III-A.
See the results in Table II

Method Data ∆J ∆ξ

Mean Std Mean Std
0% noise 0.0054 0.019 0.21 0.91

IP 10% noise 0.10 0.00062 0.024 0.040
Experiments 0.015 0.015 7.88 7.88

0% noise 0.059 0.051 21.02 89.05
PSO 10% noise 0.11 0.015 6.25 9.88

Experiments 0.019 0.016 98.35 246.54

TABLE I
AVERAGE FINAL PERFORMANCES OF THE ESTIMATOR FOR THE

MALHERBE et al. MODEL.
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Fig. 4. Simulated online estimation using MHE. In this case, the simulated
output y has been noised in order to match the experimental setting. At the
top, original trajectory and noised data. At the bottom, relative error of the
estimator ∆ξ for the time interval [0, t] at each t. The estimation method
reaches a 5% error before the 50 hours mark, well before nitrogen addition
occurs.

B. Discussion of the results

In this section, we discuss the results shown in tables I
and II. We focus first on the simulated data. Simulations
agree with the theory: it is possible to fit the curve with a
trajectory of the model (with ∆J low) and to extract from it a
approximate value of ξ0 that is faithful (with ∆ξ low). If the
J minimization fails, results are naturally poor for the state
estimation. A 10% noise is much more intense than what is
seen experimentally but serves as an illustration. It appears
that the high noise helps in the numerical minimization, but
we do not regard this aspect as significant since it is not
experimentally representative. However, the fact that ∆J =
0.1 in particular illustrates that the noise was eliminated well.

On the topic of the optimization method, the interior point
method yields much better performance. This may be due to
the low selectivity of the energy that is being minimized.
It should be noted that in regard to the partially initialized
model, the results seem marginally better in the IP case but
much better in the PSO case. (The fitting of the output,
measured by ∆J , does not have a significant margin of

Method Data ∆J ∆ξ

Mean Std Mean Std
0% noise 0.0011 0.0013 0.017 0.031

IP 10% noise 0.10 0.00047 0.022 0.029
Experiments 0.087 0.29 6.62 6.65

0% noise 0.019 0.015 0.53 0.97
PSO 10% noise 0.10 0.0056 0.45 0.70

Experiments 0.087 0.29 6.62 6.65

TABLE II
AVERAGE FINAL PERFORMANCE OF THE ESTIMATOR FOR THE

PARTIALLY INITIALIZED MODEL.

improvement in the IP case.) This suggests that introducing
the new partially linearized model offers a form of robustness
that allows for a weaker optimization method to still produce
suitable answers. Since the optimization problem does not
appear to be highly sensitive to variations in ξ0, ∆J can be
made low without having ∆x low, even in the numerical
cases. Increasing the precision of the output estimation
(lowering ∆J as much as possible) is paramount to the
success of the state estimation. As illustrated in the partially-
linearized case, the refinement provided by the model can
yield significant improvement to the state estimation.

The situation is not as clear in the case of real data. On
the one hand, the minimization of the least squares energy
reaches suitable levels. This can be explained by the fact that
the measured output is not very noisy, as can be seen from
Figures 3 and 5 (Figure 3 shows a derivative of the noisy
measurement). For instance, as illustrated in Figure IV-A,
such a low level of noise can lead to a quite precise estimate
of the initial state (with a ∆x of 0.01, that is a 1% error in
initial state estimation with a simulated output). However, as
it clearly appears in the tables, the good fitting of the output
measurement does not translate into a good estimation of the
initial state.

We identify three elements in the method that may explain
this discrepancy. First, the low selectivity of the least-squares
energy can lead to wrong estimations of the initial state. For
instance, X0 can be drastically changed from a shift in the
starting time of the experiment. This has been taken into
account when possible and can be part of the explanation,
but the discrepancy is not on the same level as the simulated
data. Second, the parameter values in [2] have been re-fitted
to better match the experimental data in our possession. As
can be seen in Figure 5, the trajectory generated by the
Malherbe et al. model using an experimentally measured
initial state does not yield an output that is closely matched
with our experimental measurements. A tighter fitting of the
model would be necessary to allow the method to properly
predict the initial state. Third, the model at hand may be
refined, and has seen some revisions since it was proposed.
We suspect that the model may have some shortcomings for
this particular type of estimation problem, such as the initial
state appearing as a parameter in the dynamics. This impacts
the possible strategies for estimation methods. In this sense,
we wish to explore the method for other more recent and



better fitted models (see, e.g., [13], [14]).
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Fig. 5. Example of wrongly fitted data. The red curve (E) corresponds to
experimentally gathered data, the plain black curve is the model prediction
(Ē), and the dashed black curve (Ê) is the fitted curve. Under the current
tuning of the model, it may fail to predict the trajectory from initial
conditions, even if the estimator is able to recover a fitting trajectory.

V. CONCLUSION

In this paper, we discussed a state estimation problem
for alcoholic fermentation process under biogas production
measurements. Based on a classical model, we showed
the observability of the dynamics when endowed with that
measurement. We also proposed variations on the model that
may be adapted to more specific experimental scenarios. Mo-
tivated by the slow process time, we proposed to tackle the
estimation task with an optimization-based moving horizon
method. The technique was implemented on both numerical
and experimental data. This showed that the technique allows
to recover the state of the fermentation, but is beholden to
the quality of the model. Our results show that the method
is well adapted to the estimation problem, and so the way
forward for us is to focus on more recent models, which
in particular should be better suited to the process control
objectives.

APPENDIX I
OBSERVABILITY ANALYSIS

We give a full proof of well-posedness and asymptotic
behavior of solutions to the problem only for model (1)-(4).
The proof can be easily adapted to the other cases.

Proposition 6: Let (S0, N0, X0) ∈ Ω0 \ {(0, 0, 0)}. De-
noting by (S,N,X,E) the solution of (1)-(4) with initial
condition (S0, N0, X0, 0), we have under isothermal condi-
tions,

1) t 7→ (S(t), N(t), X(t), E(t)) is continuous over
[0,+∞), analytic over (0,+∞).

2) S, N , X and E are positive and monotonous.
3) As t → +∞, (S(t), N(t), X(t), E(t)) →

(0, 0, Xmax(N0), µS0).
Proof: First, it should be noted that the dependence of

X to N0 is non-standard for the application of ODE solutions

existence theorems. We must assume that there exists N ′
0 a

second constant and that the trajectory of X is actually that
of a logistic curve with asymptote X = Xmax(N

′
0). Once

existence results are proved, we can freely assume that we
are on the specific trajectory N ′

0 = N0.
Regarding existence of solutions, the right-hand-side

(RHS) of Equations (1)-(4) is Lipschitz continuous with
respect to S, N , and X on Ω. It is, however, only locally
Lipschitz continuous with respect to E on [0,+∞) (because
of the non-integer power of E in νS , νN ). This allows to
define solutions on the time interval [0, ε) for some ε > 0.
It is clear that the RHS of (1)-(4) is actually analytic with
respect to (S,N,X,E) once E > 0. Since Ė(0) > 0, we
can assume that it is the case on (0, ε′) for some ε′ ≤ ε. This
allows to prove the solution to (1)-(4) is actually analytic on
(0, ε′).

We can now assume that we are in the case N ′
0 = N0 and

check that solutions remain in Ω0. With ξ = (S,N,X), it
is easy to check that (1)-(4) translates to ξ̇ = D(ξ, E(t))ξ,
with D : R3 × R → R3×3 a diagonal matrix. As a result,
if there exists a point t∗ ∈ (0, ε′) such that one component
of ξ vanishes at t∗, all derivatives of that given component
must also be 0 at t∗. Since the solution is analytic, the
given component is identically 0 over (0, ε′), which is in
contradiction with the assumption that ξ0 ∈ Ω0. From
that we deduce that on the whole interval of existence,
Ṡ < 0, Ṅ < 0, Ẋ > 0, X < Xmax(N0) (that from the
logistic curve only), E = µ(S0 − S) and thus solutions
are spatially bounded. This proves that solutions must exist
on the whole interval [0,+∞). Now we can notice that if
we replace ξ with ζ = (S,N,Xmax(N0) − X), we again
ζ̇ = D′(ζ, E(t))ζ, with D′ : R3 × R → R3×3 a diagonal
matrix, with all diagonal elements negative on Ω0. As a
result, V (S,N,X) = S2 + N2 + (X − Xmax(N0))

2 is a
strict Lyapunov function for the dynamics of ζ, proving the
convergence (S,N,X) → (0, 0, Xmax(N0)). Convergence
of E to µS0 then follows.

Proof of Proposition 1: Since t 7→ E(t) and t 7→ Ẽ(t)
are both analytic, having E|[t1,t2] ≡ Ẽ|[t1,t2], with 0 ≤ t1 <

t2 implies E ≡ Ẽ over [0,+∞) (we include 0 since E is
continuous). Since E = µ(S0 −S) and S(t) → 0, it follows
that S0 = S̃0, and S ≡ S̃ over [0,+∞). Then from the
derivative of S, we get

XNST (N0 −N,X, T ) = X̃NST (Ñ0 − Ñ , X̃, T )

over [0,+∞). Passing to the limit t → 0
yields X0NST (0, X0, T ) = X̃0NST (0, X̃0, T ),
that is X0 = X̃0. Likewise, taking t → +∞
yields Xmax(N0)NST (N0, Xmax(N0), T ) =
X̃max(Ñ0)NST (Ñ0, X̃max(Ñ0), T ), that is N0 = Ñ0.
■

A small amendment to this proof yields Proposition 2.
Proof of Proposition 2: Point 1 and 3 of proposition 6

still holds when S = Sexp+Slin, so that Sexp → 0, Slin → 0.
Point 2 holds in the sense that neither Sexp nor Slin vanish
at any point (the proof by analyticity is the same), however
it may happen that S = Sexp + Slin vanishes, as Slin(0)



can be negative. If E|[t1,t2] ≡ Ẽ|[t1,t2], with 0 ≤ t1 < t2,
are the outputs of two trajectories of system (5)-(6)-(2)-(4)
, analyticity implies E ≡ Ẽ over [0,+∞) and like in the
proof of Proposition 1, we deduce that S0 = S̃0. Here S0 =
Sexp
0 + Slin

0 and S0 = Sexp
0 + S̃lin

0 , so Slin
0 = S̃lin

0 . As a
consequence S = S̃ and the conclusion follows the same
path as proof of Proposition 1. ■

Finally, regarding the tail end model, we have the follow-
ing proof.

Proof of Proposition 3: Proposition 6 still holds
when X = Xf and N = Nf = 0, so that S → 0. As
before, if E|[t1,t2] ≡ Ẽ|[t1,t2], with t∗ ≤ t1 < t2, are
the outputs of two trajectories of system 7, analyticity
implies E ≡ Ẽ over [t∗,+∞) and S∗ = S̃∗. This
implies that Xmax(N0)NST (N0, Xmax(N0), T ) =
Xmax(Ñ0)NST (Ñ0, Xmax(Ñ0), T ). Now N0 = Ñ0

follows from the fact that the map N0 7→
Xmax(Ñ0)NST (Ñ0, Xmax(Ñ0), T ) is strictly increasing
over [0, 1]. ■

APPENDIX II
VALUES OF PARAMETERS IN [2]

1) λa = 335, λb = 0.061, λc = 3, λd = −1,
2) KS = 15,KSi = 0.012, αS = 1.25,
3) KN = 0.03,KNi = 0.035, αN = 1.5,
4) k1(T ) = 0.0287T − 0.3762, k2(T ) = 0.035, k3(T ) =

0.001.
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